Askeland Chapter

July 11, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Askeland Chapter...

Description

 

The Science and Engineering th of Materials, 4  ed Donald R. R . Askeland – Pradeep P. Phul

!hapter 1" – #onferrous Allo$s

 

1

1

 

&'(ecti)es of !hapter 1" 

 

E*plore the properties and applications of !u, Al, and Ti allo$s in load+'earing applications.

2

%

 

!hapter &utline      

 

1".1 Aluinu Allo$s 1".% Magnesiu and -er$lliu Allo$s 1"." 1".4 1". 1"./

!opper Allo$s #ickel and !o'alt Allo$s Titaniu Allo$s Refractor$ and Precious Metals Refractor$

3

"

 

 

4

4

 

Section 1".1 



Aluinu Allo$s

0all+0eroult process + process + An electrol$ti electrol$tic c process '$ hich aluinu is e*tracted fro its ore. Teper designation designation +  + A shorthand notation using letters and nu'ers the processing of an allo$. tepers refer to to descri'e cold+orked allo$s2 T tepers refer0to age+hardening age+hardeni ng treatents.

 

5



 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   m   a   e    d   a   r    t   a   s    i    ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   s   o   m   o    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13.1 Production of aluminum in an electrolytic cell.

 

6

/

 

 

7

3

 

 

8



 

 

9

5

 

 

10

16

 

Figure 13.2 (a) FeAl3 inclusions in annealed 1100   350). (b)( Mg2Si in annealed aluminum ( 5!5" aluminum alloy "5). (From (reciitates From ASM  ASM #andboo$% Vol. 7, (1972), (1972 ), ASM International, Materials Park, OH 4407.) 4407 .)

 

11

11

 

©2003 Brooks/Co le, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark sed herein nder license.

Figure 13.3 Portion of t&e t&e aluminum'magnes aluminum'magnesium ium &ase diagram.

 

12

1%

 

Figure (a)and Sand'cast !!3(b) aluminum alloy containing contain coarse 13.! silicon inclusions. Permanent'mold !!3ing alloy containing fine dendrite cells and fine silicon due to faster cooling. (c) ie'cast !!3 alloy it& a still finer microstructure (  350). (From (From ASM  ASM #andboo$% Vol. 7, (1972), ASM  International,, Materials Park, OH 4407.)  International 4407.)  

13

1"

 

E*aple 1".1 Strength+to+;eight Ratio in Design A steel ca'le 6. in. in diaeter has a $ield "strength of 36,666 psi. The densit$ of steel is a'out 3.3 g7c . -ased on the data in Ta'le 1"+, deterine 8a9 the a*iu load that the steel ca'le can support, 8'9 the diaeter of a cold+orked aluinu+anganese aluinu +anganese allo$ 8"664+0 19 re:uired to support the sae load as the steel, and 8c9 the eight per foot of the steel ca'le )ersus the aluinu allo$ ca'le.

 

14

14

 

 

15

1

 

E*aple 1".1 S&&# a. nstruent grade 'er$lliu 'er$lliu is  is used in inertial guidance s$stes here the elastic deforation ust 'e inial2 structural grades are used in aerospace applications2 and nuclear applications take ad)antage of the transparenc$ of 'er$lliu to electroagnetic radiation. -er$lliu is e*pensi)e, 'rittle, reacti)e, and to*ic.

 

20

%6

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m   e

   d   a   r    t   a   s    i      ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s   m    h   o    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13.5 ,&e magnesium'aluminum &ase diagram.

 

21

%1

 

 

22

%%

 

Section 1"."  

 

 

!opper Allo$s

-lister copper + copper + An ipure for of copper o'tained during the copper refining process. Applications Applicatio ns for f or copper+'ased allo$s allo$s include  include electrical coponents 8such as ire9, pups, )al)es, and plu'ing parts, here these properties are used to ad)antage. -rass + -rass  + A group of copper+'ased allo$s, noral norall$ l$ containing Binc as the a(or allo$ing eleent. -ronBe + -ronBe  + Cenerall$, copper allo$s containing tin, can contain other eleents.

23

%"

 

 

24

%4

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m    d   e   a   r    t   a   s    i      ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s

Figure 13. /inary &ase

  o   m    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

diagrams for t&e (a) coer'inc% (b) coer'tin% (c) coer' aluminum% and (d) coer' beryllium systems.

 

25

%

 

E*aple 1". Design7Materials Selection for an Electrical Sitch

Design the contacts for a sitch or rela$ that opens and closes a high+current electrical circuit. E*aple 1". S&&# ;hen the sitch or rela$ opens and closes, contact 'eteen the conducti)e surfaces can cause ear and result in poor contact and arcing. Therefore, our design ust pro)ide for 'oth good electrical conducti)it$ and good ear resistance. relati)el$ pure copper allo$ dispersion strengthene strengthened d ith a A hard phase that does not distur' the copper lattice ould, perhaps, 'e  allo$,, the hard ceraic+o*ide particles ideal. >n a !u+Al%&" allo$ pro)ide ear resistance 'ut do not interfere ith the electrical conducti)it$ conducti)it $ of the copper atri*.  

26

%/

 

E*aple 1"./ Design of a 0eat Treatent for a !u+Al Cear Design the heat treatent re:uiredAllo$ to produce a high+strength aluinu+'ronBe gear containing 16 Al.

Figure 13. /inary &ase diagrams for t&e (c) coer'aluminum

 

27

%3

 

E*aple 1"./ S&&# 1. 0ea 0eatt th the e al allo lo$ $ to 56o! and hold to produce 166  β . %. uench the a allo$ llo$ to roo tepera teperature ture to cause β to transfor to artensite,  β ´, hich is supersaturated in copper. ". Tepe perr 'el 'elo o / / o!2 a teperature of 466o! ight 'e suita'le. During tepering, the artensite transfors to α and γ%. The aount of the γ% that fors at 466o! is@

4. !ool rrapi apidl$ dl$ to roo tepera teperature ture so tha thatt the e:uili'riu γ does not for.

28

%

 

28

 

Section 1".4 #ickel and !o'alt Allo$s



#ickel and co'alt allo$s are allo$s are used for corrosion protection and for high+teperature resistance, taking ad)antage of their high elting points and high strengths.



Superallo$s + A group of nickel, iron+nicke Superallo$s + iron+nickel, l, and co'alt+ 'ased allo$s that ha)e e*ceptional heat resistance, creep resistance, and corrosion resistance.

%5

 

29

 

"6

 

30

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m   e    d   a   r    t   a   s    i      ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13." ,&e effect of temerature on t&e tensile strengt& of seeral nic$el'based alloys.

"1

 

31

 

Figure 13. (a) Microstructure of a sueralloy% it& carbides at t&e grain boundaries and 4 reciitates in t&e matri- (  15%000). (b) Microstructure of a sueralloy aged at to temeratures% roducing bot& large and small cubical 4 reciitates (  10%000). (ASM #andboo$% Vol. #andboo$%  Vol. 9, Metallo$ra%&" an' Mirostrtre (19*+), ASM International, Materials Park, OH 4407.) 4407. ) "%

 

32

 

E*aple 1".3 Design7Materials Selection for a 0igh+Perforance Fet Engine Tur'ine -lade Design a nickel+'ased superallo$ for producing tur'ine 'lades for a gas tur'ine aircraft engine that ill ha)e a particularl$ o

long creep+rupture tie at teperatures approaching 1166 !.

""

 

33

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m   e    d   a   r    t   a   s    i      ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13. (a) A turbine blade designed for actie cooling by a gas. (b) ,&e &ig&'temerature &ig&'temeratu re caability of sueralloys &as increased it& imroements in manufacturing manufacturi ng met&ods (for 6-amle 13.").

"4

 

34

 

E*aple 1".3 S&&# irst, e need a )er$ sta'le icrostruct icrostructure. ure. Addition of aluinu or titaniu perits the precipitation of up to /6 )ol of the - phase  phase during heat treatent and a$ perit the allo$ to operate at teperatures approaching 6. ties the a'solute elting teperature. Second, e ight produce a directionall$ solidified or e)en single+cr$stal tur'ine 'lade 8!hapter 9. >n directional solidification, onl$ colunar grains. ;e ould then heat treat the casting to assure that the car'ides and - precipitate  precipitate ith the correct siBe and distri'ution. inall$, the 'lade ight contain sall cooling channels along its length. Air for co'ustion in the engine can pass through these channels, pro)iding acti)e cooling to the 'lade, 'efore reacting ith fuel in the co'ustion cha'er. "

 

35

 

Section 1". Titaniu Allo$s 

 

TitaniuGs e*cellent corrosion resistance pro)ides applications applications in  in cheical processi processing ng e:uipent, arine coponents, and 'ioedical iplants such as hip prostheses. Titaniu is an iportant aerospace aterial, finding applications as airfrae and (et engine coponents. Titaniu allo$s Titaniu  allo$s are considered 'iocopati'le 'iocopati'le 8i.e.,  8i.e., the$ are not re(ected '$ the 'od$9. -$ de)eloping porous coatings of 'one+like ceraic copositions knon as h$dro*$apatite, it a$ 'e possi'le to ake titaniu iplants 'ioacti)e 8i.e., 'ioacti)e 8i.e., the natural 'one can gro into the h$dro*$apatite coating9.

"/

 

36

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m   e    d   a    t   r   a   s    i    ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13.10 Portions of t&e &ase diagrams for (a) titanium'tin% titanium'tin% (b) titanium' titanium' aluminum% (c) titanium' molybdenum% and (d) titanium' titanium' manganese.

"3

   

37

"3

 

"

38

 

 .   e   s   n   e   c    i    l   r   e    d   n      n    i   e   r   e    h    d   e   s       k   r   a   m   e    d   a   r    t   a   s    i

   ™   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T  .   c   n    I  ,   g   n    i   n   r   a   e    L   n   o   s   m   o    h    T    f   o   n   o    i   s    i   v    i    d   a  ,   e    l   o    C    /   s    k   o   o   r    B    3    0    0    2    ©

Figure 13.11 ,&e effect of on temerature t&e yield strengt& of selected titanium alloys.

 

39

"5

 

Figure 13.12 (a) Annealing and (b) microstructure of raidly cooled al&a titanium (  100). /ot& t&e grain boundary reciitate and t&e 7idmanst8tten lates are al&a. (From (From   ASM #andboo$% Vol. 7, (1972), (197 2), ASM International, Materials Park, OH 4407.) 4407.)

 

40

46

 

igure 1".1" Annealing of an alpha+'eta titaniu allo$. 8a9 Annealing is done (ust 'elo the 9 /  /   transforation teperature, 8'9 slo cooling gi)es e:uia*ed  grains 8  %69, and 8c9 rapid cooling $ields acicular  grains 8  %669. 8From Metals 0and'ook, Vol. 7, (1972), ASM International, Materials Park, OH 447!.9

 

41

41

 

igure 1".14 8a9 0eat treatent and 8'9 icrostructure of the alpha+'eta titaniu allo$s. The structure contains priar$ " 8large hite grains9 and a dark # atri* ith needles of " fored during aging 8%69. From ASM Vol. 7, 80and'ook, (1972), ASM International, Materials Park, OH 447!.9

 

4%

42

 

E*aple 1". Design of a 0eat E*changer Design a +ft+diaeter, "6+ft+long heat e*changer for the petrocheic petrocheical al industr$ 8igure 1".19.

©2003 Brooks/Co le, a di division vision of Thomson Learning, Inc. Thomson Learning™ is a trademark sed herein nder license.

Figure 13.15 S$etc& of of a &eat e-c&anger using titanium titaniu m tubes (for 6-amle 13.).

 

43

 

E*aple 1". S&&# Pro)ided teperature is 'e 'elo titaniu ight  ight a "o! so that that the the a*iu o*ide fil operating is sta'le, titaniu good choice to pro)ide corrosion resistance at ele)ated teperatures. A coerciall$ pure titaniu pro)ides the 'est corrosion resistance. Pure titaniu also pro)ides superior foring and elding characteristics and ould, therefore, 'e our ost logical selection. >f pure titaniu does not pro)ide sufficient strength, an alternati)e is an alpha titaniu allo$,, still pro)iding good corrosion resistan allo$ resistance, ce, foring characteristics, and elda'ilit$ 'ut also soehat ipro)ed strength.

4"

 

44

44

 

E*aple 1".5 Design of a !onnecting Rod Design a high+perforance connecting connecting rod for the engine of a racing autoo'ile 8igure 1".1/9.

Figure 13.1 S$etc& of connecting rod (for 6-amle 13.).

 

45

 

E*aple 1".5 S&&# To achie)e high strengths, e ight consider an alpha+ 'eta titaniu allo$. -ecause of its a)aila'ilit$, the Ti+/ Al+4 H allo$ is a good choice. choice. The allo$ is heated to a'out 16/o!, hich is in the all+ /  / portion  portion of the phase diagra. ;hen the heat treatent is perfored in the all+ /  /   region, the tepered artensite has an acicular structure, hich reduces the rate of groth of an$ fatigue cracks that ight de)elop.

4

 

46

4/

 

E*aple 1".16 Materials for 0ip Prosthesis ;hat t$pe of a aterial ould $ou choose for an iplant to 'e used for a total hip replaceent iplantI E*aple 1".16 S&&# ;e need to consider the folloing factors@ 'iocopati'ilit$, corrosion resistance, high+fracture toughness, e*cellent fatigue life, and ear resistance. resistance. These re:uireents suggest "1/ stainless steel or Ti+ / Al+4 H. H. Titaniu is 'io+copati'le and ould 'e a 'etter choice. Perhaps a coposite the ste is ade fro a Ti+/ Al+4 H aterial allo$ andina hich head that is ade fro a ear+resistant, corrosion resistant, and fractured tough ceraic, such as aluina, a$ 'e an anser. Another option is to coat the iplant ith a aterial like porous h$dro*$apatite to encourage 'one groth.

 

47

 

Section 1"./ Refractor$ and Precious Metals 

Refractor$ etals – etals – These include tungsten, ol$'denu, tantalu, and nio'iu 8or colu'iu9, ha)e e*ceptionall$ high+elting teperatures 8a'o)e o





15% !9 and,ser)ice. conse:uentl$, ha)e the potential for high+ teperature Applications of Refractor$ etals include etals include filaents for light 'ul's, rocket noBBles, nuclear poer generators, tantalu+ and nio'iu+'ased electronic capacitors, and cheical processing e:uipent. Precious Metals + Metals + These include gold, sil)er, palladiu, platinu, and rhodiu.ro an engineeri engineering ng ) )iepoint, iepoint, these aterials resist corrosion and ake )er$ good conductors of electricit$.

43

   

48

4

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF