Asme Bpvc.vi 2017

October 26, 2017 | Author: Ha Nguyen | Category: Steam, Boiler, Energy Technology, Mechanical Engineering, Engineering
Share Embed Donate


Short Description

Descripción: Recommended Rules for the Care and Operation of Heating Boilers...

Description

AS M E B P V C . V I - 2 0 1 7

SE C TI O N VI

201 7

ASME Bo i l e r a n d Pr e s s u r e Ve s s e l C o d e

An I n t e r n a t i o n a l C o d e

Recommended Rules for the Care and Operation of H eating Boilers

Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME,” ASME logos, or the Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code or Standard. Use of ASME’s name, logos, or Certification Mark requires formal ASME certification; if no certification program is available, such ASME markings may not be used. (For Certification and Accreditation Programs, see https://www.asme.org/shop/certification accreditation.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Items produced by parties not formally certified by ASME may not be described, either explicitly or implicitly, as ASME certified or approved in any code forms or other document.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN INTERNATIONAL CODE

2017 ASME Boiler & Pressure Vessel Code 2017 Edition

July 1, 2017

VI RECOMMENDED RULES FOR

THE CARE AND OPERATION OF HEATING BOILERS ASME Boiler and Pressure Vessel Committee on Heating Boilers

Date of Issuance: July 1, 2017

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large. ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard. ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals. The endnotes and preamble in this document (if any) are part of this American National Standard.

ASME collective membership mark

Certification Mark

The above ASME symbol is registered in the U.S. Patent Office. “ASME” is the trademark of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. Library of Congress Catalog Card Number: 56-3934 Printed in the United States of America Adopted by the Council of The American Society of Mechanical Engineers, 1914; latest edition 2017. The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990

Copyright © 2017 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved

CONTENTS List of Sections Foreword

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statement of Policy on the Use of the Certification Mark and Code Authorization in Advertising Statement of Policy on the Use of ASME Marking to Identify Manufactured Items

. .

.

. .

. .

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees Personnel

.

. .

.

. .

.

.

.

. .

x

.

.

.

.

.

.

.

.

.

xi

.

.

.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cross-Referencing and Stylistic Changes in the Boiler and Pressure Vessel Code

. .

. .

.

. .

.

Article 1 Article 2 Article 3

Introduction Glossary Types of Boilers

3.1 3.2 3.3 3.4

Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASME Certification Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Method of Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. .

.

. .

. .

.

. .

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fuels and Fuel-Burning Equipment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 4.2

Types of Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel-Burning Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ventilation and Combustion Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chimney or Vent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping — Water and Drain Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Housekeeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posting of Certificates and/or Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Record Keeping, Logs, Etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 5

Article 6 6.1 6.2 6.3

Boiler Room Facilities and Installation

Overpressure Protection

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pressure Relief Valves . . . . . . . . . . . . . . . . . . . . . Pressure Relief Valve Requirements . . . . . . . . . . . Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

x

. .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Changes in Record Number Order

viii

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary of Changes

Article 4

. . . . . . . . . .

vi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiv xxxiii

xxxiv xxxv

1 2 6 6 6 6 7 10 10 12 14 14 14 14 15 15 15 15 15 15 23 23 23 23 25 25 25 26

6.4 6.5 6.6 6.7 6.8

Pressure Relief Valve Discharge Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature and Pressure Safety Relief Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Valve Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Try-Lever Test for Safety Valves (Steam Boilers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Try-Lever Test for Safety Relief Valves (Water Boilers) . . . . . . . . . . . . . . . . . . . . . . . .

Article 7

System Accessories

7.1 7.2

Steam Boilers . . . Hot Water Boilers

Article 8

.

. . .

. .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Controls and Instrumentation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1 9.2 9.3 9.4 9.5 9.6 9.7

Starting a New Boiler and Heating System . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting a Boiler After Layup (Single-Boiler Installation) . . . . . . . . . . . . . . . . . Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutting in an Additional Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Removal of Boiler From Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operation and Maintenance of Steam Boilers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 10 Operation and Maintenance — Hot Water Boilers and Hot Water Heating Boilers Starting a New Boiler and Heating System . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting a Boiler After Layup (Single-Boiler Installation) . . . . . . . . . . . . . . . . . Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutting in an Additional Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Removal of Boiler From Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 11 Inspections of Installed Boilers

.

.

.

.

.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1 11.2

Periodic Inspection of Boilers . . . . . . . . Inspection of the Boiler by the Inspector

12.1 12.2 12.3 12.4

Precaution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.1 13.2 13.3 13.4 13.5 13.6

Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Water Treatment Specialists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Ordinances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Potential Boiler Water Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blowdown (Steam Boilers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 12 Boiler Repairs

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Low-Water Fuel Cutoffs and Water Feeders . . . . . . . . . . . . . . . . . . . . . . Pressure Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steam Heating Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hot Water Heating Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1 10.2 10.3 10.4 10.5 10.6 10.7

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1 8.2 8.3 8.4 8.5

Article 9

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 13 Water Treatment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iv

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27 27 27 27 29 30 30 30 33 33 35 35 36 37 39 39 40 40 40 41 42 42 45 45 45 46 46 46 46 47 50 50 50 51 51 51 51 51 52 52 52 52 52 52 53

13.7 13.8

Chemical Feeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.1 14.2 14.3

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dry Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wet Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Article 14 Treatment of Laid-Up Boilers

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mandatory Appendix I Periodic Testing and Maintenance I-1 I-2

. . . . . . . . . . . . . . .

Inspection and Maintenance Program Responsibilities of Personnel . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53 53 54 54 54 54

55

55 55

Figures 3.3.1.1.1-1 3.3.1.1.2-1 3.3.1.1.3-1 3.3.1.1.3-2 3.3.1.1.4-1 3.3.2.1-1 3.3.2.1-2 5.9.1-1 5.9.1-2 5.9.1-3 5.9.1-4 5.9.1-5 5.9.8-1 5.9.8-2 6.1.1-1 6.1.2-1 6.1.3-1 6.4.1-1 7.1.1-1 7.1.1-2 7.1.1-3 7.1.1-4 7.1.2.3-1 8.1.1-1 8.1.2-1 I-1-1 I-1-2

Horizontal Tube, Brick-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas Flow Patterns of Scotch-Type Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type C Firebox Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-Pass Firebox Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical Firetube Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizontal Sectional Cast Iron Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical Sectional Cast Iron Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Hot Water Heating Boiler — Acceptable Piping Installation . . . . . . . . . . . . . . . . . Hot Water Heating Boilers in Battery — Acceptable Piping Installation . . . . . . . . . . . . . Single Steam Boilers — Acceptable Piping Installation . . . . . . . . . . . . . . . . . . . . . . . . . Steam Boilers in Battery — Pumped Return — Acceptable Piping Installation . . . . . . . . Steam Boilers in Battery — Gravity Return — Acceptable Piping Installation . . . . . . . . . Modules Connected With Parallel Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modules Connected With Primary–Secondary Piping . . . . . . . . . . . . . . . . . . . . . . . . . . Official Certification Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety Relief Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety Relief Valve Discharge Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermostatic Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Float Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Float and Thermostatic Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bucket Trap With Trap Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Return Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Float-Type Low-Water Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probe-Type Low-Water Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exhibit A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exhibit B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 8 8 9 9 9 9 16 17 18 19 20 23 23 25 26 26 28 30 31 31 31 32 33 34 56 58

Table 5.9.5-1

Size of Bottom Blowoff Piping, Valves, and Cocks

v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

LI ST OF SECTI ON S

ð 17Þ

SECTIONS

I

Rules for Construction of Power Boilers

II

Materials • Part A — Ferrous Material Specifications • Part B — Nonferrous Material Specifications • Part C — Specifications for Welding Rods, Electrodes, and Filler Metals • Part D — Properties (Customary) • Part D — Properties (Metric)

III

Rules for Construction of Nuclear Facility Components • Subsection NCA — General Requirements for Division 1 and Division 2 • Appendices • Division 1 * – Subsection NB — Class 1 Components – Subsection NC — Class 2 Components – Subsection ND — Class 3 Components – Subsection NE — Class MC Components – Subsection NF — Supports – Subsection NG — Core Support Structures • Division 2 — Code for Concrete Containments • Division 3 — Containment Systems for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material • Division 5 — High Temperature Reactors

IV

Rules for Construction of Heating Boilers

V

Nondestructive Examination

VI

Recommended Rules for the Care and Operation of Heating Boilers

VII

Recommended Guidelines for the Care of Power Boilers

VIII Rules for Construction of Pressure Vessels • Division 1 • Division 2 — Alternative Rules • Division 3 — Alternative Rules for Construction of High Pressure Vessels IX

Welding, Brazing, and Fusing Qualifications

X

Fiber-Reinforced Plastic Pressure Vessels

XI

Rules for Inservice Inspection of Nuclear Power Plant Components

XII

Rules for Construction and Continued Service of Transport Tanks

* The 2015 Edition of Section III was the last edition in which Section III, Division 1, Subsection NH, Class 1 Components in Elevated Temperature Service, was published. The requirements located within Subsection NH were moved to Section III, Division 5, Subsection HB, Subpart B for the elevated temperature construction of Class A components.

vi

I N TERPRETATI ON S

Interpretations are issued in real time in ASME’s Interpretations Database at http://go.asme.org/Interpretations. Historical BPVC interpretations may also be found in the Database. CODE CASES

The Boiler and Pressure Vessel Code committees meet regularly to consider proposed additions and revisions to the Code and to formulate Cases to clarify the intent of existing requirements or provide, when the need is urgent, rules for materials or constructions not covered by existing Code rules. Those Cases that have been adopted will appear in the appropriate 2017 Code Cases book: “Boilers and Pressure Vessels” or “Nuclear Components.” Supplements will be sent or made available automatically to the purchasers of the Code Cases books up to the publication of the 2019 Code.

vii

FOREWORD * In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees: (a) Committee on Power Boilers (I) (b) Committee on Materials (II) (c) Committee on Construction of Nuclear Facility Components (III) (d) Committee on Heating Boilers (IV) (e) Committee on Nondestructive Examination (V) (f) Committee on Pressure Vessels (VIII) (g) Committee on Welding, Brazing, and Fusing (IX) (h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X) (i) Committee on Nuclear Inservice Inspection (XI) (j) Committee on Transport Tanks (XII) (k) Technical Oversight Management Committee (TOMC) Where reference is made to “the Committee” in this Foreword, each of these committees is included individually and collectively. The Committee’s function is to establish rules of safety relating only to pressure integrity, which govern the construction ** of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. The technical consistency of the Sections of the Code and coordination of standards development activities of the Committees is supported and guided by the Technical Oversight Management Committee. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized. This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase engineering judgment refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code. The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the *

The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Code. ** Construction , as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and pressure relief.

viii

requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design. The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer’s freedom to choose any method of design or any form of construction that conforms to the Code rules. The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://go.asme.org/BPVCPublicReview to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code. The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules. Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of an ASME Certification Mark. When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.

ix

STATEMENT OF POLICY ON THE USE OF THE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature. Organizations that are authorized to use the Certification Mark for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the Certification Mark who comply with all requirements. Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not “approve,” “certify,” “rate,” or “endorse” any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities “are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,” or “meet the requirements of the ASME Boiler and Pressure Vessel Code.” An ASME corporate logo shall not be used by any organization other than ASME. The Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the Certification Mark. General usage is permitted only when all of a manufacturer’s items are constructed under the rules.

STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the official Certification Mark described in the governing Section of the Code. Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME” or the Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code. Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.

x

SUBMITTAL OF TECHNICAL INQUIRIES TO THE BOILER AND PRESSURE VESSEL STANDARDS COMMITTEES 1 INTRODUCTION (a) The following information provides guidance to Code users for submitting technical inquiries to the applicable Boiler and Pressure Vessel (BPV) Standards Committee (hereinafter referred to as the Committee). See the guidelines on approval of new materials under the ASME Boiler and Pressure Vessel Code in Section II, Part D for requirements for requests that involve adding new materials to the Code. See the guidelines on approval of new welding and brazing materials in Section II, Part C for requirements for requests that involve adding new welding and brazing materials (“consumables”) to the Code. Technical inquiries can include requests for revisions or additions to the Code requirements, requests for Code Cases, or requests for Code Interpretations, as described below: (1) Code Revisions. Code revisions are considered to accommodate technological developments, to address administrative requirements, to incorporate Code Cases, or to clarify Code intent. (2) Code Cases. Code Cases represent alternatives or additions to existing Code requirements. Code Cases are written as a Question and Reply, and are usually intended to be incorporated into the Code at a later date. When used, Code Cases prescribe mandatory requirements in the same sense as the text of the Code. However, users are cautioned that not all regulators, jurisdictions, or Owners automatically accept Code Cases. The most common applications for Code Cases are as follows: (-a) to permit early implementation of an approved Code revision based on an urgent need (-b) to permit use of a new material for Code construction (-c) to gain experience with new materials or alternative requirements prior to incorporation directly into the Code (3) Code Interpretations (-a) Code Interpretations provide clarification of the meaning of existing requirements in the Code and are presented in Inquiry and Reply format. Interpretations do not introduce new requirements. (-b) If existing Code text does not fully convey the meaning that was intended, or conveys conflicting requirements, and revision of the requirements is required to support the Interpretation, an Intent Interpretation will be issued in parallel with a revision to the Code. (b) Code requirements, Code Cases, and Code Interpretations established by the Committee are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or Owners to choose any method of design or any form of construction that conforms to the Code requirements. (c) Inquiries that do not comply with the following guidance or that do not provide sufficient information for the Committee’s full understanding may result in the request being returned to the Inquirer with no action.

2 INQUIRY FORMAT Submittals to the Committee should include the following information: (a) Purpose. Specify one of the following: (1) request for revision of present Code requirements (2) request for new or additional Code requirements (3) request for Code Case (4) request for Code Interpretation (b) Background. The Inquirer should provide the information needed for the Committee’s understanding of the Inquiry, being sure to include reference to the applicable Code Section, Division, Edition, Addenda (if applicable), paragraphs, figures, and tables. Preferably, the Inquirer should provide a copy of, or relevant extracts from, the specific referenced portions of the Code. xi

ð

17Þ

(c) Presen tation s. The Inquirer may desire to attend or be asked to attend a meeting of the Committee to make a formal presentation or to answer questions from the Committee members with regard to the Inquiry. Attendance at a BPV Standards Committee meeting shall be at the expense of the Inquirer. The Inquirer’s attendance or lack of attendance at a meeting will not be used by the Committee as a basis for acceptance or rejection of the Inquiry by the Committee. However, if the Inquirer’s request is unclear, attendance by the Inquirer or a representative may be necessary for the Committee to understand the request sufficiently to be able to provide an Interpretation. If the Inquirer desires to make a presentation at a Committee meeting, the Inquirer should provide advance notice to the Committee Secretary, to ensure time will be allotted for the presentation in the meeting agenda. The Inquirer should consider the need for additional audiovisual equipment that might not otherwise be provided by the Committee. With sufficient advance notice to the Committee Secretary, such equipment may be made available.

3 CODE REVISIONS OR ADDITIONS Requests for Code revisions or additions should include the following information: For requested revisions, the Inquirer should identify those requirements of the Code that they believe should be revised, and should submit a copy of, or relevant extracts from, the appropriate requirements as they appear in the Code, marked up with the requested revision. For requested additions to the Code, the Inquirer should provide the recommended wording and should clearly indicate where they believe the additions should be located in the Code requirements. (b) Statem en t of Need. The Inquirer should provide a brief explanation of the need for the revision or addition. (c) Backgroun d In form ation . The Inquirer should provide background information to support the revision or addition, including any data or changes in technology that form the basis for the request, that will allow the Committee to adequately evaluate the requested revision or addition. Sketches, tables, figures, and graphs should be submitted, as appropriate. The Inquirer should identify any pertinent portions of the Code that would be affected by the revision or addition and any portions of the Code that reference the requested revised or added paragraphs. (a) Requested Revision s or Addition s.

4 CODE CASES Requests for Code Cases should be accompanied by a statement of need and background information similar to that described in 3(b) and 3(c), respectively, for Code revisions or additions. The urgency of the Code Case (e.g., project underway or imminent, new procedure) should be described. In addition, it is important that the request is in connection with equipment that will bear the Certification Mark, with the exception of Section XI applications. The proposed Code Case should identify the Code Section and Division, and should be written as a Question and a Reply, in the same format as existing Code Cases. Requests for Code Cases should also indicate the applicable Code Editions and Addenda (if applicable) to which the requested Code Case applies.

5 CODE INTERPRETATIONS Requests for Code Interpretations should be accompanied by the following information: The Inquirer should propose a condensed and precise Inquiry, omitting superfluous background information and, when possible, composing the Inquiry in such a way that a “yes” or a “no” Reply, with brief limitations or conditions, if needed, can be provided by the Committee. The proposed question should be technically and editorially correct. (2) Reply. The Inquirer should propose a Reply that clearly and concisely answers the proposed Inquiry question. Preferably, the Reply should be “yes” or “no,” with brief limitations or conditions, if needed. (3) Backgroun d In form ation . The Inquirer should provide any need or background information, such as described in 3(b) and 3(c), respectively, for Code revisions or additions, that will assist the Committee in understanding the proposed Inquiry and Reply. If the Inquirer believes a revision of the Code requirements would be helpful to support the Interpretation, the Inquirer may propose such a revision for consideration by the Committee. In most cases, such a proposal is not necessary. (b) Requests for Code Interpretations should be limited to an Interpretation of a particular requirement in the Code or in a Code Case. Except with regard to interpreting a specific Code requirement, the Committee is not permitted to consider consulting-type requests such as the following: (1 ) a review of calculations, design drawings, welding qualifications, or descriptions of equipment or parts to determine compliance with Code requirements (a)

(1 ) In quiry.

xii

(2) a request for assistance in performing any Code-prescribed functions relating to, but not limited to, material selection, designs, calculations, fabrication, inspection, pressure testing, or installation (3) a request seeking the rationale for Code requirements

6

SU BM I TTALS

(a) Subm ittal. Requests for Code Interpretation should preferably be submitted through the online Interpretation Submittal Form. The form is accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive an automatic e-mail confirming receipt. If the Inquirer is unable to use the online form, the Inquirer may mail the request to the following address:

Secretary ASME Boiler and Pressure Vessel Committee Two Park Avenue New York, NY 10016-5990 All other Inquiries should be mailed to the Secretary of the BPV Committee at the address above. Inquiries are unlikely to receive a response if they are not written in clear, legible English. They must also include the name of the Inquirer and the company they represent or are employed by, if applicable, and the Inquirer’s address, telephone number, fax number, and e-mail address, if available. (b) Respon se . The Secretary of the appropriate Committee will provide a written response, via letter or e-mail, as appropriate, to the Inquirer, upon completion of the requested action by the Committee. Inquirers may track the status of their Interpretation Request at http://go.asme.org/Interpretations.

xiii

ð

17Þ

PERSONNEL ASME Boiler and Pressure Vessel Standards Committees, Subgroups, and Working Groups January 1, 2017

CONFERENCE COMMITTEE

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

T. P. Pastor, Chair S. C. Roberts , Vice Chair J. S. Brzuszkiewicz , Staff Secretary R. W. Barnes R. J. Basile T. L. Bedeaux D. L. Berger D. A. Canonico A. Chaudouet D. B. DeMichael R. P. Deubler P. D. Edwards J. G. Feldstein R. E. Gimple T. E. Hansen G. W. Hembree

D. A. Douin — Ohio , Secretary M. J. Adams — Ontario, Canada J. T. Amato — Minnesota W. Anderson — Mississippi R. D. Austin — Arizona R. J. Brockman — Missouri J. H. Burpee — Maine M. Byrum — Alabama C. B. Cantrell — Nebraska S. Chapman — Tennessee D. C. Cook — California B. J. Crawford — Georgia E. L. Creaser — New Brunswick, Canada J. J. Dacanay — Hawaii C. Dautrich — North Carolina R. Delury — Manitoba, Canada P. L. Dodge — Nova Scotia, Canada D. Eastman — Newfoundland and Labrador, Canada J. J. Esch — Delaware A. G. Frazier — Florida T. J. Granneman II — Oklahoma D. R. Hannon — Arkansas E. G. Hilton — Virginia C. Jackson — City of Detroit, Michigan M. L. Jordan — Kentucky E. Kawa, Jr. — Massachusetts A. Khssassi — Quebec, Canada J. Klug — City of Milwaukee, Wisconsin K. J. Kraft — Maryland K. S. Lane — Alaska L. C. Leet — City of Seattle, Washington

J. F. Henry R. S. Hill III G. G. Karcher W. M. Lundy G. C. Park M. D. Rana R. F. Reedy, Sr. B. W. Roberts F. J. Schaaf, Jr. B. F. Shelley W. J. Sperko D. Srnic R. W. Swayne C. Withers J. E. Batey, Contributing Member

HONORARY MEMBERS (MAIN COMMITTEE)

F. P. Barton T. M. Cullen G. E. Feigel O. F. Hedden M. H. Jawad A. J. Justin

W. G. Knecht J. LeCoff T. G. McCarty G. C. Millman R. A. Moen R. F. Reedy, Sr.

ADMINISTRATIVE COMMITTEE

T. P. Pastor, Chair S. C. Roberts , Vice Chair J. S. Brzuszkiewicz , Staff Secretary R. W. Barnes T. L. Bedeaux D. L. Berger G. W. Hembree

J. LeSage, Jr. — Louisiana A. M. Lorimor — South Dakota M. Mailman — Northwest Territories, Canada D. E. Mallory — New Hampshire W. McGivney — City of New York, New York S. V. Nelson — Colorado A. K. Oda — Washington M. Poehlmann — Alberta, Canada J. F. Porcella — West Virginia C. F. Reyes — City of Los Angeles, California M. J. Ryan — City of Chicago, Illinois D. Sandfoss — Nevada M. H. Sansone — New York A. S. Scholl — British Columbia, Canada T. S. Seime — North Dakota C. S. Selinger — Saskatchewan, Canada J. E. Sharier — Ohio N. Smith — Pennsylvania R. Spiker — North Carolina D. J. Stenrose — Michigan R. J. Stimson II — Kansas R. K. Sturm — Utah S. R. Townsend — Prince Edward Island, Canada R. D. Troutt — Texas M. C. Vogel — Illinois T. Waldbillig — Wisconsin M. Washington — New Jersey

J. F. Henry R. S. Hill III G. C. Park M. D. Rana B. F. Shelley W. J. Sperko

INTERNATIONAL INTEREST REVIEW GROUP

V. Felix Y.-G. Kim S. H. Leong W. Lin O. F. Manafa

MARINE CONFERENCE GROUP

H. N. Patel , Chair J. S. Brzuszkiewicz , Staff Secretary J. G. Hungerbuhler, Jr.

G. Pallichadath N. Prokopuk J. D. Reynolds

xiv

C. Minu T. S. G. Narayannen Y.-W. Park A. R. R. Nogales P. Williamson

COMMITTEE ON POWER BOILERS (BPV I)

D. L. Berger, Chair R. E. McLaughlin , Vice Chair U. D’Urso , Staff Secretary J. L. Arnold D. A. Canonico K. K. Coleman P. D. Edwards J. G. Feldstein G. W. Galanes T. E. Hansen J. F. Henry J. S. Hunter G. B. Komora W. L. Lowry F. Massi L. Moedinger P. A. Molvie

Subgroup on Materials (BPV I)

Y. Oishi E. M. Ortman J. T. Pillow M. Slater J. M. Tanzosh D. E. Tompkins D. E. Tuttle J. Vattappilly R. V. Wielgoszinski F. Zeller Y. Li , Delegate H. Michael , Delegate B. W. Roberts , Contributing Member D. N. French , Honorary Member T. C. McGough, Honorary Member R. L. Williams , Honorary Member

G. W. Galanes , Chair J. F. Henry, Vice Chair M. Lewis , Secretary S. H. Bowes D. A. Canonico K. K. Coleman K. L. Hayes J. S. Hunter O. X. Li

Subgroup on Solar Boilers (BPV I)

E. M. Ortman, Chair R. E. Hearne , Secretary H. A. Fonzi, Jr. G. W. Galanes J. S. Hunter

Subgroup on Design (BPV I)

J. Vattappilly, Chair D. I. Anderson, Secretary D. Dewees H. A. Fonzi, Jr. J. P. Glaspie G. B. Komora

P. A. Molvie L. S. Tsai M. Wadkinson C. F. Jeerings , Contributing Member S. V. Torkildson , Contributing Member

H. Michael , Chair H. P. Schmitz , Secretary M. Bremicker P. Chavdarov B. Daume J. Fleischfresser E. Helmholdt R. Kauer S. Krebs

T. E. Hansen C. T. McDaris R. E. McLaughlin R. J. Newell Y. Oishi J. T. Pillow R. V. Wielgoszinski

T. Ludwig R. A. Meyers F. Miunske P. Paluszkiewicz H. Schroeder A. Spangenberg M. Sykora J. Henrichsmeyer, Contributing Member

India International Working Group (BPV I)

Subgroup on General Requirements and Piping (BPV I)

E. M. Ortman, Chair D. Tompkins , Vice Chair F. Massi , Secretary P. Becker D. L. Berger P. D. Edwards G. W. Galanes T. E. Hansen M. Lemmons W. L. Lowry

P. Jennings D. J. Koza F. Massi S. V. Torkildson , Contributing Member

Germany International Working Group (BPV I)

Subgroup on Fabrication and Examination (BPV I)

J. L. Arnold , Chair P. Becker D. L. Berger S. Fincher G. W. Galanes P. F. Gilston J. Hainsworth

F. Masuyama D. W. Rahoi J. M. Tanzosh J. Vattappilly F. Zeller M. Gold , Contributing Member B. W. Roberts , Contributing Member

U. Revisanakaran , Chair A. J. Patil , Vice Chair H. Dalal , Secretary K. Asokkumar M. R. Kalahasthi I. Kalyanasundaram A. R. Patil

R. E. McLaughlin B. J. Mollitor J. T. Pillow D. E. Tuttle M. Wadkinson R. V. Wielgoszinski C. F. Jeerings , Contributing Member S. V. Torkildson , Contributing Member R. Uebel , Contributing Member

G. V. S. Rao M. G. Rao N. Satheesan G. U. Shanker D. Shrivastava S. Venkataramana

Task Group on Modernization of BPVC Section I Subgroup on Locomotive Boilers (BPV I)

L. Moedinger, Chair S. M. Butler, Secretary P. Boschan J. R. Braun R. C. Franzen, Jr. G. W. Galanes D. W. Griner

D. I. Anderson , Chair U. D’Urso , Staff Secretary J. L. Arnold D. Dewees G. W. Galanes J. P. Glaspie T. E. Hansen J. F. Henry

S. D. Jackson M. A. Janssen S. A. Lee G. M. Ray R. B. Stone M. W. Westland

xv

R. E. McLaughlin P. A. Molvie E. M. Ortman J. T. Pillow B. W. Roberts D. E. Tuttle J. Vattappilly

COMMITTEE ON MATERIALS (BPV II)

J. F. Henry, Chair J. F. Grubb , Vice Chair C. E. O’Brien, Staff Secretary F. Abe A. Appleton J. Cameron D. A. Canonico A. Chaudouet D. B. Denis J. R. Foulds D. W. Gandy M. H. Gilkey J. A. Hall K. M. Hottle M. Ishikawa O. X. Li F. Masuyama R. K. Nanstad K. E. Orie D. W. Rahoi E. Shapiro M. J. Slater R. C. Sutherlin R. W. Swindeman

Subgroup on International Material Specifications (BPV II)

J. M. Tanzosh R. G. Young F. Zeller O. Oldani , Delegate H. D. Bushfield, Contributing Member M. Gold, Contributing Member W. Hoffelner, Contributing Member M. Katcher, Contributing Member M. L. Nayyar, Contributing Member E. G. Nisbett, Contributing Member D. T. Peters , Contributing Member B. W. Roberts , Contributing Member E. Thomas , Contributing Member E. Upitis , Contributing Member T. M. Cullen , Honorary Member W. D. Edsall , Honorary Member G. C. Hsu, Honorary Member R. A. Moen, Honorary Member C. E. Spaeder, Jr. , Honorary Member A. W. Zeuthen, Honorary Member

A. Chaudouet, Chair A. R. Nywening, Vice Chair T. F. Miskell , Secretary D. A. Canonico H. Chen A. F. Garbolevsky D. O. Henry

M. Ishikawa O. X. Li W. M. Lundy E. Upitis F. Zeller O. Oldani , Delegate H. Lorenz, Contributing Member

Subgroup on Nonferrous Alloys (BPV II)

R. C. Sutherlin , Chair M. H. Gilkey, Vice Chair J. Calland D. B. Denis J. F. Grubb T. Hartman A. Heino M. Katcher J. A. McMaster L. Paul

D. W. Rahoi W. Ren J. Robertson E. Shapiro M. H. Skillingberg J. Weritz R. Wright S. Yem D. T. Peters , Contributing Member

Subgroup on Physical Properties (BPV II)

J. F. Grubb , Chair D. B. Denis , Vice Chair E. Shapiro

H. D. Bushfield, Contributing Member

Executive Committee (BPV II)

J. F. Henry, Chair C. E. O’Brien, Staff Secretary A. Appleton A. Chaudouet J. R. Foulds M. Gold

J. F. Grubb R. W. Mikitka B. W. Roberts M. J. Slater R. C. Sutherlin R. W. Swindeman

Subgroup on Strength, Ferrous Alloys (BPV II)

M. J. Slater, Chair S. W. Knowles , Secretary F. Abe D. A. Canonico A. Di Rienzo J. R. Foulds J. A. Hall J. F. Henry K. Kimura F. Masuyama T. Ono

Subgroup on External Pressure (BPV II)

R. W. Mikitka, Chair D. L. Kurle , Vice Chair J. A. A. Morrow, Secretary L. F. Campbell H. Chen D. S. Griffin J. F. Grubb S. Guzey

J. R. Harris III M. H. Jawad C. R. Thomas M. Wadkinson M. Katcher, Contributing Member C. H. Sturgeon , Contributing Member

Subgroup on Strength of Weldments (BPV II & BPV IX)

W. F. Newell, Jr. , Chair S. H. Bowes K. K. Coleman M. Denault P. D. Flenner J. R. Foulds D. W. Gandy M. Ghahremani K. L. Hayes

Subgroup on Ferrous Specifications (BPV II)

A. Appleton , Chair K. M. Hottle , Vice Chair P. Wittenbach, Secretary H. Chen B. M. Dingman M. J. Dosdourian O. Elkadim J. D. Fritz M. Gold T. Graham J. M. Grocki J. F. Grubb J. Gundlach

M. Ortolani D. W. Rahoi M. S. Shelton R. W. Swindeman J. M. Tanzosh R. G. Young F. Zeller M. Gold, Contributing Member M. Nair, Contributing Member B. W. Roberts , Contributing Member

C. Hyde D. S. Janikowski L. J. Lavezzi S. G. Lee W. C. Mack A. S. Melilli K. E. Orie J. Shick E. Upitis J. D. Wilson R. Zawierucha E. G. Nisbett, Contributing Member

J. F. Henry E. Liebl J. Penso D. W. Rahoi B. W. Roberts W. J. Sperko J. P. Swezy, Jr. J. M. Tanzosh M. Gold, Contributing Member

Working Group on Materials Database (BPV II)

R. W. Swindeman , Chair C. E. O’Brien, Staff Secretary F. Abe J. R. Foulds J. F. Henry M. J. Slater R. C. Sutherlin D. Andrei , Contributing Member

xvi

J. L. Arnold , Contributing Member J. Grimes , Contributing Member W. Hoffelner, Contributing Member T. Lazar, Contributing Member D. T. Peters , Contributing Member W. Ren, Contributing Member B. W. Roberts , Contributing Member

Working Group on Creep Strength Enhanced Ferritic Steels (BPV II)

J. F. Henry, Chair J. A. Siefert, Secretary F. Abe S. H. Bowes D. A. Canonico K. K. Coleman P. D. Flenner J. R. Foulds G. W. Galanes M. Gold F. Masuyama T. Melfi

Executive Committee (BPV III)

W. F. Newell, Jr. M. Ortolani J. Parker W. J. Sperko R. W. Swindeman J. M. Tanzosh R. H. Worthington R. G. Young F. Zeller G. Cumino , Contributing Member B. W. Roberts , Contributing Member

R. S. Hill III , Chair A. Byk, Staff Secretary T. M. Adams C. W. Bruny P. R. Donavin R. M. Jessee R. B. Keating R. P. McIntyre

Subcommittee on Design (BPV III)

P. R. Donavin , Chair D. E. Matthews , Vice Chair G. L. Hollinger, Secretary T. M. Adams R. L. Bratton C. W. Bruny R. P. Deubler R. I. Jetter C. Jonker R. B. Keating K. A. Manoly R. J. Masterson

Working Group on Data Analysis (BPV II)

J. F. Grubb , Chair F. Abe J. R. Foulds M. Gold J. F. Henry M. Katcher F. Masuyama

W. Ren M. Subanovic M. J. Swindeman R. W. Swindeman B. W. Roberts , Contributing Member

China International Working Group (BPV II)

B. Shou, Chair A. T. Xu, Secretary W. Fang Q. C. Feng S. Huo F. Kong H. Li J. Li S. Li Z. Rongcan S. Tan C. Wang J. Wang Q.-J. Wang

M. N. Mitchell W. J. O’Donnell, Sr. E. L. Pleins S. Sham J. P. Tucker W. F. Weitze K. Wright T. Yamazaki J. Yang R. S. Hill III , Contributing Member M. H. Jawad , Contributing Member

Subgroup on Component Design (SC-D) (BPV III)

X. Wang F. Yang G. Yang H.-C. Yang R. Ye L. Yin D. Zhang H. Zhang X.-H. Zhang Yingkai Zhang Yong Zhang Q. Zhao S. Zhao J. Zou

T. M. Adams , Chair R. B. Keating, Vice Chair S. Pellet, Secretary G. A. Antaki S. Asada J. F. Ball C. Basavaraju R. P. Deubler P. Hirschberg O.-S. Kim R. Klein H. Kobayashi K. A. Manoly R. J. Masterson D. E. Matthews J. C. Minichiello D. K. Morton

COMMITTEE ON CONSTRUCTION OF NUCLEAR FACILITY COMPONENTS (BPV III)

R. S. Hill III , Chair R. B. Keating, Vice Chair J. C. Minichiello , Vice Chair A. Byk, Staff Secretary T. M. Adams A. Appleton R. W. Barnes W. H. Borter C. W. Bruny T. D. Burchell R. P. Deubler A. C. Eberhardt R. M. Jessee R. I. Jetter C. C. Kim G. H. Koo V. Kostarev K. A. Manoly D. E. Matthews R. P. McIntyre M. N. Mitchell

J. C. Minichiello M. Morishita D. K. Morton J. A. Munshi C. A. Sanna S. Sham W. K. Sowder, Jr.

M. Morishita D. K. Morton T. Nagata R. F. Reedy, Sr. I. Saito S. Sham C. T. Smith W. K. Sowder, Jr. W. J. Sperko J. P. Tucker K. R. Wichman C. S. Withers Y. H. Choi , Delegate T. Ius , Delegate H.-T. Wang, Delegate M. Zhou, Contributing Member E. B. Branch, Honorary Member G. D. Cooper, Honorary Member D. F. Landers , Honorary Member R. A. Moen, Honorary Member C. J. Pieper, Honorary Member

T. M. Musto T. Nagata A. N. Nguyen E. L. Pleins I. Saito G. C. Slagis J. R. Stinson G. Z. Tokarski J. P. Tucker P. Vock C. Wilson J. Yang C. W. Bruny, Contributing Member A. A. Dermenjian , Contributing Member K. R. Wichman , Honorary Member

Working Group on Core Support Structures (SG-CD) (BPV III)

J. Yang, Chair J. F. Kielb , Secretary L. C. Hartless D. Keck T. Liszkai H. S. Mehta

M. Nakajima M. D. Snyder A. Tsirigotis R. Vollmer R. Z. Ziegler J. T. Land , Contributing Member

Working Group on Design of Division 3 Containment Systems (SG-CD) (BPV III)

D. K. Morton, Chair D. J. Ammerman G. Bjorkman V. Broz S. Horowitz D. W. Lewis J. C. Minichiello

xvii

E. L. Pleins C. J. Temus X. Zhai I. D. McInnes , Contributing Member H. P. Shrivastava, Contributing Member

Working Group on HDPE Design of Components (SG-CD) (BPV III)

T. M. Musto , Chair J. Ossmann , Secretary T. M. Adams T. A. Bacon M. Brandes D. Burwell S. Choi J. R. Hebeisen

Working Group on Valves (SG-CD) (BPV III)

P. Krishnaswamy K. A. Manoly M. Martin J. C. Minichiello D. P. Munson F. J. Schaaf, Jr. R. Stakenborghs H. E. Svetlik

P. Vock, Chair S. Jones , Secretary M. C. Buckley R. Farrell G. A. Jolly J. Klein T. Lippucci

C. A. Mizer J. O’Callaghan H. O’Brien K. E. Reid II J. Sulley I. H. Tseng J. P. Tucker

Working Group on Vessels (SG-CD) (BPV III)

D. E. Matthews , Chair C. Wilson, Secretary C. Basavaraju J. V. Gregg, Jr. M. Kassar R. B. Keating D. Keck J. Kim O.-S. Kim T. Mitsuhashi M. Nair

Working Group on Piping (SG-CD) (BPV III)

G. A. Antaki , Chair G. Z. Tokarski, Secretary T. M. Adams T. A. Bacon C. Basavaraju J. Catalano F. Claeys C. M. Faidy R. G. Gilada N. M. Graham M. A. Gray R. J. Gurdal R. W. Haupt A. Hirano P. Hirschberg M. Kassar J. Kawahata

R. B. Keating V. Kostarev D. Lieb T. B. Littleton Y. Liu J. F. McCabe J. C. Minichiello I.-K. Nam M. S. Sills G. C. Slagis N. C. Sutherland C.-I. Wu A. N. Nguyen, Contributing Member N. J. Shah, Contributing Member E. A. Wais , Contributing Member E. C. Rodabaugh, Honorary Member

Subgroup on Design Methods (SC-D) (BPV III)

C. W. Bruny, Chair S. McKillop , Secretary K. Avrithi W. Culp P. R. Donavin J. V. Gregg, Jr. H. T. Harrison III K. Hsu C. Jonker M. Kassar

Working Group on Pressure Relief (SG-CD) (BPV III)

J. F. Ball , Chair K. R. May D. Miller

T. J. Schriefer M. C. Scott P. K. Shah J. Shupert C. Turylo D. Vlaicu W. F. Weitze T. Yamazaki R. Z. Ziegler A. Kalnins , Contributing Member

A. L. Szeglin D. G. Thibault I. H. Tseng

D. Keck M. N. Mitchell W. J. O’Donnell, Sr. P. J. O’Regan W. D. Reinhardt P. Smith S. D. Snow W. F. Weitze K. Wright

Working Group on Design Methodology (SG-DM) (BPV III)

S. D. Snow, Chair C. F. Heberling II , Secretary K. Avrithi C. Basavaraju D. L. Caldwell D. Dewees C. M. Faidy R. Farrell H. T. Harrison III P. Hirschberg M. Kassar R. B. Keating J. Kim H. Kobayashi T. Liszkai

Working Group on Pumps (SG-CD) (BPV III)

R. Klein, Chair D. Chowdhury, Secretary P. W. Behnke R. E. Cornman, Jr. X. Di M. D. Eftychiou A. Fraser C. Gabhart R. Ghanbari

M. Higuchi R. Ladefian W. Lienau K. J. Noel R. A. Patrick J. Sulley R. Udo A. G. Washburn

Working Group on Supports (SG-CD) (BPV III)

J. R. Stinson, Chair U. S. Bandyopadhyay, Secretary K. Avrithi T. H. Baker F. J. Birch R. P. Deubler N. M. Graham R. J. Masterson

S. Pellet I. Saito H. P. Srivastava C. Stirzel G. Z. Tokarski P. Wiseman C.-I. Wu

J. F. McCabe S. McKillop S. Ranganath W. D. Reinhardt D. H. Roarty P. K. Shah R. Vollmer S. Wang W. F. Weitze J. Wen T. M. Wiger K. Wright J. Yang R. D. Blevins , Contributing Member M. R. Breach, Contributing Member

Working Group on Environmental Effects (SG-DM) (BPV III)

C. Jonker, Chair B. D. Frew, Secretary W. Culp P. J. Dobson

xviii

J. Kim J. E. Nestell M. Osterfoss T. J. Schriefer

Working Group on Environmental Fatigue Evaluation Methods (SG-DM) (BPV III)

K. Wright, Chair M. A. Gray, Vice Chair W. F. Weitze , Secretary T. M. Adams S. Asada K. Avrithi R. C. Cipolla T. M. Damiani C. M. Faidy T. D. Gilman

Subgroup on Elevated Temperature Design (SC-D) (BPV III)

S. Sham , Chair T. Asayama C. Becht IV F. W. Brust P. Carter B. F. Hantz A. B. Hull M. H. Jawad R. I. Jetter

S. R. Gosselin Y. He P. Hirschberg H. S. Mehta T. Metais J.-S. Park D. H. Roarty I. Saito D. Vlaicu R. Z. Ziegler

G. H. Koo S. Majumdar J. E. Nestell W. J. O'Donnell, Sr. R. W. Swindeman D. S. Griffin, Contributing Member W. J. Koves , Contributing Member D. L. Marriott, Contributing Member

Working Group on Allowable Stress Criteria (SG-ETD) (BPV III)

R. W. Swindeman , Chair R. Wright, Secretary J. R. Foulds C. J. Johns K. Kimura T. Le M. Li

Working Group on Fatigue Strength (SG-DM) (BPV III)

P. R. Donavin, Chair M. S. Shelton, Secretary T. M. Damiani D. Dewees C. M. Faidy S. R. Gosselin R. J. Gurdal C. F. Heberling II C. E. Hinnant P. Hirschberg K. Hsu

S. H. Kleinsmith S. Majumdar S. N. Malik S. Mohanty D. H. Roarty A. Tsirigotis K. Wright H. H. Ziada W. J. O'Donnell, Sr. , Contributing Member

Working Group on Analysis Methods (SG-ETD) (BPV III)

P. Carter, Chair M. J. Swindeman , Secretary M. R. Breach M. E. Cohen R. I. Jetter

Working Group on Graphite and Composites Design (SG-DM) (BPV III)

M. N. Mitchell , Chair M. W. Davies , Vice Chair T. D. Burchell , Secretary A. Appleton S. R. Cadell S.-H. Chi W. J. Geringer

T. Krishnamurthy T. Le S. Sham D. K. Williams

Working Group on Creep-Fatigue and Negligible Creep (SG-ETD) (BPV III)

S. T. Gonczy M. G. Jenkins Y. Katoh J. Ossmann M. Roemmler S. Yu G. L. Zeng

T. Asayama, Chair F. W. Brust P. Carter R. I. Jetter G. H. Koo

T. Le B.-L. Lyow S. N. Malik H. Qian S. Sham

Working Group on Elevated Temperature Construction (SG-ETD) (BPV III)

Working Group on Probabilistic Methods in Design (SG-DM) (BPV III)

M. Golliet, Chair T. Asayama K. Avrithi D. O. Henry R. S. Hill III

D. Maitra S. N. Malik J. E. Nestell W. Ren B. W. Roberts M. Sengupta S. Sham

M. H. Jawad , Chair A. Mann, Secretary D. I. Anderson R. G. Brown D. Dewees B. F. Hantz R. I. Jetter S. Krishnamurthy T. Le

M. Morishita P. J. O'Regan N. A. Palm I. Saito

M. N. Mitchell B. J. Mollitor C. Nadarajah P. Prueter M. J. Swindeman J. P. Glaspie , Contributing Member D. L. Marriott, Contributing Member

Special Working Group on Computational Modeling for Explicit Dynamics (SG-DM) (BPV III)

G. Bjorkman , Chair D. J. Ammerman , Vice Chair V. Broz , Secretary M. R. Breach J. M. Jordan S. Kuehner D. Molitoris

Working Group on High Temperature Flaw Evaluation (SG-ETD) (BPV III)

W. D. Reinhardt P. Y.-K. Shih S. D. Snow C.-F. Tso M. C. Yaksh U. Zencker

F. W. Brust, Chair N. Broom P. Carter T. Le S. N. Malik

xix

H. Qian D. L. Rudland P. J. Rush D.-J. Shim S. X. Xu

Special Working Group on Inelastic Analysis Methods (SG-ETD) (BPV III)

S. Sham, Chair S. X. Xu, Secretary R. W. Barnes J. A. Blanco B. R. Ganta

Subgroup on Materials, Fabrication, and Examination (BPV III)

R. M. Jessee , Chair B. D. Frew, Vice Chair S. Hunter, Secretary W. H. Borter T. D. Burchell G. R. Cannell P. J. Coco M. W. Davies R. H. Davis D. B. Denis G. B. Georgiev S. E. Gingrich M. Golliet J. Grimm L. S. Harbison

T. Hassan G. H. Koo B.-L. Lyow M. J. Swindeman G. L. Zeng

Subgroup on General Requirements (BPV III)

R. P. McIntyre , Chair L. M. Plante , Secretary V. Apostolescu A. Appleton S. Bell J. R. Berry J. DeKleine J. V. Gardiner J. W. Highlands E. V. Imbro K. A. Kavanagh Y.-S. Kim

E. C. Renaud J. Rogers D. J. Roszman C. T. Smith W. K. Sowder, Jr. R. Spuhl G. E. Szabatura D. M. Vickery C. S. Withers H. Michael , Delegate G. L. Hollinger, Contributing Member

Working Group on Graphite and Composite Materials (SG-MFE) (BPV III)

T. D. Burchell , Chair M. W. Davies , Vice Chair M. N. Mitchell , Secretary A. Appleton R. L. Bratton S. R. Cadell S.-H. Chi A. Covac S. W. Doms S. F. Duffy

Working Group on Duties and Responsibilities (SG-GR) (BPV III)

J. V. Gardiner, Chair G. L. Hollinger, Secretary D. Arrigo S. Bell J. R. Berry P. J. Coco M. Cusick J. DeKleine N. DeSantis

J. Johnston, Jr. C. C. Kim M. Lashley T. Melfi H. Murakami J. Ossmann J. E. O’Sullivan M. C. Scott W. J. Sperko J. R. Stinson J. F. Strunk R. Wright S. Yee H. Michael , Delegate R. W. Barnes , Contributing Member

Y. Diaz-Castillo K. A. Kavanagh J. M. Lyons L. M. Plante D. J. Roszman B. S. Sandhu E. M. Steuck J. L. Williams

W. J. Geringer S. T. Gonzcy M. G. Jenkins Y. Katoh J. Ossmann M. Roemmler N. Salstrom T. Shibata S. Yu G. L. Zeng

Working Group on HDPE Materials (SG-MFE) (BPV III) Working Group on Quality Assurance, Certification, and Stamping (SG-GR) (BPV III)

C. T. Smith, Chair C. S. Withers , Secretary V. Apostolescu A. Appleton O. Elkadim S. M. Goodwin J. Grimm J. W. Highlands Y.-S. Kim B. McGlone R. P. McIntyre

M. Golliet, Chair M. A. Martin , Secretary W. H. Borter G. Brouette M. C. Buckley J. Hakii J. Johnston, Jr. P. Krishnaswamy

D. T. Meisch R. B. Patel E. C. Renaud T. Rezk J. Rogers W. K. Sowder, Jr. R. Spuhl J. F. Strunk G. E. Szabatura D. M. Vickery C. A. Spletter, Contributing Member

Joint ACI-ASME Committee on Concrete Components for Nuclear Service (BPV III)

J. A. Munshi , Chair J. McLean, Vice Chair A. Byk, Staff Secretary K. Verderber, Staff Secretary C. J. Bang L. J. Colarusso A. C. Eberhardt F. Farzam P. S. Ghosal B. D. Hovis T. C. Inman C. Jones O. Jovall N.-H. Lee

Special Working Group on General Requirements Consolidation (SG-GR) (BPV III)

J. V. Gardiner, Chair C. T. Smith, Vice Chair S. Bell M. Cusick Y. Diaz-Castillo J. Grimm J. M. Lyons B. McGlone R. Patel E. C. Renaud T. Rezk

D. P. Munson T. M. Musto S. Patterson S. Schuessler R. Stakenborghs M. Troughton B. Hauger, Contributing Member

J. Rogers D. J. Roszman B. S. Sandhu G. J. Solovey R. Spuhl G. E. Szabatura J. L. Williams C. S. Withers S. F. Harrison , Contributing Member

xx

N. Orbovic C. T. Smith J. F. Strunk T. Tonyan S. Wang T. J. Ahl , Contributing Member J. F. Artuso , Contributing Member J.-B. Domage , Contributing Member J. Gutierrez , Contributing Member T. Kang, Contributing Member T. Muraki , Contributing Member B. B. Scott, Contributing Member M. R. Senecal, Contributing Member

Working Group on Design (BPV III-2)

N.-H. Lee , Chair M. Allam S. Bae L. J. Colarusso A. C. Eberhardt F. Farzam P. S. Ghosal B. D. Hovis T. C. Inman C. Jones O. Jovall

Working Group on In-Vessel Components (BPV III-4)

J. A. Munshi T. Muraki S. Wang M. Diaz , Contributing Member S. Diaz, Contributing Member A. Istar, Contributing Member B. R. Laskewitz , Contributing Member B. B. Scott, Contributing Member Z. Shang, Contributing Member M. Sircar, Contributing Member

M. Kalsey, Chair

Working Group on Magnets (BPV III-4)

S. Lee , Chair

Working Group on Materials, Fabrication, and Examination (BPV III-2)

P. S. Ghosal , Chair T. Tonyan, Vice Chair M. Allam C. J. Bang J.-B. Domage A. C. Eberhardt C. Jones T. Kang

Y. Carin

K. Kim, Vice Chair

Working Group on Materials (BPV III-4)

M. Porton, Chair

N. Lee C. T. Smith J. F. Strunk D. Ufuk J. F. Artuso , Contributing Member J. Gutierrez , Contributing Member B. B. Scott, Contributing Member Z. Shang, Contributing Member

P. Mummery

Working Group on Vacuum Vessels (BPV III-4)

I. Kimihiro , Chair L. C. Cadwallader

B. R. Doshi

Special Working Group on Modernization (BPV III-2)

J. McLean , Chair N. Orbovic, Vice Chair A. Adediran O. Jovall C. T. Smith M. A. Ugalde

S. Wang S. Diaz, Contributing Member J.-B. Domage , Contributing Member F. Lin, Contributing Member N. Stoeva, Contributing Member

Subgroup on High Temperature Reactors (BPV III)

M. Morishita, Chair R. I. Jetter, Vice Chair S. Sham , Secretary N. Broom T. D. Burchell M. W. Davies S. Downey

Subgroup on Containment Systems for Spent Nuclear Fuel and High-Level Radioactive Material (BPV III)

D. K. Morton, Chair D. J. Ammerman, Vice Chair G. R. Cannell , Secretary G. Bjorkman V. Broz S. Horowitz D. W. Lewis E. L. Pleins R. H. Smith G. J. Solovey

C. J. Temus W. H. Borter, Contributing Member R. S. Hill III , Contributing Member P. E. McConnell , Contributing Member A. B. Meichler, Contributing Member T. Saegusa, Contributing Member N. M. Simpson , Contributing Member

Working Group on High Temperature Gas-Cooled Reactors (BPV III-5)

J. E. Nestell , Chair M. Sengupta, Secretary N. Broom T. D. Burchell M. W. Davies R. S. Hill III E. V. Imbro R. I. Jetter Y. W. Kim

Subgroup on Fusion Energy Devices (BPV III)

W. K. Sowder, Jr. , Chair D. Andrei , Staff Secretary D. J. Roszman , Secretary L. C. Cadwallader B. R. Doshi M. Higuchi G. Holtmeier M. Kalsey K. A. Kavanagh K. Kim I. Kimihiro S. Lee

G. Li X. Li P. Mokaria T. R. Muldoon M. Porton F. J. Schaaf, Jr. P. Smith Y. Song M. Trosen C. Waldon I. J. Zatz R. W. Barnes , Contributing Member

T. Le T. R. Lupold S. N. Malik D. L. Marriott D. K. Morton S. Sham G. L. Zeng X. Li , Contributing Member L. Shi , Contributing Member

Working Group on High Temperature Liquid-Cooled Reactors (BPV III-5)

S. Sham , Chair T. Asayama, Secretary M. Arcaro R. W. Barnes P. Carter M. E. Cohen A. B. Hull

Working Group on General Requirements (BPV III-4)

D. J. Roszman , Chair

G. H. Koo D. K. Morton J. E. Nestell G. L. Zeng X. Li , Contributing Member L. Shi , Contributing Member

W. K. Sowder, Jr.

xxi

R. I. Jetter G. H. Koo T. Le S. Majumdar M. Morishita J. E. Nestell G. Wu, Contributing Member

Argentina International Working Group (BPV III)

O. Martinez , Staff Secretary A. Acrogliano W. Agrelo G. O. Anteri M. Anticoli C. A. Araya J. P. Balbiani A. A. Betervide D. O. Bordato G. Bourguigne M. L. Cappella A. Claus R. G. Cocco A. Coleff A. J. Dall’Osto L. M. De Barberis D. P. Delfino D. N. Dell’Erba F. G. Diez A. Dominguez S. A. Echeverria J. Fernández E. P. Fresquet

India International Working Group (BPV III)

B. Basu , Chair G. Mathivanan , Vice Chair C. A. Sanna, Staff Secretary S. B. Parkash, Secretary A. D. Bagdare V. Bhasin

M. M. Gamizo A. Gomez I. M. Guerreiro I. A. Knorr M. F. Liendo L. R. Miño J. Monte R. L. Morard A. E. Pastor E. Pizzichini A. Politi J. L. Racamato H. C. Sanzi G. J. Scian G. G. Sebastian M. E. Szarko P. N. Torano A. Turrin O. A. Verastegui M. D. Vigliano P. Yamamoto M. Zunino

Korea International Working Group (BPV III)

G. H. Koo , Chair S. S. Hwang, Vice Chair O.-S. Kim , Secretary H. S. Byun G.-S. Choi S. Choi J. Y. Hong N.-S. Huh J.-K. Hwang C. Jang I. I. Jeong H. J. Kim J. Kim J.-S. Kim K. Kim M.-W. Kim Y.-B. Kim Y.-S. Kim

China International Working Group (BPV III)

J. Yan, Chair W. Tang, Vice Chair C. A. Sanna, Staff Secretary Y. He , Secretary L. Guo Y. Jing D. Kang Y. Li B. Liang H. Lin S. Liu W. Liu J. Ma K. Mao W. Pei

S. Kovalai D. Kulkarni M. Ponnusamy R. N. Sen K. R. Shah A. Sundararajan

G. Sun Z. Sun G. Tang L. Ting Y. Tu Y. Wang H. Wu X. Wu S. Xue Z. Yin G. Zhang W. Zhang W. Zhao Y. Zhong Z. Zhong

D. Kwon B. Lee D. Lee Sanghoon Lee Sangil Lee S.-G. Lee H. Lim I.-K. Nam B. Noh C.-K. Oh C. Park H. Park J.-S. Park T. Shin S. Song J. S. Yang O. Yoo

Special Working Group on Editing and Review (BPV III)

D. E. Matthews , Chair R. L. Bratton R. P. Deubler A. C. Eberhardt J. C. Minichiello

D. K. Morton L. M. Plante R. F. Reedy, Sr. C. Wilson

Special Working Group on HDPE Stakeholders (BPV III)

D. Burwell , Chair S. Patterson , Secretary T. M. Adams M. Brandes S. Bruce S. Choi C. M. Faidy M. Golliet J. Grimes R. M. Jessee J. Johnston, Jr.

Germany International Working Group (BPV III)

C. Huttner, Chair H.-R. Bath, Secretary B. Arndt M. Bauer G. Daum R. Doring L. Gerstner G. Haenle K.-H. Herter R. E. Hueggenberg E. Iacopetta U. Jendrich D. Koelbl G. Kramarz

C. Krumb W. Mayinger D. Moehring D. Ostermann G. Roos J. Rudolph C. A. Sanna H. Schau R. Trieglaff P. Völlmecke J. Wendt F. Wille M. Winter N. Wirtz

D. Keller M. Lashley K. A. Manoly D. P. Munson T. M. Musto J. E. O’Sullivan V. Rohatgi F. J. Schaaf, Jr. R. Stakenborghs M. Troughton

Special Working Group on Honors and Awards (BPV III)

R. M. Jessee , Chair A. Appleton R. W. Barnes

xxii

D. E. Matthews J. C. Minichiello

Special Working Group on Industry Experience for New Plants (BPV III & BPV XI)

J. T. Lindberg, Chair E. L. Pleins , Chair J. Ossmann , Secretary T. L. Chan H. L. Gustin P. J. Hennessey D. O. Henry J. Honcharik E. V. Imbro C. G. Kim

Subgroup on Cast Boilers (BPV IV)

J. P. Chicoine , Chair T. L. Bedeaux, Vice Chair J. M. Downs

O.-S. Kim Y.-S. Kim K. Matsunaga D. E. Matthews R. E. McLaughlin D. W. Sandusky T. Tsuruta R. M. Wilson S. M. Yee

J. A. Hall J. L. Kleiss

Subgroup on Materials (BPV IV)

M. Wadkinson , Chair J. Calland J. M. Downs

J. A. Hall A. Heino B. J. Iske

Subgroup on Water Heaters (BPV IV)

C. T. Smith , Chair A. Byk, Staff Secretary T. D. Burchell S. W. Cameron R. L. Crane

R. S. Hill III M. N. Mitchell R. F. Reedy, Sr. C. A. Sanna

Subgroup on Welded Boilers (BPV IV)

P. A. Molvie , Chair L. Badziagowski T. L. Bedeaux B. Calderon J. Calland C. Dinic

Special Working Group on New Plant Construction Issues (BPV III)

E. L. Pleins , Chair M. C. Scott, Secretary A. Byk A. Cardillo P. J. Coco J. Honcharik E. V. Imbro O.-S Kim

M. Kris J. C. Minichiello D. W. Sandusky R. R. Stevenson R. Troficanto M. L. Wilson J. Yan

COMMITTEE ON NONDESTRUCTIVE EXAMINATION (BPV V)

K. Matsunaga D. E. Matthews B. McGlone A. T. Roberts III R. R. Stevenson M. L. Wilson

COMMITTEE ON HEATING BOILERS (BPV IV)

J. A. Hall , Chair T. L. Bedeaux, Vice Chair G. Moino , Staff Secretary B. Calderon J. Calland J. P. Chicoine J. M. Downs B. J. Iske J. Klug P. A. Molvie

R. W. Kruzic C. May A. B. Nagel T. L. Plasek F. J. Sattler P. B. Shaw G. M. Gatti , Delegate X. Guiping, Delegate A. S. Birks , Contributing Member J. Bennett, Alternate H. C. Graber, Honorary Member O. F. Hedden, Honorary Member J. R. MacKay, Honorary Member T. G. McCarty, Honorary Member

Executive Committee (BPV V)

G. Scribner R. D. Troutt M. Wadkinson R. V. Wielgoszinski H. Michael , Delegate D. Picart, Delegate A. Heino , Contributing Member S. V. Voorhees , Contributing Member J. L. Kleiss , Alternate

F. B. Kovacs , Chair G. W. Hembree , Vice Chair J. S. Brzuszkiewicz , Staff Secretary J. E. Batey B. Caccamise

N. Y. Faransso N. A. Finney S. A. Johnson A. B. Nagel

Subgroup on General Requirements/Personnel Qualifications and Inquiries (BPV V)

C. Emslander, Chair J. W. Houf, Vice Chair S. J. Akrin J. E. Batey N. Carter N. Y. Faransso N. A. Finney G. W. Hembree

Subgroup on Care and Operation of Heating Boilers (BPV IV)

M. Wadkinson , Chair T. L. Bedeaux J. Calland J. M. Downs

J. L. Kleiss R. E. Olson G. Scribner R. D. Troutt M. Wadkinson R. V. Wielgoszinski

G. W. Hembree , Chair F. B. Kovacs , Vice Chair J. S. Brzuszkiewicz , Staff Secretary S. J. Akrin J. E. Batey P. L. Brown M. A. Burns B. Caccamise C. Emslander N. Y. Faransso N. A. Finney A. F. Garbolevsky J. F. Halley J. W. Houf S. A. Johnson

Special Working Group on Regulatory Interface (BPV III)

E. V. Imbro , Chair P. Malouines , Secretary S. Bell A. Cardillo P. J. Coco J. Grimm J. Honcharik

R. E. Olson M. A. Taylor T. E. Trant R. D. Troutt

J. Calland , Chair L. Badziagowski J. P. Chicoine C. Dinic B. J. Iske

Special Working Group on International Meetings (BPV III)

J. A. Hall P. A. Molvie C. Lasarte , Contributing Member

xxiii

S. A. Johnson F. B. Kovacs D. I. Morris A. B. Nagel A. S. Birks , Contributing Member J. P. Swezy, Jr. , Contributing Member

Working Group on Guided Wave Ultrasonic Testing (SG-VM) (BPV V)

Special Working Group on NDE Resource Support (SG-GR/PQ & I) (BPV V)

N. A. Finney, Chair D. Adkins J. Anderson D. Bajula J. Bennett C. T. Brown T. Clausing J. L. Garner K. Hayes

N. Y. Faransso , Chair J. E. Batey, Vice Chair D. Alleyne N. Amir J. F. Halley

R. Kelso C. Magruder J. W. Mefford, Jr. K. Page D. Tompkins D. Van Allen T. Vidimos R. Ward M. Wolf

Italy International Working Group (BPV V)

P. L. Dinelli , Chair A. Veroni, Secretary R. Bertolotti F. Bresciani G. Campos N. Caputo M. Colombo F. Ferrarese E. Ferrari

Subgroup on Surface Examination Methods (BPV V)

S. A. Johnson, Chair J. Halley, Vice Chair S. J. Akrin J. E. Batey P. L. Brown B. Caccamise N. Carter N. Y. Faransso N. Farenbaugh N. A. Finney

G. W. Hembree R. W. Kruzic B. D. Laite C. May L. E. Mullins A. B. Nagel F. J. Sattler P. B. Shaw G. M. Gatti , Delegate A. S. Birks , Contributing Member

G. W. Hembree S. A. Johnson F. B. Kovacs R. W. Kruzic C. May L. E. Mullins T. L. Plasek F. J. Sattler C. Vorwald G. M. Gatti , Delegate

Working Group on Acoustic Emissions (SG-VM) (BPV V)

N. Y. Faransso , Chair J. E. Batey, Vice Chair

M. A. Grimoldi G. Luoni O. Oldani P. Pedersoli A. Tintori M. Zambon G. Gobbi , Contributing Member G. Pontiggia, Contributing Member

COMMITTEE ON PRESSURE VESSELS (BPV VIII)

R. J. Basile , Chair S. C. Roberts , Vice Chair E. Lawson, Staff Secretary S. J. Rossi , Staff Secretary G. Aurioles, Sr. J. Cameron A. Chaudouet D. B. DeMichael J. P. Glaspie J. F. Grubb L. E. Hayden, Jr. G. G. Karcher D. L. Kurle K. T. Lau M. D. Lower R. Mahadeen R. W. Mikitka U. R. Miller B. R. Morelock T. P. Pastor D. T. Peters M. J. Pischke M. D. Rana

Subgroup on Volumetric Methods (BPV V)

A. B. Nagel , Chair N. A. Finney, Vice Chair S. J. Akrin J. E. Batey P. L. Brown B. Caccamise J. M. Davis N. Y. Faransso A. F. Garbolevsky J. F. Halley R. W. Hardy

S. A. Johnson G. M. Light P. Mudge M. J. Quarry J. Vanvelsor

S. R. Doctor R. K. Miller

G. B. Rawls, Jr. F. L. Richter C. D. Rodery E. Soltow J. C. Sowinski D. B. Stewart D. A. Swanson J. P. Swezy, Jr. S. Terada E. Upitis R. Duan, Delegate P. A. McGowan , Delegate H. Michael , Delegate K. Oyamada, Delegate M. E. Papponetti , Delegate X. Tang, Delegate M. Gold , Contributing Member W. S. Jacobs , Contributing Member K. Mokhtarian , Contributing Member C. C. Neely, Contributing Member K. K. Tam, Honorary Member

Working Group on Radiography (SG-VM) (BPV V)

B. Caccamise , Chair F. B. Kovacs , Vice Chair S. J. Akrin J. E. Batey P. L. Brown C. Emslander N. Y. Faransso A. F. Garbolevsky R. W. Hardy

G. W. Hembree S. A. Johnson R. W. Kruzic B. D. Laite C. May R. J. Mills A. B. Nagel T. L. Plasek B. White

Subgroup on Design (BPV VIII)

D. A. Swanson, Chair J. C. Sowinski , Vice Chair M. Faulkner, Secretary G. Aurioles, Sr. S. R. Babka O. A. Barsky R. J. Basile M. R. Breach F. L. Brown D. Chandiramani B. F. Hantz C. E. Hinnant C. S. Hinson M. H. Jawad D. L. Kurle M. D. Lower R. W. Mikitka U. R. Miller T. P. Pastor

Working Group on Ultrasonics (SG-VM) (BPV V)

N. A. Finney, Chair J. F. Halley, Vice Chair B. Caccamise J. M. Davis C. Emslander N. Y. Faransso P. T. Hayes S. A. Johnson

R. W. Kruzic B. D. Laite C. May L. E. Mullins A. B. Nagel F. J. Sattler C. Vorwald

xxiv

M. D. Rana G. B. Rawls, Jr. S. C. Roberts C. D. Rodery T. G. Seipp D. Srnic S. Terada J. Vattappilly R. A. Whipple K. Xu K. Oyamada, Delegate M. E. Papponetti , Delegate W. S. Jacobs , Contributing Member P. K. Lam , Contributing Member K. Mokhtarian , Contributing Member S. C. Shah, Contributing Member K. K. Tam, Contributing Member

Working Group on Design-By-Analysis (BPV VIII)

B. F. Hantz , Chair T. W. Norton, Secretary R. G. Brown D. Dewees R. D. Dixon Z. Gu C. F. Heberling II C. E. Hinnant R. Jain M. H. Jawad

Task Group on U-2(g) (BPV VIII)

S. Krishnamurthy A. Mann G. A. Miller C. Nadarajah P. Prueter M. D. Rana T. G. Seipp M. A. Shah S. Terada D. Arnett, Contributing Member

G. Aurioles, Sr. S. R. Babka R. J. Basile D. K. Chandiramani R. Mahadeen U. R. Miller T. W. Norton T. P. Pastor

Subgroup on Heat Transfer Equipment (BPV VIII)

Subgroup on Fabrication and Examination (BPV VIII)

J. P. Swezy, Jr. , Chair D. I. Morris , Vice Chair E. A. Whittle , Vice Chair B. R. Morelock, Secretary N. Carter S. Flynn S. Heater O. Mulet M. J. Pischke M. J. Rice C. D. Rodery

R. F. Reedy, Sr. S. C. Roberts M. A. Shah D. Srnic D. A. Swanson J. P. Swezy, Jr. R. Uebel K. K. Tam, Contributing Member

G. Aurioles, Sr. , Chair S. R. Babka, Vice Chair P. Matkovics , Secretary D. Angstadt M. Bahadori J. H. Barbee O. A. Barsky L. Bower A. Chaudouet M. D. Clark S. Jeyakumar G. G. Karcher D. L. Kurle R. Mahadeen S. Mayeux

B. F. Shelley P. L. Sturgill E. Upitis K. Oyamada, Delegate W. J. Bees , Contributing Member L. F. Campbell , Contributing Member W. S. Jacobs , Contributing Member J. Lee , Contributing Member R. Uebel , Contributing Member

U. R. Miller D. Srnic A. M. Voytko R. P. Wiberg I. G. Campbell , Contributing Member I. Garcia, Contributing Member J. Mauritz , Contributing Member T. W. Norton , Contributing Member F. Osweiller, Contributing Member J. Pasek, Contributing Member R. Tiwari , Contributing Member S. Yokell , Contributing Member S. M. Caldwell , Honorary Member

Subgroup on General Requirements (BPV VIII)

M. D. Lower, Chair J. P. Glaspie , Vice Chair F. L. Richter, Secretary R. J. Basile D. T. Davis D. B. DeMichael M. Faulkner F. Hamtak L. E. Hayden, Jr.

K. T. Lau T. P. Pastor S. C. Roberts J. C. Sowinski P. Speranza D. B. Stewart D. A. Swanson R. Uebel C. C. Neely, Contributing Member

Task Group on Plate Heat Exchangers (BPV VIII)

P. Matkovics , Chair S. R. Babka K. Devlin S. Flynn J. F. Grubb F. Hamtak

R. Mahadeen D. I. Morris M. J. Pischke C. M. Romero E. Soltow D. Srnic

Task Group on Subsea Applications (BPV VIII)

F. Kirkemo C. Lan N. McKie S. K. Parimi M. Sarzynski Y. Wada D. T. Peters , Contributing Member

R. Cordes , Chair L. P. Antalffy R. C. Biel P. Bunch J. Ellens S. Harbert X. Kaculi K. Karpanan

Subgroup on High Pressure Vessels (BPV VIII)

D. T. Peters , Chair G. M. Mital , Vice Chair A. P. Maslowski , Staff Secretary L. P. Antalffy R. C. Biel P. N. Chaku R. Cordes R. D. Dixon L. Fridlund R. T. Hallman A. H. Honza J. A. Kapp J. Keltjens A. K. Khare N. McKie S. C. Mordre G. T. Nelson

Task Group on UG-20(f) (BPV VIII)

S. Krishnamurthy, Chair T. Anderson K. Bagnoli R. P. Deubler B. F. Hantz

B. R. Macejko J. Penso M. Prager M. D. Rana

xxv

E. A. Rodriguez E. D. Roll K. C. Simpson, Jr. J. R. Sims D. L. Stang F. W. Tatar S. Terada J. L. Traud R. Wink K.-J. Young R. M. Hoshman , Contributing Member D. J. Burns , Honorary Member D. M. Fryer, Honorary Member G. J. Mraz , Honorary Member E. H. Perez, Honorary Member

Subgroup on Materials (BPV VIII)

J. Cameron , Chair P. G. Wittenbach, Vice Chair K. Xu, Secretary A. Di Rienzo J. D. Fritz J. F. Grubb M. Kowalczyk W. M. Lundy J. Penso

Italy International Working Group (BPV VIII)

D. W. Rahoi R. C. Sutherlin E. Upitis G. S. Dixit, Contributing Member M. Gold, Contributing Member M. Katcher, Contributing Member J. A. McMaster, Contributing Member E. G. Nisbett, Contributing Member

G. Pontiggia, Chair A. Veroni , Secretary B. G. Alborali P. Angelini R. Boatti A. Camanni P. Conti P. L. Dinelli F. Finco

Subgroup on Toughness (BPV II & BPV VIII)

D. L. Kurle , Chair K. Xu, Vice Chair N. Carter W. S. Jacobs K. E. Orie M. D. Rana F. L. Richter K. Subramanian D. A. Swanson

Special Working Group on Bolted Flanged Joints (BPV VIII)

J. P. Swezy, Jr. S. Terada E. Upitis J. Vattappilly K. Oyamada, Delegate K. Mokhtarian , Contributing Member C. C. Neely, Contributing Member

R. W. Mikitka, Chair W. Brown H. Chen W. J. Koves

E. D. Roll , Chair C. Becht V R. C. Biel R. Cordes R. D. Dixon L. Fridlund R. T. Hallman K. Karpanan J. Keltjens N. McKie G. M. Mital S. C. Mordre G. T. Nelson D. T. Peters

C. W. Cary E. Soltow A. A. Stupica

China International Working Group (BPV VIII)

X. Chen, Chair B. Shou, Vice Chair Z. Fan, Secretary Y. Chen Z. Chen J. Cui R. Duan W. Guo B. Han J. Hu Q. Hu H. Hui

J. R. Payne G. B. Rawls, Jr. M. S. Shelton

Working Group on Design (BPV VIII Div. 3)

Subgroup on Graphite Pressure Equipment (BPV VIII)

A. Viet, Chair G. C. Becherer F. L. Brown

M. Guglielmetti P. Mantovani M. Massobrio L. Moracchioli C. Sangaletti S. Sarti A. Teli I. Venier G. Gobbi , Contributing Member

D. Luo Y. Luo C. Miao X. Qian B. Wang F. Xu F. Xuan K. Zhang Y. Zhang S. Zhao J. Zheng G. Zhu

K. C. Simpson J. R. Sims D. L. Stang K. Subramanian S. Terada J. L. Traud R. Wink Y. Xu F. Kirkemo , Contributing Member D. J. Burns , Honorary Member D. M. Fryer, Honorary Member G. J. Mraz , Honorary Member E. H. Perez , Honorary Member

Working Group on Materials (BPV VIII Div. 3)

F. W. Tatar, Chair L. P. Antalffy P. N. Chaku

J. A. Kapp A. K. Khare

Task Group on Impulsively Loaded Vessels (BPV VIII)

E. A. Rodriguez , Chair G. A. Antaki J. K. Asahina D. D. Barker A. M. Clayton J. E. Didlake, Jr. T. A. Duffey B. L. Haroldsen K. Hayashi D. Hilding K. W. King R. Kitamura

Germany International Working Group (BPV VIII)

P. Chavdarov, Chair A. Spangenberg, Vice Chair H. P. Schmitz , Secretary B. Daume A. Emrich J. Fleischfresser A. Gastberg R. Helmholdt R. Kauer

D. Koelbl S. Krebs T. Ludwig R. A. Meyers H. Michael P. Paluszkiewicz H. Schroeder M. Sykora

xxvi

R. A. Leishear P. O. Leslie F. Ohlson C. Romero N. Rushton J. H. Stofleth Q. Dong, Contributing Member H.-P. Schildberg, Contributing Member J. E. Shepherd, Contributing Member M. Yip , Contributing Member

Subgroup on Interpretations (BPV VIII)

U. R. Miller, Chair E. Lawson, Staff Secretary G. Aurioles, Sr. R. J. Basile J. Cameron R. D. Dixon M. Kowalczyk D. L. Kurle M. D. Lower R. Mahadeen G. M. Mital

Subgroup on Plastic Fusing (BPV IX)

D. I. Morris D. T. Peters S. C. Roberts C. D. Rodery D. B. Stewart P. L. Sturgill D. A. Swanson J. P. Swezy, Jr. J. Vattappilly P. G. Wittenbach T. P. Pastor, Contributing Member

E. W. Woelfel , Chair D. Burwell M. Ghahremani K. L. Hayes R. M. Jessee J. Johnston, Jr.

Subgroup on Welding Qualifications (BPV IX)

COMMITTEE ON WELDING, BRAZING, AND FUSING (BPV IX)

D. A. Bowers , Chair M. J. Pischke , Vice Chair S. J. Rossi , Staff Secretary M. Bernasek M. A. Boring J. G. Feldstein P. D. Flenner S. E. Gingrich K. L. Hayes R. M. Jessee J. S. Lee W. M. Lundy T. Melfi W. F. Newell, Jr. D. K. Peetz E. G. Reichelt M. J. Rice M. B. Sims

W. J. Sperko M. J. Stanko P. L. Sturgill J. P. Swezy, Jr. P. L. Van Fosson E. W. Woelfel A. Roza, Delegate M. Consonni , Contributing Member S. A. Jones , Contributing Member A. S. Olivares , Contributing Member S. Raghunathan , Contributing Member R. K. Brown, Jr. , Honorary Member M. L. Carpenter, Honorary Member B. R. Newmark, Honorary Member S. D. Reynolds, Jr. , Honorary Member

A. Camanni , Chair A. Veroni , Secretary P. Angelini R. Boatti P. L. Dinelli F. Ferrarese A. Ghidini E. Lazzari L. Lotti

A. F. Garbolevsky N. Mohr A. R. Nywening J. P. Swezy, Jr.

Subgroup on General Requirements (BPV IX)

P. L. Sturgill , Chair E. W. Beckman J. P. Bell D. A. Bowers G. Chandler P. R. Evans S. Flynn P. Gilston F. Hamtak A. Howard

R. M. Jessee D. Mobley D. K. Peetz J. Pillow H. B. Porter J. P. Swezy, Jr. K. R. Willens E. W. Woelfel E. Molina, Delegate B. R. Newmark, Honorary Member

E. G. Reichelt M. B. Sims W. J. Sperko S. A. Sprague P. L. Sturgill J. P. Swezy, Jr. P. L. Van Fosson T. C. Wiesner A. D. Wilson D. Chandiramani , Contributing Member M. Consonni , Contributing Member M. Degan, Contributing Member

N. Maestri M. Mandina M. Massobrio L. Moracchioli G. Pontiggia S. Verderame A. Volpi G. Gobbi , Contributing Member

COMMITTEE ON FIBER-REINFORCED PLASTIC PRESSURE VESSELS (BPV X)

D. Eisberg, Chair B. F. Shelley, Vice Chair P. D. Stumpf, Staff Secretary A. L. Beckwith D. Bentley F. L. Brown J. L. Bustillos B. R. Colley T. W. Cowley I. L. Dinovo M. R. Gorman B. Hebb M. J. Hendrix

Subgroup on Materials (BPV IX)

M. Bernasek, Chair T. Anderson J. L. Arnold E. Cutlip S. S. Fiore S. E. Gingrich L. S. Harbison R. M. Jessee T. Melfi

M. J. Rice , Chair J. S. Lee , Vice Chair M. Bernasek M. A. Boring D. A. Bowers R. B. Corbit P. D. Flenner L. S. Harbison K. L. Hayes W. M. Lundy T. Melfi W. F. Newell, Jr. B. R. Newton S. Raghunathan

Italy International Working Group (BPV IX)

Subgroup on Brazing (BPV IX)

M. J. Pischke , Chair E. W. Beckman L. F. Campbell M. L. Carpenter

J. E. O’Sullivan E. G. Reichelt M. J. Rice S. Schuessler M. Troughton J. Wright

M. J. Pischke A. Roza C. E. Sainz W. J. Sperko M. J. Stanko P. L. Sturgill J. Warren C. Zanfir

xxvii

D. H. Hodgkinson L. E. Hunt D. L. Keeler B. M. Linnemann D. H. McCauley N. L. Newhouse D. J. Painter A. A. Pollock G. Ramirez J. R. Richter D. O. Yancey, Jr. P. H. Ziehl

COMMITTEE ON NUCLEAR INSERVICE INSPECTION (BPV XI)

G. C. Park, Chair S. D. Kulat, Vice Chair R. W. Swayne , Vice Chair L. Powers , Staff Secretary V. L. Armentrout J. F. Ball W. H. Bamford S. B. Brown T. L. Chan R. C. Cipolla D. R. Cordes D. D. Davis R. L. Dyle E. V. Farrell, Jr. M. J. Ferlisi P. D. Fisher E. B. Gerlach T. J. Griesbach J. Hakii D. O. Henry W. C. Holston D. W. Lamond D. R. Lee G. A. Lofthus E. J. Maloney G. Navratil

China International Working Group (BPV XI)

S. A. Norman J. E. O’Sullivan R. K. Rhyne A. T. Roberts III D. A. Scarth F. J. Schaaf, Jr. J. C. Spanner, Jr. D. J. Tilly D. E. Waskey J. G. Weicks H. D. Chung, Delegate C. Ye , Delegate R. E. Gimple , Contributing Member R. D. Kerr, Contributing Member B. R. Newton, Contributing Member R. A. West, Contributing Member R. A. Yonekawa, Contributing Member M. L. Benson, Alternate J. T. Lindberg, Alternate R. O. McGill , Alternate C. J. Wirtz , Alternate C. D. Cowfer, Honorary Member F. E. Gregor, Honorary Member O. F. Hedden, Honorary Member P. C. Riccardella, Honorary Member

J. H. Liu, Chair Y. Nie , Vice Chair C. Ye , Vice Chair M. W. Zhou , Secretary J. F. Cai D. X. Chen H. Chen H. D. Chen Y. B. Guo Y. Hou D. M. Kang S. W. Li X. Y. Liang S. X. Lin L. Q. Liu

Y. Liu W. N. Pei C. L. Peng G. X. Tang Q. Wang Q. W. Wang Z. S. Wang L. Wei F. Xu Z. Y. Xu Q. Yin K. Zhang X. L. Zhang Y. Zhang Z. M. Zhong

Germany International Working Group (BPV XI)

H.-R. Bath R. Doring B. Erhard M. Hagenbruch B. Hoffmann E. Iacopetta

U. Jendrich H. Schau H.-J. Scholtka X. Schuler J. Wendt

Special Working Group on Editing and Review (BPV XI)

R. W. Swayne , Chair C. E. Moyer K. R. Rao

J. E. Staffiera D. J. Tilly C. J. Wirtz

Task Group on Inspectability (BPV XI) Executive Committee (BPV XI)

S. D. Kulat, Chair G. C. Park, Vice Chair L. Powers , Staff Secretary W. H. Bamford R. L. Dyle M. J. Ferlisi E. B. Gerlach

W. C. Holston D. W. Lamond J. T. Lindberg R. K. Rhyne J. C. Spanner, Jr. R. W. Swayne M. L. Benson, Alternate

J. T. Lindberg, Chair M. J. Ferlisi , Secretary W. H. Bamford A. Cardillo D. R. Cordes D. O. Henry E. Henry J. Honcharik J. Howard R. Klein C. Latiolais

D. Lieb G. A. Lofthus D. E. Matthews P. J. O’Regan J. Ossmann R. Rishel S. A. Sabo P. Sullivan C. Thomas J. Tucker

Task Group on ISI of Spent Nuclear Fuel Storage and Transportation Containment Systems (BPV XI)

Argentina International Working Group (BPV XI)

O. Martinez , Staff Secretary D. A. Cipolla A. Claus D. Costa D. P. Delfino D. N. Dell’Erba A. Dominguez S. A. Echeverria E. P. Fresquet M. M. Gamizo I. M. Guerreiro M. F. Liendo F. Llorente

R. J. Lopez M. Magliocchi L. R. Miño J. Monte M. D. Pereda A. Politi C. G. Real F. M. Schroeter G. J. Scian M. J. Solari P. N. Torano O. A. Verastegui P. Yamamoto

K. Hunter, Chair A. Alleshwaram, Secretary D. J. Ammerman W. H. Borter J. Broussard S. Brown C. R. Bryan T. Carraher D. Dunn N. Fales R. C. Folley B. Gutherman S. Horowitz M. W. Joseph H. Jung M. Liu

xxviii

R. M. Meyer B. L. Montgomery M. Moran T. Nuoffer M. Orihuela R. Pace E. L. Pleins R. Sindelar H. Smith J. C. Spanner, Jr. C. J. Temus G. White X. J. Zhai P.-S. Lam , Alternate J. Wise , Alternate

Subgroup on Evaluation Standards (SG-ES) (BPV XI)

W. H. Bamford , Chair N. A. Palm, Secretary H. D. Chung R. C. Cipolla R. L. Dyle C. M. Faidy B. R. Ganta T. J. Griesbach K. Hasegawa K. Hojo D. N. Hopkins K. Koyama D. R. Lee

Task Group on Evaluation Procedures for Degraded Buried Pipe (WG-PFE) (BPV XI)

Y. S. Li R. O. McGill H. S. Mehta K. Miyazaki R. Pace J. C. Poehler S. Ranganath D. A. Scarth T. V. Vo K. R. Wichman S. X. Xu M. L. Benson, Alternate T. Hardin, Alternate

R. O. McGill , Chair S. X. Xu, Secretary G. A. Antaki R. C. Cipolla K. Hasegawa K. M. Hoffman

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

N. A. Palm, Chair A. E. Freed, Secretary V. Marthandam, Secretary K. R. Baker W. H. Bamford M. Brumovsky T. L. Dickson R. L. Dyle S. R. Gosselin T. J. Griesbach M. Hayashi S. A. Kleinsmith H. Kobayashi H. S. Mehta

Task Group on Evaluation of Beyond Design Basis Events (SG-ES) (BPV XI)

R. Pace , Chair K. E. Woods , Secretary G. A. Antaki P. R. Donavin R. G. Gilada T. J. Griesbach H. L. Gustin M. Hayashi K. Hojo

G. A. A. Miessi M. Moenssens D. P. Munson R. Pace P. J. Rush D. A. Scarth

S. A. Kleinsmith H. S. Mehta D. V. Sommerville T. V. Vo K. R. Wichman G. M. Wilkowski S. X. Xu T. Weaver, Contributing Member

A. D. Odell R. Pace J. C. Poehler S. Ranganath W. L. Server D. V. Sommerville C. A. Tomes A. Udyawar T. V. Vo D. P. Weakland K. E. Woods H. Q. Xu T. Hardin, Alternate

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI) Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla, Chair S. X. Xu, Secretary W. H. Bamford M. L. Benson B. Bezensek M. Brumovsky H. D. Chung T. E. Demers C. M. Faidy B. R. Ganta R. G. Gilada H. L. Gustin F. D. Hayes P. H. Hoang K. Hojo D. N. Hopkins Y. Kim K. Koyama V. Lacroix

D. A. Scarth , Chair G. M. Wilkowski , Secretary K. Azuma W. H. Bamford M. L. Benson M. Brumovsky F. W. Brust H. D. Chung R. C. Cipolla N. G. Cofie J. M. Davis T. E. Demers C. M. Faidy B. R. Ganta S. R. Gosselin C. E. Guzman-Leong K. Hasegawa P. H. Hoang K. Hojo D. N. Hopkins

D. R. Lee Y. S. Li M. Liu H. S. Mehta G. A. A. Miessi K. Miyazaki R. K. Qashu S. Ranganath P. J. Rush D. A. Scarth W. L. Server D.-J. Shim A. Udyawar T. V. Vo B. Wasiluk K. R. Wichman G. M. Wilkowski D. L. Rudland, Alternate

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

Task Group on Crack Growth Reference Curves (BPV XI)

D. A. Scarth , Chair H. I. Gustin, Secretary W. H. Bamford M. L. Benson F. W. Brust R. C. Cipolla R. L. Dyle K. Hasegawa

E. J. Houston R. Janowiak S. Kalyanam K. Kashima V. Lacroix Y. S. Li R. O. McGill H. S. Mehta G. A. A. Miessi K. Miyazaki S. H. Pellet H. Rathbun P. J. Rush D.-J. Shim A. Udyawar T. V. Vo B. Wasiluk S. X. Xu A. Alleshwaram, Alternate

J. C. Spanner, Jr. , Chair D. R. Cordes , Secretary T. L. Chan S. E. Cumblidge F. E. Dohmen K. J. Hacker J. Harrison D. O. Henry

D. N. Hopkins K. Kashima K. Koyama D. R. Lee H. S. Mehta K. Miyazaki S. Ranganath T. V. Vo

xxix

J. T. Lindberg G. A. Lofthus G. R. Perkins S. A. Sabo F. J. Schaaf, Jr. R. V. Swain C. J. Wirtz C. A. Nove , Alternate

Task Group on Repair by Carbon Fiber Composites (WGN-MRR) (BPV XI)

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

J. T. Lindberg, Chair J. E. Aycock, Secretary C. Brown, Secretary S. E. Cumblidge A. Diaz N. Farenbaugh

J. E. O'Sullivan , Chair B. Davenport M. Golliet L. S. Gordon M. P. Marohl N. Meyer R. P. Ojdrovic D. Peguero A. Pridmore

D. O. Henry J. W. Houf C. Shinsky J. C. Spanner, Jr. J. T. Timm C. J. Wirtz

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

G. A. Lofthus , Chair J. Harrison, Secretary G. R. Perkins , Secretary M. T. Anderson M. Briley A. Bushmire D. R. Cordes M. Dennis S. R. Doctor

Working Group on Design and Programs (SG-RRA) (BPV XI)

S. B. Brown, Chair A. B. Meichler, Secretary O. Bhatty R. Clow R. R. Croft E. V. Farrell, Jr. E. B. Gerlach

F. E. Dohmen K. J. Hacker D. A. Kull C. A. Nove D. Nowakowski S. A. Sabo R. V. Swain S. J. Todd D. K. Zimmerman

D. W. Lamond , Chair G Navratil , Secretary J. M. Agold V. L. Armentrout J. M. Boughman S. B. Brown S. T. Chesworth D. D. Davis H. Q. Do M. J. Ferlisi

J. E. O’Sullivan S. Schuessler R. R. Stevenson R. W. Swayne D. J. Tilly D. E. Waskey J. G. Weicks P. Raynaud , Alternate

K. W. Hall P. J. Hennessey K. Hoffman S. D. Kulat T. Nomura T. Nuoffer G. C. Park H. M. Stephens, Jr. M. J. Homiack, Alternate

Task Group on High Strength Nickel Alloys Issues (SG-WCS) (BPV XI)

R. L. Dyle , Chair B. L. Montgomery, Secretary W. H. Bamford P. R. Donavin K. Hoffman K. Koyama C. Lohse

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

D. E. Waskey, Chair D. J. Tilly, Secretary D. Barborak S. J. Findlan P. D. Fisher M. L. Hall K. J. Karwoski C. C. Kim

H. Malikowski M. A. Pyne P. Raynaud R. R. Stevenson R. W. Swayne R. Turner

Subgroup on Water-Cooled Systems (SG-WCS) (BPV XI)

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

E. B. Gerlach , Chair E. V. Farrell, Jr. , Secretary J. F. Ball S. B. Brown R. Clow P. D. Fisher K. J. Karwoski S. L. McCracken B. R. Newton

P. Raynaud C. W. Rowley V. Roy J. Sealey N. Stoeva M. F. Uddin J. Wen T. Jimenez , Alternate G. M. Lupia, Alternate

M. Kris S. L. McCracken D. B. Meredith B. R. Newton J. E. O’Sullivan D. Segletes J. G. Weicks

H. Malikowski S. E. Marlette G. C. Park G. R. Poling J. M. Shuping J. C. Spanner, Jr. D. P. Weakland

Working Group on Containment (SG-WCS) (BPV XI)

H. M. Stephens, Jr. , Chair S. G. Brown, Secretary P. S. Ghosal H. T. Hill R. D. Hough B. Lehman

J. McIntyre J. A. Munshi M. Sircar S. Walden, Alternate T. J. Herrity, Alternate

Working Group on Inspection of Systems and Components (SG-WCS) (BPV XI)

M. J. Ferlisi , Chair N. Granback, Secretary J. M. Agold R. W. Blyde C. Cueto-Felgueroso H. Q. Do K. W. Hall K. M. Hoffman

Working Group on Nonmetals Repair/Replacement Activities (SG-RRA) (BPV XI)

J. E. O'Sullivan , Chair S. Schuessler, Secretary J. Johnston, Jr. M. Lashley M. P. Marohl

T. M. Musto S. Patterson A. Pridmore P. Raynaud F. J. Schaaf, Jr.

xxx

S. D. Kulat A. Lee G. J. Navratil T. Nomura J. C. Nygaard R. Rishel J. C. Younger

COMMITTEE ON TRANSPORT TANKS (BPV XII)

Working Group on Pressure Testing (SG-WCS) (BPV XI)

J. M. Boughman , Chair S. A. Norman, Secretary T. Anselmi Y.-K. Chung M. J. Homiack

M. D. Rana, Chair N. J. Paulick, Vice Chair R. Lucas , Staff Secretary A. N. Antoniou P. Chilukuri W. L. Garfield G. G. Karcher

A. E. Keyser D. W. Lamond J. K. McClanahan B. L. Montgomery C. Thomas

M. Pitts T. A. Rogers S. Staniszewski A. P. Varghese J. A. Byers , Contributing Member R. Meyers , Contributing Member M. R. Ward , Contributing Member

Task Group on Buried Components Inspection and Testing (WG-PT) (BPV XI)

D. W. Lamond , Chair J. M. Boughman , Secretary M. Moenssens , Secretary T. Anselmi

B. Davenport A. Hiser J. Ossmann

Executive Committee (BPV XII)

N. J. Paulick, Chair R. Lucas , Staff Secretary M. Pitts

M. D. Rana S. Staniszewski A. P. Varghese

Working Group on Risk-Informed Activities (SG-WCS) (BPV XI)

M. A. Pyne , Chair S. T. Chesworth, Secretary J. M. Agold C. Cueto-Felgueroso R. Haessler J. Hakii K. W. Hall M. J. Homiack S. D. Kulat

D. W. Lamond R. K. Mattu A. McNeill III G. J. Navratil P. J. O’Regan N. A. Palm D. Vetter J. C. Younger

Subgroup on Design and Materials (BPV XII)

A. P. Varghese , Chair R. C. Sallash, Secretary D. K. Chandiramani P. Chilukuri Y. Doron R. D. Hayworth G. G. Karcher S. L. McWilliams N. J. Paulick M. D. Rana

Working Group on General Requirements (BPV XI)

R. K. Rhyne , Chair C. E. Moyer, Secretary J. F. Ball T. L. Chan

T. A. Rogers S. Staniszewski K. Xu A. T. Duggleby, Contributing Member T. J. Hitchcock, Contributing Member M. R. Ward , Contributing Member J. Zheng, Contributing Member

P. J. Hennessey E. J. Maloney R. K. Mattu T. Nuoffer Subgroup on Fabrication, Inspection, and Continued Service (BPV XII)

M. Pitts , Chair P. Chilukuri , Secretary R. D. Hayworth K. Mansker G. McRae O. Mulet T. A. Rogers M. Rudek R. C. Sallash

Special Working Group on Reliability and Integrity Management Program (BPV XI)

F. J. Schaaf, Jr. , Chair A. T. Roberts III , Secretary N. Broom S. R. Doctor S. Downey J. D. Fletcher J. T. Fong T. Graham N. Granback J. Grimm

D. M. Jones A. L. Krinzman D. R. Lee R. K. Miller M. N. Mitchell R. Morrill T. Roney R. W. Swayne S. Takaya

L. Selensky S. Staniszewski S. E. Benet, Contributing Member J. A. Byers , Contributing Member A. S. Olivares , Contributing Member L. H. Strouse , Contributing Member S. V. Voorhees , Contributing Member

Subgroup on General Requirements (BPV XII)

S. Staniszewski , Chair B. F. Pittel , Secretary A. N. Antoniou Y. Doron J. L. Freiler W. L. Garfield O. Mulet M. Pitts T. Rummel R. C. Sallash L. Selensky

JSME/ASME Joint Task Group for System-Based Code (SWG-RIM) (BPV XI)

T. Asayama, Chair S. R. Doctor K. Dozaki S. R. Gosselin M. Hayashi D. M. Jones Y. Kamishima A. L. Krinzman

D. R. Lee H. Machida M. Morishita A. T. Roberts III F. J. Schaaf, Jr. S. Takaya D. Watanabe

xxxi

P. Chilukuri , Contributing Member K. L. Gilmore , Contributing Member T. J. Hitchcock, Contributing Member G. McRae , Contributing Member S. L. McWilliams , Contributing Member T. A. Rogers , Contributing Member D. G. Shelton , Contributing Member L. H. Strouse , Contributing Member M. R. Ward , Contributing Member

Subcommittee on Safety Valve Requirements (SC-SVR)

Subgroup on Nonmandatory Appendices (BPV XII)

N. J. Paulick, Chair S. Staniszewski , Secretary P. Chilukuri R. D. Hayworth K. Mansker S. L. McWilliams N. J. Paulick M. Pitts T. A. Rogers R. C. Sallash

D. B. DeMichael , Chair C. E. O’Brien, Staff Secretary J. F. Ball J. Burgess S. Cammeresi J. A. Cox R. D. Danzy J. P. Glaspie S. F. Harrison

D. G. Shelton S. E. Benet, Contributing Member D. D. Brusewitz , Contributing Member T. J. Hitchcock, Contributing Member A. P. Varghese , Contributing Member M. R. Ward , Contributing Member

W. F. Hart D. Miller B. K. Nutter T. Patel M. Poehlmann Z. Wang J. A. West S. R. Irvin, Sr. , Alternate

COMMITTEE ON OVERPRESSURE PROTECTION (BPV XIII)

D. B. DeMichael , Chair C. E. O’Brien , Staff Secretary J. F. Ball J. Burgess S. Cammeresi J. A. Cox R. D. Danzy J. P. Glaspie

S. F. Harrison W. F. Hart D. Miller B. K. Nutter T. Patel M. Poehlmann Z. Wang J. A. West

Subgroup on Design (SC-SVR)

D. Miller, Chair C. E. Beair B. Joergensen B. J. Mollitor

COMMITTEE ON BOILER AND PRESSURE VESSEL CONFORMITY ASSESSMENT (CBPVCA)

P. D. Edwards , Chair L. E. McDonald , Vice Chair K. I. Baron, Staff Secretary M. Vazquez , Staff Secretary J. P. Chicoine D. C. Cook T. E. Hansen K. T. Lau D. Miller B. R. Morelock J. D. O’Leary G. Scribner B. C. Turczynski D. E. Tuttle R. Uebel E. A. Whittle R. V. Wielgoszinski

T. Patel J. A. West R. D. Danzy, Contributing Member

Subgroup on General Requirements (SC-SVR)

D. Cheetham , Contributing Member T. P. Beirne , Alternate J. B. Carr, Alternate J. W. Dickson, Alternate J. M. Downs , Alternate B. J. Hackett, Alternate B. L. Krasiun, Alternate D. W. Linaweaver, Alternate P. F. Martin, Alternate I. Powell , Alternate R. Rockwood , Alternate L. Skarin, Alternate R. D. Troutt, Alternate S. V. Voorhees , Alternate P. Williams , Alternate A. J. Spencer, Honorary Member

J. P. Glaspie B. F. Pittel M. Poehlmann D. E. Tuttle J. White

J. F. Ball , Chair G. Brazier J. Burgess D. B. DeMichael S. T. French

Subgroup on Testing (SC-SVR)

W. F. Hart, Chair T. P. Beirne J. E. Britt J. Buehrer S. Cammeresi J. A. Cox J. W. Dickson

A. Donaldson G. D. Goodson B. K. Nutter C. Sharpe Z. Wang A. Wilson S. R. Irvin, Sr. , Alternate

COMMITTEE ON NUCLEAR CERTIFICATION (CNC)

R. R. Stevenson , Chair J. DeKleine , Vice Chair E. Suarez, Staff Secretary G. Gobbi S. M. Goodwin J. W. Highlands K. A. Huber J. C. Krane M. A. Lockwood R. P. McIntyre L. M. Plante H. B. Prasse T. E. Quaka C. T. Smith C. Turylo D. M. Vickery E. A. Whittle C. S. Withers

S. F. Harrison , Contributing Member S. Andrews , Alternate D. Arrigo , Alternate J. Ball , Alternate P. J. Coco , Alternate P. D. Edwards , Alternate D. P. Gobbi, Alternate K. M. Hottle , Alternate K. A. Kavanagh, Alternate P. Krane , Alternate D. Nenstiel , Alternate M. Paris , Alternate G. Szabatura, Alternate A. Torosyan , Alternate S. V. Voorhees , Alternate S. Yang, Alternate

U.S. Technical Advisory Group ISO/TC 185 Safety Relief Valves

T. J. Bevilacqua, Chair C. E. O’Brien, Staff Secretary J. F. Ball G. Brazier D. B. DeMichael

xxxii

D. Miller B. K. Nutter T. Patel J. A. West

SUMMARY OF CHANGES Errata to the BPV Code may be posted on the ASME Web site to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in the BPV Code. Such Errata shall be used on the date posted. Information regarding Special Notices and Errata is published by ASME at http://go.asme.org/BPVCerrata. The 2 0 1 7 E ditio n o f B PVC Sectio n VI is a co mp lete rewrite; the 2 0 1 5 E ditio n has b een revis ed and reo rganized in its entirety

(1 2-1 91 8, 1 6-2739) . Fro nt matter changes given b elo w are identified o n the p ages b y a margin no te, (17) , p laced next to

the

affected area.

The Record N umb ers cited in the p revio us p aragrap h and lis ted in Record Number Order” following this Summary of Changes.

Page

Location

b elo w

are explained in more detail in “List of Changes

Change (Record Number)

vi

List of Sections

Updated

xi

S u b m i tta l o f T e c h n i c a l I nquiries to the B oiler an d P re s s u re Ve s s e l Standards Committees

Revised in its entirety (1 3-2222)

xiv

Personnel

Updated

xxxiii

LI ST OF CH AN G ES I N RECORD N U M BER ORDER

Change

Record Number 12 - 1918 13-2222 16-2739

Revised and updated Section VI in its entirety. Revised front guidance on interpretations in its entirety. Revised 8.5.4.1.

xxxiv

CROSS-REFERENCING AND STYLISTIC CHANGES IN THE BOILER AND PRESSURE VESSEL CODE There have been structural and stylistic changes to BPVC, starting with the 2011 Addenda, that should be noted to aid navigating the contents. The following is an overview of the changes:

Subparagraph Breakdowns/Nested Lists Hierarchy • • • • • •

First-level breakdowns are designated as (a), (b), (c), etc., as in the past. Second-level breakdowns are designated as (1), (2), (3), etc., as in the past. Third-level breakdowns are now designated as (-a), (-b), (-c), etc. Fourth-level breakdowns are now designated as (-1), (-2), (-3), etc. Fifth-level breakdowns are now designated as (+a), (+b), (+c), etc. Sixth-level breakdowns are now designated as (+1), (+2), etc.

Footnotes With the exception of those included in the front matter (roman-numbered pages), all footnotes are treated as endnotes. The endnotes are referenced in numeric order and appear at the end of each BPVC section/subsection.

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees has been moved to the front matter. This information now appears in all Boiler Code Sections (except for Code Case books).

Cross-References It is our intention to establish cross-reference link functionality in the current edition and moving forward. To facilitate this, cross-reference style has changed. Cross-references within a subsection or subarticle will not include the designator/identifier of that subsection/subarticle. Examples follow: • (Sub-)Paragraph Cross-References. The cross-references to subparagraph breakdowns will follow the hierarchy of the designators under which the breakdown appears. – If subparagraph (-a) appears in X.1(c)(1) and is referenced in X.1(c)(1), it will be referenced as (-a). – If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(c)(2), it will be referenced as (1)(-a). – If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(e)(1), it will be referenced as (c)(1)(-a). – If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.2(c)(2), it will be referenced as X.1(c)(1)(-a). • Equation Cross-References. The cross-references to equations will follow the same logic. For example, if eq. (1) appears in X.1(a)(1) but is referenced in X.1(b), it will be referenced as eq. (a)(1)(1). If eq. (1) appears in X.1(a)(1) but is referenced in a different subsection/subarticle/paragraph, it will be referenced as eq. X.1(a)(1)(1).

xxxv

INTENTIONALLY LEFT BLANK

xxxvi

ASME BPVC.VI-2017

ARTICLE 1 INTRODUCTION Th e p u rp o s e o f the s e re co m m e n de d gui de l i n e s i s to

The us e o f the wo rd “s hall” in thes e Guidelines reflects

p ro m o te s afe ty i n the u s e o f s te am h e ati n g, h o t wate r

the mandato ry nature o f the S ectio n I V requirements . The

h eati ng, and h o t wate r s up p ly b o i l ers that are di rectl y

reader s ho uld co ns ult the lates t editio n o f Sectio n I V fo r

fi re d wi th o i l , ga s , e l e ctri ci ty, co al , o r o th e r s o l i d an d

the current requirements .

l i q u i d fu e l s . T h e s e gu i d e l i n e s are i n te n d e d fo r u s e b y

Fo rmulating a s et o f guidelines that is ap p licab le to all

thos e directly res p o ns ib le fo r o p erating and maintaining

s ites and typ es o f ins tallatio ns is difficult; therefo re, it may

heating and ho t water s up p ly b o ilers . Thes e guidelines

b e advis ab le to dep art fro m thes e guidelines in s p ecific

ap p ly o nly to b o ilers s ub j ect to the s ervice res tricti o ns

c a s e s . M a n u fa c tu r e r ’ s o p e r a ti n g i n s tr u c ti o n s s h o u l d

o f S ectio n I V, H G- 1 0 1 o f the AS M E B o iler and Pres s ure

always b e adhered to , as s ho uld any lo cal j uris dictio nal

Ves s el C o de, as fo llo ws :

requirements . O ther indus try- accep ted co des and s tan-

(a)

s te a m b o i l e r s

fo r o p e r a ti o n a t p r e s s u r e s

dards,

not

(b)

such

as

th e

A s s o c i a ti o n ’ s ( N F P A )

exceeding 1 5 p s i (1 0 0 kPa)

N ati o n al

Fire

P ro te cti o n

c o d e s c o ve r i n g p r e ve n ti o n o f

fu rn a c e e xp l o s i o n s , a re r e c o m m e n d e d fo r a d d i ti o n a l

ho t water heating and ho t water s up p ly b o ilers fo r

guidance.

o peratio n at p res s ures no t exceeding 1 6 0 p s i (1 1 0 0 kPa)

Thes e guidelines are no t intended to b e us ed in lieu o f

and/o r temp eratures no t exceeding 2 5 0 °F (1 2 0 °C ) Thes e guidelines ap p ly to the b o iler p ro p er and to p ip e

any re qui re d i n s p e cti o n s an d o p e rati o n s m andate d b y

co nnectio ns up to and i ncluding the val ve o r val ve s as

j u ri s d i c ti o n s , th e N a ti o n a l B o a rd I n s p e c ti o n C o d e , o r

required b y the C o de. G uidel ine s are al s o p ro vi de d fo r

ins urance co mp anies .

o p e ra ti o n o f a u xi l i a ry e q u i p m e n t a n d ap p l i a n ce s th a t affect the s afe and reliab le o p eratio n o f heating b o ilers .

1

ASME BPVC.VI-2017

ARTICLE 2 GLOSSARY acid:

Auth orized In spector:

a n y c h e m i c a l c o m p o u n d wi th a p H l e s s th a n 7

co ntaining hydro gen that dis s o ciates to p ro duce hydro gen

a n I n s p e c to r wh o h o l d s a va l i d

N atio nal B o ard N ew C o ns tructio n C o mmis s io n with the

io ns when dis s o lved in water and is cap ab le o f neutralizing

a p p r o p r i a te e n d o r s e m e n t a n d wh o i s d e s i g n a te d a s

hydro xides o r b as es to p ro duce s alts .

s uch b y an Autho rized I ns p ectio n Agency.

acidity:

baffle:

the s tate o f b eing acid; the degree o r quantity o f

air:

a p late o r wall fo r deflecting gas es o r liquids .

barometric pressure:

acid p res ent. a mixture o f o xygen, nitro gen, and o ther gas es that,

atmo s p heric p res s ure as meas ured

b y a b aro meter, us ually exp res s ed in inches (millimeters )

wi th varyi n g am o u n ts o f wate r vap o r, fo rm th e atm o -

o f mercury.

blowdown:

s p here o f the earth.

air–fuel mixture: the ratio o f the weight o f air to the weight

a p ro ces s fo r remo ving unwanted s o lid p arti-

culates and s ludge fro m the b o iler water. This p ro ces s can

o f fuel in a mixture o f air and fuel.

b e either manual o r co ntinuo us . Valves are o p ened to us e

air moisture:

the b o i l e r p re s s u re to b lo w the p arti cul ates o ut o f the

the water vap o r s us p ended in the air.

b o iler.

alkali:

a n y c h e m i ca l c o m p o u n d o f a b as i c n a tu re th a t

blower:

dis s o ciates to p ro duce hydro xyl io ns when dis s o lved in

blowoff:

water and is cap ab le o f neutralizing acids to p ro duce s alts .

alkalinity:

a fan us ed to mo ve air under p res s ure. a p ip e co nnectio n p ro vided with valves thro ugh

which the water in the b o iler may b e b lo wn o ut under

the s tate o f b eing alkaline; the degree o r quan-

p res s ure.

tity o f alkali p res ent in a s o lutio n, o ften exp res s ed in terms o f p H . I n wate r an al ys i s , i t re p re s e n ts th e carb o n ate s ,

boiler:

b icarb o nates , hydro xides , and o ccas io nally the b o rates ,

o ther fluid is heated o r s team is generated.

s ilicates , and p ho s p hates p res ent as determined b y titra-

boiler, firetube: a b o iler with tub es that are s urro unded b y

ti o n wi th a s ta n d a rd a c i d a n d ge n e ra l l y e xp re s s e d a s

wa te r a n d s te a m a n d th ro u gh wh i c h th e p ro d u c ts o f

calcium carb o nate in p arts p er millio n.

co mb us tio n p as s .

atmospheric pressure: the b aro metric reading o f p res s ure

boiler, hot water heating:

exerted b y the atmo s p here, which at s ea level is 1 4. 7 p s i

a b o iler des igned to heat water

fo r circulatio n thro ugh an external s p ace- heating s ys tem.

(1 0 1 kPa) o r 2 9 . 9 in. H g (1 0 1 kPa) .

boiler, hot water supply:

Authorized Inspection Agency (Inservice): either (a) a j uris dictio nal autho rity as defined in the N atio nal

a b o iler us ed to heat water fo r

p urp o s es o ther than s p ace heating.

boiler, watertube: a b o iler in which the tub es co ntain water

B o ard C o ns titutio n, o r

(b)

a fi re d p re s s ure ve s s e l i n whi ch wate r o r s o m e

an d s te am wi th th e h e at b e i n g ap p l i e d to th e o u ts i d e

an entity that is accredited b y the N atio nal B o ard as

s urface.

s atis fying the requirements o f N B - 3 6 9 , Qualificatio ns and (AI A)

boiler layup: any extended p erio d o f time during which the

NB-3 71,

b o iler is no t exp ected to o p erate and s uitab le p recautio ns

Accre d i tati o n o f O wn e r- U s e r I n s p e cti o n O rgan i z ati o n s

are made to p ro tect it agains t co rro s io n, s caling, p itting,

D u ti e s

fo r

Au th o r i z e d

I n s p e c ti o n

Age nci e s

P e r fo r m i n g I n s e r vi c e I n s p e c ti o n Ac ti vi ti e s ;

(O UI O ) ;

or

NB-390,

Q u a l i fi c a t i o n s

and

D u ti e s

fo r

etc. , o n the water and fire s ides .

breeching:

Federal I ns p ectio n Agencies (FI A) Perfo rming I ns ervice I ns p ectio n Activities

a d u ct fo r th e tran s p o rt o f th e p ro d u cts o f

co mb us tio n b etween the b o iler and the s tack.

Authorized Inspection Agency (New Construction): an o rga-

buckstay: a s tructural memb er p laced agains t a furnace o r

nizatio n that is accredited b y AS M E in acco rdance with

b o iler wall to res train the mo tio n o f the wall.

AS M E QAI - 1 , Qu al i fi cati o n s fo r Au th o ri z e d I n s p e cti o n ,

burner: a device fo r the intro ductio n o f fuel and air into the

a n d m e e ts th e re q u i re m e n ts o f th e N a ti o n a l B o a rd o f

co mb us tio n zo ne at the des ired velo cities , turb ulence, and

B o iler and Pres s ure Ves s el I ns p ecto rs .

co ncentratio n to es tab lis h and maintain p ro p er ignitio n and co mb us tio n o f the fuel.

2

ASME BPVC.VI-2017

carbon:

fan:

th e e l e m e n t th a t i s th e p ri n ci p al co m b u s ti b l e

a m a c h i n e c o n s i s ti n g o f a ro to r a n d h o u s i n g fo r

co ns tituent o f all fuels .

mo ving air o r gas es .

coal: s o lid hydro carb o n fuel fo rmed b y ancient deco mpo -

fan, forced-draft:

s itio n o f wo o dy s ub s tance under co nditio ns o f heat and

p o s itive p res s ure within a s ys tem o r equip ment.

p res s ure.

fan, induced-draft:

coke: fuel co ns is ting largely o f the fixed carb o n and as h in

a fan exhaus ting ho t gas es fro m heat-

ab s o rb ing equip ment.

feed pipe: a p ip e thro ugh which water is co nducted into a

co al o b tained b y the des tructive dis tillatio n o f b itumino us co al.

b o iler.

colloid: a s ub s tance micro s co p ically dis p ers ed thro ughout

fin:

an o th e r s u b s tan ce b u t i n cap ab l e o f p as s i n g th ro u gh a

a tub e with o ne o r mo re fins .

firetube: a tub e in a b o iler having water o n the o uts ide and

combustion: the rap id chemical reactio n o f o xygen with the

carrying the p ro ducts o f co mb us tio n o n the ins ide.

co mb us tib le elements o f a fuel res ulting in the p ro ductio n

fixed carbon:

o f heat.

complete combustion:

th e co m p le te o xi dati o n o f al l the

a n d th e vo l a ti l e m a tte r e x p e l l e d .

T h e fi x e d c a r b o n

c o n te n t i s d e te rm i n e d b y s u b tra c ti n g fro m 1 0 0 % th e

condensate:

water fo rmed as a res ult o f a p has e change

p e rce n tage s o f m o i s tu re , vo l ati l e m a tte r, an d as h i n a

fro m gas to liquid.

s amp le.

control: a device des igned to regulate the fuel, exhaus t, air,

flame:

water, o r electrical s up p lies to a p o wered device. I t may b e

in air.

liquid o r a gas . I t may b e natural o r fo rced.

floatswitch: a flo at- o p erated s witch that makes and b reaks

the reductio n in the s tatic p res s ure o f a gas

an electric circuit in acco rdance with a change in a p rede-

flo wing acro s s a damp er.

delayed combustion:

the l o we s t te m p e rature at whi ch a vo l ati l e

m a te ri a l ca n va p o ri z e to fo rm a c o m b u s ti b l e m i xtu re

convection: the trans mis s io n o f heat b y the circulatio n o f a damper loss:

a lumino us b o dy o f b urning gas o r vap o r.

flash point:

manual, s emiauto matic, o r auto matic.

termined water level.

flow switch: a device that mo nito rs the flo w o f air, s team, o r

co ntinuatio n o f co mb us tio n b eyo nd

the furnace.

liquid.

differential temperature: b e twe e n two s p a c e s ;

flue:

th e te m p e ra tu re d i ffe re n ti a l

fo r e x a m p l e , th e d i ffe r e n c e i n

a p as s age fo r p ro ducts o f co mb us tio n.

flue gas:

temp erature b etween the inlet and o utlet o f the b o iler.

distillation:

th e s o l i d co m b u s ti b l e re s i d u e re m ai n i n g

a fte r c o a l , c o ke , o r b i tu m i n o u s m a te r i a l s a re h e a te d

co mb us tib le co ns tituents o f a fuel.

furnace:

vap o rizatio n o f a s ub s tance with s ub s equent

ta ke s

reco very o f the vap o r b y co ndens atio n.

the gas eo us p ro ducts o f co mb us tio n. the p art o f a b o iler in which co mb us tio n o f fuel

p l a c e o r i n w h i c h p r i m a r y fu r n a c e g a s e s

are

co nveyed.

draft: a p res s ure difference that caus es gas es o r air to flow

gauge cock:

thro ugh a chimney, vent, o r b o iler; als o , a meas urement o f

a va l ve u s e d to

i s o l a te a b o i l e r fr o m a

meas uring device s uch as a p res s ure gauge o r gauge glas s .

negative p res s ure in a vent us ed to indicate p o tential fo r

gauge glass:

flue gas flo w.

drain: a valved co nnectio n at a lo w p o int fo r the remo val o f

assembly

th e tr a n s p a r e n t p a r t o f a w a te r g a u g e

c o n n e c te d

d i r e c tl y

or

th r o u gh

a

wa te r

co l um n to th e b o i l e r to i nd i cate the wate r l e ve l i n th e

water.

b o iler.

drum: a cylindrical s hell clo s ed at b o th ends and des igned

gauge pressure: the p res s ure ab o ve atmo s p heric p res s ure.

to withs tand internal p res s ure.

gas analysis:

an enclo s ed p as s age fo r air o r gas flo w.

th e d e te rm i n a ti o n o f th e p e rce n ta ge s o f

vario us co ns tituents o f a gas eo us mixture.

electric ignition: ignitio n o f a p ilo t o r main flame b y the us e

grate: the s urface o n which fuel is s up p o rted and b urned,

o f an electric arc o r glo w p lug.

excess air:

a p ro j ectio n fro m a s urface s ub j ect to heat.

fin tube:

s emip ermeab le memb rane.

duct:

a typ e o f p res s uri zed fan p ro duci ng a

and thro ugh which air is p as s ed fo r co mb us tio n. air s up p lied fo r co mb us tio n in exces s o f that

grate bars:

theo retically required fo r co mp lete co mb us tio n.

expander: a to o l us ed to create a p ermanent s eal b etween a

handhole:

tub e and a tub es heet o r header b y exp anding the tub e s o it

m e ta l l i c

an o p ening in a p res s ure p art fo r acces s , to o

s mall fo r a p ers o n to enter.

is co mp res s ed agains t the o ther s urface.

exten ded su rfa ce:

th o s e p arts o f th e fu e l - s u p p o rti n g s u rfa ce

arranged to admit air fo r co mb us tio n.

header: p ip ing that co nnects two o r mo re b o ilers to gether.

h e a t - a b s o r b i n g s u r fa c e

p ro truding b eyo nd the tub e wall.

3

ASME BPVC.VI-2017

heat balance: an accounting of the distribution from one medium to another.

modulation of burner: varying the burner firing rate to match the load demand.

heating surface: the surface that is exposed to the heating medium for absorption and transfer of heat to the heated medium as determined according to Section IV, HG-403.

neutralize: to counteract acidity with an alkali or alkalinity with an acid. National Board: the National Board of Boiler and Pressure Vessel Inspectors.

h ydrocarbon : a chemical compound of hydrogen and

carbon.

National Board Commissioned Inspector: an individual who

holds a valid and current National Board Commission.

hydrostatic test: a strength and water-tightness test of a

closed pressure vessel by water pressure.

operating pressure: the actual gauge pressure at the boiler

outlet.

impingement: the striking of moving matter, such as the

flow of steam, water, gas, or solids, against another surface.

operating temperature: the actual temperature at the

boiler outlet.

inhibitor: a compound that slows down or stops an unde-

oxidation: the interaction between oxygen molecules and other substances.

sired chemical reaction such as corrosion or oxidation.

insulation: a material of low thermal conductivity used to

packaged boiler: a boiler equipped and shipped complete

reduce heat losses.

with fuel-burning equipment, mechanical draft equipment, automatic controls, and accessories.

integral blower: a blower built as an integral part of a

device to supply air thereto.

parts per million (ppm): the number of parts of a diluent in

one million parts of the sample examined, which is typically air or water. In water, 1 mg/L is equivalent to 1 ppm.

intermittent firing: a method of firing by which fuel and air

are introduced into and burned in a furnace for a short period, after which the flow is stopped. The cycle is then repeated.

pass: a confined passageway, containing heating surface,

through which a gas flows in essentially one direction.

jurisdiction: a governmental entity with the power, right,

pH: a scale used to measure the degree of acidity or alkalinity of a solution. Solutions with a pH less than 7 are said to be acidic, and those with a pH greater than 7 are said to be alkaline. Water is very close to a pH of 7.

or authority to interpret and enforce law, rules, or ordinances pertaining to boilers, pressure vessels, or other retaining items; it includes National Board member jurisdictions, defined as “jurisdictional authorities.”

pilot flame: the flame, usually fueled by gas or light oil, that

jurisdictional authority: a member of the National Board,

ignites the main flame.

as defined in the National Board Constitution.

pneumatic control: any control that uses compressed air as the actuating means.

lagging: a covering, usually of insulating material, on pipe

or ducts.

polyphosphate: a form ofphosphate that sequesters rather

load: the system demand for output of steam or hot water,

than precipitates hard water salts.

in pounds (kilograms) per hour or British thermal units per hour (watts).

pour point: the temperature at which fluid begins to flow. precipitation: the formation and settling out of solid parti-

low-water fuel cutoff: a device that shuts down the fuel

supply when the water level in the boiler drops below its safe operating level (the safe operating level is determined by the boiler Manufacturer).

cles in a solution.

makeup water: water introduced into the boiler to replace

that lost or removed from the system.

pressure reliefvalve: a device designed to relieve pressure when the set pressure is reached.

manhole: the opening in a pressure vessel of sufficient size to permit a person to enter.

pressure vessel: a closed vessel or container designed to confine a fluid at a pressure above atmospheric pressure.

manifold: a pipe or header for collecting a fluid from, or

primary air: air introduced with the fuel at the burners.

m axim u m a llowa ble wo rkin g p ressure (MA WP) : the

receiver: the tank portion of a condensate or vacuum return pump where condensate accumulates.

pressure drop: the difference in pressure between two

points.

distributing a fluid to, a number of pipes or tubes.

maximum gauge pressure determined by employing the allowable stress values and design rules provided in Section IV.

relay: an electrical device that opens or closes a circuit as its internal coil is energized or de-energized. safety reliefvalve: an automatic pressure-relieving device

m ech an ical draft: a differential pressure created by

actuated by the static pressure upstream of the valve and characterized by rapid opening or pop action, or by

mechanical means.

4

ASME BPVC.VI-2017

o p ening in p ro p o rtio n to the increas e in p res s ure o ver the

until the chemical reactio n is co mp leted as s ho wn b y a

s et p res s ure, dep ending o n ap p licatio n.

change in co lo r o f s uitab le indicato r.

safety valve: an auto matic p res s ure- relieving device actu-

total air:

ated b y the s tatic p res s ure up s tream o f the valve and char-

p ro ducts o f co mb us tio n.

acterized b y full- o p ening p o p actio n. I t is us ed fo r gas o r

trap:

vap o r s ervice.

saturated air:

air that co ntains the maximum amo unt o f

co ndens ate and gas es .

tube hole: a ho le in a drum, header, o r tub es heet to acco m-

p res s ure.

seam:

mo date a tub e.

tubesheet:

a weld us ed p rimarily to p revent leakage.

secondary air:

air fo r co mb us tio n s up p lied to the furnace

remo val o f gas o r o ther vap o rs .

viscosity:

to s up p lement the p rimary air.

the meas ure o f a fluid’ s res is tance to flo w.

water column: a vertical tub ular memb er co nnected at its

the co ns tructio n s urro unding the b o iler and/o r

th e tu b e s c o n s i s ti n g o f re fra c to ry, i n s u l a ti o n , c a s i n g,

to p and b o tto m to the s team and water s p ace, res p ectively,

lagging, o r s o me co mb inatio n o f thes e.

o f a b o iler, to which the water gauge, gauge co cks , and

smoke boxes: a chamb er in a b o iler where the s mo ke, etc. ,

high- and lo w- water- level alarms may b e co nnected.

wa ter g a u g e:

fro m th e fu rn a c e i s c o l l e c te d b e fo re go i n g o u t a t th e chimney.

th e

gau ge

gl as s

and

i ts

fi t t i n g s

fo r

attachment.

spontaneous combustion: ignitio n o f co mb us tib le material

water heater: a ves s el in which p o tab le water is heated b y

witho ut ap p arent caus e.

stay:

a p late co ntaining the tub e ho les .

vent: an o p ening in a ves s el o r o ther enclo s ed s p ace fo r the

the j o int b etween two p lates j o ined to gether.

setting:

a d e vi c e i n s ta l l e d i n p i p i n g th a t i s d e s i gn e d to

p ro hib it the p as s age o f s team b ut allo w the p as s age o f

wa te r va p o r th a t i t c a n h o l d a t i ts te m p e r a tu r e a n d

seal weld:

the to tal quantity o f air s up p lied to the fuel and

th e co m b u s ti o n o f fu e l , b y e l e ctri ci ty, o r b y an y o th e r s o urce, and withdrawn fo r external us e.

a tens ile s tres s memb er to ho ld material o r o ther

water heater, lined: a water heater with a co rro s io n- res is -

memb ers rigidly in p o s itio n.

steam gauge: a gauge fo r indicating the p res s ure o f s team.

tant lining des igned to heat p o tab le water.

stoichiometric combustion:

water heater, unlined:

the co mp lete o xidatio n o f all

a water heater made fro m co rro -

the co mb us tib le co ns tituents o f a fuel at zero exces s air.

s io n- res is tant materials des igned to heat p o tab le water.

stop valve: a valve that is us ed to is o late a b o iler fro m the

water level:

o ther p arts o f the s ys tem.

b o iler.

stud:

zeolite:

a p ro j ecting p in s erving as a s up p o rt o r means o f

re p l aci n g the m wi th s o di u m . Th e te rm h as b e e n b ro a-

the ratio o f the heat ab s o rb ed b y the

d e n e d to i n cl ud e s yn the ti c re s i n s th at s i m i l arl y s o fte n

water and s team in a b o iler to the availab le heat in the fuel

water b y io n exchange.

fired, exp res s ed as a p ercent.

titration:

o riginally a gro up o f natural minerals cap ab le o f

remo ving calcium and magnes ium io ns fro m water and

attachment.

thermal efficiency:

the elevatio n o f the s urface o f the water in a

a m e tho d fo r d e te rm i n i ng vo l u m e tri cal l y the

c o n c e n tr a ti o n o f a d e s i r e d s u b s ta n c e i n s o l u ti o n b y adding a s tandard s o lutio n o f kno wn vo lume and s trength

5

ASME BPVC.VI-2017

ARTICLE 3 TYPES OF BOILERS 3.1 CLASSIFICATION

3.3 METHOD OF MANUFACTURE

Section VI classifies heating boilers by the ASME Certification, method of manufacture, category, method of heat input, and other design characteristics.

3.3.1 Fabricated Boilers Fabricated boilers may be steel, stainless steel, copper, and less commonly, other metals or alloys. Some boilers use polymer or composite materials in the boiler pressure vessel and are generally classified as fabricated boilers within Section VI.

3.2 ASME CERTIFICATION MARK S e ctio n I V p ro vide s re quire me nts fo r us ing the Certification Mark with H or HLW designator.

3.3.1.1 Firetube Boilers. In firetube boilers, the gases of combustion pass through the tubes and the water circulates around them.

3.2.1 Boilers Stamped With the Certification Mark With H Designator

3.3.1.1.1 Horizontal Return Tube (HRT). In an HRT, the boiler is often in a refractory or brick setting and the products of combustion flow under the boiler and return th ro u gh th e fi re tu b e s . T h e fu r n a c e m a y a l s o b e constructed of steel. See Figure 3.3.1.1.1-1.

Boilers stamped with the Certification Mark with H designator may be steam heating boilers, hot water heating boilers, or hot water supply boilers.

3.2.1.1 Steam heating boilers may be used in open or closed s ys tems in accordance with M anufacturer’ s instructions and jurisdictional requirements and shall operate at 15 psi (100 kPa) or less.

3.3.1.1.2 Scotch-Type Boilers. The scotch boilers used in modern heating systems are similar to those originally designed for shipboard installation and are sometimes called scotch marine boilers. The furnace is a cylinder co mp lete ly s urro unded b y water. M o s t scotch boilers are of the dry-back or partial wet-back design and are arranged for multiple gas passes. See Figure 3.3.1.1.2-1.

3.2.1.2 Hot water heating boilers are intended for use in closed-loop systems with limited potential for corrosion of the boiler. Hot water heating boilers are limited to operation at 160 psi (1 100 kPa) or less and water temperatures not exceeding 250°F (120°C) at or near the boiler outlet. 3.2.1.3 Hot water supply boilers may be used for purposes other than space heating. They may be installed in open- or closed-loop systems. Hot water supply boilers are limited to operation at 160 psi (1 100 kPa) or less and water temperatures not exceeding 250°F (120°C) at or near the boiler outlet.

3.3.1.1.3 Firebox Boilers. Firebox boilers have the firebox integral with the boiler, such as in the oil field o r lo co motive type, and may b e s ingle or multiple pass. The furnace of this type of boiler is usually enclosed in a water-cooled upper sheet, called a crown sheet. Various tube and shell configurations, characterizing different Manufacturers’ designs, complete the boilers. See Figures 3.3.1.1.3-1 and 3.3.1.1.3-2.

3.2.2 Potable Water Heaters Stamped With the Certification Mark With H or HLW Designator

3.3.1.1.4 Vertical Firetube Boilers. In vertical firetube boilers, the products of combustion pass up or down through the tubes that are surrounded by water. See Figure 3.3.1.1.4-1.

Potable water heaters stamped with the Certification Mark with H or HLW designator may be used in openloop systems and shall be constructed from corrosionresistant materials or with a corrosion-resistant lining. Water heaters are limited to o p eratio n at 1 6 0 p s i (1 100 kPa) or less and water temperatures not exceeding 210°F (99°C) at or near the water outlet.

3.3.1.2 Watertube Boilers 3.3.1.2.1 In watertube boilers, the water passes

thro ugh the tub e an d the co m b u s ti o n gas e s p as s around them. Refer to the Manufacturer’s instructions for minimum water flow rate requirements.

6

ASME BPVC.VI-2017

Figure 3.3.1.1.1-1 Horizontal Tube, Brick-Set

3.3.3 Vacuum Boilers

3.3.1.2.2 Watertub e b o ilers are made in a variety o f co nfiguratio ns with res p ect to tub e and drum arrangem e n t.

Vacuum b o ilers are facto ry- s ealed s team b o ilers that

T u b e s a r e m a d e fr o m a va r i e ty o f m a te r i a l s ,

are o p erated b elo w atmo s p heric p res s ure

including s teel, s tainles s s teel, co p p er, and co p p er fin tub e.

(a) Tray-Type Boilers. Tray- typ e b o ilers typ ically have a

3.4 CATEGORY

cas t manifo ld that dis trib utes water flo w thro ugh a b ank o f s traight tub es . M o s t o f thes e b o i lers are co ns tructed o f

B o i l e r c a te g o r y i s

finned tub es .

(b) Coil-Type Boilers.

d e te r m i n e d a c c o r d i n g to A N S I

Z2 1 . 1 3 /C SA 4. 9 and relates to the p o tential fo r co ndens aC o i l - typ e b o i l e rs m ay b e fab ri -

tio n o f the p ro ducts o f co mb us tio n in the venting and heat

c a te d fr o m a s i n gl e tu b e o r m u l ti p l e tu b e s wr a p p e d

exchanger and the p o tential fo r p o s itive p res s ure in the

into a cylinder o r any o ther co iled s hap e.

(c) Bent-Tube Boilers.

.

venting. Venting is dis cus s ed in Article 5 .

B e nt- tub e b o i lers are typ ically

3.4.1 Noncondensing Boilers

c o n s tr u c te d w i th m u l ti p l e s te e l tu b e s c o n n e c te d to manifo lds .

N o nco ndens ing b o ilers are C atego ry I o r C atego ry I I I

3.3.2 Cast Boilers

b oilers . Thes e b o ilers do no t require any s p ecial co ns tructio n o r p ro vis io ns fo r co ndens ate.

3.3.2.1 C as t b o ilers are mo s t co mmo nly iro n b ut may b e

3.4.2 Condensing Boilers

co ns tructed o f aluminum o r o ther metals . C as t b o ilers are m a d e i n two g e n e r a l typ e s :

s e c ti o n a l a n d o n e - p i e c e

3.4.2.1

(mo n o b l o ck) . The s e cti o ns o f a s e cti o nal b o i l e r can b e

C o n d e n s i n g b o i l e rs c a n b e c o n s tru c te d i n a

variety o f des igns b ut typ ically have the vent co nnectio n

s tac ke d e i th e r ve rti c a l l y o r h o ri z o n ta l l y a n d a re h e l d

n e a r th e b o tto m o f th e b o i l e r an d i n cl u d e a d ra i n fo r

to ge th e r wi th ti e ro d s , wi th th e wa te rways s e al e d b y

c o n d e n s a te .

p u s h n i p p l e s o r e l a s to m e r s e a l s , a n d i n r a r e c a s e s ,

b o i lers

s crewed nip p les . S ee Figures 3 . 3 . 2 . 1 - 1 and 3 . 3 . 2 . 1 - 2 .

C o n d e n s i n g b o i l e r s a r e h i g h - e ffi c i e n c y

th a t m a y c o o l

th e

p r o d u c ts

o f c o m b u s ti o n

b el o w th e de w p o i n t, re s u l ti n g i n co n d e n s ati o n i n s i de

3.3.2.2 M anufacturer’ s ins tructio ns s ho uld b e fo llo wed

th e h e a t e x c h a n g e r a n d ve n t s ta c k. T h e c o n d e n s a te

when adj us ting nip p les o r tie ro ds . E ither inadequate o r

that fo rms is co rro s ive and requires co rro s io n- res is tant

exces s tens io n o n tie ro ds may b e detrimental to the b o iler.

venting and neutralizatio n o f co ndens ate.

7

ASME BPVC.VI-2017

3.4.2.2

s in g o p e rati o n . C o n s u l t th e M anu factu re r’ s i ns tall ati o n

C o ndens ing b o ilers may als o b e referred to as

C atego ry I I o r C atego ry I V b o ilers . A b o iler catego rized as a

and o p eratio n ins tructio ns fo r o p timal o p erating co ndi-

co ndens ing b o iler is no t neces s arily des igned fo r co nden-

tions fo r the b o iler.

Figure 3.3.1.1.2-1 Gas Flow Patterns of Scotch-Type Boilers

Figure 3.3.1.1.3-1 Type C Firebox Boiler

8

ASME BPVC.VI-2017

Figure 3.3.1.1.3-2 Three-Pass Firebox Boiler

Figure 3.3.1.1.4-1 Vertical Firetube Boiler

Figure 3.3.2.1-1 Horizontal Sectional Cast Iron Boiler

Figure 3.3.2.1-2 Vertical Sectional Cast Iron Boiler

9

ASME BPVC.VI-2017

ARTICLE 4 FUELS AND FUEL-BURNING EQUIPMENT 4.1 TYPES OF FUELS

that requi re d fo r the b urne r, the fue l change s fro m its l i q u i d s ta te

Fuels fo r b o ilers are availab le in gas eo us , liquid, o r s o lid fo rm, and s o me b o ilers us e electricity as their heat s o urce.

B tu / ft

C are mus t b e taken to ens ure that the b o iler, b urner, and

a ga s .

P ro p ane

3

(1 2 2 . 9 M J / m

3

3

o r b u ta n e (8 5 . 7 M J /m

3

gas )

has

a

to 3 , 3 0 0

) . B e ca u s e o f s i gn i fi ca n t h e a ti n g

value differences b etwe en liquefi ed p etro leum gas and

ancillary equip ment are des igned fo r the fuel to b e utilized.

o ther gas es , the fuel- b urning equip ment mus t b e mo dified

4.1.1 Gaseous Fuels 4.1.1.1 Natural Gas.

to

h e a ti n g va l u e o f 2 , 3 0 0 B tu / ft

when changing fro m the liquefied fuel to ano ther gas , o r vice vers a. Since p ro p ane is co lo rles s and heavier than air, N atural gas us e d fo r fu el has a

p recautio n is reco mmended when wo rking with p ro p ane.

wide range o f h eati ng val ue s . M e thane i s the p ri n ci p le

4.1.2.2 Fuel Oils.

c o m p o n e n t o f n a tu ra l ga s , b u t e th a n e , p r o p a n e , a n d

Fuel o ils are graded in acco rdance

b utane may al s o b e p res ent, alo ng wi th trace am o unts

wi th s p ecifi catio ns o f the Ame rican S o ci ety fo r Te s ting

o f o th e r h yd r o c a r b o n s . T h e h e a ti n g va l u e o f th e ga s

a n d M a te ri a l s . O i l s a re c l a s s i fi e d b y th e i r vi s c o s i ti e s .

d e p e n d s o n th e p e rce n t o f e a ch h yd ro ca rb o n p re s e n t

O th e r ch a ra cte ri s ti cs o f fu e l o i l s th a t d e te rm i n e th e i r

i n th e m i x tu r e , b u t i t typ i c a l l y va r i e s fr o m a l o w o f

grad e , cl as s i fi cati o n , an d s u i tab i l i ty fo r gi ve n u s e s are

9 5 0 B tu / ft

3

(3 5 . 4 M J /m

3

)

to a h i gh o f 1 , 1 5 0 B tu / ft

3

fl a s h p o i n t, p o u r p o i n t, wa te r a n d s e d i m e n t c o n te n t,

3

s ulfur co ntent, as h, and dis tillatio n characteris tics . Fuel

(42 . 9 M J /m ) .

4.1.1.2 Manufactured Gas.

o ils are p rep ared fo r co mb us tio n in mo s t lo w- p res s ure M anufactured gas s ho uld

b o iler b urners b y ato mizatio n (s p raying) . The fo llo wing

n o t b e co n fu s e d wi th n atu ra l gas s i n ce m a n u factu re d

are co mmo nly us ed types o f ato mizatio n:

(a) (b) (c) (d) (e)

gas , o r artificial gas as it is s o metimes called, is p ro duced fr o m c o a l , c o a l - a n d - o i l m i x tu r e s , o r p e tr o l e u m . T h e h e ati n g val u e o f m an u factu re d ga s ra n ge s fro m a l o w o f 3 5 0 B tu / ft

3

(1 3 . 0 M J / m

3

) to a h i gh o f 6 0 0 B tu / ft

3

3

(2 2 . 4 M J /m ) .

4.1.1.3 Digester Gas.

distillate o il intended fo r vap o rizing p o t- typ e b urners . The

energy s o urce and is co mp o s ed p rimarily o f methane and

heating value is ap p ro ximately 1 3 5 , 0 0 0 B tu/gal (3 7 6 0 0

c a rb o n d i o xi d e wi th tra c e a m o u n ts o f h yd r o ge n a n d

3

M J/m ) .

(b) Grade Number 2.

n i tr o g e n . T h e h e a ti n g va l u e , wh i c h d e p e n d s m o s tl y u p o n th e m e th a n e c o n c e n tr a ti o n ( typ i c a l l y 4 0 % to

to 9 0 0 B tu/ft

3

co mp res s ed air ato mizatio n s team ato mizatio n

(a) Grade Number 1 . Grade N umb er 1 is a light- vis co s ity

s o m e ti m e s c a l l e d , i s p r o d u c e d b y th e b r e a kd o wn o f o rganic matter in the ab s ence o f o xygen. I t is a renewab le

3

lo w- p res s ure mechanical ato mizatio n centrifugal ato mizatio n (ro tary cup )

4.1.2.2.1 Oil Grade Types

D i ge s te r gas , o r b i o gas as i t i s

7 0 % b y vo lume) , varies fro m 60 0 B tu/ft

high- p res s ure mechanical ato mizatio n

Grade N umb er 2 is a dis tillate o il

us e d fo r gene ral p urp o s e he ating. The he ating value is

3

(2 2 . 4 M J /m )

a p p ro xi m a te l y 1 3 8 , 0 0 0 B tu / gal (3 8 5 0 0 M J /m

3

(3 3 . 6 M J /m ) . The p ro p erti es o f the gas

3

) . This

i s th e m o s t co m m o n grade o f o i l b u rn e d i n S e cti o n I V

may vary b y s ite. I t is imp o rtant to realize that the gas

b o ilers .

(c) Grade Number 4.

m ay b e co rro s i ve fro m e i the r m o i s tu re co n te n t o r th e p res ence o f s ulfur.

th a n

4.1.2 Liquid Fuels

Number

2

Grade N umb er 4 is an o il heavier

b u t n o t h e avy e n o u gh

to

require

p reheating facilities . B ecaus e the o il is no lo nger availab le

4.1.2.1 Liquefied Petroleum Gas (LPG).

in many lo catio ns as a s traight- run dis tillate, b ut is a mix o f C o mmo nly

N umb er 2 and heavier o ils , it may b e neces s ary in no rthern

kno wn as p ro p ane, liquefied p etro leum gas is s to red in

cli mate s to p ro vide tank heaters o r s mall reci rculati ng

ta n ks

i t i n a l i q u i d s ta te .

p re h e a te rs to e n s u re d e l i ve ry o f th e b l e n d e d fu e l to

S to ra ge m a y b e e i th e r a b o ve - o r b e l o wgro u n d , u s i n g

th e b u r n e r . I f th e fu e l i s n o t b l e n d e d p r o p e r l y, th e

at h i gh p re s s u re

to

ke e p

s to ra ge a n d h a n d l i n g p ro c e d u re s i n a c c o rd a n c e wi th

N umb er 2 o il and the heavier o il may s ep arate in time.

th e r e q u i r e m e n ts o f N F P A 5 8 a n d l o c a l r e gu l a ti o n s .

M a n y d e a l e rs b l e n d th e two gra d e s o f o i l i n th e ta n k

Whe n th e p re s s u re o n th e l i q u e fi e d fu e l i s re d u ce d to

tru ck wh i l e de l i ve ri n g to the l o cati o n . Th i s m ay re s u l t

10

ASME BPVC.VI-2017

4.1.3.1.2 Bituminous Coal. This classification covers a wide range of coals, from the high grades found in the eastern part of the United States to the lower grades found in the western regions. Bituminous coal, commonly called soft coal, is the most extensively used of all coals. The various types of soft coal differ in composition, properties, and burning characteristics. Some are firm in structure and present no handling problem, while others tend to break when handled. Bituminous coal ignites rather easily and burns readily, usually with a long flame. Medium-volatile and high-volatile coals coke in the fire and smoke when improperly burned. The “as received” heating value of bituminous coals varies from approximately 1 0,5 00 Btu/lb (2 4.2 MJ/kg) to 1 4,5 00 Btu/lb (33.7 MJ/kg).

in physical separation ofthe two grades ifthey stand in the tank for any length of time. The heating value is approximately 147,000 Btu/gal (41 000 MJ/m 3 ). (d) Grade Number 5. Grade Number 5 has been divided into hot Number 5 and cold Number 5. The “hot” grade requires preheating and the “cold” may be burned as is from the tank, but because of the increased demand for distillate products, the residual oils may be lower in quality and may require preheating for good results. Sometimes Grade Number 5 is a mix of Number 2 and Number 6. The usual heating value is approximately 152,000 Btu/gal (42 400 MJ/m 3 ). (e) Grade Number 6. Grade Number 6 is a residual-type oil for use in burners equipped with recirculating preheaters. Number 6 fuel oil is sometimes referred to as Bunker C. The typical heating value is approximately 153,000 Btu/gal (42 600 MJ/m3 ).

4.1.3.1.3 Subbituminous Coal. Subbituminous coal is noncoking and is black in color, similar to bituminous coal. This type of coal is high in volatile matter and ignites easily; it also has a tendency toward spontaneous combustion when drying. Subbituminous coal has a low sulfur co ntent, o ften les s than 1 % , and its heating value ranges from 8,3 00 Btu/lb (1 9.3 MJ/kg) to 1 1 ,5 00 Btu/lb (26.7 MJ/kg).

4.1.2.2.2 Preheating Requirements. The correct temperature range must be used for each grade of preheated oil. Preheating at too low of a temperature will negatively affect atomization and may cause poor c o m b u s ti o n , s m o ke , a n d h i gh fu e l c o n s u m p ti o n . Preheating at too high of a temperature can cause the o il to co ke in the b urner. The o il delivered to the burner must be preheated to the temperature recommended by the burner manufacturer for the grade of fuel used.

4.1.3.1.4 Lignite. Lignite is sometimes referred to as brown coal and is primarily found in the western United States. This type of coal has a relatively low heating value, typically between 4,300 Btu/lb (10.0 MJ/kg) and 8,600 Btu/lb (2 0 MJ/kg) . The heating value depends upon the moisture content, which can reach as high as 66%, and ash content, which can vary from 6% to 19%. The relatively high moisture content makes it susceptible to spontaneous combustion, which can cause problems in storage and transportation. The use of lignite is usually feasible only where other types of coal are not available and large deposits are relatively close to the point of use.

4.1.2.2.3 Biodiesel. Biodiesel is a biodegradable, nontoxic, clean-burning fuel that can be made from any fat or vegetable oil, including recycled cooking oil.

4.1.3 Solid Fuels 4.1.3.1 Coal. Coal comes in various grades with a wide range of heating values. Coals are ranked according to their content, in percent by weight, of volatile matter, fixed carbon, ash, and moisture. While coal ranking cannot be totally defined by any one of these items, typically coals with high levels of fixed carbon tend to have higher heating values than those with lower fixed-carbon percentages, and high levels ofmoisture tend to reduce the heating value.

4.1.3.1.5 Pulverized Coal. Pulverized coal is coal that has been crushed and dried. Like liquids and gaseous fuels, it can be transported through pipes. Due to its extremely volatile nature, extreme care should be exercised when handling this fuel. High- and medium-volatile bituminous coals are commonly pulverized, and the degree offineness is dependent upon the type of coal being pulverized. The density of pulverized coal varies from 35 lb/ft3 (561 kg/m 3 ) to 55 lb/ft3 (881 kg/m 3 ), and the heating value varies from 11,000 Btu/lb (25.6 MJ/kg) to 12,900 Btu/lb (30 MJ/kg).

4.1.3.1.1 Anthracite Coal. Anthracite coal is dense, s to n e l i ke i n s tru c tu re , a n d s h i n y b l a c k i n c o l o r. Because of its hardness, it can be handled with little breakage. When ignited, it burns freely with a short, relatively smokeless flame and does not coke. It has very little volatile matter and is commonly referred to as hard coal. Semianthracite is not as hard as anthracite and is higher in volatile matter. It is dark gray in color and of granular structure. Semianthracite swells considerably in size when burning, but it does not coke. The heating value of anthracite and semianthracite coals, as received, is 12,000 Btu/lb (29.7 MJ/kg) to 13,000 Btu/lb (30.2 MJ/kg).

4.1.3.2 Wood. Wood has been used for centuries for fuel and continues to be used today where firewood is abundant and transportation costs are relatively low. Wood is typically sold by the cord, which is a wood pile 8 ft × 4 ft × 4 ft. The moisture co ntent o f the wood greatly influences the heat content, which can 11

ASME BPVC.VI-2017

vary fro m 6, 40 0 B tu/lb (1 4. 9 M J /kg) to 8 , 0 0 0 B tu/lb (1 8 . 6

4.2.2.1 Pressure-Atomizing Burners (Gun Type).

M J /kg) . H andling co s ts fo r b o th the wo o d and the as h it

Pres s ure- ato mizing b urners (gun typ e) are divided into

p ro duces can make the us e o f wo o d fo r energy generatio n

two clas s es : high- p res s ure and lo w- p res s ure mechanical

mo re co s tly than the us e o f o ther fuels .

ato mizatio n.

4.1.4 Electricity

characterized b y an air tub e, us ually ho rizo ntal, with a

(a)

p res s urized o il s up p ly centrally lo cated in the tub e and

Altho ugh electricity is in its elf no t a fuel, it is us ed as a

arran ge d s o th at a s p ray o f ato m i z e d o i l i s i ntro duce d

s o u r c e o f h e a t fo r h e a ti n g b o i l e r s . T h e two g e n e r a l

at ap p ro xi matel y 1 0 0 p s i g (7 0 0 kP a) and mi xe d i n the

m e th o d s o f a p p l i c a ti o n a re e l e c tro d e s a n d i m m e rs e d

c o m b u s ti o n c h a m b e r w i th

d i re ct- re s i s tan ce e l e m e n ts . Wh e n e l e ctro de s are u s e d,

to

th e

p as s a ge

o f c u r r e n t b e twe e n

th e

a i r s tr e a m e m e r g i n g

fro m the ai r tub e . The o i l i s s up p l i e d to the b urne r b y

the b o iler water s erves as the heating element b y o ffering r e s i s ta n c e

Th e h i gh - p re s s u re m e ch an i cal - ato m i z i n g typ e i s

a fuel delivery unit that s erves as a p res s ure- flo w- regu-

th e

lating device as well as a p ump ing device. Where electric

immers ed electro des . D irect- res is tance elements create

ignitio n is emp lo yed, a high- vo ltage trans fo rmer is us ed to

heat b y the res is tance o ffered to the p as s age o f electric

s up p ly ap p ro ximately 1 0 , 0 0 0 V to create an ignitio n arc

current thro ugh the immers ed element.

acro s s a p air o f electro des lo cated ab o ve the no zzle. Where

4.2 FUEL-BURNING EQUIPMENT

gas ignitio n is emp lo yed o n a larger b urner, a gas p ilo t is us ed. The firing rate is go verned b y the s ize o f the no zzle

4.2.1 Gas-Burning Equipment

u s e d . M u l ti p l e n o z z l e s are u s e d o n s o m e o f th e l arge r b urne rs , an d vari ab l e flo w no zz l es are us ed o n o thers .

G a s - b u r n i n g e q u i p m e n t c a n b e a n a tm o s p h e r i c o r

A lo w- fire s tart o n a mo dulating b urner that emp lo ys a

p o wer b urner (natural draft o r fo rced- draft) o r a co mb i-

vari ab l e fl o w n o z z l e i s acco m p l i s h e d b y s u p p l yi n g th e

natio n b urner.

oil

4.2.1.1 Atmospheric Burners.

Atm o s p h e ri c b u rn e rs

s e ve r a l

ty p e s

o f a tm o s p h e r i c b u r n e r s ,

(b)

most of

reduced

p res s ure.

A

l o w - fi r e

s ta rt

on

a

The lo w- p res s ure ato mizing b urner differs fro m the

high- p res s ure typ e mainly b y having means fo r s up p lying

whi ch fal l i n to th e ge n e ral cl as s i fi cati o n s o f s i n gl e - o r

a mixture o f o il and p rimary air to the b urner no zzle. The

multip o rt typ e.

4.2.1.2 Power Burners.

a

o il flo w to o nly o ne o r two o f the no zzles .

d e p e n d u p o n n a tu ra l d ra ft fo r c o m b u s ti o n a i r. T h e re are

at

m u l ti p l e - n o z z l e b u rn e r i s acco m p l i s h e d b y p e rm i tti n g

air meeting the mixture in the furnace is “s eco ndary air” that p ro vides fo r co mp lete co mb us tio n. The air p res s ure

P o we r b u rne rs dep e nd o n a

b lo wer to s up p ly co mb us tio n air and include the fo llo wing

b efo re mixing and the p res s ure o f the air- o il mixture vary

types :

with different makes o f b urners b ut are in the lo w range o f

(a) Na tural Dra ft Burn ers.

N a tu r a l d r a ft b u r n e r s

1 p s ig to 1 5 p s ig (7 kPa to 1 0 0 kPa) fo r air and 2 p s ig to

o perate with a furnace p res s ure s lightly les s than atmo -

7 p s ig (1 4 kPa to 48 kPa) fo r the mixture. C ap acity o f the

s p heric. The p ro p er draft co nditio n is maintained b y either

b u r n e r s i s va r i e d b y m a ki n g p u m p s tr o ke o r o r i fi c e

natural draft o r an induced- draft fan.

changes o n the o il p ump s .

(b) Forced-Draft Burn ers.

F o rc e d - d ra ft b u rn e rs a re

4.2.2.2 Steam-Atomizing Burners.

d e s i gn e d to o p e r a te wi th a fu r n a c e p r e s s u r e h i g h e r than atmo s p heric. Thes e b urners are equip p ed with s uffi-

Steam is us ually s up p lied b y the b o iler b eing o p erated.

ci en t b l o we r cap aci ty to fo rce p ro ducts o f co m b u s ti o n th r o u gh

th e

b o i l e r wi th o u t th e

help

o f n a tu r a l

4.2.2.3 Air-Atomizing Burners. I n this typ e o f b urner,

or

induced draft.

4.2.1.3 Combination Fuel Burners.

S te am- ato mi z i ng

b u r n e r s u s e s te a m to a to m i z e h e a vy- g r a d e fu e l o i l .

th e co m p re s s e d ai r o r s te am i s u s e d as th e ato m i z i n g medium. An air co mp res s o r is us ually p ro vided as p art

C o mb inatio n fuel

o f th e b u rn e r, a l th o u gh th e a i r m ay b e s u p p l i e d fro m

b urners are des igned to b urn mo re than o ne fuel, with

ano ther s o urce.

e i th e r m a n u al o r au to m a ti c s wi tch o ve r fro m o n e fu e l

4.2.2.4 Horizontal Rotary Cup Burner. The ho rizo ntal

to ano ther.

4.2.2 Liquid-Burning Equipment

ro tary cup b urner us es the p rincip le o f centrifugal ato mizatio n. The o il is p rep ared fo r co mb us tio n b y centrifugal

An o il b urner mechanically mixes fuel o il and air fo r

fo rce, which s p ins it o ff a cup ro tating at high s p eed into an

c o m b u s ti o n u n d e r c o n tr o l l e d c o n d i ti o n s . I g n i ti o n i s

airs tream, caus ing the o il to b reak up into a s p ray. This

a cco m p l i s h e d b y a n e l e ctri c s p a rk, e l e ctri c re s i s tan ce

typ e can b e us e d wi th all grades o f fuel o il. M o dulate d

wire, gas p ilo t flame, o r o il p ilo t flame.

firing can b e p ro vided o n thes e b urners .

12

ASME BPVC.VI-2017

4.2.3 Solid-Fuel-Burning Equipment

typ es , the mo s t co mmo n o f which are underfeed, s p reader, and chain grate. Pulverized co al is trans p o rted in a manner

Generally, s to kers are us ed when b urning co al o r wo o d.

s imilar to that us ed fo r a liquid and is b urned in s us p ens io n

S tokers p ro vide a mechanical means fo r feeding the fuel

as it is s p rayed into the co mb us tio n chamb er.

and s up p lying co mb us tio n air. They are b uilt in s everal

13

ASME BPVC.VI-2017

ARTICLE 5 BOILER ROOM FACILITIES AND INSTALLATION 5.1 GENERAL

NFPA 85, Boiler and Combustion Systems Hazards Code Publisher: National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169 (www.nfpa.org)

5.1.1 Scope This Article covers the recommended procedures for the safe, economical operation and maintenance of automatically fired boilers.

UL 834, Heating, Water Supply, and Power Boilers — Electric Publisher: Underwriter Laboratories, I nc. (UL) , 3 3 3 Pfingsten Road, Northbrook, IL 60062 -2 096; Order Ad d re s s : C o m m 2 0 0 0 , 1 5 1 E a s te rn Ave n u e , Bensenville, IL 60106 (www.ul.com)

5.1.2 Intention It is not intended that this Article serve as operating instructions for any specific heating plant. Due to the wide variety of types and makes of equipment used, this Article should be supplemented with equipment manufacturers’ instructions concerning maintenance and care and specific written operating instructions for each system.

5.1.4 New Boilers — Acceptance and Examination 5.1.4.1 Examination for Contractual Acceptance.

Before any new heating plant (or boiler) is accepted for operation, a final (or acceptance) review should be completed by the owner or their representative, and all items of exception corrected by the installation contractor. The review should confirm that all equipment called for is furnished and installed in accordance with the plans and the Manufacturer’s instructions and specifications, and should include a test of all controls by a person familiar with the control system.

5.1.3 Installation Heating boilers should be installed in accordance with the rules and regulations of the local jurisdiction, most of which have adopted nationally recognized standards that must be followed. However, in the absence of local jurisdictional rules, the following national standards and codes may be used for the installation of heating boilers:

5.1.4.2 Operational Examination. Before a boiler is put into operation for the first time, it should be examined as required by law. Subsequent examinations should also be made as required by local law. The insurance company insuring the boiler may be able to provide guidance on the applicable law.

ANSI Z21.13/CSA 4.9, Gas-Fired Low Pressure Steam and Hot Water Boilers Publisher: The American National Standards Institute (ANSI) , 2 5 West 43 rd Street, New York, NY 1 003 6 (www.ansi.org)

5.2 LIGHTING

ASME B31.9, Building Service Piping A S M E C S D - 1 , C o n t r o l s a n d S a fe t y D e v i c e s fo r Automatically Fired Boilers Publisher: The American Society of Mechanical Engineers (ASME), Two Park Avenue, New York, NY, 10016-5990 (www.asme.org)

The boiler room should be well lit to allow safe operation of all equipment, entry, and exit. Proper lighting will allow the operator to visually examine all instrumentation and safety controls, and to check for any abnormal condition. The boiler room should have an emergency light source in case of power failure.

NBBI NB - 23, National Board Inspection Code (NBIC), Part 1, Installation Publisher: National Board of Boiler and Pressure Vessel Inspectors (NBBI), 1055 Crupper Avenue, Columbus, OH 43229 (www.nationalboard.org)

5.3 VENTILATION AND COMBUSTION AIR 5.3.1 Combustion Air The boiler room must have an adequate air supply to permit clean, safe combustion to minimize soot formation and maintain a minimum of 19.5% oxygen in the air of the boiler room. The combustion and ventilation air may be

NFPA 3 1, Standard for the Installation of Oil-Burning Equipment NFPA 54, National Fuel Gas Code 14

ASME BPVC.VI-2017

5.7 FUEL SUPPLY

supplied by either an unobstructed air opening or power ventilation fans.

Fuel systems, whether firing gas, oil, coal, or other substances, should be installed in accordance with jurisd i cti o n al an d e n vi ro n m e n tal re q u i re m e n ts , Manufacturer’s instructions, and/or industry standards, as applicable.

5.3.2 Air Openings Unobstructed air openings should be sized on the basis of 1 in. 2 (650 mm 2 ) free area per 2,000 Btu/hr (0.586 kW) maximum fuel input of the combined burners located in the boiler room or as specified by the National Fire Protection Association (NFPA) standards for oil- and gas-burning installation for the particular job conditions. The boiler room air supply openings must be kept clear at all times. The National Board Inspection Code and the Manufacturer’s instruction should also be referenced for additional guidance.

5.8 CHIMNEY OR VENT 5.8.1 Installation Chimneys or vents should be installed in accordance with jurisdictional requirements, Manufacturer’s recommendations, and/or industry standards, as applicable. All possible draft conditions (based on modulation and quantity of boilers) should be considered when designing/ installing the exhaust vent. It is important to locate exhaust vents in such a way that they do not become blocked by snow, ice, or other natural or man-made obstructions. The vent material used must be in compliance with the Manufacturer’s instructions.

5.4 CLEARANCES Heating boilers should be located so as to provide adequate space for proper operation, maintenance, and e xa m i n a ti o n o f e q u i p m e n t a n d a p p u r te n a n c e s . Clearances should be provided in accordance with the Manufacturer’s instructions, subj ect to acceptance by the jurisdiction.

5.8.2 Handling of Condensate Condensing boilers are listed as either Category II (negative pressure, condensing) or Category IV (positive pressure, condensing) appliances, and venting material should be listed and labeled to the appropriate UL specification. Follow the boiler Manufacturer’s recommendations for provisions for trapping and draining condensate. Care must be taken to ensure that the condensate drain piping is not exposed to temperatures where water/ condensate will freeze in the lines. Condensate may require pH neutralization. Consult local authorities for jurisdictional requirements.

5.5 FIRE PROTECTION Fire protection apparatus and fire prevention procedures for boiler room areas should conform to the recomm e n d ati o n s o f N F P A an d l o cal j u ri s d i cti o n al requirements.

5.6 ELECTRICAL SUPPLY 5.6.1 Wiring All wiring for controls, heat-generating apparatus, and other appurtenances necessary for the operation of the boiler(s) must be installed in accordance with provisions ofnational or international standards and comply with the applicable local electrical codes.

5.9 PIPING — WATER AND DRAIN CONNECTIONS 5.9.1 General Figures 5.9.1-1 through 5.9.1-5 show recommended piping arrangements. Guidance for the design of piping systems may be found in ASME B31.9.

5.6.2 Switches or Circuit Breakers A manually operated remote heating plant shutdown switch or circuit breaker should be located just outside the boiler room door and marked for easy identification. Consideration should also be given to the type and location of the switch to safeguard against tampering. If the boiler room door is on the building exterior, the switch should be located just inside the door. If there is more than one door to the boiler room, there should be a switch located at each door.

5.9.2 Provisions for Expansion and Contraction The following provisions should be made for the expansion and contraction of steam and hot water mains connected to boilers: (a) Pipe connections should be substantially anchored at suitable points. (b) Swing or expansion joints should be used so there will be no undue stress transmitted to the boiler(s).

5.6.2.1 For oil burners where the fan is on a common shaft with the oil pump, the complete burner and controls should be shut off.

5.9.3 Steam Boiler Return Pipe Connections 5.9.3.1 The return pipe connections of each boiler supplying a gravity-return steam-heating system shall be so arranged as to form a loop similar to that shown

5.6.2.2 For power burners with detached auxiliaries,

only the fuel input supply to the boiler need be shut off.

15

ASME BPVC.VI-2017

Figure 5.9.1-1 Single Hot Water Heating Boiler

— Acceptable Piping Installation

GENERAL NOTE: Plumbing codes may require the installation of a reduced-pressure principle backflow preventer on a boiler when the makeup water source is from a potable water supply. NOTE: (1) Recommended control. See 8.5.1. Acceptable shutoff valves or cocks in the connecting piping may be installed for convenience of control testing and/or service.

(a) NPS 1 1 ∕2 (DN 40) for boilers with a minimum safety

in Figures 5.9.1-3 and 5.9.1-5 so that the water in each boiler cannot be forced out below the safe water level.

valve relieving capacity of 250 lb/hr (113 kg/h) or less (b) NPS 2 1 ∕2 (DN 65) for boilers with a minimum safety valve relieving capacity of 251 lb/hr (114 kg/hr) to 2,000 lb/hr (900 kg/h), inclusive (c) NPS 4 (DN 100) for boilers with a minimum safety valve relieving capacity greater than 2,000 lb/hr (900 kg/h)

5.9.3.2 For hand-fired boilers with a normal grate line, the recommended pipe sizes detailed as “A” in Figure 5.9.13 are as follows: (a) NPS 1 1 ∕2 (DN 40) for 4 ft2 (0.4 m 2 ) or smaller firebox area at the normal grate line (b) NPS 2 1 ∕2 (DN 65) for areas larger than 4 ft2 (0.4 m 2 ) up to 15 ft2 (1.4 m 2 ) (c) NPS 4 (DN 100) for 15 ft2 (1.4 m 2 ) or larger

5.9.3.4 Provision shall be made for cleaning the interior ofthe return piping at or close to the boiler. Washout openings may be used for return pipe connections and the washout plug placed in a tee or a cross so that the plug is directly opposite and as close as possible to the opening in the boiler.

5.9.3.3 For automatically fired boilers that do not have a normal grate line, the recommended pipe sizes detailed as “A” in Figure 5.9.1-3 are

16

ASME BPVC.VI-2017

Figure 5.9.1-2 Hot Water Heating Boilers in Battery — Acceptable Piping Installation

GENERAL NOTE: Plumbing codes may require the installation of a reduced-pressure principle backflow preventer on a boiler when the makeup water source is from a potable water supply. NOTES: (1) Recommended control. See 8.5.1. Acceptable shutoff valves or cocks in the connecting piping may be installed for convenience of control testing and/or service. (2) The common return header stop valves may be located on either side of the check valves.

17

Figure 5.9.1-3 Single Steam Boilers

— Acceptable Piping Installation

ASME BPVC.VI-2017

18 GENERAL NOTES: (a) Plumbing codes may require the installation of a reduced-pressure principle backflow preventer on a boiler when the makeup water source is from a potable water supply. (b) Return loop connection was designed to eliminate the necessity of check valves on gravity return systems, but in some localities a check valve is a legal requirement. (c) When pump discharge piping exceeds 25 ft (7.6 m), install swing check valves at pump discharge. (d) If pump discharge is looped above normal boiler waterline, install a spring-loaded check valve at return header and at pump discharge. (e) Where supply pressures are adequate, makeup water may be introduced directly to a boiler through an independent connection. NOTE: (1) Recommended for 1-in. (25-mm) and larger safety valve discharge.

Figure 5.9.1-4 Steam Boilers in Battery

— Pumped Return — Acceptable Piping Installation

ASME BPVC.VI-2017

19 GENERAL NOTES: (a) Return connections shown for a multiple-boiler installation may not always ensure that the system will operate properly. To maintain proper water levels in multiple-boiler installations, it may be necessary to install supplementary controls or suitable devices. (b) Plumbing codes may require the installation of a reduced-pressure principle backflow preventer on a boiler when the makeup water source is from a potable water supply. NOTE: (1) Recommended for 1-in. (25-mm) and larger safety valve discharge.

Figure 5.9.1-5 Steam Boilers in Battery

— Gravity Return — Acceptable Piping Installation

ASME BPVC.VI-2017

20 GENERAL NOTES: (a) Return connections shown for a multiple-boiler installation may not always ensure that the system will operate properly. To maintain proper water levels in multiple-boiler installations, it may be necessary to install supplementary controls or suitable devices. (b) Plumbing codes may require the installation of a reduced-pressure principle backflow preventer on a boiler when the makeup water source is from a potable water supply. NOTE: (1) Recommended for 1-in. (25-mm) and larger safety valve discharge.

ASME BPVC.VI-2017

5.9.4 Feedwater and Makeup Water Connections

5.9.5 Bottom Blowoff Valve

5.9.4.1 Water Connections. Proper and convenient water-fill connections should be installed, and provisions should be made to prevent boiler water from backfeeding into the service water supply. Provision should also be made in every bo iler room fo r a convenient water supply that can be used to flush out the boiler and clean the boiler room floor. Water piping should be installed such that the boiler is not supporting the piping. Refer to the Manufacturer’s instructions for information regarding required water flow rates and supply pressure so that piping is sized accordingly.

Each steam boiler shall have a bottom blowoff connection fitted with a valve or cock connected to the lowest water space practicable with a minimum size as shown in Table 5.9.5-1. The discharge piping shall be full size to the point of discharge. Boilers having a capacity of 25 gal (91 L) or less are exempt from these requirements, e x c e p t th a t th e y m u s t h a ve a N P S 3 ∕4 ( D N 2 0 ) minimum drain valve.

5.9.6 Drains Each steam or hot water boiler may have one or more drain connections piped to a floor drain.

5.9.4.2 Steam Boilers. Feedwater or water treatment shall be introduced into a boiler through the return piping system or through an independent connection. The water flow from the independent connection shall not discharge directly against parts of the boiler exposed to direct radiant heat from the fire. Feedwater or water treatment shall not be introduced through openings or connections provided for inspection or cleaning of the safety valve, blowoff, water column, water gauge glass, or pressure gauge. The pipe shall be provided with a check valve or a backflow preventer containing a check valve near the boiler and a stop valve or cock between the check valve and the boiler or between the check valve and the return piping system.

5.9.6.1 Drain Connections. Proper and convenient drain connections should be pro vided for draining boilers. Unobstructed floor drains, properly located in the boiler room, facilitate proper cleaning of the boiler room. Floor drains that are used infrequently should have water poured into them periodically to prevent the entrance of sewer gases and odors. If there is a possibility of freezing, an antifreeze mixture should be used in the drain traps.

5.9.4.3 Hot Water Boilers. Makeup water may be introduced into a boiler through the piping system or through an independent connection. The water flow from the independent connection shall not discharge directly against parts of the boiler exposed to direct radiant heat from the fire. Makeup water shall not be introduced through openings or connections provided exclusively for inspection or cleaning of the safety relief valve, pressure gauge, or temperature gauge. The makeup water pipe shall be provided with a check valve or a backflow preventer containing a check valve near the boiler and a stop valve or cock between the check valve and the boiler or between the check valve and the return piping system.

5.9.6.2 Drain Valve. Each steam or hot water boiler shall have one or more drain connections fitted with valves or cocks connecting to the lowest water-containing spaces. The minimum size of the drain piping shall be NPS 3 ∕4 (DN 20). The discharge piping shall be full size to the point ofdischarge. When the blowoffconnection is located at the lowest water-containing space, a separate drain connection is not required. The minimum pressure rating of valves and cocks used for blowoff or drain purposes shall be not less than the pressure rating stamped on the boiler but in no case shall it be less than 30 psi (200 kPa). The temperature rating of such valves and cocks shall be not less than 250°F (120°C). Many j urisdictions have requirements stipulating the maximum temperature and quality of the water going to the drain, which should be considered when installing the equipment.

5.9.4.4 Valve Ratings. The minimum pressure rating of all check valves, stop valves, cocks, or backflow preventers with check valve(s) shall be not less than the pressure rating stamped on the boiler, and the temperature rating of such check valves, cocks, or backflow preventers, including all internal components, shall be not less than 250°F (120°C).

5. 9 . 6. 3 Con d en si n g Boi lers. F o l l o w th e b o i l e r Manufacturer’s instructions for provisions for trapping and draining condensate. Be aware that the condensate can be acidic and may require neutralization or other special handling. Materials compatible with the condensate must be used. Consult local authorities for jurisdictional requirements.

5.9.4.5 Backflow Preventer. Some jurisdictions may require installation of a backflow preventer in the feedwater connection.

5.9.7 Stop Valves 5.9.7.1 Installation (a) For single steam boilers, stop valves shall be installed in the supply pipe and return pipe connections to permit testing the safety valve without pressurizing the system.

21

ASME BPVC.VI-2017

Table 5.9.5-1 Size of Bottom Blowoff Piping, Valves, and Cocks

5.9.8 Modular Boilers A modular boiler is an assembly of small boilers designed to take the place of a single large boiler. The small boilers are called modules and are intended to be installed as a unit, without any intervening stop valves between the modules, with a single inlet and a single outlet. Modules may be under one jacket or may b e i n di vi du al l y j acke te d . I t i s i m p o rtan t th at the Manufacturer’s installation instructions be followed to ensure proper assembly, correct control location, and proper flow through each module. Figures 5 . 9 . 8 -1 and 5 . 9 . 8 -2 show the two pip ing a r r a n g e m e n t s t h a t a r e s p e c i fi e d b y v a r i o u s Manufacturers.

Minimum Required Safety Valve Capacity, lb (kg) of Steam/hr Blowoff Piping, Valves, and Cocks [Note (1)] Min. Size, NPS (DN) Up to 500 (226) 501 to 1,250 (227 to 567)

3

∕4 (20) 1 (25)

1,251 to 2,500 (568 to 1 134)

1 1 ∕4 (32)

2,501 to 6,000 (1 135 to 2 721)

1 1 ∕2 (40)

6,001 (2 722) and larger

2 (50)

NOTE: (1) To determine the discharge capacity of safety relief valves in terms ofBtu, the relieving capacity in lb ofsteam/hr is multiplied by 1,000.

5.9.8.1 Individual Modules

(b) For single hot water heating boilers, stop valves

(a) The individual modules shall comply with all the requirements of Section IV, Part HG. The individual m o d u l e s s h al l b e l i m i te d to a m axi m u m i n p u t o f 400,000 Btu/hr (gas) , 3 gal/hr (oil) [11 L/h (oil) ] , or 117 kW (electricity). (b) Each module of a modular steam heating boiler shall be equipped with (1 ) steam gauge (2) water gauge glass (3) operating limit control (4) low-water cutoff (5) safety valve (6) bottom blowoff valve (7) drain valve (c) Each module of a hot water heating boiler shall be equipped with (1 ) pressure/altitude gauge (2) thermometer (3) operating temperature control (4) safety relief valve (5) drain valve

should be located at an accessible point in the supply and return pipe connections, as near the boiler nozzle as is convenient and practical, to permit the draining o f the b o i l e r wi tho u t drai ni ng the s ys te m and to permit testing of the safety relief valve without pressurizing the system. (c) For multiple boiler installations , stop valves should be installed in each supply and return of two or more boilers connected to a common system to permit draining of individual boilers without draining the entire system.

5.9.7.2 Valve Specifications 5.9.7.2.1 All valves or cocks may be ferrous or

nonferrous.

5.9.7.2.2 The minimum pressure rating of all valves or cocks shall be not less than the pressure rating stamped on the boiler, and the temperature rating of such valves or cocks, including all internal components, shall be not less than 250°F (120°C). 5. 9. 7. 2. 3 Valves may b e thre ade d, flange d, o r compression type, or have ends suitable for welding or brazing.

5.9.8.2 Assembled Modular Boilers (a ) The individual mo dules s hall b e manifo lded together at the job site without any intervening valves. The header or manifold piping is field piping and is exempt from Section IV requirements. (b) The assembled modular steam heating boiler shall also be equipped with (1 ) feedwater connection (2) return pipe connection (3) safety limit control (c) The assembled modular hot water heating boiler shall also be equipped with (1 ) makeup water connection (2) provision for thermal expansion (3) stop valves (4) high-temperature limit control (5) low-water fuel cutoff

5.9.7.2.4 All valves or cocks with stems or spindles shall have adjustable pressure-type packing glands or selfadjusting seals suitable for the intended service. All plug-type cocks shall be equipped with a guard or gland suitable for the intended service. All 1 ∕4-turn-valve operating mechanisms shall have a tee or lever handle arrange d to b e p aralle l to the p i p e in which it is located when the cock is open. 5.9.7.2.5 All valves or cocks shall have tight closure when under boiler hydrostatic test pressure.

22

ASME BPVC.VI-2017

Figure 5.9.8-1 Modules Connected With Parallel Piping

Main pump

Figure 5.9.8-2 Modules Connected With Primary– Secondary Piping

Main pump

Module? pumps

5.12 POSTING OF CERTIFICATES AND/OR LICENSES

5.10 SAFETY S a fe ty i s ve ry i m p o rta n t to b o i l e r o p e ra ti o n a n d i t s ho uld b e fo remo s t in the minds o f tho s e who are as s igned

S o m e s tate s a n d m u n i ci p a l i ti e s re q u i re l i ce n s i n g o r

to o p erate and maintain heating s ys tems . O nly p ro p erly

c e r ti fi c a ti o n o f p e r s o n n e l wh o o p e r a te o r m a i n ta i n

trained and qualified p ers o nnel s ho uld wo rk o n o r o p erate

h e a ti n g e q u i p m e n t.

mechanical equip ment; adequate s up ervis io n s ho uld b e

p o s ti n g o f i n s p e c ti o n c e rti fi c a te s i n th e b o i l e r ro o m .

p ro vided.

The s up ervis o r in charge o f a given ins tall atio n s ho uld

Al s o ,

s o m e a u th o r i ti e s

re q ui re

ens ure s uch requirements are met.

5.11 HOUSEKEEPING

5.13 RECORD KEEPING, LOGS, ETC.

Generally, a neat b o iler ro o m indicates a well- run p lant.

5.13.1 Drawings, Diagrams, Instruction Books, Etc.

The b o iler ro o m s ho uld b e kep t free o f all material and equip ment no t neces s ary to the o p eratio n o f the heating s ys tem. Go o d ho us ekeep ing s ho uld b e enco uraged, and

Al l d ra wi n gs , wi ri n g d i a gra m s , s c h e m a ti c a rra n ge -

p ro cedures s ho uld include ro utine examinatio ns to main-

m ents , M an ufacture rs ’ de s cri p ti ve l i terature an d s p are

tain the des ired level o f cleanlines s .

p arts l i s ts , a n d wri tte n o p e ra ti n g i n s tru c ti o n s s h o u l d b e kep t p ermanently in the b o iler ro o m o r o ther s uitab le lo catio n s o they will b e availab le to tho s e who o p erate and maintain the b o iler. Where s p ace p ermits , drawings and diagrams s ho uld b e framed o r s ealed in p las tic and hung adj acent to the related equip ment. O ther material s ho uld b e as s e mb le d and e ncl o s e d i n a s ui tab l e b in de r. When

23

ASME BPVC.VI-2017

change s o r additi o n s are made, the data and drawi ngs

laws , ins urance co mp any ins p ectio n rep o rts , and initial

s ho uld b e revis ed acco rdingly.

accep tance tes t data s ho uld b e reco rded.

5.13.2 Logbook

5.13.3 Maintenance Schedules and Records

A p ermanent lo gb o o k s ho uld b e p ro vided in each b o iler

A s ugges ted chart- typ e lo g fo r s cheduling and reco rding

ro o m to reco rd maintenance wo rk, ins p ectio ns , examina-

work p erfo rmed o n maintenance, tes ting, and examinaM a n d a to r y

tions , certain tes ts , and o ther p ertinent data. B rief details

ti o n

o f rep airs o r o ther wo rk do ne o n a b o iler p lant (including

Ap p e n d i x I , Fi gu re s I - 1 - 1 an d I - 1 - 2 . T h e ro u ti n e wo rk

time s tarted, time co mp leted, and s ignature o f p ers o n in

n o r m a l l y p e r fo r m e d o n h e a ti n g b o i l e r s i s l i s te d . A s

during

a

1 - yr p e r i o d

is

s h o wn

in

charge) s ho uld b e reco rded. Perfo rmance and res ults o f

e a c h p o r ti o n o f th e w o r k i s

tests , ins p ectio ns , o r o ther ro utines required b y co des o r

p erfo rmi ng the wo rk s h o ul d date and i n iti al the l o g i n the ap p ro p riate s p ace.

24

c o m p l e te d ,

th e p e r s o n

ASME BPVC.VI-2017

ARTICLE 6 OVERPRESSURE PROTECTION 6.1 PRESSURE RELIEF VALVES

6.2 PRESSURE RELIEF VALVE REQUIREMENTS

6.1.1 General

6.2.1 Safety Valve Requirements for Steam Boilers

Pres s ure relief valves are us ed to relieve exces s ive p res -

6.2.1.1 E ach s team b o iler s hall have o ne o r mo re o ffi-

s ure generated within a b o iler. The p res s ure relief valve

cially rated s afety valves , identified with the C ertificatio n

(o r valves ) is the final line o f p ro tectio n agains t o verp res -

M ark wi th H V o r V d e s i gn ato r, o f th e s p ri n g p o p typ e

s ure in the b o iler. They dis charge a vo lume o f s team and

a dj u s te d an d s e al e d to d i s ch arge at a p re s s u re n o t to

hot water when relieving (s ee 6 . 4, Pres s ure Relief Valve

exceed 1 5 p s i (1 0 0 kPa) .

D ischarge Pip ing) . This is the s ingle mo s t imp o rtant s afety d e vi c e

on

any b o iler.

These

va l ve s

shall

6.2.1.2

b e a r th e

N o s a fe ty va l ve fo r a s te a m b o i l e r s h a l l b e

s maller than N PS

C ertificatio n M ark, as illus trated in Figure 6 . 1 . 1 - 1 , with

1

∕2 (D N 1 5 ) .

N o s afety valve s hall b e larger than N PS 4 (D N 1 0 0 ) . The

H V o r V de s i gn ato r to s i gn i fy co mp l i ance wi th S e cti o n

inlet o p ening s hall have an ins ide diameter equal to o r

I V, H G- 40 2 .

greater than the s eat diameter.

6.1.2 Safety Valves

6.2.1.3

A s afety valve is an auto matic p res s ure- relieving device

The minimum relieving cap acity o f a valve o r

va l ve s s h a l l b e go ve rn e d b y th e c a p a c i ty m a rki n g o n

actuated b y the p res s ure generated within the b o iler and

the b o iler called fo r in Sectio n I V, H G- 5 3 0 .

characte riz ed b y full - o p e ning p o p acti o n. I t i s us e d fo r

6.2.1.4 The minimum valve cap acity in p o unds p er ho ur

s team s ervice. Valves are o f the s p ring- lo aded p o p typ e

(kilo grams p er ho ur) s hall b e determined b y dividing the

and are facto ry s et and s ealed. See Figure 6. 1 . 2 - 1 .

maximum o utp ut in B ritis h thermal units p er ho ur (kilo -

6.1.3 Safety Relief Valves

watts ) at the b o iler no zzle, o b tained b y the firing o f any fuel fo r which the unit is ins talled, b y 1 , 0 0 0 (0 . 6 46 ) .

A s afety relief valve is an auto matic p res s ure- relieving d e vi ce actu ate d b y th e p re s s u re ge n e rate d wi th i n th e

6.2.1.5 The s afety valve cap acity fo r each s team b o iler

b o i l e r. I t i s u s e d p ri m ari l y o n wate r b o i l e rs . Val ve s o f

s h a l l b e s u c h th a t wi th th e fu e l - b u r n i n g e q u i p m e n t

th i s typ e a re s p ri n g l o a d e d wi th o u t fu l l - o p e n i n g p o p

ins talled and o p erated at maximum cap acity, the p res s ure

a cti o n a n d h ave a facto ry- s e t, n o n ad j u s tab l e p re s s u re

canno t ris e mo re than 5 p s i (3 5 kPa) ab o ve the maximum

s etting. S ee Figure 6. 1 . 3 - 1 .

allo wab le wo rking p res s ure.

6.1.4 Temperature and Pressure Safety Relief Valves

6.2.1.6

Wh e n o p e ra ti n g c o n d i ti o n s are ch a n ge d , o r

additio nal b o iler heating s urface is ins talled, the valve cap acity s hall b e increas ed, if neces s ary, to meet the new

A te m p e ra tu re an d p re s s u re s a fe ty re l i e f va l ve i s a

co nditio ns and to b e in acco rdance with 6. 2 . 1 . 5 . The addi-

s afety relief valve, as des crib ed in 6 . 1 . 3 , that als o inco r-

tio nal valves required, o n acco unt o f changed co nditio ns ,

p orates a thermal- s ens ing relief element that is actuated

may b e ins talled o n the o utlet p ip ing, p ro vided there is no

b y the up s tream water temp erature.

intervening valve.

6.2.2 Safety Relief Valve Requirements for Hot Water Boilers

Figure 6.1.1-1 Official Certification Mark

6.2.2.1

E ach ho t water heating o r s up p ly b o iler s hall

have at leas t o ne o fficially rated s afety relief valve that i s o f th e au to m ati c re s e a ti n g typ e , i d e n ti fi e d wi th th e C ertifi catio n M ark wi th H V o r V de s ign ato r, an d s e t to relieve at o r b elo w the maximum allo wab le wo rking p res s ure o f the b o iler.

25

ASME BPVC.VI-2017

Figure 6.1.2-1 Safety Valve

Figure 6.1.3-1 Safety Relief Valve

th an 1 5 , 0 0 0 B tu/h r (4 . 4 kW) m ay b e e qu i p p e d wi th a rated s afety relief valve o f N PS

6.2.2.5

1

∕2 (D N 1 5 ) .

T h e r e q u i r e d r e l i e vi n g c a p a c i ty i n B r i ti s h

th e rm a l u n i ts p e r h o u r o f th e s afe ty re l i e f va l ve s h al l b e n o t l e s s th a n th e m a xi m u m a l l o wa b l e i n p u t fo r a w a te r h e a te r o r th e m i n i m u m r e l i e vi n g c a p a c i ty i n p o unds p er ho ur (kilo grams p er hour) o n the namep late o f the b o iler. I f the marking o n the safety relief valve is in p o u n d s p e r h o u r (ki l o gram s p e r ho u r) , de te rm i n e th e

6.2.2.2

B ritis h thermal units p er ho ur b y multip lying b y 1 , 0 0 0

H o t water heating o r s up p ly b o ilers limited to a

(0 .646) .

wate r te m p e ratu re n o t i n e xce s s o f 2 1 0 ° F (9 9 ° C ) m ay

wa te r 3 ,500

p racticab le p art o f the b o iler p ro p er, b ut in no cas e s hall the s afety valve b e lo cated o n the b o iler b elo w the no rmal

a s et p res s ure within a range no t to exceed 6 p s i (40 kPa)

o perating level, and in no cas e s hall the s afety relief valve

ab o ve the maximum allo wab le wo rking p res s ure o f the

b e l o c a te d b e l o w th e l o we s t p e rm i s s i b l e wa te r l e ve l .

b o i l e r u p to a n d i n c l u d i n g 6 0 p s i (4 0 0 kP a ) , a n d 5 %

P re s s u re re l i e f val ve s s h al l b e co n n e cte d d i re ctl y to a

fo r tho s e b o ilers having a maximum allo wab le wo rking

ta p p e d o r fl a n g e d o p e n i n g i n th e b o i l e r , to a fi tti n g

p res s ure exceeding 6 0 p s i (40 0 kPa) .

co n n e cte d to th e b o i l e r b y a s ho rt n i p p l e , to a Y- b as e , o r to a va l ve l e s s h e a d e r c o n n e c ti n g s te a m o r wa te r

N o s a fe ty re l i e f va l ve s h a l l b e s m a l l e r th a n n o r l a r g e r th a n N P S 4

be

o f the b o iler. The to p o r s ide o f the b o iler means the highes t

the additio nal valves s hall b e o fficially rated and may have

∕4 ( D N 2 0 )

shall

Pres s ure relief valves s hall b e lo cated in the to p o r s ide

When mo re than o ne s afety relief valve is us ed

o n either ho t water heating o r ho t water s up p ly b o ilers ,

NPS

b o i l e rs

6.3.1 General

p res s ure o f the b o iler.

3

wa te r

6.3 MOUNTING

tified with the C ertificatio n M ark with H V des ignato r, and s et to relieve at o r b elo w the maximum allo wab le wo rking

6.2.2.4

r e l i e v i n g c a p a c i t y fo r e l e c t r i c e l e c tr i c

B tu/hr (1 . 0 kW) p er kilo watt o f input.

m o re o ffi ci al l y rate d te m p e ratu re an d p re s s u re s afe ty relief valves that is o f the auto matic res eating typ e, iden-

6.2.2.3

The

h e a te r s a n d

have , in l ie u o f the val ve (s ) s p eci fi ed i n 6 . 2 . 2 . 1 , o ne o r

1

∕2

o utlets o n the s ame b o iler. C o il- o r header- typ e b o ilers

(D N 1 1 5 )

s h a l l h a ve th e p r e s s u r e r e l i e f va l ve l o c a te d o n th e

e x c e p t th a t b o i l e r s h a vi n g a h e a t i n p u t n o t g r e a te r

s te a m o r h o t wa te r o u tl e t e n d . P re s s u re re l i e f va l ve s

26

ASME BPVC.VI-2017

b e p ro vis io ns made fo r p ro p erly draining the p ip ing (s ee

s hall b e ins talled with their s p indles vertical. The o p ening o r co nnectio n b etween the b o iler and any p res s ure relief

Figure 6 . 4. 1 - 1 ) . The s ize and arrangement o f dis charge

valve s hall have at leas t the area o f the valve inlet.

p i p i n g s h al l b e i n de p e n d e n t o f o th e r d i s ch arge p i p i n g an d s u ch th at an y p re s s u re th at m ay e xi s t o r d e ve l o p

6.3.2 Requirements for Common Connections for Two or More Valves

wi l l n o t re d u ce th e re l i e vi n g cap a ci ty o f th e re l i e vi n g devices b elo w that required to p ro tect the b o iler.

6.3.2.1 When a b o iler is fitted with two o r mo re s afety

6.5 TEMPERATURE AND PRESSURE SAFETY RELIEF VALVES

val ve s o n o n e co nne cti o n, thi s co n ne cti o n s hal l h ave a cro s s - s e cti o n al are a n o t l e s s th an th e co m b i n e d are as o f i nlet co nne ctio ns o f al l the s afety val ves wi th which

H o t water heating o r s up p ly b o ilers limited to a water

it co nnects .

temp erature o f 2 1 0 °F (9 9 °C ) may have o ne o r mo re o ffi-

6.3.2.2 When a Y- b as e is us ed, the inlet area s hall b e no t

cially rated temp erature and p res s ure s afety relief valves installed. The requirements o f 6 . 1 thro ugh 6. 4 s hall b e met,

less than the co mb ined o utlet areas .

excep t as fo llo ws :

When the s ize o f the b o iler requires a s afety valve o r

(a) (b)

1

s afety relief valve larger than N PS 4 ∕2 (D N 1 1 5 ) , two o r mo re valves having the required co mb ined cap acity s hall

A Y- typ e fitting s hall no t b e us ed. I f additio nal valves are us ed, they s hall b e temp era-

ture and p res s ure s afety relief valves .

b e us ed. When two o r mo re valves are us ed o n a b o iler,

(c)

they may b e s ingle, directly attached, o r mo unted o n a Y-

When the temp erature and p res s ure s afety relief

val ve i s m o u n te d d i re ctl y o n th e b o i l e r wi th n o m o re

b as e.

than 4 in. (1 0 0 mm) m axim um i nte rco nnecting p i p ing,

6.3.3 Threaded Connections

th e va l ve m a y b e i n s ta l l e d i n th e h o ri z o n ta l p o s i ti o n with the o utlet p o inted do wn.

A th re ad e d co n n e cti o n m ay b e u s e d fo r attach i n g a

6.6 VALVE REPLACEMENT

valve.

6.3.4 Prohibited Mountings

Safety valves and s afety relief valves requiring rep airs s hal l b e re p l ace d wi th a n e w val ve o r re p ai re d b y th e

P re s s u re re l i e f va l ve s s h a l l n o t b e c o n n e c te d to a n internal p ip e in the b o iler

.

manufacturer.

6.7 TRY-LEVER TEST FOR SAFETY VALVES (STEAM BOILERS)

6.3.5 Shutoff Valves Us e o f s huto ff valves is p ro hib ited. N o s huto ff o f any

(a) Prior to Test.

des crip tio n s hall b e p laced b etween the p res s ure relief

As p recautio nary meas ures , all p er-

va l ve a n d th e b o i l e r, o r o n d i s c h a rge p i p e s b e twe e n

s o n n e l co n c e rn e d wi th c o n d u c ti n g a s a fe ty va l ve te s t

s uch valves and the atmo s p here.

s ho uld b e b riefed o n the lo catio n o f all s hutdo wn co ntro ls

6.4 PRESSURE RELIEF VALVE DISCHARGE PIPING

b e at leas t two p eo p le p res ent during the tes t. C are s ho uld

to b e us ed in the event o f an emergency, and there s ho uld

b e taken to p ro tect tho s e p res ent fro m es cap ing s team.

6.4.1 Discharge Piping

(b) Frequency ofTest. A try- lever tes t o f the s afety valve s ho uld b e p erfo rmed every 3 0 days that the b o iler is in

A d i s c h a r ge p i p e s h a l l b e u s e d . I ts i n te r n a l c ro s s -

o peratio n o r after any p erio d o f inactivity.

s ectio nal area s hall b e no t les s than the full area o f the

(c) Procedure Step 1 . Wi th

valve o utlet o r o f the to tal o f the valve o utlets dis charging thereinto and s hall b e as s ho rt and s traight as p o s s ib le and

the b o i l e r unde r a m i ni m um o f 5 p s i

(3 5 kPa) p res s ure, li ft the try lever o n the s afety valve

s o arranged as to avo id undue s tres s o n the valve o r valves .

to

A unio n may b e ins talled in the dis charge p ip ing clo s e to

th e

wi d e - o p e n

p o s i ti o n

and

a l l o w s te a m

to

be

dis charged fo r 5 s ec to 1 0 s ec.

the valve o utlet (s ee Figure 6 . 4. 1 - 1 ) . When an elb o w is

Step 2.

p laced o n a s afety o r s afety relief valve dis charge p ip e,

Releas e the try lever and allo w the s p ring to

s nap the dis k to the clo s ed p o s itio n.

it shall b e lo cated clo s e to the valve o utlet do wns tream

(a)

o f the unio n.

I f the valve s immers , o p erate the try lever two

o r three times to allo w the dis k to s eat p ro p erly.

(b)

6.4.2 Piping Arrangement

I f the valve co ntinues to s i mmer, it mus t b e

re p l a ce d o r re p a i re d b y an a u th o ri z e d re p re s e n tati ve o f the s afety valve manufacturer.

The dis charge fro m p res s ure relief valves s hall b e s o

Step 3.

arranged as to minimize the danger o f s calding attendants .

E xami ne the valve fo r evide nce o f s cale o r

The p res s ure relief valve dis charge s hall b e p ip ed away

e n cru s tati o n wi th i n th e b o d y. D o n o t d i s as s e m b l e th e

from the b o iler to a s afe p o int o f dis charge, and there s hall

valve o r attemp t to adj us t the s p ring s etting.

27

ASME BPVC.VI-2017

Figure 6.4.1-1 Safety Relief Valve Discharge Pipe

28

ASME BPVC.VI-2017

Step 3. Lift the try lever on the safety relief valve to the full-open position and hold it for at least 5 sec or until clean water is discharged. Step 4. Release the try lever and allow the spring to snap to the closed position. (a) If the valve leaks, operate the try lever two or three times to clear the seat of any foreign matter preventing proper seating. As safety relief valves are normally piped to the floor or near a floor drain, it may take some time to determine if the valve has shut completely. (b) If the safety relief valve continues to leak, it mus t b e rep laced b efo re the b o ile r is returne d to operation. Step 5. Check that system operating pressure and temperature have returned to normal. Step 6. Check again to ensure the safety relief valve has closed completely and is not leaking.

Step 4. Enter the date of this test into the boiler logbook. It is advisable to have a chain attached to the try lever of the valve to facilitate this test and allow it to be conducted in a safe manner from the floor.

6.8 TRY-LEVER TEST FOR SAFETY RELIEF VALVES (WATER BOILERS) (a) Frequency ofTest. A try-lever test of the safety relief valve should be conducted every 3 0 days during the heating season, after any prolonged period of inactivity, and prior to the annual safety relief valve test. (b) Procedure Step 1 . Check the safety relief valve discharge piping

to determine that it is properly installed and supported. Step 2. Check and log the system operating pressure and temperature.

29

ASME BPVC.VI-2017

ARTICLE 7 SYSTEM ACCESSORIES 7.1.2.4 Pump ed feedwater returns , when co nnected to a

7.1 STEAM BOILERS

re tu rn lo o p , s ho uld b e co nne cte d di re ctly to the l o we r

7.1.1 Steam Trap

b o iler co nnectio n o f the lo o p b ecaus e under s o me circums tances a co nnectio n to the return lo o p near the b o iler

A s team trap is a device p ut o n s team lines and o n the

w a te r l i n e

o utlet o f heating units to p ermit the exit o f air and co ndens ate b ut to p re ve nt the p as s age o f s te am . The typ es o f

o b j e c ti o n a b l e

noise

o r w a te r

7.1.3 Vacuum Return Pump

s team trap s in co mmo n us e are thermo s tatic, flo at, co mb in ati o n fl o at an d th e rm o s tati c, and b u cke t. S e e Fi gu re s

T h e va c u u m r e tu r n p u m p i s u s e d i n l a r g e r s te a m

7 . 1 . 1 - 1 thro ugh 7 . 1 . 1 - 4.

s ys te m s to cre ate a p arti al vacuu m i n th e re tu rn l i n e s

7.1.2 Condensate Return Pump Loops 7.1.2.1

may caus e

hammer.

o f th e h e ati n g s ys te m an d th u s as s i s t i n th e re tu rn o f the co ndens ate, eliminatio n o f air, and equal dis trib utio n

C o n de ns ate re turn p ump s are us e d o n e i the r

o f s team.

o n e - o r two - p i p e s te am s ys te m s to re tu rn co n d e n s ate

7.1.4 Economizer (Steam Boiler)

to th e b o i l e r wh e r e th i s c a n n o t b e d o n e b y g r a vi ty. They are generally us ed in co nj unctio n with a res ervo ir

An eco no mizer is a heat exchanger in which feedwater

(co ndens ate return tank) and a flo at- o p erated s witch fo r

to b e s up p lied to a b o iler o r water heater is heated b y flue

s tarting the p ump mo to r.

gas es exiting the b o iler o r water heater. When s uch an

7.1.2.2 Where two b o ilers are co nnected to gether and

e c o n o m i z e r i s s u p p l i e d w i th a S e c ti o n I V b o i l e r o r

s e rve d fro m o n e c o n d e n s a te re tu rn p u m p , a va c u u m

wa te r h e a te r , i t fa l l s wi th i n th e s c o p e o f S e c ti o n I V

b reake r m ay b e re qu i re d o n the i dl e b o i l e r to p re ve n t

rules . The eco no mizer may b e co ns tructed in acco rdance

the fo rmatio n o f a vacuum that will affect the functio ning

with rules o f either S ectio n I V o r S ectio n VI I I , D ivis io n 1 .

o f the feed valve.

7.1.2.3

7.2 HOT WATER BOILERS

T h e re tu rn p i p e c o n n e c ti o n s o f e a c h b o i l e r

7.2.1 Air Eliminators

s u p p l yi n g a gra vi ty re tu rn o f a s te am h e a ti n g s ys te m s ho uld b e s o arranged as to fo rm a lo o p s imilar to that s o th a t th e wa te r i n e a c h

Air eliminato rs are s o metimes ins talled o n ho t water

b o iler canno t b e fo rced b elo w the s afe water level. The

s h o wn i n F i g u r e 7 . 1 . 2 . 3 - 1

b o ilers to eliminate air fro m the s ys tem as it is releas ed

lo o p is required in gravity s ys tems and may b e included

fro m the water within the b o iler.

in p ump return s ys tems .

Figure 7.1.1-1 Thermostatic Trap

30

ASME BPVC.VI-2017

Figure 7.1.1-4 Bucket Trap With Trap Closed

Figure 7.1.1-2 Float Trap

Figure 7.1.1-3 Float and Thermostatic Trap

7.2.4.1 Systems With Open Expansion Tank.

I f th e

s ys te m i s e q u i p p e d wi th a n o p e n e xp a n s i o n ta n k, a n indo o r o verflo w fro m the up p er p o rtio n o f the exp ans io n tank s hall b e p ro vided in additio n to an o p en vent. The

7.2.2 Circulators (Circulating Pumps)

i n do o r o ve rfl o w s ho u l d b e carri e d wi th i n th e b ui l di n g to a s uitab le p lumb ing fixture o r the b as ement.

C irculato rs are b as ically centrifugal p ump units us ed o n

7.2.4.2 Closed-Type Systems.

h o t wa te r h e a ti n g s ys te m s to fo rc e th e fl o w o f wa te r thro ugh the s ys tem.

c l o s e d typ e ,

7.2.3 Economizer (Hot Water Boiler)

an

I f the s ys tem is o f the

a i r t i g h t t a n k o r o th e r s u i t a b l e

gas

cu s h i o n s h al l b e i n s tal l e d th at wi l l b e co n s i s te n t wi th th e vo l um e and cap aci ty o f th e s ys te m , and i t s h al l b e

An e co n o m i z e r i s a h e at e xch an ge r i n wh i ch re tu rn

s uitab ly des igned fo r a hydro s tatic tes t p res s ure o f 2

wa te r to b e s u p p l i e d to a b o i l e r o r wa te r h e a te r i s

1

∕2

ti m e s th e a l l o wa b l e wo rki n g p re s s u re o f th e s ys te m .

heated b y flue gas es exiting the b o iler o r water heater.

E xp ans i o n

Wh e n s u c h a n e c o n o m i z e r i s s u p p l i e d wi th a n AS M E

ab o ve 3 0 p s i (2 0 0 kPa) s hall b e co ns tructed in acco rdance

ta n ks

fo r s y s t e m s

d e s i gn e d

to

o p e r a te

S e c ti o n I V b o i l e r o r wa te r h e a te r , i t fa l l s wi th i n th e

with Sectio n VI I I , D ivis io n 1 . Pro vis io ns s hall b e made fo r

s co pe

draining the tank witho ut emp tying the s ys tem, excep t fo r

o f S e c ti o n

I V rul e s .

The

eco no mizer may b e

c o n s tr u c te d i n a c c o r d a n c e w i th th e r u l e s o f e i th e r

p re- p res s urized tanks .

S ectio n I V o r S ectio n VI I I , D ivis io n 1 .

7.2.4.3 Minimum Capacity of Closed-Type Tank. The

7.2.4 Expansion Tank

minimum cap acity o f the clo s ed- typ e exp ans io n tank may b e determined fro m the fo llo wing equatio n:

E xp ans io n tanks are us ed o n ho t water s ys tems to allo w

(U.S. Customary Units)

fo r the exp ans io n o f the water when it is heated. A gas

Vt =

cus hio n in the tank allo ws fo r the exp ans io n o r co ntractio n o f the water as it is heated o r co o led. All ho t water heating s ys te m s i n c o rp o ra ti n g h o t wa te r ta n ks o r fl u i d re l i e f co lumns s hall b e s o ins talled as to p revent freezing.

31

(0.00041

T

( Pa Pf)

0.0466)

( Pa Po)

Vs

ASME BPVC.VI-2017

Figure 7.1.2.3-1 Typical Return Loop

(SI Units)

Vt = where Pa = Pf = Po = T = Vs = Vt =

(0.000738

T

( Pa Pf)

0.03348)

( Pa Po)

7.2.5 Storage Tanks for Hot Water Supply Systems

Vs

If a system is to utilize a storage tank that exceeds a nominal water-containing capacity of 120 gal (454 L), the tank shall be constructed in accordance with the rules of Section IV, Part HLW; Section VIII, Division 1; or Section X. For tanks constructed to Section X, the maximum allowable temperature marked on the tank shall equal or exceed the maximum water temperature marked on the boiler.

atmospheric pressure fill pressure maximum operating pressure average operating temperature volume of system, not including tanks minimum volume of tanks

32

ASME BPVC.VI-2017

ARTICLE 8 CONTROLS AND INSTRUMENTATION 8.1 LOW- WATER FUEL CUTOFFS AND WATER FEEDERS

water valve or pump control and burner cutoffswitch. The units that serve as fuel cutoffs only are basically the same as the combination unit but without the water feeder valve (see Figure 8.1.1-1). A water feeder installation normally acts as an operating device to maintain a predetermined safe water level in the boiler.

Low-water fuel cutoffs are designed to provide protection against hazardous low-water conditions in heating b oilers. Records indicate that many bo iler failures res ult fro m lo w- wate r co nditio ns . Lo w- wate r fuel cutoffs may be divided into two general types, float and probe.

8.1.2 Electric-Probe-Type Low- Water Fuel Cutoffs Electric-probe-type low-water fuel cutoffs may be contained in a water column mounted externally on the b o iler o r may b e mo unted o n the b o iler s hell. Some consist of two electrodes (probes) that under normal conditions are immersed in the boiler water with a small current being conducted from one electrode to the other to energize a relay. Others use one probe, and the boiler shell, in effect, becomes the other probe. If the water level drops sufficiently to uncover the probes, the current flow stops and the relay operates to shut off the burner. See Figure 8.1.2-1.

8.1.1 Float-Type Low- Water Fuel Cutoffs Float-type low-water fuel cutoffs may be in combination with a water feeder or constructed as a separate unit. The combination feeder–cutoff units are generally used on steam boilers while the cutoff units are sometimes installed as the sole cutoff on hot water boilers or as a second cutoff on steam boilers. A feeder–cutoff combination adds water as needed to maintain a minimum water level and stops the firing device if the water level falls to the lowest permissible level. Both operations are accomplished by the movement of the float that is linked to the

Figure 8.1.1-1 Float-Type Low-Water Cutoff

33

ASME BPVC.VI-2017

Figure 8.1.2-1 Probe-Type Low-Water Cutoff

34

ASME BPVC.VI-2017

8.2 PRESSURE GAUGE

8.3 CONTROLS

8.2.1 General

8.3.1 General

E a c h s te a m b o i l e r s h a l l h a ve a s te a m g a u g e o r a

Auto matically fired b o ilers may b e equip p ed with o p er-

co m p o u n d s te am gau ge co n n e cte d to i ts s te am s p ace ,

ating, limit, s afety, and p ro gramming co ntro ls that may b e

wa te r c o l u m n , o r s te a m c o n n e c ti o n . E a c h h o t wa te r

electrically o r p neumatically o p erated. The functio ns o f

heating o r ho t water s up p ly b o iler s ho uld have a p res s ure

thes e co ntro ls are des crib ed in 8 . 3 . 4 thro ugh 8 . 3 . 7 .

gauge co nnected to it o r to its flo w co nnectio n in s uch a

8.3.2 Spare Parts

manner that the p o int o f co nnectio n canno t b e s hut o ff from the b o iler.

S p are p arts fo r co ntro ls , including electro nic co mp o -

8.2.2 Mounting

nents that require time fo r p ro curement, s ho uld b e maintained in s to ck s up p ly.

O n a s team b o iler, a s ip ho n tub e (p igtail) is required to

8.3.3 Power for Electrically Operated Controls

p ro tect the gauge fro m s team. A co ck s ho uld b e p ro vided, p laced o n the p ip e near the gauge, to facilitate s ervicing o f

All co ntro ls s ho uld b e p o wered with a p o tential o f 1 5 0 V

the gauge. Pip ing o r tub ing fo r p res s ure gauge co nnectio ns

o r lo wer with o ne s ide gro unded. A s ep arate equip ment

s hal l b e o f no nferro us m etal wh en s mall e r than N P S 1

ground co nducto r s ho uld b e b ro ught to the co ntro l p anel

(D N 2 5 ) . The handle o f the co ck s hall b e p arallel to the

frame with gro und co ntinuity ens ured to the fuel valve. All

p ipe in which it is lo cated when the co ck is o p en.

o perating co ils o f co ntro l devices s ho uld b e co nnected to

8.2.3 Types of Pressure Gauges

the neutral s ide o f the co ntro l circuit, and all co ntro l limit s witches o r co ntacts s ho uld b e in the ungro unded (ho t) s ide o f the co ntro l circuit. I f an is o lating trans fo rmer is

Pres s ure gauges may b e either mechanical o r electro nic.

(a) Mechanical Gauges (Analog).

The s cale o n a water

u s e d , i t s h o u l d b e b o n d e d to th e co n tro l p an e l fram e .

b oiler p res s ure gauge s ho uld b e graduated to no t les s than

The equip ment gro und is no t required when the is o lating

1

1

∕2 times the p res s ure at which

tran s fo rm e r i s u s e d. D o n o t fu s e co n tro l tran s fo rm e rs

the s afety relief valve is s et. The s cale o n the dial o f a s team

ab o ve th e i r rate d cu rre n t val u e b e cau s e th e s e de vi ce s

b o iler p res s ure gauge s ho uld be graduated to no t les s than

are current limiting and an o vers ize fus e may no t b lo w

3 0 p s i (2 0 0 kPa) no r mo re than 6 0 p s i (41 4 kPa) .

under s ho rt- circuit co nditio ns .

1

∕2 times no r mo re than 3

(b) Electronic Gauges. E lectro nic gauges s ho uld (1 ) b e p o wered fro m the b o iler p o wer s up p ly, have a

8.3.4 Operating Controls

b ackup p o wer s up p ly, and have a dis p lay that remains o n

The o p erating co ntro ls s hall

at all times

(2)

have a ful l- s cale range o f 1

1

(a)

∕2 ti m es the s afe ty

relief valve p res s ure s etting

(3) (4)

o r ho t water temp erature at o r b elo w the limit co ntro l

b e accurate to within ± 2 % o f full s cale

s etting

have a trans ducer co mp atib le with b o th liquids

(b) (c)

and gas es and b e temp erature co mp ensated

(5)

s tart, s to p , and mo dulate the b urner (if des ired) in

resp o ns e to the s ys tem’ s demand, keep ing s team p res s ure

have an o p erating temp erature range o f 3 2 °F to

maintain p ro p er water level in s team b o ilers m a i n ta i n p r o p e r wa te r p r e s s u r e i n h o t wa te r

heating b o ilers

2 5 0 °F (0 °C to 1 2 0 °C ) unles s o therwis e required b y the

8.3.5 Limit Controls

ap p licatio n

8.2.4 Calibration

The limit co ntro ls s hall s to p the b urner

(a)

The gauge us ed o n a b o iler s ho uld b e calib rated at leas t

when the s team p res s ure exceeds 1 5 p s i (1 0 0 kPa)

fo r s team b o ilers

o nce p er year. This can b e acco mp lis hed b y co mp aring it to

(b )

a mas ter- calib rated gauge o r us ing a deadweight tes ter. I f

wh e n

th e

w a te r t e m p e r a t u r e

e xce e d s

2 5 0°F

(1 2 0 °C ) fo r ho t water b o ilers

the gauge is damaged o r canno t b e calib rated to p ro vide

(c)

co ns is tent readings , it s ho uld b e dis carded and rep laced

wh en the water l eve l dro p s b el o w the m i ni mum

p ermis s ib le level

with a new gauge.

(d)

when required in the event o f unus ual co nditio ns

s uch as

(1 ) (2) (3)

35

high s tack temp erature high o r lo w gas - fuel p res s ure high o r lo w fuel- o il temp erature

ASME BPVC.VI-2017

8.4.1.4 AS M E C SD - 1 requires two lo w- water cuto ffs o n

8.3.6 Safety Controls

s te a m b o i l e r s . The s afety co ntro ls s hall

(a) (b) (c) (d) (e)

R e fe r to

AS M E

CSD-1

fo r a p p l i c a b l e

requirements .

s to p fuel flo w in cas e o f ignitio n failure

8.4.2 Steam Gauges

s to p fuel flo w in cas e o f main flame interrup tio n s to p fuel flo w in cas e o f mechanical draft failure

8.4.2.1 E ach s team b o iler s hall have a s team gauge o r a

s to p fuel flo w in cas e o f circuit failure

co m p o u n d s te am gau ge co n n e cte d to i ts s te am s p ace ,

s to p fuel flo w and caus e lo cko ut in cas e o f high o r

wa te r c o l u m n ,

lo w gas p res s ure, when the b o iler is s o equip p ed

o r s te a m

c o n n e c ti o n .

The

gau ge

or

p iping to the gauge s hall co ntain a s ip ho n o r equivalent

8.3.7 Programming Controls

device that will develo p and maintain a water s eal that will p revent s team fro m entering the gauge tub e. The p ip ing

P ro gra m m i n g c o n tro l s , wh e n u s e d , p ro vi d e p ro p e r

s hall b e s o arranged that the gauge canno t b e s hut o ff fro m

s e que n ci n g o f th e o p e rati n g, l i m i t, an d s afe ty co n tro l s to

e n s u r e th a t a l l

c o n d i ti o n s

the b o iler excep t b y a co ck p laced in the p ip e at the gauge

n e c e s s a r y fo r p r o p e r

and p ro vided with a tee o r lever handle arranged to b e

b urner o p eratio n are s atis fied. I ncluded in a p ro grammed

p arallel to the p ip e in which it is lo cated when the co ck is

co n tro l are p re p u rge an d p o s tp u rge cycl e s to re m o ve

o p e n . T h e ga u ge c o n n e c ti o n b o i l e r ta p p i n g, e xte rn a l

accumulated gas es .

s i p h o n , o r p i p i n g to th e b o i l e r s h a l l b e n o t l e s s th a n 1

8.4 STEAM HEATING BOILERS

N PS

8.4.1 Low-Water Fuel Cutoffs

s i p ho n s hal l b e n o t l e s s than N P S

∕4 ( D N 8 ) . Wh e re s te e l o r wro u gh t i ro n p i p e o r

tu b i n g i s

used,

th e

b o i l e r c o n n e c t i o n a n d e x te r n a l 1

∕2 (D N 1 5 ) . Fe rro u s

and no nferro us tub ing having ins ide diameters at leas t

8.4.1.1 Requirements fo r the typ e and numb er o f lo w-

equal to that o f no minal p ip e s izes lis ted ab o ve may b e s ub s tituted fo r p ip e.

water fuel cuto ffs are dictated b y lo cal co des , N B I C , AS M E C SD - 1 , and/o r N FPA 8 5 , dep ending o n the inp ut and b o iler

8.4.2.2 The s cale o n the dial o f the s team b o iler gauge

des ign. E ach auto matically fired s team- o r vap o r- s ys tem

s hall b e graduated to no t les s than 3 0 ps i (2 0 0 kPa) no r

b o iler is equip p ed with at leas t o ne auto matic lo w- water

mo re than 60 p s i (40 0 kPa) . The travel of the p o inter fro m

fuel cuto ff that auto matically cuts o ff the fuel s up p ly b efo re

0 p s i to 3 0 p s i (0 kPa to 2 0 0 kPa) p res s ure s hall b e at leas t 3

the s urface o f the water falls to the lo wes t vis ib le p art o f

in. (7 5 mm) .

th e wa te r ga u ge gl a s s . I f th e wa te r- fe e d i n g d e vi c e i s

8.4.3 Water Gauge Glasses

ins talled, it s hall b e s o co ns tructed that the water inlet va l ve c a n n o t fe e d wa te r i n to th e b o i l e r th r o u gh th e

8.4.3.1 E ach s team b o iler s hall have o ne o r mo re water

fl o a t c h a m b e r a n d s o l o c a te d a s to s u p p l y r e q u i s i te

gauge glas s es attached to the water co lumn o r b o iler b y

feedwater.

means o f valved fittings no t les s than N PS

8.4.1.2 A lo w- water fuel cuto ff o r water- feeding device

1

∕2 (D N 1 5 ) , with

the lo wer fitti ng p ro vi ded wi th a drain valve o f a typ e 1

may b e attached directly to a b o iler. A fuel cuto ff o r water-

h avi n g an u n re s tri cte d drai n o p e n i n g n o t l e s s th an

feeding device may als o b e ins talled in the tap p ed o p en-

in. (6 mm)

i n gs avai l ab l e fo r attach i n g a wate r gl as s d i re ctl y to a

g l a s s r e p l a c e m e n t s h a l l b e p o s s i b l e wi th th e b o i l e r

b oiler, p ro vided the co nnectio ns are made to the b o iler

u n d e r p re s s u re . Wa te r gl a s s fi tti n gs m a y b e a tta ch e d

wi th

n o n fe r r o u s

(D N 1 5 )

te e s

or

Ys

not less

th a n

NPS

1

∕4

i n d i a m e te r to fa c i l i ta te c l e a n i n g . G a u g e

∕2

di re ctl y to a b o i l e r. B o i l e rs h avi n g an i n te rn al ve rti cal

b e twe e n th e b o i l e r a n d th e wa te r g l a s s s o

h e i gh t o f l e s s th an 1 0 i n . (2 5 4 m m ) m ay b e e qu i p p e d

that the water glas s is attached directly and as clo s e as

with a water- level indicato r o f the glas s b ull’ s - eye typ e,

p o s s ib le to the b o iler; the run o f the tee o r Y s hall take

p ro vi ded th e in di cato r is o f s uffi ci ent s i ze to s ho w the

th e wate r gl as s fi tti n gs , a n d th e s i d e o u tl e t o r b ran ch

wa te r at b o th n o rm a l o p e ra ti n g a n d l o w- wa te r cu to ff

o f th e te e o r Y s h a l l ta k e th e fu e l c u to ff o r w a te r -

levels .

feeding device. The ends o f all nip p les s hall b e reamed

8.4.3.2

to full- s ize diameter.

8. 4. 1. 3

Trans p arent material o ther than glas s may b e

us ed fo r the water gauge, p ro vided the material remains Fuel

c u t o ffs

and

w a t e r - fe e d i n g

d e vi c e s

tran s p are n t an d h as p ro ve d s u i tab l e fo r th e p re s s u re ,

e m b o d yi n g a s e p a r a te c h a m b e r s h a l l h a ve a ve rti c a l d ra i n p i p e a n d a b l o wo ff va l ve n o t l e s s th a n N P S

3

te m p e r a tu r e , a n d c o r r o s i v e c o n d i ti o n s

∕4

e x p e c te d i n

s ervice.

(D N 2 0 ) , lo cated at the lo wes t p o int in the water- equal-

8.4.3.3 The lo wes t vis ib le p art o f the water gauge glas s

izing p ip e co nnectio ns s o that the chamb er and the equal-

s hall b e at leas t 1 in. (2 5 mm) ab o ve the lo wes t p ermis s ib le

izing p ip e can b e flus hed and the device tes ted.

wate r l e ve l re co m m e n de d b y the b o i l e r M an ufactu re r. Wi th th e b o i l e r o p e ra ti n g a t th i s l o we s t p e rm i s s i b l e

36

ASME BPVC.VI-2017

8.4.5 Pressure Controls

water level, there s hall b e no danger o f o verheating any

8.4.5.1

p art o f the b o iler.

8.4.3.4

co ntro ls .

typ e, the water gauge glas s s hall b e s o lo cated to indicate

8.4.5.2

th e wa te r l e ve l s b o th at s ta rtu p a n d u n d e r m a xi m u m s team lo ad co nditio ns as es tab lis hed b y the M anufacturer.

8.4.3.5

th e

l o we s t vi s i b l e

p a r t o f th e

limit co ntro l that will cut o ff the fuel s up p ly to p revent s te a m p re s s u re fro m e xc e e d i n g th e 1 5 - p s i (1 0 0 - kP a )

w a te r

m a x i m u m a l l o wa b l e wo r ki n g p r e s s u re o f th e b o i l e r.

gauge glas s s hall no t b e b elo w the to p o f the electric res is -

E ach co ntro l s hall b e co ns tructed to p revent a p res s ure

tance heating element. E ach b o iler o f this typ e s hall als o b e

s etting ab o ve 1 5 p s i (1 0 0 kPa) .

equip p ed with an auto matic lo w- water electrical p o wer

8.4.5.3 E ach individual s team b o iler s hall have a co ntro l

cu to ff s o l o cate d as to au to m ati cal l y cu t o ff th e p o we r s u p p l y to th e h e a ti n g e l e m e n ts b e fo re th e s u rfa c e o f

that will cut o ff the fuel s up p ly when the p res s ure reaches

the water falls b elo w the to p o f the electrical res is tance

an o p erating limit, which s hall b e les s than the maximum

heating elements .

allo wab le p res s ure.

8.4.3.6 A water- level indicato r us ing an indirect s ens ing

8.4.5.4 S huto ff valves o f any typ e s hall no t b e p laced in

metho d may b e us ed in lieu o f an o p erating water gauge

the s team p res s ure co nnectio n b etween the b o iler and the

glas s ; ho wever, a water gauge glas s mus t b e ins talled and

c o n tr o l s d e s c r i b e d i n 8 . 4 . 5 . 1

o p erab le b ut may b e s hut o ff b y valving. The water- level

1

m e a n s o f m a i n ta i n i n g a wa te r s e a l th a t wi l l p r e ve n t

∕2

s team fro m entering the co ntro l.

(D N 1 5 ) . The device s hall b e p ro vided with a drain valve o f

8.4.5.5 ASM E C S D - 1 requires that o p eratio n o f the p res -

a typ e having an unres tricted drain o p ening no t les s than ∕4 in. (6 mm) in diameter to facilitate cleaning.

s ure co ntro l des crib ed in 8 . 4. 5 s hall caus e a s afety s hut-

8.4.4 Water Column and Water-Level-Control Pipes 8.4.4.1

do wn requiring a manual res et.

8.5 HOT WATER HEATING BOILERS

T h e m i n i m u m s i z e o f fe rro u s o r n o n fe rro u s

8.5.1 Low- Water Fuel Cutoff (Hot Water)

p i p e s c o n n e c ti n g a wa te r c o l u m n to a s te a m b o i l e r

8.5.1.1

s hal l b e N P S 1 (D N 2 5 ) . N o o u tl e t co n n e cti o n s , e xce p t fo r d a m p e r r e g u l a t o r ,

fe e d w a t e r

r e gu l a to r ,

th r o u g h 8 . 4 . 5 . 3 . T h e s e

co ntro ls s hall b e p ro tected with a s ip ho n o r equivalent

indicato r may b e attached to a water co lumn o r directly to the b o iler b y means o f valved fittings no t les s than N PS

1

E a c h a u to m a ti c a l l y fi r e d s te a m b o i l e r o r

a s s e m b l e d m o d u l a r s te a m b o i l e r s h a l l h a ve a s a fe ty

I n e l e ctri c b o i l e rs o f th e re s i s ta n c e h e a ti n g

e l e m e n t typ e ,

E ach auto matically fired s team b o iler s hall b e

p ro tected fro m o verp res s ure b y two p res s ure- o p erated

I n electric b o ilers o f the s ub merged electro de

s te a m

E a c h a u to m a ti c a l l y fi re d h o t wa te r h e a ti n g

b o i l e r wi th h e a t i n p u t g r e a te r th a n 4 0 0 , 0 0 0 B tu / h r

gau ge s , o r a p p aratu s th at d o e s n o t p e rm i t th e e s cap e

(1 1 7

o f any s team o r water excep t fo r manually o p erated b lo w-

kW)

shall

h a ve

an

a u to m a ti c

l o w - w a t e r fu e l

c u to ff th a t h a s b e e n d e s i gn e d fo r h o t wa te r s e rvi c e ,

do wns , s hall b e attached to the water co lumn o r the p ip e

a n d i t s h a l l b e s o l o c a te d a s to a u to m a ti c a l l y c u t o ff

co nnecting a water co lumn to a b o iler. I f the water co lumn,

th e fu e l s u p p l y wh e n th e s u rface o f th e wate r fal l s to

gauge glas s , lo w- water fuel cuto ff, o r o ther water- level-

the level es tab lis hed in 8 . 5 . 1 . 2 .

c o n tro l d e vi ce i s co n n e c te d to th e b o i l e r b y p i p e a n d fittings , no s huto ff valves o f any typ e s hall b e p laced in

8.5.1.2 As there is no no rmal waterline to b e maintained

s uch p i p e , an d a cro s s o r e qu i val e nt fi tti ng to whi ch a

in a ho t water heating b o iler, any lo catio n o f the lo w- water

drain valve and p ip ing may b e attached s hall b e p laced

fuel cuto ff ab o ve the lo wes t s afe p ermis s ib le water level

in the water p ip ing co nnectio n at every right turn to facil-

es tab lis hed b y the b o iler M anufacturer is s atis facto ry.

itate cleaning. The water co lumn drain p ip e and valve s hall b e no t les s than N PS

3

8.5.1.3 A co il- typ e b o iler o r a watertub e b o iler with heat

∕4 (D N 2 0 ) .

i np ut greater than 40 0 , 0 0 0 B tu/hr (1 1 7 kW) requiring

8.4.4.2 The s team co nnectio ns to the water co lumn o f a

fo rc e d ci rc u l a ti o n to p re ve n t o ve rh e a ti n g o f th e co i l s

ho rizo ntal firetub e wro ught b o iler s hall b e taken fro m the

o r tu b e s s h a l l h ave a fl o w- s e n s i n g d e vi ce i n s tal l e d i n

to p o f the s hell o r the up p er p art o f the head, and the water

th e o u tl e t p i p i n g i n l i e u o f th e l o w- wa te r fu e l c u to ff

co n n e cti o n s h a l l b e ta ke n fro m a p o i n t n o t ab o ve th e

re qu i re d i n 8 . 5 . 1 . 1

centerline o f the s hell. Fo r a cas t iro n b o iler, the s team

s upp ly when the circulating flo w is interrup ted.

c o n n e c ti o n to th e wa te r c o l u m n s h a l l b e ta ke n fro m

8.5.1.4

the to p end o f the s team header, and the water co nnectio n

to a u to m a ti c a l l y c u t o ff th e fu e l

A m e a n s s h o u l d b e p ro vi d e d fo r te s ti n g th e

s h a l l b e m a d e o n a n e n d s e c ti o n n o t l e s s th a n 6 i n .

o p eratio n o f the external lo w- water fuel cuto ff witho ut

(1 5 0 m m ) b e l o w th e b o tto m co n n e c ti o n to th e wate r

r e s o rti n g to d ra i n i n g th e e n ti r e s ys te m . S u c h m e a n s

gauge glas s .

s h o u l d n o t r e n d e r th e d e v i c e i n o p e r a b l e e x c e p t a s

37

ASME BPVC.VI-2017

8.5.4 Temperature Controls

des crib ed as fo llo ws . I f the means temp o rarily is o lates the device fro m the b o iler during this tes ting, it s hall auto ma-

E ach auto matically fired ho t water heating o r ho t water

tically return to its no rmal p o s itio n. The co nnectio n may

s upp ly b o iler s hall b e p ro tected fro m o vertemp erature b y

b e s o arranged that the device canno t b e s hut o ff fro m the

two temp erature- o p erated co ntro ls . The s p ace thermo -

b o iler excep t b y a co ck p laced at the device and p ro vided

s tat u s e d fo r co m fo rt co n tro l i s n o t co n s i de re d o n e o f

with a tee o r level handle arranged to b e p arallel to the

the required temp erature- o p erated co ntro ls .

p ip e in which it is lo cated when the co ck is o p en.

8.5.4.1 E ach individually auto matically fired ho t water

8.5.1.5 AS M E C S D - 1 requires that o p eratio n o f the lo w-

h e a ti n g o r h o t wa te r s u p p l y b o i l e r s h a l l h a ve a h i gh -

water cuto ff o n a ho t water b o iler s hall caus e a s afety s hut-

te m p e r a tu r e l i m i t c o n tr o l th a t w i l l c u t o ff th e fu e l

do wn requiring manual res et.

s upp ly at o r b elo w the marked maximum water temp era-

8.5.2 Thermometers

ture at the b o iler o utlet. This co ntro l s hall b e co ns tructed to p revent a temp erature s etting ab o ve the maximum.

E ach ho t water heating o r ho t water s up p ly b o iler s hall

8.5.4.2 E ach individual ho t water heating o r ho t water

have a thermo meter s o lo cated and co nnected that it s hall

s upp ly b o iler s hall have a co ntro l that will cut o ff the fuel

b e eas ily readab le. The thermo meter s hall b e s o lo cated

s up p l y wh e n th e s ys te m wate r te m p e ratu re re ach e s a

that it s hall at all times indicate the temp erature o f the

p r e s e t o p e r a ti n g l i m i t th a t s h a l l

water in the b o iler at o r near the o utlet.

(a)

The thermo meter s hall have a minimum reading o f

less

th a n

th e

8.5.4.3 ASM E C SD - 1 requires that the o p eratio n o f the

7 0 °F (2 0 °C ) o r les s .

(b)

be

maximum water temp erature.

The thermo meter s hall have a maximum reading at

temp erature co ntro l des crib ed in 8 . 5 . 4. 1 and 8 . 5 . 4. 2 s hall

l e as t e qual to 3 2 0 ° F (1 6 0 ° C ) b ut no t m o re than 4 0 0 ° F

caus e a s afety s hutdo wn requiring manual res et.

(2 0 5 °C ) .

(c)

8.5.5 Differential Temperature Controls

An electro nic temp erature s ens o r us ed in lieu o f a

thermo meter s hall meet the fo llo wing requirements :

(1 )

S o m e fo rc e d c i rc u l a ti o n wa te r b o i l e rs i n c o r p o ra te

T h e s e n s o r s h al l b e p o we re d fro m th e b o i l e r

d i ffe re n ti a l te m p e ra tu re c o n tro l s to h e l p p ro te c t th e

p o we r s up p l y, and i t s hall have a di s p lay that re mai ns

b o i l e r fro m d am a ge cau s e d b y i n a d e q u ate wate r fl o w

o n at al l ti m e s . Th e s e n s o r s h al l h ave a b acku p p o we r

while the b o iler is firing. D ifferential temp erature co ntro ls

s upp ly.

(2)

a re typ i c a l l y o p e ra te d b y th e b o i l e r’ s p ri m a ry s a fe ty

The full s cale o f the s ens o r and dis p lay mus t b e a

co n tro l , wh i ch re ce i ve s i n fo rm ati o n fro m te m p e rature

mini mum o f 7 0 ° F to 3 2 0 ° F (2 0 °C to 1 6 0 °C ) . I t s hall b e

s e n s o rs o n th e i n l e t a n d o u tl e t wa te r c o n n e c ti o n s o f

accurate within ± 1 °.

(3)

the b o ilers . The co ntro ls co mp are the difference i n the

T h e s e n s o r s h a l l h a ve a m i n i m u m o p e ra ti n g

inlet and o utlet water temp erature when the b urner i s

temp erature range o f 3 2 °F to 3 0 0 °F (0 °C to 1 5 0 °C ) .

(4)

fi r i n g . I f th e te m p e r a tu r e r i s e o r r a te o f r i s e i s to o

T h e d i s p l a y s h a l l h a ve a n a m b i e n t o p e ra ti n g

te m p e r a tu r e

ra n ge

o f 3 2 ° F to

1 2 0 °F (0 ° C

to

l a rg e , i n d i c a ti n g p o te n ti a l o ve r h e a ti n g o f th e b o i l e r

5 0°C)

heat exchanger, the co ntro ls will either reduce the heat

unles s o therwis e required b y the ap p licatio n.

i n p u t ra te o r s h u t o ff th e b u rn e r to p ro te c t th e h e a t

8.5.3 Pressure or Altitude Gauges

exchanger.

8.5.6 Air for Pneumatically Operated Controls

E ach ho t water heating o r ho t water s up p ly b o iler s hall have a p res s ure o r altitude gauge co nnect to it o r its flo w

D etermine that co mp res s ed air fo r p neumatically o p er-

co nnectio n in s uch a manner that it canno t b e s hut o ff fro m

a te d c o n tro l s i s c l e a n , d ry, a n d a va i l a b l e a t a d e q u a te

the b o iler excep t b y a co ck with a tee o r lever handle p laced

p res s ure.

o n the p ip e near the gauge. The hand o f the co ck s hall b e p arallel to the p ip e in which it is lo cated when the co ck is o pen.

38

ASME BPVC.VI-2017

ARTICLE 9 OPERATION AND MAINTENANCE OF STEAM BOILERS 9.1 STARTING A NEW BOILER AND HEATING SYSTEM

Step 4.

Rep lace the p lug o r the s afety valve(s ) .

Step 5.

Start the firing equip ment and check o p erating,

limit, and s afety co ntro ls . Review M anufacturer’ s reco mA new b o iler s ho uld b e cleaned and filled as detailed in

mendatio ns fo r b o iler and b urner s tartup .

9 . 1 . 1 thro ugh 9 . 1 . 5 .

Step 6.

9.1.1 Examination for Foreign Objects

Step 7.

Sto p the firing equip ment.

Step 8.

D rain the b o iler in a manner and to a lo catio n

B o il the water fo r at leas t 5 hr.

that allo w the ho t water to b e dis charged s afely.

Prio r to s tarting a new b o iler, an examinatio n s ho uld b e

Step 9.

m ad e to e n s u re th a t n o fo re i gn m atte r, s u ch as to o l s ,

Was h the b o iler tho ro ughly us ing a high- p res -

s ure water s tream.

equip ment, and rags , has b een left in the b o iler.

Step 1 0.

9.1.2 Checks Before Filling

Fill the b o iler to the no rmal waterline.

Step 1 1 .

Ad d b o i l e r wa te r tre a tm e n t c o m p o u n d a s

needed.

B efo re p utting water into a new b o iler, make certain

Step 1 2.

th at th e fi ri n g e q u i p m e n t i s i n o p e rati n g co n d i ti o n to

Pro mp tly b o il the water o r heat it to at leas t

1 8 0 °F (8 2 °C ) .

the extent that this is p o s s ib le witho ut actually lighting

The b o i ler i s no w ready to b e p ut into s ervi ce o r o n

a fi re i n th e e m p ty b o i l e r. T h i s i s n e c e s s a ry b e c a u s e

s tandb y.

raw water m us t b e b o i le d [o r heated to at le as t 1 8 0 ° F

9.1.5 Second Boil-Out for Stubborn Cases

(8 2 ° C ) ] p ro m p tl y afte r i t i s i n tro d u ce d i n to th e b o i l e r in o rder to drive o ff the dis s o lved gas es that might o ther-

I n s tub b o rn cas es , the s imp le b o il- o ut des crib ed in 9 . 1 . 4

wis e co rro de the b o iler.

may no t remo ve all the o il and greas e and ano ther b o il- o ut

9.1.3 Operation to Clean the System

us ing a s urface b lo wo ff may b e neces s ary. Fo r this typ e o f cleaning, p ro ceed as fo llo ws :

Fill the b o iler to the p ro p er waterline and o p erate the

Step 1 .

b oiler with s team in the entire s ys tem fo r a few days to

P re p are the b o i l e r fo r cl e an i n g b y run ni n g a

temp o rary p ip eline fro m the s urface b lo wo ff co nnectio n

b ring the o il and dirt b ack fro m the s ys tem to the b o iler.

to an o p en drain o r s o me o ther lo catio n where ho t water

This is no t neces s ary if the co ndens ate is to b e temp o rarily

may b e dis charged s afely. I f no s uch tap p ing is availab le,

was ted to the s ewer, in which cas e the s ys tem s ho uld b e

us e the s afety valve tap p ing, b ut run the p ip e full s ize and

o perated until the co ndens ate runs clear.

as s ho rt a length as p o s s ib le. D o no t ins tall a valve o r any

9.1.4 Boiling Out

o ther o b s tructio n in this line. H andle the s afety valve carefully and p ro tect it agains t damage while it is o ut o f the

The o ils and greas es that accumulate in a new b o iler can

b oiler.

Step 2.

u s ual ly b e was he d o ut b y b o i l in g. A qual i fi ed che mi cal w a te r tr e a tm e n t s p e c i a l i s t s h o u l d b e c o n s u l te d fo r

Fill the b o iler until water reaches the to p o f the

water gauge glas s .

instructio ns regarding ap p ro p riate chemical co mp o unds

Step 3.

Add a b o il- o ut co mp o und.

and co ncentratio ns that are co mp atib le with lo cal envir-

Step 4.

S tart the fi ri ng equip m ent an d o p e rate s uffi -

o nmental regulatio ns go verning dis p o s al o f the b o il- o ut

c i e n tl y to

s o lutio ns .

p res s ure.

Pro ceed as fo llo ws :

Step 5.

Step 1 .

Step 6.

Step 2.

Fill the b o iler to the no rmal waterline. Remo ve the p lug fro m the tap p ing o n the highes t

boil

th e w a te r w i th o u t p r o d u c i n g s te a m

B o il fo r ab o ut 5 hr. O p en the b o iler feed p ip e s ufficiently to p ermit a

s teady trickle o f water to run o ut the o verflo w p ip e.

Step 7.

p oint o n the b o iler. I f no o ther o p ening is availab le, the

C o ntinue this s lo w b o iling and trickle o f o ver-

s afety valve(s ) may b e remo ved, in which cas e the valve

flo w fo r s everal ho urs until the water co ming fro m the

mus t b e handled with extreme care to avo id damaging it.

o verflo w is clear.

Step 3.

Step 8.

Add an ap p ro p riate b o il- o ut co mp o und thro ugh

the p rep ared o p ening.

39

Sto p the firing equip ment.

ASME BPVC.VI-2017

Step 9.

Step 1 6.

D rain the b o iler in a manner and to a lo catio n

that allo w the ho t water to b e dis charged s afely.

Step 1 0.

CAUTION: Do not stand in front of boiler access or cleanout doors. This is a precautionary measure to protect personnel should a combustion explosion occur.

Rem o ve co ve rs an d p lu gs fro m all was h o u t

o p enings and was h the water s ide o f the b o iler tho ro ughly us ing a high- p res s ure water s tream.

Step 1 1 .

Refill the b o iler until 1 in. (2 5 mm) o f water

Step 1 7.

s ho ws in the gauge glas s . I f water in the gauge glas s do es

cuto u t p o i n t to m ake s ure th e o p e rati n g co n tro l s hu ts

o ut the b o iler fo r a lo nger time.

o ff the b urner.

Step 1 8.

tr e a tm e n t

D u ri n g th e p re s s u re b u i l d u p p e ri o d , wa l k

aro und the b o iler frequently to o b s erve that all as s o ciated

co mp o und.

Step 1 4. Step 1 5. Step 1 6.

B ri n g p re s s u re and te m p e ratu re up s l o wl y.

S ta n d b y th e b o i l e r u n ti l i t r e a c h e s th e e s ta b l i s h e d

no t ap p ear to b e clear, rep eat Step s 2 thro ugh 1 1 and b o il

Step 1 2. Remo ve temp o rary p ip ing. Step 1 3. A d d a c h a r g e o f b o i l e r w a te r

Place the b o iler co ntro l s tarting s witch in the

“O n” o r “Start” p o s itio n.

equip ment and p ip ing are functio ning p ro p erly. C lo s e the b o iler.

Step 1 9.

Rep lace the s afety valve.

C heck fo r p ro p er o ver- the- fire draft and b reech

p res s ure. Verify and lo g b urner co mb us tio n p arameters .

Pro mp tly b o il the water o r heat it to at leas t

Step 20.

1 8 0 °F (8 2 °C ) .

I m m e d i a t e l y a ft e r th e b u r n e r s h u ts

The b o i ler is no w ready to b e p ut i nto s ervi ce o r o n

p rovided) individually to determine the true water level.

s tandb y.

Step 21 . I n the lo gb o o k, enter the fo llo wing: (a) date and time o f s tartup (b) any irregularities o b s erved and co rrective actio n

9.2 STARTING A BOILER AFTER LAYUP (SINGLE-BOILER INSTALLATION)

taken

9.2.1 Procedure

lis hed p res s ure, tes ts p erfo rmed, etc.

(c)

Review M anufacturer’ s ins tructio ns fo r s tartup

Set the co ntro l s witch to the “O ff” p o s itio n.

uno b s tructed.

of

I f an y ab n o rm al co n di ti o n s o ccu r du ri n g l i gh t- o ff o r

C heck availab ility o f fuel.

p r e s s u r e b u i l d u p , i m m e d i a te l y o p e n th e e m e r g e n c y

C heck the water level in the gauge glas s . M ake

s witch and lo ck o ut the equip ment. (D o no t attemp t to

s ure the gauge glas s valves are o p en.

Step 6.

fo r e v i d e n c e

9.2.2 Action in Case of Abnormal Conditions

M a ke s u r e fr e s h a i r to th e b o i l e r r o o m i s

Step 4. Step 5.

va l ve

s immering. Perfo rm try- lever tes t.

o f the b urner and b o iler.

Step 2. Step 3.

time when co ntro ls s hut o ff the b urner at es tab -

(d) s ignature o f o p erato r Step 2 2 . C h e c k t h e s a fe t y

When s tarting a b o iler after layup , p ro ceed as fo llo ws :

Step 1 .

o ff,

e xam i n e th e wate r co l u m n an d o p e n e ach try co ck (i f

re s ta rt th e u n i t u n ti l d i ffi cu l ti e s h a ve b e e n i d e n ti fi e d

Us e the try co cks , if p ro vided, to do ub le- check

and co rrected. )

the water level.

Step 7.

Ve n t th e c o m b u s ti o n c h a m b e r to

9.3 CONDENSATION

r e m o ve

unb urned gas es .

Step 8. Step 9.

C lean the glas s o n the fire s canner, if p ro vided.

Fo ll o win g a co l d s tart, co ndens ati o n (s weati ng) m ay

S et the main s team s huto ff valve to the o p en

o c c u r i n a g a s - fi r e d b o i l e r to s u c h a n e x te n t th a t i t a p p e a rs th a t th e b o i l e r i s l e a ki n g. T h i s c o n d e n s a ti o n

p o s itio n.

Step 1 0.

can b e exp ected to s to p after the b o iler is ho t.

O p en the co ld water s up p ly valve to the water

feeder, if p ro vided. O p en s uctio n and dis charge valves o n

9.4 CUTTING IN AN ADDITIONAL BOILER

vacuum o r co ndens ate p ump s , and s et electrical s witches fo r des ired o p eratio n. Vent the b o iler to remo ve air when

When p lacing a b o iler o n the line with o ther b o ilers that

neces s ary.

Step 1 1 .

are already in s ervice, firs t s tart the b o iler us ing the p ro ce-

C he ck the o p e rati ng- p re s s ure s etting o f the

dures in 9 . 1 and 9 . 2 b ut have its s up p ly s to p valve and the

b o iler.

Step 1 2.

return s to p valve clo s ed. I f o ne is p ro vided, o p en the drain

C heck the manual res et, if p ro vided, o n the lo w-

valve b etween the s to p valve at the b o iler o utlet and the

water fuel cuto ff and high- limit p res s ure co ntro l to deter-

s te a m m a i n . Wh e n th e p re s s u re wi th i n th e b o i l e r i s

mine if they are p ro p erly s et.

Step 1 3.

a p p ro xi m ate l y th e s a m e as th e p re s s u re i n th e s te am

Set the manual fuel o il s up p ly o r manual gas

m ai n , o p e n th e s to p va l ve ve ry s l i gh tl y. I f th e re i s n o

valve to the o p en p o s itio n.

Step 1 4.

unus ual dis turb ance, s uch as no is e o r vib ratio n, co ntinue

Place the circuit b reaker o r fus ed dis co nnect

s witch in the “O n” p o s itio n.

Step 1 5.

Place all b o iler emergency s witches in the “O n”

p o s itio n.

40

ASME BPVC.VI-2017

to open the valve slowly until it is fully open. Open the valve in the return line.

For this reason, the pressure differential between the safety valve set pressure and the boiler operating pressure should be at least 5 psi (35 kPa), i.e., the boiler operating pressure should not exceed 10 psig (70 kPa). If, however, the boiler operating pressure is greater than 1 0 psig (7 0 kP a) , i t s ho uld no t e xce e d 1 5 p s i g (1 0 0 kP a) minus the blowdown pressure of the safety valve. This pressure differential is also required to help ensure that the safety valve will seat tightly after popping and when the boiler pressure is reduced to normal operating pressure. It is very important that periodic testing of safety valves is carried out in accordance with Article 5.

CAUTION: When the stop valve at the boiler outlet is closed, the stop valve in the return line of that boiler must also be closed.

9.5 OPERATION 9.5.1 Water Level 9.5.1.1 Whenever going on duty, immediately check the water level of all steaming boilers. 9.5.1.2 Check the water gauge regularly. The required frequency must be determined by trial. The check should be made when there is steam pressure on the boiler. Close the lower gauge glass valve, then open the drain cock that is on the bottom of this valve and blow the glass clear. Close the drain cock and open the lower gauge glass valve. Water should return to the gauge glass immediately. (a) If water return is sluggish, leave the lower gauge glass open and close the upper gauge glass valve. Then open the drain cock and allow water to flow until it runs clear. Close the drain valve and repeat the first test described, with the lower gauge glass valve closed. If leaks appear around the water gauge glass or fittings, correct the leaks at once. Steam leaks may result in a false waterline, and they also may damage the fittings. (b) If water disappears from the water gauge glass, blow down the gauge glass to see if water appears. If it does not appear, then stop the fuel supply immediately. Do not turn on the water feed line. Do not open the safety valve. Let the boiler cool until the crown sheet is at handtouch temperature. Then add water to 1 in. (25 mm) in the gauge glass. Do not put the boiler back into service until the condition responsible for the low water has been identified and corrected. (c) If the waterline is bouncing or surging, the boiler may need to be skimmed and/or cleaned.

9.5.3 Blowdown Where low-pressure steam boilers are used solely for heating and where practically all of the condensate is returned to the boiler, blow down only as often as concentration of solids requires. Boilers used for process steam requiring high makeup should be blown down as required to maintain chemical concentrates at the desired level and to remove precipitated sediments. B oilers that are equip p ed with s lo w- o p ening b lo wo ff valves and a quick-opening blowoff cock should have the levers or cocks opened first, followed by a gradual opening and clos ing of the s low- opening valve. When the s lowopening valve has been shut tight, then close the lever valve or cock.

CAUTION: Do not open the slow-opening valve first and pump the lever action valve open and closed as water hammer is apt to break the valve bodies or pipe fittings.

9.5.4 Appearance of Rust The appearance of rust in the water gauge glass is an indication ofcorrosion that must not be ignored. Check the b o ile r wate r to b e s ure that the wate r tre atme nt compound is at proper strength, and make sure the b o ile r is no t re quiring co ns i de rab le quanti tie s o f makeup water. Check the return line and other parts of the system for evidence of corrosion.

9.5.2 Steam Pressure A common unsafe condition found in steam heating boilers is due to the failure of the safety valve(s) to open at the set pressure. This is usually due to the buildup of corrosive deposits between the disk and seat of the safety valve, which is caused by a slight leakage or weeping of the valve. The snap-action opening of a safety valve occurs when the boiler steam pressure on the underside of the valve disk overcomes the closing force ofthe valve spring. As the force of the steam pressure approaches the counteracting force of the spring, the valve tends to leak slightly and if this condition is permitted to exist, the safety valve can stick or freeze.

9.5.5 Water-Level Fluctuation A wide fluctuation of water level may indicate that the boiler is foaming or priming. This may be due to the water level in the boiler being carried too high or, especially in low-pressure boilers, a very high rate of steaming. Foaming may also be caused by dirt or oil in the boiler water. Foaming can sometimes be cured by blowing d o wn the b o i l e r, drai n i n g 2 i n . (5 0 m m ) o r 3 i n . (7 5 mm) o f wate r, re fi lli ng it, the n re p e ati ng the process a few times. In persistent cases, it may be necessary to take the boiler out of service, drain it and wash it out thoroughly as described in 9.1 and 9.2 for a new steam boiler installation, then refill it and put it back into service.

41

ASME BPVC.VI-2017

9.5.6 Abnormal Water Losses

at, o r s lightly ab o ve, the lo wes t p ermis s ib le waterline, in a new ins tallatio n the lo w- water cuto ff s ho uld b e mo ved to

I n s team b o ilers , ab no rmal water lo s s es are indicated b y

the p ro p er elevatio n, o r in an exis ting ins tallatio n it s ho uld

the need fo r large amo unts o f manually fed makeup water;

b e s erviced, rep aired, o r, if neces s ary, rep laced.

in b o ilers with auto matic water feeders , s uch lo s s es are

9.6 REMOVAL OF BOILER FROM SERVICE

indicated b y an increas ed need fo r water treatment. I n either cas e, the p ro b lem s ho uld b e inves tigated immedi-

9.6.1 General

ately to determine the caus e. O nce the caus e o f the water l o s s has b ee n de termi ne d, p arts s ho uld b e re p ai red o r

R e fe r

replaced immediately to co rrect the p ro b lem; the o p erato r

to

lo cal

j u r i s d i c ti o n a l

re q u i re m e n ts

and

s hould no t s imp ly increas e water treatment to p ro tect the

M anufacturer’ s ins tructi o ns fo r the remo val o f a b o i ler

s ys tem fro m exces s ive amo unts o f raw- water makeup . A

fro m s e rvi ce . Fo r b o i l e rs th at wi l l re tu rn to s e rvi ce at

wate r m e te r o n th e fe e d wate r l i n e i s us e fu l fo r d e te r-

a later date, s ee Article 1 4.

mining

9.6.2 Cleaning

th e

amount

o f m a ke u p

wa te r

e n te ri n g

a

s ys te m . I f th e o p e rato r can n o t de te rm i n e th e cau s e o f th e

wa te r l o s s ,

a

c o m p e te n t c o n tr a c to r s h o u l d

be

When the b o iler is co o l, clean the tub es and o ther fire-

co ntacted.

s ide heating s urfaces tho ro ughly, and s crap e the s urfaces

9.5.7 Makeup Water

do wn to clean metal. C lean the s mo ke b o xes and o ther areas whe re s o o t o r s cal e m ay accu mul ate. S o o t i s no t

9.5.7.1 When water makeup is needed and neither the

co rro s ive when it is p erfectly dry b ut can b e very co rro s ive

b o iler no r the co ndens ate tank is equip p ed with an auto -

when it is damp . Fo r this reas o n, it is neces s ary to remo ve

m ati c wa te r fe e d e r, m an u a l l y a d d wa te r to th e s te a m

all the s o o t fro m a b o iler at the b eginning o f the no no p er-

b o iler o nce the b o iler has co o led.

ating s eas o n o r any extended no nfiring p erio d.

9.5.7.2 Us e every p ractical means fo r excluding o xygen

9.6.3 Protection Against Corrosion

fro m the b o iler water. O ne s o urce o f o xygen is makeup wa te r ;

Swab the fire- s ide heating s urfaces with neutral mineral

th e re fo r e , h o l d m a ke u p to a m i n i m u m . I f th e

b o i l e r l o s e s m o r e th a n 3

in.

(7 5

mm)

o il to p ro tect agains t co rro s io n. I f the b o iler ro o m is damp ,

o f w a te r p e r

p lace a tray o f calcium chlo ride o r uns laked lime in the

m o n th , th i s i n di cate s th e re i s p ro b ab l y a l e ak i n s o m e

co mb us tio n chamb er and rep lace the chemical when i t

p art o f the s ys tem. The leak s ho uld b e fo und and co rrected.

b eco mes mus hy.

9.5.7.3

I f th e s ys te m i n cl u d e s a p u m p fo r re tu rn i n g

9.6.4 Water Level

co ndens ate o r adding feedwater, b e certain that the air vent at the receiver is o p erating p ro p erly.

9.5.7.4

D rain a s team b o iler b ack to no rmal water level b efo re p utting the b o iler b ack in s ervice.

I f large quantities o f feedwater are require d,

d e a e r a ti n g e q u i p m e n t i s

reco mmended

to

9.6.5 Periodic Checks

r e m o ve

d i s s o l ve d ga s e s , th e re b y re d u c i n g o xyge n c o r ro s i o n .

D uring the idle p erio d, check the b o iler o ccas io nally fo r

C o ns ult the b o iler M anufacturer and a lo cal water treat-

co rro s io n.

m e n t c o m p a n y fo r tr e a tm e n t r e c o m m e n d a ti o n s a n d requirements .

9.7 MAINTENANCE

9.5.8 Low-Water Cutoff 9.5.8.1 p ump

9.7.1 Cleaning

C he ck th e o p e rati o n o f th e l o w- wate r cu to ff,

c o n tr o l ,

a n d w a te r fe e d e r i f o n e i s i n s ta l l e d .

C lean the b o iler tub es and o ther heating s urfaces when-

Re g u l a r l y b l o w d o wn e a c h c o n tr o l a c c o r d i n g to th e

ever required. The frequency o f the cleaning can b es t b e

M anufacturer’ s ins tructio ns o n the attached tag o r p late.

9.5.8.2

determined b y trial. A general p redictio n ap p licab le to all b o ilers canno t b e made. Als o , clean the s mo ke b o xes when

P e ri o d i cal l y, th e l o w- wate r cu to ff s h o u l d b e

te s te d u n d e r a c tu a l o p e r a ti n g c o n d i ti o n s .

required.

Wi th th e

9.7.2 Draining

b u rn e r o p e r a ti n g a n d th e b o i l e r s te a m i n g a t p r o p e r wate r l e ve l , cl o s e a l l th e va l ve s i n th e fe e d wa te r a n d

A c l e a n , p ro p e rl y m a i n ta i n e d s te a m - h e a ti n g b o i l e r

co n d e n s a te re tu rn l i n e s s o th e b o i l e r wi l l n o t re ce i ve

s hould no t b e drained unles s

any rep lacement water. Then carefully o b s erve the water-

(a) (b)

line to determine where the cuto ff s witch s to p s the b urner in relatio n to the lo wes t p ermis s ib le waterline es tab lis hed

there is a p o s s ib ility o f freezing the b o iler has accumulated a co ns iderab le amo unt

o f s ludge o r dirt o n the water s ide, o r

b y the b o iler M anufacturer. I f the b urner cuto ff level is no t

42

ASME BPVC.VI-2017

9.7.6.2 Gas Burners. Check gas burners for presence of dirt, lint, or foreign matter. Make sure that parts, gas passages, and air passages are free of obstructions. Linkages, belts, and moving parts on power burners should be checked for proper adj ustment. Check gas o utle ts o n co mb inatio n o il and gas b urne rs ; afte r p ro lo nge d p erio ds o f o il firing, the s e o utle ts may become caked with carbon residues from unburned fuel oil and require cleaning. Lubricate in accordance with the Manufacturer’s instructions. Also check pilot burners and ignition equipment for proper flame adjustment and performance.

(c) draining is necessary to make repairs Very little sludge should accumulate in a boiler where little makeup water is added and where an appropriate water treatment is maintained at the proper strength.

9.7.3 Protection Against Freezing Antifreeze solutions, when used in heating systems, should be tested from year to year as recommended by the manufacturer of the antifreeze that is used. Antifreeze solutions should not be circulated through the boiler proper. The antifreeze solution should be heated in an indirect heat exchanger.

9.7.7 Low-Water Fuel Cutoff and Water Feeder Maintenance

9.7.4 Fire-Side Corrosion Boilers corrode on the fire side. Some fuels contain substances that cause fire-side corrosion. Sulfur, vanadium, and sodium are among the materials that may contribute to this problem. (a) Deposits of sulfur compounds may cause fire-side corrosion. The probability of trouble from this source depends on the amount of sulfur in the fuel and on the care used in cleaning the fire-side heating surfaces. This is particularly true when preparing a boiler for a period of idleness. Preventing this trouble depends also on keeping the boiler heating surfaces dry when a boiler is out of service. (b) Deposits of vanadium or vanadium and sodium compounds also may cause fire-side corrosion, and these compounds may be corrosive during the season when boilers are in service. The person responsible for boiler maintenance should be certain that the fire-side surfaces ofthe boilers are thoroughly cleaned at the end of the firing season. If signs of abnormal corrosion are discovered, a reputable consultant should be engaged.

Low-water fuel cutoffs and water feeders should be dismantled annually, by qualified personnel, to the extent necessary to ensure freedom from obstructions and proper functioning of the working parts. Examine connecting lines to boiler for accumulation of mud, scale, etc., and clean as required. Examine all visible wiring for brittle or worn insulation, and make sure electrical contacts are clean and that they function properly. Give special attention to solder joints on bellows and float when this type of control is used. Check float for evidence ofcollapse, and check mercury bulb (where applicable) for mercury separation or discoloration. Do not attempt to repair mechanisms in the field. Complete replacement mechanisms, including necessary gaskets and installation instructions, are available from the Manufacturer. After reassembly, test as per 9.5.8.2.

9.7.8 Flame Safeguard Maintenance 9.7.8.1 Thermal-Type Detection Device. Check the device for electrical continuity and satisfactory current generatio n in acco rdance with the M anufacturer’ s instructions.

9.7.5 Safety Valves Safety valves on steam boilers should be tested for proper operation in accordance with 6.7. ASME-rated safety valves shall be installed on the boiler where required by jurisdictional regulations. When replacement is necessary, use only ASME-rated valves of the required capacity.

9.7.8.2 Electronic-Type Detection Device. Check o p e ra ti o n o f th e u n i t i n a c c o rd a n c e wi th th e Manufacturer’s instructions, and examine for damaged or worn parts. Do not attempt to repair these units in the field.

9.7.9 Limit Control Maintenance

9.7.6 Burner Maintenance

Maintenance on pressure-limiting controls is generally limited to visual examination of the device for evidence of wear, corrosion, etc. If the control is of the mercury bulb type, check for mercury separation and discoloration of the bulb. If the control is defective, replace it. Do not attempt to make field repairs.

9.7.6.1 Oil Burners. Oil burners require periodic main-

tenance to keep the nozzle and other parts clean. Check and clean oil-line strainers. Examine and check the nozzle, and check the oil level in the gear cases. Check and clean filters, air intake screens, blowers, and air passages. Check all linkages and belts, and adjust as required. Lubricate in accordance with Manufacturer’s instructions. Check pilot burners and ignition equipment for proper flame adjustment and performance with a combustion analyzer.

43

ASME BPVC.VI-2017

9. 7. 11. 3 Boilers With ou t Rem ovable Waterway Covers. After the boiler is allowed to cool, close the isola-

9.7.10 Cast Iron Boiler Maintenance 9.7.10.1 Heating Surfaces. Check the firebox gas passages and breeching for soot accumulation. Use a wire brush and vacuum cleaner, if required, to remove the soot or other dirt accumulations.

tion valves on the piping to isolate the boiler from the system. Attach a hose to the boiler drain and flush the boiler thoroughly with clean water by using purging val ve s to al l o w wate r to fl o w th ro u gh th e wate r makeup line to the boiler.

9.7.10.2 Internal Surfaces. Ifthe condition ofthe water in the boiler indicates that there is considerable foreign matter in it, the boiler should be allowed to cool, then it should be drained and thoroughly flushed out. Remove the blowdown valves and plugs in the front and rear sections, and wash through these openings with a high-pressure water stream. This will normally remove any sludge or loose scale. I f there is evidence that hard scale has formed on the internal surfaces, the boiler should be cleaned by chemical means as prescribed by a qualified water treatment specialist.

9.7.12 Use of Flashlight for Internal Examination When practical, use a flashlight rather than an extension light for internal examination purposes. Follow proper safety procedures if entering the boiler.

9.7.13 Leaking Tubes Ifone tube in a boiler develops a leak due to corrosion, it is likely that other tubes are also corroded. Have the boiler examined by a capable and experienced person before ordering the replacement of one or a few tubes. If all the tubes will need replacement soon, it is preferable and less expensive to have all the work done at the same time.

9.7.11 Steel and Copper Boiler Maintenance 9.7.11.1 Heating Surfaces. Remove all accumulations ofsoot, carbon, and dirt from the fire side ofthe boiler. Use a flue brush to clean the tubes. Clean breeching and stack as required. Examine refractory and make repairs as required.

9.7.14 Use of Sealant The use ofsealant is not recommended in a steam boiler.

9.7.11.2 Boilers With Removable Waterway Covers.

9.7.15 Maintenance ofCondensate Return Systems

Blow down as specified in 9.5.3. If water does not run clear, the boiler should be cleaned. After the boiler is al l o we d to co o l , th e cl e an i n g i s acco m p l i s h e d b y venting and draining the boiler, removing all manhole and handhole covers, and washing the inside of the boiler with a high-pressure water stream. Loosen any solidified sludge, scale, etc., with a hand scraper. Start at the top of the boiler and work down. Flush thoroughly after cleaning. Where access is limited or where scale buildup is difficult to remove, it may be necessary to clean the boiler chemically as prescribed by a qualified water treatment specialist.

Examine and clean the strainer ahead of the pump. D rain and flus h the co ndens ate tank. C heck pump packing, float switches, and vacuum switches, as applicable. For detailed instructions, refer to the Manufacturer’s maintenance data and instructions.

9.7.16 Maintenance Schedule for Boilers in Service Refer to the boiler Manufacturer’s instructions for maintenance requirements and schedules.

44

ASME BPVC.VI-2017

ARTICLE 10 OPERATION AND MAINTENANCE — HOT WATER BOILERS AND HOT WATER HEATING BOILERS 10.1 STARTING A NEW BOILER AND HEATING SYSTEM

Step 6.

Allo w b o iler water to reach o p erating temp era-

ture, if p o s s ib le.

Step 7.

A new b o iler s ho uld b e cleaned and filled as detailed in 1 0 . 1 . 1 thro ugh 1 0 . 1 . 3 .

10.1.1 Examination for Foreign Objects

C o ntinue to circulate the water fo r a few ho urs .

Step 8.

Sto p the firing equip ment.

Step 9.

D rain the s ys tem in a manner and to a lo catio n

that allo w the ho t water to b e dis charged s afely.

Step 1 0.

Was h the water s ide o f the b o iler tho ro ughly

us ing a high- p res s ure water s tream.

Prio r to s tarting a new b o iler, the b o iler s ho uld b e examined to ens ure that no fo reign matter, s uch as to o ls , equip -

Step 1 1 .

ment, o r rags , has b een left in the b o iler.

Step 1 2.

Refill the s ys tem with fres h water. P ro m p tl y h e a t th e wate r to a t l e a s t 1 8 0 ° F

(8 2 °C ) , and vent the s ys tem at the highes t p o int.

10.1.2 Checks Before Filling

Step 1 3.

Tighten handho le co vers , manho le co vers , and

p lugs while the b o iler is ho t.

B efo re p utting water into a new b o iler, make certain

The b o i ler i s no w ready to b e p ut into s ervi ce o r o n

th at th e fi ri n g e q u i p m e n t i s i n o p e rati n g co n d i ti o n to

s tandb y.

the extent that this is p o s s ib le witho ut actually lighting a fi re i n th e e m p ty b o i l e r. T h i s i s n e c e s s a ry b e c a u s e

10.2 STARTING A BOILER AFTER LAYUP (SINGLE-BOILER INSTALLATION)

raw water m us t b e b o i le d [o r heated to at le as t 1 8 0 ° F (8 2 ° C ) ] p ro m p tl y afte r i t i s i n tro d u ce d i n to th e b o i l e r in o rder to drive o ff the dis s o lved gas es that might o ther-

10.2.1 Procedure

wis e co rro de the b o iler. I n a ho t water heating s ys tem, the b oiler and entire s ys tem (o ther than the exp ans io n tank)

When s tarting a b o iler after layup , p ro ceed as fo llo ws :

mus t b e full o f water fo r s atis facto ry o p eratio n. The red, o r

Step 1 .

fixed, hand o n the co mb inatio n altitude gauge and ther-

Review M anufacturer’ s ins tructio ns fo r s tartup

o f the b urner and b o iler.

Step 2.

mo meter is no rmally s et to indicate the amo unt o f p res s ure required to fill the s ys tem with co ld water. Water

Fill the b o iler and s ys tem; vent air at the high

p oint in the s ys tem.

Step 3.

s ho uld b e added to the s ys tem until the b lack hand regis ters the s ame o r mo re than the red hand. To ens ure that the

C heck the altitude gauge and exp ans io n tank to

ens ure the s ys tem is p ro p erly filled.

s ystem is full, water s ho uld co me o ut o f all air vents when

Step 4.

Set the co ntro l s witch to the “O ff” p o s itio n.

the vents are o p ened.

Step 5.

M ake s ure fres h air to the b o iler ro o m is uno b -

s tructed and manual damp ers are o p en.

10.1.3 Boiling Out

Step 6.

C heck availab ility o f fuel.

Step 7.

A qualified chemical water treatment s p ecialis t s ho uld

Ve n t th e c o m b u s ti o n c h a m b e r to

r e m o ve

unb urned gas es .

b e co ns ulted fo r reco mmendatio ns regarding ap p ro p riate chemical co mp o unds and co ncentratio ns that are co mp a-

Step 8.

C lean the glas s o n the fire s canner, if p ro vided.

ti b l e wi th l o c a l e n vi ro n m e n ta l re gu l a ti o n s go ve rn i n g

Step 9.

O b s erve p ro p er functio ning o f the water p res -

s ure regulato r and turn circulato r p ump s o n electrically.

d i s p o s a l o f th e b o i l - o u t s o l u ti o n s . T h e o i l a n d gre a s e th a t a c c u m u l a te

in

a n e w h o t wa te r b o i l e r c a n

Step 1 0.

be

Step 1 .

Step 1 1 .

Add an ap p ro p riate b o il- o ut co mp o und.

Step 2.

Fill the entire s ys tem with water.

Step 3.

Start the firing equip ment.

Step 4.

C irculate the water thro ugh the entire s ys tem.

Step 5.

Vent the s ys tem, including the radiatio n.

C h e c k te m p e r a tu r e c o n tr o l ( s )

fo r p r o p e r

s etting.

was hed o ut in the fo llo wing manner:

C h e ck the m an u al re s e t b u tto n o n th e l o w-

water fuel cuto ff and high- limit temp erature co ntro l.

Step 1 2.

S et the manual fuel o il s up p ly o r manual gas

valve to the o p en p o s itio n.

Step 1 3.

Place the circuit b reaker o r fus e dis co nnect in

the “O n” p o s itio n.

45

ASME BPVC.VI-2017

Step 1 4.

10.5.2 Operating Temperature and Pressure

Place all b o iler emergency s witches in the “O n”

10.5.2.1 Operating Temperature. The maximum o p er-

p o s itio n.

Step 1 5.

Place the b o iler co ntro l s tarting s witch in the

ating temp erature o f the b o iler water s ho uld never exceed

“O n” o r “Start” p o s itio n. (D o no t s tand in fro nt o f b o iler

2 5 0 °F (1 2 0 °C ) , and s ho uld b e no higher than is neces s ary

do o rs o r b reeching. )

Step 1 6.

to ade qu ate l y h e at th e s p ace u n de r de s i gn co n d i ti o n s .

D o n o t l e ave th e b o i l e r u n ti l i t re ach e s th e

H i g h e r te m p e r a tu r e s

e s ta b l i s h e d c u to u t p o i n t, to m a ke s u r e th e c o n tr o l s s hut o ff the b urner.

Step 1 7.

tion fo und in ho t water heating b o ilers is due to the failure

all as s o ciated equip ment and p ip ing are functio ning p ro p -

o f the s afety relief valve(s ) to o p en at the s et p res s ure. This

erly. Vis ually check the b urner fo r p ro p er co mb us tio n.

is us ually due to b uildup o f co rro s ive dep o s its b etween the

I mmediately after the b urner s huts o ff, check

di s k an d s e at o f the val ve , wh i ch i s cau s e d b y a s l i gh t

the water p res s ure and o p en the highes t vent to determine

leakage o r weep ing o f the valve.

that the s ys tem is co mp letely full o f water.

Step 1 9. I n (a) d a te

The o p ening o f a s afety relief valve o ccurs when the

the lo gb o o k, enter the fo llo wing:

b o i l e r wa te r p r e s s u re o n th e u n d e rs i d e o f th e va l ve

a n d ti m e o f s ta r tu p , a n y i r r e g u l a r i ti e s

d i s k o ve rc o m e s th e c l o s i n g fo rc e o f th e va l ve s p ri n g.

o b s erved, and co rrective actio n taken

(b)

As the fo rce o f the water p res s ure ap p ro aches the co unter-

time when co ntro ls s hut o ff the b urner at es tab -

acting fo rce o f the s p ring, the valve tends to leak s lightly

lis hed temp erature, tes ts p erfo rmed, etc.

(c) s ignature o f o p erato r Step 20. C heck the s afety relief

an y co rro s i o n

10.5.2.2 Operating Pressure. A co mmo n uns afe co ndi-

D uring the temp erature and p res s ure b uildup

p erio d, walk aro und the b o iler frequently to o b s erve that

Step 1 8.

w i l l a c c e l e r a te

p roces s .

and if this co nditio n is p ermitted to exis t, the s afety relief valve can s tick o r freeze.

valve fo r evidence o f

Fo r this reas o n, the p res s ure differential b etween the

leaking. Perfo rm try- lever tes t as des crib ed in 6 . 8 .

s afety relief valve s et p res s ure and the b o iler o p erating

10.2.2 Action in Case of Abnormal Conditions

p res s ure s ho uld b e at leas t 1 0 p s i (6 9 kPa) o r 2 5 % o f the valve s et p res s ure, whichever is greater.

I f an y ab n o rm al co n di ti o n s o ccu r du ri n g l i gh t- o ff o r

10.5.2.3 Temperature and Pressure Safety Relief Valves. When equip p ed with a temp erature and p res s ure

temp erature b uildup , immediately s hutdo wn the b o iler. ( D o n o t a tte m p t to r e s ta r t th e u n i t u n ti l d i ffi c u l ti e s

s afe ty re l i e f val ve , th e b o i l e r i s l i m i te d to a m axi m u m

have b een identified and co rrected. )

te m p e ratu re o f 2 1 0 ° F (9 9 ° C ) h a ve a te m p e ratu re a n d

10.3 CONDENSATION

p r e s s u r e s a fe ty r e l i e f va l ve i n s ta l l e d , th e o p e r a ti n g te m p e ra tu re m u s t b e l o w e n o u gh to p re ve n t ro u ti n e o p e rati o n o f th e th e rm al e l e m e n t, wh i ch co u l d l e ad to

Fo llo wing a co ld s tart, co ndens atio n may o ccur in a gas -

degradatio n o f the valve.

fired b o iler to s uch an extent that it ap p ears that the b o iler is leaking. This co ndens atio n can b e exp ected to s to p after

When the thermal element o p ens , it will no t clo s e until

the b o iler is ho t. This is different fro m the flue- gas co nden-

the temp erature has b een reduced b y 2 5 °F to 3 5 °F (− 3 . 9 °C

s a te , wh i c h i s p re s e n t fo r h e a ti n g b o i l e rs o p e rate d i n

to 1 . 7 °C ) b elo w the o p ening temp erature. Therefo re, the

co ndens i ng mo de. Re fer to the M anufacture r’ s ins truc-

m a xi m u m o p e r a ti n g te m p e r a tu r e s h o u l d n o t e xc e e d

tions fo r p ro p er handling o f the co ndens ate.

1 60 °F (7 1 °C ) .

10.4 CUTTING IN AN ADDITIONAL BOILER

10.6 REMOVAL OF BOILER FROM SERVICE 10.6.1 General

When p lacing a b o iler o n the line with o ther b o ilers that are already in s ervice, care mus t b e taken to ens ure that

R e fe r

the M anufacturer’ s required minimum flo w rates are met

to

lo cal

j u r i s d i c ti o n a l

re q u i re m e n ts

and

and that the water o utle t te mp e rature i s rais e d s lo wly

M anufacturer’ s ins tructi o ns fo r the remo val o f a b o i ler

eno ugh

fro m s e rvi ce . Fo r b o i l e rs th at wi l l re tu rn to s e rvi ce at

to

avo id

th e rm al

s h o ck.

Consult

th e

a later date, s ee Article 1 4.

M anufacturer’ s o wner’ s manual fo r the p ro p er p ro cedure.

10.6.2 Cleaning

10.5 OPERATION

Wh e n th e b o i l e r i s c o o l , c l e a n th e tu b e s a n d o th e r

10.5.1 Check of Pressure and Temperature

h e a ti n g s u rfa c e s th o ro u gh l y, a n d s c ra p e th e s u rfa c e s do wn to clean metal. C lean the s mo ke b o xes and o ther

Wh e n e ve r g o i n g o n d u ty, c h e c k th e p r e s s u r e a n d

areas whe re s o o t o r s cal e m ay accu mul ate. S o o t i s no t

temp erature in all water b o ilers .

co rro s ive when it is p erfectly dry b ut can b e very co rro s ive when it is damp . Fo r this reas o n, it is neces s ary to remo ve

46

ASME BPVC.VI-2017

10.7.3.1

all the s o o t fro m a b o iler at the b eginning o f the no no per-

T h e s e r vi c e l i fe o f a n a n ti fr e e z e s o l u ti o n

de p e nds o n s u ch facto rs as he ati ng s ys te m des ign and

ating s eas o n o r any extended no nfiring p erio d.

co nditio n, ho urs o f o p eratio n, s o lutio n and metal temp era-

10.6.3 Protection Against Corrosion

tures , aeratio n, and rate o f co ntaminatio n. Therefo re, the antifreeze s o lutio n s ho uld b e tes ted at leas t o nce a year

Swab the fire- s ide heating s urfaces with neutral mineral

and as re co mm e nde d b y the manufacturer o f the an ti -

o il to p ro tect agains t co rro s io n. I f the b o iler ro o m is damp ,

freeze that is us ed. H igh metal temp eratures accelerate

p lace a tray o f calcium chlo ride o r uns laked lime in the

d e p l e ti o n o f th e a n ti fre e z e i n h i b i to r s . F o r m a xi m u m

co mb us tio n chamb er and rep lace the chemical when it

s ervice life o f the antifreeze s o lutio n, the metal temp era-

b eco mes mus hy.

ture i n co ntact with the s o lutio n s ho uld b e kep t unde r

10.6.4 Periodic Checks

3 5 0 °F (1 7 6°C ) .

10.7.3.2 Antifreeze s o lutio n is harmful o r may b e fatal if

D uring the idle p erio d, check the b o iler p erio dically fo r

s wallo wed; therefo re, antifreeze s o lutio ns s ho uld b e us ed

co rro s io n.

o nly in clo s ed circulating s ys tems entirely s ep arated fro m

10.7 MAINTENANCE

p o tab le water s up p ly s ys tems .

10.7.3.3 Antifreeze s o lutio ns

10.7.1 Cleaning 10.7.1.1 General.

exp and mo re than water

fo r a given ris e in temp erature. Allo wance mus t b e made C l e a n th e b o i l e r tu b e s a n d o th e r

fo r this exp ans io n when an antifreeze s o lutio n is us ed in a

h eati n g s u rface s wh e n e ve r re qu i re d. Th e fre qu e n cy o f

heating s ys tem.

the cleaning can b es t b e determined b y trial. A general

10.7.4 Fire-Side Corrosion

p re d i c ti o n a p p l i c a b l e to a l l b o i l e r s c a n n o t b e m a d e . Als o , clean the s mo ke b o xes when required.

B o ilers can co rro de o n the fire s ide. So me fuels co ntain

10.7.1.2 Backwashing of Water Heater.

An y wa te r

s ub s tan ces that caus e fi re - s i de co rro s i o n. S ul fur, vana-

heater ins talled in o r co nnected to a b o iler s ho uld b e b ack-

d i u m , a n d s o d i u m a re a m o n g th e m a te ri a l s th a t m a y

was hed p erio dically, us ing valves to revers e the directio n

co ntrib ute to this p ro b lem.

(a)

o f fl o w th ro u gh th e h e ate r. T h e p u rp o s e o f th i s b a ck-

D ep o s its o f s ulfur co mp o unds may caus e fire- s ide

was hing is to reduce the amo unt o f s cale that will accu-

co rro s i o n . T h e p ro b ab i l i ty o f tro u b l e fro m th i s s o u rce

m u l a te a t th e o u tl e t s i d e o f th e h e a te r. C o n ti n u e th e

dep ends o n the amo unt o f s ulfur in the fuel and o n the

b ackwas hing until the water runs clear. The b ackwas hing

c a r e u s e d i n c l e a n i n g th e fi r e - s i d e h e a ti n g s u r fa c e s .

s ho u l d b e do n e fre qu e n tl y, an d th e m axi m u m i n te rval

Thi s i s p arti cu l arl y tru e wh e n p re p ari n g a b o i l e r fo r a

s ho uld b e determined b y s ite co nditio ns .

p e r i o d o f i d l e n e s s . P r e ve n ti n g th i s tr o u b l e d e p e n d s

10.7.2 Draining

b oiler is o ut o f s ervice.

als o o n keep ing the b o iler heating s urfaces dry when a

(b)

A clean, p ro p erly maintained heating b o iler s ho uld no t b e drained unles s

(a) (b)

m a y c a u s e fi r e - s i d e

co rro s i o n ,

and

th es e co m p o u n d s m ay b e co rro s i ve d u ri n g th e s e as o n

there is a p o s s ib ility o f freezing

when b o ilers are in s ervice.

the b o iler has accumulated a co ns iderab le amo unt

The p ers o n res p o ns ib le fo r b o iler maintenance s ho uld

o f s ludge o r dirt o n the water s ide, o r

(c)

D e p o s i ts o f van adi u m o r van adi u m and s o di um

comp ound als o

b e certain that the fire- s ide s urfaces o f the b o ilers are tho r-

draining is neces s ary to make rep airs

o ughly cleaned at the end o f the firing s eas o n. I f s igns o f

Very little s ludge s ho uld accumulate in a b o iler where

abno rmal co rro s io n are dis co vered, a rep utab le co ns ul-

little makeup water is added and where an ap p ro p riate

tant s ho uld b e engaged.

water treatment is maintained at the p ro p er s trength. I f it

10.7.5 Safety Relief Valves

p ro ves neces s ary to drain the b o iler and heating p ip ing to do rep air wo rk, and the vario us p arts o f the s ys tem canno t b e is o lated to p revent s uch draining, it wo uld b e wis e to

Safety relief valves o n ho t water heating and ho t water

co ns ider the ins tallatio n o f valves and drains at that time

s upp ly b o ilers s ho uld b e tes ted fo r p ro p er o p eratio n in

to p revent this fro m o ccurring again. Us e o f s uch valves

acco rdance with 6. 8 . ASM E - rated valves s hall b e ins talled

and drains will s ave co ns iderab le time and exp ens e the

o n a b o iler where required b y j uris dictio nal regulatio ns .

next time rep airs are neces s ary, and the amo unt o f raw

Wh e n re p l ace m e n t i s n e ce s s ary, u s e o n l y AS M E - rate d

water required will als o b e reduced.

valves o f the required cap acity.

10.7.3 Protection Against Freezing Antifreeze s o lutio ns when us ed in heating s ys tems s hall b e tho s e reco mmended b y the b o iler M anufacturer.

47

ASME BPVC.VI-2017

10.7.6 Burner Maintenance

10.7.9 Limit Control Maintenance

10.7.6.1 Oil Burners. Oil burners require periodic maintenance to keep the nozzle and other parts clean. Check and clean oil-line strainers. Examine and check the nozzle, and check the oil level in the gear cases, if applicable. Check and clean filters, air intake screens, blowers, and air passages. Check all linkages and belts, and adj ust as required. Lubricate in accordance with the Manufacturer’s instructions. Check pilot burners and ignition equipment for proper flame adj ustment and performance.

Maintenance on temperature-limiting control is generally limited to visual examination of the device for evidence of wear, corrosion, etc. If the control is of the mercury bulb type, check for mercury separation and discoloration of the bulb. If the control is defective, replace it. Do not attempt to make field repairs.

10.7.10 Cast Boiler Maintenance 10.7.10.1 Heating Surfaces. Check the firebox gas passages and breeching for soot accumulation. Use a wire brush and vacuum cleaner, if required, to remove the s o o t o r o th e r d i rt accu m u l ati o n p e r th e Manufacturer’s instructions.

10.7.6.2 Gas Burners. Check gas burners for presence of dirt, lint, or foreign matter. Make sure that ports, gas passages, and air passages are free of obstructions. Check linkages, belts, and moving parts on power burners for proper adj ustment. Check gas outlets on combination oil and gas burners; after prolonged periods o f oil firing, these outlets may become caked with carbon residue from unburned fuel oil and require cleaning. Lubricate in accordance with Manufacturer’s instructions. Also check pilot burners and ignition equipment for proper flame adjustment and performance.

10.7.10.2 Internal Surfaces. If the condition of the water in the boiler indicates that there is considerable foreign matter in it, the boiler should be allowed to cool, then it should be drained and thoroughly flushed out. Remove the washout plugs and wash through the openings with a high-pressure water stream. This will normally remove any sludge or loose scale. If there is evidence that hard scale has formed on the internal surfaces, the boiler should be cleaned by chemical means as prescribed by a qualified water treatment specialist.

10.7.7 Low-Water Fuel Cutoff Low-water fuel cutoffs and water feeders should be dismantled annually by qualified personnel, to the extent necessary to ensure freedom from obstructions and proper functioning of the working parts. Examine connecting lines to the boiler for accumulation of mud, scale, etc., and clean as required. Examine all visible wiring for brittle or worn insulation, and make sure electrical contacts are clean and that they function properly. Give special attention to solder joints on bellows and float when this type of control is used. Check float for evidence ofcollapse, and check mercury bulb (where applicable) for mercury separation or discoloration. Do not attempt to repair mechanisms in the field. Complete replacement mechanisms, including necessary gaskets and installation instructions, are available from the Manufacturer. After reassembly, test, if installation permits, without draining water from the boiler.

10.7.11 Steel Boiler Maintenance 10.7.11.1 Heating Surfaces. Remove all accumulations ofsoot, carbon, and dirt from the fire side ofthe boiler. Use a flue brush to clean the tubes. Clean breeching and stack as required. Examine refractory and make repairs as required. 10.7.11.2 Internal Surfaces. If the condition of the water in the boiler indicates that there is considerable foreign matter in it, the boiler should be allowed to cool, then it should be drained and thoroughly flushed out. Remove all handhole and manhole covers and wash through these openings with a high-pressure water stream. This will normally remove any sludge or loose scale. I f there is evidence that hard scale has formed on the internal surfaces, the boiler should be cleaned by chemical means as prescribed by a qualified water treatment specialist.

10.7.8 Flame Safeguard Maintenance 10.7.8.1 Thermal-Type Detection Device. Check the device for electrical continuity and satisfactory current generatio n in acco rdance with the M anufacturer’ s instructions.

10.7.12 Use of Flashlight for Internal Examinations When practical, use a flashlight rather than an extension light for internal inspection purposes. Follow proper safety procedures if entering the boiler.

10.7.8.2 Electronic-Type Detection Device. Check

o p e ra ti o n o f th e u n i t i n a c c o rd a n c e wi th th e Manufacturer’s instructions, and examine for damaged or worn parts. Do not attempt to repair these units in the field.

48

ASME BPVC.VI-2017

10.7.15 Maintenance of Circulating Pumps and Expansion Tanks

10.7.13 Leaking Tubes I f o ne tub e in a b o iler develo p s a leak due to co rro s io n, it is likely that o ther tub es are als o co rro ded. H ave the b o iler

I ns p ect the circulating p ump (s ) and lub ricate in acco r-

e xam ine d b y a cap ab l e and exp eri e nced p e rs o n b e fo re

d an ce wi th th e M an u factu re r’ s i n s tru cti o n s . C h e ck th e

o rde ri n g th e re p l ace m e n t o f o n e o r a fe w tu b e s . I f al l

o p e r a ti o n o f a l l

th e tu b e s wi l l n e e d re p l ace m e n t s o o n , i t i s p re fe rab l e

E xa m i n e th e e x p a n s i o n ta n k fo r d i r t, ti g h tn e s s , a n d

a n d l e s s e xp e n s i ve to h a ve a l l th e wo r k d o n e a t th e

e vi d e n c e o f c o r ro s i o n . C l e a n a n d re p a i r a s re q u i r e d .

a s s o c i a te d c o n tr o l s ,

s wi tc h e s ,

e tc .

s ame time.

F o r d e ta i l e d i n s tru c ti o n s , re fe r to th e M a n u fa c tu re r’ s

10.7.14 Use of Sealants

literature, ins tructio ns , and data.

10.7.16 Maintenance Schedule for Boilers in Service

S e a l a n ts m a y h a ve a d e tri m e n ta l e ffe c t o n b o i l e rs , p um p s , s afe ty re l i e f val ve s , e tc. ; the re fo re , the i r u s e i s n o t re c o m m e n d e d i n h o t wa te r h e a ti n g o r h o t wa te r

Re fe r to th e b o i l e r M a n u fa c tu re r’ s i n s tru c ti o n s fo r

s upp ly b o ilers .

maintenance requirements and s chedules .

49

ASME BPVC.VI-2017

ARTICLE 11 INSPECTIONS OF INSTALLED BOILERS 11.1 PERIODIC INSPECTION OF BOILERS

Wh e r e th e r e i s m o i s tu r e ,

d i s c o l o r a ti o n , o r va p o r

s h o wi n g thro u gh th e co ve ri n g, the co ve ri n g s h o u l d b e Perio dic ins p ectio n is neces s ary to p ro tect agains t lo s s

re mo ve d b y a qual i fi e d i n di vi du al (i n acco rdan ce wi th

o r damage to the p res s ure ves s el b ecaus e o f co rro s io n,

l o cal re gu l ati o ns an d M an ufacture r’ s i ns tru cti o n s ) and

p itting, etc. , and to p ro tect agains t uns afe o p erating co ndi-

a co m p l e te i n ve s ti gati o n m ade . E ve ry e ffo rt s h o u l d b e

tions . The fo llo wing p re- ins p ectio n p ro cedures are reco m-

made to dis co ver the true co nditio n o f a b o iler.

mended to ens ure a tho ro ugh and co mp lete ins p ectio n:

(a)

11.1.2 Preparation for the Liquid Pressure Test

All b o ilers s ho uld b e p rep ared fo r ins p ectio n, when-

ever neces s ary, b y the o wner o r us er when no tified b y the

O b ta i n gu i d a n c e fr o m th e i n s p e c to r re ga r d i n g th e

insp ecto r. The o wner o r us er s ho uld p rep are the b o iler fo r

p rep aratio n fo r this tes t.

an internal ins p ectio n and s ho uld p rep are fo r and ap p ly the liquid p res s ure tes t, whenever neces s ary, o n the date

11.2 INSPECTION OF THE BOILER BY THE INSPECTOR

s p ecified in the p res ence o f a qualified ins p ecto r.

(b)

B e fo re i ns p e cti o n , e ve ry p art o f a b o i l e r th at i s

a cce s s i b l e s h o u l d b e o p e n a n d p ro p e rl y p re p a re d fo r The b o iler ins p ecto r s ho uld ins p ect the b o iler in acco r-

i n te rn a l an d e xte rn a l e xa m i n ati o n . I n co o l i n g d o wn a

dance with lo cal j uris dictio nal requirements . I f there are

b o i l e r fo r i n s p e c ti o n o r r e p a i r s , th e o w n e r o r u s e r

no ne , the i ns p ecto r s ho ul d i n s p e ct the b o i le r i n acco r-

s ho uld no t withdraw the water until the b o iler is s uffic i e n tl y

cooled,

p ro ce s s

to

s h o ul d

a vo i d b e

i n

dam age .

The

acco rd an ce

dance with

c o o l - d o wn wi th

th e

m u n i c i p a l i ty, o r i n s u r a n c e c o m p a n y, s h o u l d b e we l l

M anufacturer’ s reco mmendatio ns .

i n fo r m e d

11.1.1 Preparation for Inspection

n a tu r a l

and

n e g l e c t fu l

causes

of

T h e i n s p e c to r

s ho u l d b e e xtre m e l y co n s ci e n ti o u s an d care fu l d u ri n g the ins p ectio n, taking s ufficient time to p erfo rm tho ro ugh

insp ectio n in the fo llo wing manner:

e xam i n ati o n s , taki n g n o o n e ’ s s tate m e n t as fi n al as to

D rain water.

co ndi ti o ns he has no t di re ctly o b s erve d, and, i f u nab le

Re m o ve al l m an h o l e an d h an dh o l e p l ate s , p l u gs

to make a tho ro ugh ins p ectio n, no ting s o in the ins p ectio n

(was ho ut and p ip ing) , and water co lumn co nnectio ns .

(c) (d)

o f th e

d e fe c ts a n d d e te r i o r a ti o n o f b o i l e r s .

The o wner o r us er s ho uld p rep are a b o iler fo r internal

(a) (b)

NB-23, N atio nal B o ard I ns p ectio n C o de.

The ins p ecto r, whether an emp lo yee o f a s tate, p ro vince,

repo rt. The ins p ecto r s ho uld as s es s the o verall co nditio n

Remo ve all grates o f internally fired b o ilers .

o f the b o iler ro o m and ap p aratus , and o b s erve the atten-

Remo ve b rickwo rk as required b y the ins p ecto r to

dants and any maintenance, tes ting, and ins p ectio n lo gs

determine the co nditio n o f the furnace, s up p o rts , o r o ther

(s ee M andato ry Ap p endix I , Figures I - 1 - 1 and I - 1 - 2 ) as a

p arts .

gui de i n fo rm i n g an o p i n i o n o f the ge ne ral care o f the

(e)

C ut o ff any leakage o f s team o r ho t water into the

e qu i p m e n t. Th e i n s p e cto r s h o u l d que s ti o n re s p o n s i b l e

b o i l e r b y d i s co n n e cti n g th e p i p e o r val ve a t th e m o s t

emp lo yees as to the his to ry o f o ld b o ilers and their p ecu-

co nvenient p o int.

liarities and b ehavio r, and as certain what, if any, rep airs

(f)

Tho ro ughly clean the b o iler o n b o th water s ides and

have b een made and their character, and whether they

fi re s i d e s . T a ke s p e c i a l c a re to e n s u r e fi re - s i d e s o o t

were made p ro p erly and s afely.

b uildup and water- s ide mineral dep o s its are remo ved.

50

ASME BPVC.VI-2017

ARTICLE 12 BOILER REPAIRS 12.3 WELDING REQUIREMENTS

12.1 PRECAUTION D o no t p ermit rep airs to a b o iler while it is in s ervice o r

All rep air wo rk s ho uld b e do ne b y exp erienced b o iler

under p res s ure, excep t with the ap p ro val and under the

m e c h a n i c s . Al l we l d i n g s h o u l d b e d o n e b y q u a l i fi e d

s upervis io n o f an autho rized b o iler ins p ecto r o r res p o n-

wel ders us ing p ro cedures p ro p e rly qual ifi ed acco rdi ng

s ible engineer.

to S ectio n I X.

12.2 NOTIFICATION

12.4 SAFETY

Whe n re p ai r wo rk i s requi re d, no ti fy the autho ri ze d

T a ke e ve ry p re c a u ti o n n e c e s s a ry to e n s u re a ga i n s t

b o i l e r an d p re s s ure ve s s el i ns p e cto r an d b e gu i de d b y

inj ury to tho s e wo rking in the b o iler ro o m and p articularly

the ins p ecto r’ s reco mmendatio ns .

to tho s e wo rking ins ide the s team s p ace o r in the co mb us tio n chamb er o f the b o iler. Pull the main b urner s witch and l o ck i t o u t an d tag i t, s wi n g th e b u rn e r o u t o f p l ace i f p o s s i b l e , c l o s e a n d l o c k va l ve s , e tc . , a n d a l wa ys h a ve one

p erson

s ta n d i n g

working ins ide a b o iler.

51

by

o u ts i d e

wh e n

a n yo n e

is

ASME BPVC.VI-2017

ARTICLE 13 WATER TREATMENT 13.4 LOCAL ORDINANCES

13.1 SCOPE This Article co vers reco mmended p ro cedures fo r the

M ake s ure that all the water treatment chemicals us ed

treatment o f water in s team and ho t water heating b o ilers .

a n d th e i r d i s p o s a l p r o c e s s d o n o t vi o l a te a n y l o c a l o rdinances .

13.2 CONSIDERATIONS

13.5 POTENTIAL BOILER WATER PROBLEMS

O p e rati o n al e xp eri ence and co rro s i o n re s e arch have

13.5.1 Corrosion

cl e arl y s h o wn th at th e p ro b l e m o f acce l e rate d s cal i n g may b e

e l i m i n a te d th r o u g h

p r o p e r l y a d m i n i s te r e d

b o iler water treatment. E mp lo ying a co ns ci entio us and

Raw water as received fro m city mains o r wells may

co m p e te n tl y ad m i n i s te re d p ro gram wi th e m p h as i s o n

c o n ta i n i m p u ri ti e s , i n c l u d i n g d i s s o l ve d ga s e s s u ch a s

go o d maintenance p ractices as o utlined b y a water treat-

o xyge n an d carb o n d i o xi d e . Wh e n th e wate r i s s o ft, i t

ment s p ecialis t is reco mmended.

is

p o s s ib le rup ture o f b o iler tub es . Rus ty water in the gauge

nature o f the raw water, i. e. , hard o r s o ft, co rro s ive

glas s is a s ure s ign o f co rro s io n in the heating s ys tem o r in the b o iler its elf.

amo unt o f makeup water required and any b lo w-

do wn requirements

(d)

13.5.2 Scale Deposits

p reliminary treatment o f the water, i. e. , s o fteners ,

p reheaters , deaerato rs

(e)

All water co ntains dis s o lved s alts . Where water is hard,

us e o f the s team, i. e. , fo r heating o nly o r a co mb ina-

th es e are m ai n l y cal ci u m an d m agn e s i u m co m p o u n d s .

tion o f o ther p urp o s es

(f)

n e g a ti v e l y

reactio ns . I f unco rrected, s erio us p itting can res ult in the

o r s cale fo rming

(c)

w a te r c a n

in s tres s ed metal. H igh temp eratures can accelerate thes e

typ e o f b o iler, i. e. , cas t iro n o r s teel, s team o r ho t

water

(b)

s uch

in general o verall co rro s io n o r lo calized p itting o r cracking

to treat the water and, if s o , what typ e o f treatment to us e:

(a)

a c i d i c a n d c o r r o s i ve ;

affect b o iler metals and co ndens ate return lines , res ulting

C o ns ider the fo llo wing facto rs when deciding whether

Under b o iler o p erating co nditio ns , thes e s alts co me o ut

amo unt o f s up ervis io n and co ntro l tes ting availab le

o f s o lutio n and fo rm s cale dep o s its o n the b o iler metal. T h i s i s d u e to d e co m p o s i ti o n o f th e b i ca rb o n a te s a n d

13.3 WATER TREATMENT SPECIALISTS

to th e d e c re a s e d s o l u b i l i ty o f c a l c i u m s a l ts a t h i gh e r te m p e ra tu re s . As th e wa te r i s e va p o ra te d , th e s o l i d s

E ach b o iler ins tallatio n s ho uld b e co ns idered o n an indi-

are l e ft b e h i n d a n d s cal e d e p o s i ts b u i l d u p . T h e s ca l e

vidual b as is . I f there ap p ears to b e any ques tio n regarding

fo rms an ins ulating b arrier o n the b o iler tub es , res ulting

the treatment required, review the b o iler M anufacturer’ s

in p o o rer heat trans fer and lo wer efficiency. Scale dep o s its

instructio ns and the final treatment decis io n with a rep u-

can als o caus e o verheating and failure o f b o iler tub es .

table water treatment co mp any. Thes e co mp anies furnis h

13.5.3 Metal or Caustic Embrittlement

a s e rvi ce and/o r che mi cals fo r b o il er wate r treatm ent. They are

in

a

p o s i ti o n

to

m a ke

r e c o m m e n d a ti o n s

b as ed o n lo cal water co nditio ns and the p articular ins tal-

U n d e r c e rta i n c o n d i ti o n s o f h i gh c a u s ti c a l ka l i n i ty

latio n invo lved. They als o furnis h tes t kits acco mp anied b y

whe re the metal i s under s tres s , cracks can develo p in

s imp le analytical p ro cedures fo r day- to - day analys is b y

the metal b elo w the waterline and under rivets , welds ,

the lo cal m ai nte nance p e rs o nne l. S amp le s are take n at

and lo ngitudinal s eams . This typ e o f failure is typ ically

s uitab le intervals and s ent to their lab o rato ries fo r co nfir-

fo und in s teel b o ilers .

m ati o n an al ys i s . I n s etti ng up arrange me n ts wi th s uch

13.5.4 Foaming, Priming, and Carryover

co ncerns , do no t hes itate to as k fo r the chemical co mp o s ition o f, and o ther technical info rmatio n invo lved in, the

Fo aming, p riming, and carryo ver, which o ccur in s team

treatments p res crib ed.

b o ilers o nly, are clo s ely as s o ciated with and refer to the fo rmatio n o f fro th and s uds o n the s urface o f the water.

52

ASME BPVC.VI-2017

13.8 PROCEDURES

Where this is s evere, b o iler water is carried o ver with the s team. E xces s ive dis s o lved s o lids carried o ver can fo rm

13.8.1 Determination of Water-Containing Capacity

d e p o s i ts i n th e s te a m p i p i n g a n d va l ve s , wh i c h c a n caus e a lo s s o f efficiency and advers ely affect the o p eratio n o f the b o iler and s ys tem co mp o nents .

I t is neces s ary to kno w the water- co ntaining cap acity o f

13.6 BLOWDOWN (STEAM BOILERS)

th e b o i l e r s o i n s tru c ti o n s ca n b e gi ve n re ga rd i n g th e required amo unt o f b o i ler water tre atm ent co mp o und.

The p urp o s e o f b lo wdo wn o n s team b o ilers is to keep

I f th i s i n fo r m a ti o n i s n o t gi ve n o n th e b o i l e r, i n th e

the amo unt o f dis s o lved s o lids and s ludge in the b o iler

b o i l e r c a ta l o g, o r o th e r p u b l i c a ti o n s , th e n m e te r th e

wa te r

wate r a t th e ti m e o f th e i n i ti a l fi l l i n g a n d re c o rd th e

under

c o n tr o l .

As

th e

wa te r

is

tu r n e d

i n to

s te a m , th e s o l i d s re m a i n b e h i n d , a n d , u n l e s s th e re i s

info rmatio n.

1 0 0 % c o n d e n s a te re tu rn , th e s o l i d s c o n te n t te n d s to

13.8.2 Making a pH or Alkalinity Test

b ui l d u p . As a ru l e o f th u m b , ab o u t 1 , 0 0 0 p p m can b e co n s i d e re d a s afe m axi m u m . A h ard wate r co n ta i n i n g

The co nditio n o f the b o iler water can b e quickly tes ted

2 0 0 p p m in the feedwater wo uld to lerate five co ncentra-

with hydrio n p ap er, which is us ed in the s ame manner as

tio ns in the b o iler. O n the o ther hand, a s o ft water with 2 5

l i tmu s p ap e r, e xce p t i t gi ve s s p e ci fi c re adi n gs . A co l o r

p pm s o lids co uld co ncentrate 40 0 times b efo re reaching

chart o n th e s i de o f the s m al l h ydri o n di s p e n s e r gi ve s

the cri ti cal p o i n t. To m ai n tai n s ati s facto ry o p e rati o n al

th e re a d i n g i n p h . H yd ri o n p a p e r i s i n e xp e n s i ve a n d

co nditio ns , the hard water wo uld require 2 0 % b lo wdo wn

o b tainab le fro m any chemical s up p ly ho us e o r thro ugh

while the s o ft wo uld require o nly 2 % . With s o ft water, b l o w d o w n c a n p o s s i b l y b e h e l d to

a l o cal dru ggi s t. I f a m o re p re ci s e m e as u re m e n t o f p H

o n c e o r tw i c e a

i s de s i red, a co l o r s l i de co m p arato r ki t o r p H m e ter i s

s eas o n. With hard wate r, b l o wdo wn may b e n ece s s ary

reco mmended.

o nce a m o n th o r e ve n o n ce a we e k. B l o wdo wn s h o ul d

13.8.3 Mixing and Handling Chemicals

b e h e l d to a m i n i m u m , s i n c e i t i n vo l ve s h e a t l o s s e s a n d , i f e xce s s i ve , wa s te s tre a tm e n t c h e m i ca l s . D ra i n s

The chemicals , if liquid, s ho uld b e diluted o r, if s o lid,

rece i vi ng b l o wdo wn wate r s ho u ld b e co n necte d to the

d i s s o l ve d i n acco rd an ce wi th th e s u p p l i e r’ s d i re cti o n s

s anitary s ewer.

b e fo re th e y are ad d e d to th e s ys te m . I f th e tre atm e n t

13.7 CHEMICAL FEEDERS

i s a s o l i d , m a ke s u r e i t i s fu l l y d i s s o l ve d .

A simple

hand p addle to s tir the s o lutio n is frequently all that is

S i m p l e ch e m i cal fe e de rs are p re fe rab l e , p arti cu l arl y

n e c e s s a r y.

wh e re th e tre a tm e n t i s to b e a d d e d p e ri o d i c a l l y, i . e . ,

I f th e

chemicals

a r e s l o w to

d i s s o l ve ,

a

s te a m l i n e fo r h e a ti n g th e w a te r a n d a g i ta ti n g th e

m o re th an o nce o r twi ce a s e as o n. Whe re th ere i s an y

m i xtu r e m a y b e u s e d to a c c e l e r a te th e p r o c e s s . T h e

app reciab le amo unt o f b lo wdo wn, o r lo s s o f co ndens ate,

u s e o f co m p re s s e d ai r fo r th i s p u rp o s e i s u n d e s i rab l e

additio nal treatment will b e neces s ary fro m time to time. A

s ince it will intro duce additio nal o xygen that will neutra-

n u m b e r o f d i ffe re n t fe e d e r typ e s m a y b e u s e d . T h e s e

lize reducing agents s uch as s o dium s ulfite. Since the treat-

i nclude o p en- typ e gravity feeders where the treatment

ment chemicals may b e highly alkaline o r s kin irritating, it

i s to b e fe d m an u al l y i n o n e s l u g o r i n p e ri o d i c s m al l

is advis ab le that p ers o nnel wear go ggles and glo ves when

s h o ts ;

fe e d e r s

they are handling o r mixing them. I t is extremely imp o r-

whe re th e tre atm e n t i s to b e fe d i n p ro p o rti o n to th e

tant th at p e rs o n n e l b e aware o f th e p o te n ti al h az ard s

c l o s e d - ty p e g r a v i ty- d r i p

a n d b yp a s s

a m o u n t o f m a ke u p wa te r; a n d p o t- typ e p ro p o rti o n a l

whenever handling water treatment chemicals and that

fe ed e rs wh e re s l o wl y d i s s o l vi n g tre atm e n t crys tal s o r

they clo s ely fo llo w all s afety p recautio ns reco mmended

b riquettes are us ed.

b y th e c h e m i c a l m a n u fa c tu r e r . D a ta S h e e ts ( M S D S )

T h e M a te r i a l S a fe ty

s h o u l d b e r e a d i l y a va i l a b l e fo r

anyo ne handling o r invo lved in the us e o f water treatment chemicals .

53

ASME BPVC.VI-2017

ARTICLE 14 TREATMENT OF LAID - UP BOILERS 14.3 WET METHOD

14.1 GENERAL When s teel b o ilers are o ut o f s ervice fo r any length o f

The b o iler is drained, flus hed, and ins p ected. I t is then

ti m e , s u c h a s a l a yu p fo r th e s u m m e r, th e y m u s t b e

filled to the no rmal water level and s teamed fo r a s ho rt

p ro te cte d fro m co rro s i o n . Th i s m ay b e do n e e i th e r b y

time with the b o iler vented to the atmo s p here to exp el

draining them and keep ing the s urfaces tho ro ughly dry

d i s s o l ve d ga s e s .

or

water o r fo r reheat in co nnectio n with an air- co nditio ning

b y c o m p l e t e l y fi l l i n g

th e

boiler

wi th

p ro p erly

I f th e

boiler is

to

be

u s e d to

heat

treated water.

s ys tem, it may b e left in this s tate, ready to o p erate. I f,

14.2 DRY METHOD

p re fe rab l e to fi l l th e b o i l e r to th e to p o f th e d ru m . I n

ho wever, it is to b e co mp letely idle fo r s o me time, it is

any cas e, treatment s ho uld b e us ed. This may b e the reguT h e b o i l e r i s d ra i n e d , fl u s h e d , a n d i n s p e c te d . T h e

l arly us e d treatm en t, o r a caus ti c s o da (4 0 0 p p m) an d

s u r fa c e s a r e th e n th o r o u gh l y d r i e d b y m e a n s o f h o t

s o dium s ulfite mixture (1 0 0 p p m) , o r s o dium chro mate,

a i r. I f th e b o i l e r ro o m i s d ry a n d we l l ve n ti l a te d , th e

in which cas e a minimum o f at leas t 1 0 0 p p m s ho uld b e

b o iler may b e left o p en to the atmo s p here. An alternate

maintained o n s team b o ilers and 3 0 0 p p m o n ho t water

p rocedure is to us e a s uitab le mo is ture ab s o rb ent, s uch as

b o ilers . D uring the do wntime, if feas ib le, it is go o d p ractice

quicklime o r s ilica gel, which is p laced in the b o iler in a

to o ccas io nally circulate the water with a p ump . This is

s uitab le lo catio n. The b o iler is then tightly clo s ed. E very 2

neces s ary to p revent s tratificatio n and to ens ure that fres h

o r 3 mo nths , the b o iler s ho uld b e checked and the lime o r

inhib ito r is in co ntact with the metal. This is als o true o f ho t

gel rep laced o r regenerated, if neces s ary. The dry metho d

water s ys tems . C o rro s io n is ap t to b e mo re s erio us during

is no t us ed o n cas t iro n b o ilers .

the do wntime than when the b o iler is actually in s ervice. The wet metho d is generally us ed o n cas t iro n b o ilers .

54

ASME BPVC.VI-2017

MANDATORY APPENDIX I PERIODIC TESTING AND MAINTENANCE I-1 INSPECTION AND MAINTENANCE PROGRAM

(d)

F re q u e n t i n s p e c ti o n , a d j u s tm e n t, a n d c l e a n i n g

s ho uld b e p erfo rmed during initial s tartup o p eratio n to S i n c e th e e ffe c ti ve o p e r a ti o n o f a l l s a fe ty d e vi c e s

e n s u re al l s a fe ty co n tro l s an d d e vi ce s are fu n cti o n i n g

d ep e n ds o n th e i r ab i l i ty to re s p o n d to th e i r acti vati ng impulses,

a

th o r o u g h

i n s p e c ti o n

and

as intended and are in a reliab le o p erating co nditio n.

m a i n te n a n c e

I-2 RESPONSIBILITIES OF PERSONNEL

p ro gram s ho uld b e es tab lis hed and p erfo rmed o n a p erio dic b as is . The p ro gram s ho uld co mp ly with the fo llo wing:

(a)

(a)

The ins p ectio n and maintenance p ro gram s ho uld

b e at leas t that reco mmended b y the manufacturer.

(b)

T h e q u al i fi e d i n d i vi d u al p e rfo rm i n g i n s p e cti o n s

and tes ts s ho uld b e trained and familiar with all o p erating

O p erab ility and s et p o ints , where ap p licab le, o n all

p ro c e d u r e s a n d e q u i p m e n t fu n c ti o n s a n d s h o u l d b e

devices s hall b e verified b y p erio dic tes ting, and the res ults

cap ab le o f determi ning that the equip ment is i n an as -

s hall b e reco rded in the b o iler lo g, maintenance reco rd,

des igned o p erating co nditio n. The individual s ho uld b e

s ervice invo ice, o r o ther written reco rd (s ee Figures I - 1 - 1

fam i l i a r wi th a l l p re c au ti o n s a n d s h o u l d c o m p l y wi th

and I - 1 - 2 fo r examp les ) . The manufacturer’s ins tructio ns

the requirements o f the autho rity having j uris dictio n.

(b)

s ho uld b e fo llo wed.

(c)

Any defects fo und during tes ting and/o r ins p ectio n

B ecaus e o f the variety o f equip ment and mo des o f

o p eratio n, o wners and us ers s ho uld p ro vide a detailed

s ho uld b e b ro ught to the attentio n o f the b o iler’ s o wner

c h e c kl i s t fo r th e o p e r a to r ’ s u s e i n a c c o r d a n c e wi th

and co rrected immediately.

M an u factu re r’ s i n s tru cti o n s fo r th e b o i l e r, b o i l e r u n i t, b urner, and co ntro l device as s emb ly.

55

Figure I-1-1 Exhibit A

ASME BPVC.VI-2017

56

ASME BPVC.VI-2017

Figure I-1-1 Exhibit A (Cont’ d)

57

Figure I-1-2 Exhibit B

ASME BPVC.VI-2017

58

ASME BPVC.VI-2017

Figure I-1-2 Exhibit B (Cont’ d)

59

201 7

ASME Bo i l e r a n d P r e s s u r e Ve s s e l C o d e AN

I NT E RN AT I O NAL

C O DE

Th e AS ME Boil er a n d P ressu re Vessel C od e ( B P VC ) is “ An I n tern a tion a l H istoric Mec h a n ica l En g in eerin g La n d m a rk, ” wid el y recog n ized a s a m od el for cod es a n d sta n d a rd s worl d wid e. I ts d evel opm en t process rem a in s open a n d tra n spa ren t th rou g h ou t, yiel d in g “ l ivin g d ocu m en ts” th a t h a ve im proved pu bl ic sa fety a n d fa cil ita ted tra d e a cross g l oba l m a rkets a n d ju risd iction s for a cen tu ry. AS ME a l so provid es BP VC u sers with in teg ra ted su ites of rel a ted offerin g s: • referen c ed sta n d a rd s • rel a ted sta n d a rd s a n d g u id el in es • con fo rm ity a ssessm en t prog ra m s • tra in in g a n d d evel opm en t c ou rses • AS ME P ress books You gain unrivaled insight direct from the BPVC source, along with the professional quality and real-world solutions you have come to expect from ASME. For a d d ition a l in form a tion a n d to ord er: P h on e: 1 . 800. TH E. AS ME ( 1 . 800. 843. 2763) Em a il : cu stom erca re@ a sm e. org Website: g o. a sm e. org /bpvc1 7

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF