Aritmetica

August 13, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Aritmetica...

Description

 

Presentación El Proyecto  Editorial  de los Colegios de la Corporación Pamer  se evidencia  en los textos que apoyan  el aprendizaje  de nuestros estudiantes. El texto  que  tienes  en tus manos es  el resultado  del esfuerzo  de los trabajadores de  la  Editorial   y  de  los  docentes  de  los  Colegios  Pamer;  tienen  como  función  principal  despertar   el  interés  por   por   aprender   en  nuestros  estudiantes.   Asimismo,  buscan articular  el trabajo  pedagógico  pedagógico en el salón de clases y motivar  nuevos aprendizajes  fuera de él. Los  Textos  Pamer   son  el  resultado  de  más  de  25  años  de  trabajo  en  equipo  de nuestra Corporación que, a través de su Editorial  y el trabajo de los profesores  profesores de los diferentes  colegios, ofrece un  servicio  educativo  de alta exigencia académica,

   

   

   

   

 

 

 

 

 

se  busca la formación con de  personas con  una  personalidad con la uncual  propuesta una  sólida  comportamiento  ético. Plantean,  asimismo,  integral yy  personalizada,  de  tal  modo   que  a  través  de  múltiples  experiencias   académicas, formativas, deportivas, culturales y sociales, nuestros estudiantes se descubran a sí mismos, se valoren, se relacionen con los demás y asuman los valores universales  para insertarse de manera activa en la sociedad y sean capaces de mejorarla. Por  ello, si  podemos  podemos   propiciar  propiciar  la curiosidad y el interés  por   por  aprender  en nuestros estudiantes,  habremos logrado nuestro objetivo: formar  mejores estudiantes, mejores personas.  personas. Juan Carlos Dianderas Gerente de Colegios de la Corporación Educativa Pamer 

 

 

Matematicas  3er   grado(Aritmetica    X    Geometria  ).indb 3

14/02/2014 09:08:12   a.m.

 

ÍNDICE

er 

 

3.  Grado

 ARITMÉT  ARIT MÉTICA ICA..... .......... ......... ......... .......... .......... .......... .......... ......... ......... .......... .......... .......... .......... ......... ......... .......... .......... .......... .......... ......... ......... .......... .......

5 7

 La centena: recuerdo y con contin tinúo................................... úo...................................................... ....................................... ......................... .....  La unidad de millar: lectura, escritura, comparación

● ●

 14  20 27   33    43  47

y tablero de valor   posicional. posicional.... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....... posicional...... ...... ...... ...... ...... .....  La decena de millar: lectura, escritura y tablero de valor   posicional...  adición y sus propiedades    con números de hasta 5 cifras................................  La La sustracción y técnicas operativas  con números de hasta 5 cifras ....................  Resolución de problemas  problemas con adición y sustracción con números de hasta 5 cifras .................. ...................................... ....................................... ...................................... ........................... ........  Creación y resolución de  problemas.. problemas..... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...  Repaso ................. ..................................... ....................................... ...................................... ....................................... ....................................... .......................... .......

● ● ● ●

● ●

..................................... ...................................... ....................................... ....................................... ...................................... ........................ .....  ÁLGEBRA  ÁLGE BRA ..................

 

38

51 53 55 57 59 61 64 66

 Encuentra el número: adición hasta el 50................................... 50....................................................... ............................. .........   .......................................................... ................................ ............   ¿Qué valor  tiene?: adición hasta el 60 ...................................... 99............................................. .................................... .................   Reemplaza el valor  de: adición hasta el 99.......................... ........................ .....  .........................................................  ¿Qué valor  tiene?: Sustracción  hasta el 99 ......................................  Ecuaciones con una  variable: adición hasta el 50 ................. .................................... .................................. ...............   Construimos ecuaciones con adición ................. .................................... ....................................... .................................. ..............    Miscelánea de ecuaciones  de la forma x + a =  bb y x –   –  a =  bb .................................. 

● ● ● ● ● ● ● ●

 

...................................... ....................................... ....................................... ...................................... ....................................... .......................... ...... 69  Repaso ...................  

  71  Elementos de la geometría:  punto punto y recta...............................................................  73 paralelas y perpendiculares  perpendiculares ...................................... ......................................................... ..................................... ..................  76  Rectas  paralelas  Segmento y rayo: estimación y medida con unidades arbitrarias ........................ 79  Segmentos: estimación y medida usando el centímetro........................................  81  Punto medio de un segmento .................. ..................................... ...................................... ....................................... ........................... .......  84  Operaciones con segmentos (adición).....................................................................  86  Operaciones con segmentos (sustracción) ................. .................................... ....................................... .......................... ......  88  Repaso ................... ...................................... ....................................... ....................................... ...................................... ....................................... .......................... ...... 90 ....................................... ....................................... .................................. ...............  93 RAZONAMIENTO MATEMÁTICO ................... .......................................................... ....................................... ...................................... .................................... ................. GEOMETRÍA ......................................  

● ●

 

 

 

   

   

   



 

 

   

 

● ●

 

 

   

 

 

 

 

 

 

 

   

 



 

 

 



 

 

 



 

 

 

 Juegos de ingenio .................... ....................................... ...................................... ....................................... ....................................... .......................... .......  95  Sucesiones numéricas.................................................................................................  99

● ● ●

 

alfanuméricas.......................................................................................... 103 Pirámides numéricas .................. ..................................... ...................................... ....................................... ....................................... ...................... ...  107  Sucesiones ........................................................ 110 ....................................... ...................................... ...................... ...  110  Conteo de segmentos ....................................  Conteo de ángulos ..................................... ......................................................... ....................................... ...................................... .......................... .......  11 1122  Conteo de triángulos ....................................... .......................................................... ....................................... ....................................... .....................  11 1144  Repaso ................... ...................................... ....................................... ....................................... ...................................... ....................................... .......................... ...... 11 1166  

● ● ● ● ●

..................................... ....................................... ....................................... ..................................... ..................   Y   AMBIENTE  AMBIENTE.................. CIENCIA  Y 

119  Organización biológica  biológica de los seres vivos...................................... vivos......................................................... ......................... ......  121  Órganos de los sentidos: la vista y el olfato ................. .................................... ...................................... ......................... ......  125  Órganos de los sentidos II: el oído, el gusto y el tacto .......................................... 129 .................................... ....................................... ....................................... ...................................... ................................. ..............  133  El sistema óseo ................. ..................................... ....................................... ...................................... ....................................... ............................ ........ 137  El sistema óseo II .................  El sistema muscular  ...................................... ......................................................... ....................................... ....................................... ....................... ....  141  La piel  piel ....................................... .......................................................... ...................................... ....................................... ....................................... ......................... ...... 145

● ● ● ● ● ● ● ●

..................................... ....................................... ...................................... ....................................... ....................................... .......................... ....... 147  Repaso .................  

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 4

 

14/02/2014 09:08:13   a.m.

 

 Ar  Arit itmé méti tica ca

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 5  

 

14/02/2014 09:08:21   a.m.

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 6

14/02/2014 09:08:21   a.m.

 

1

 

La  centena: Recuerdo  y  continúo

En cada paquete  paquete hay 1 decena de jabones.  jabones. En la caja hay 10  paquetes. paquetes.

Hay 10  paquetes paquetes con 10 jabones  jabones cada uno.

10 decenas son 1 centena. 1 centena son 100 unidades. 100 se lee cien. 1 centena se representa de varias formas:

1C

=

10 D

=

100 U

Descomposición en el tablero de valor posicional

C

D

U

1

0

0

 

Escritura de números

 

100

doscientos cuarenta y siete

2 

4

  Ejemplo: Ce Cen nte ten nas

  

  

247 = 200 + 40 +

7

 

               

200 300 400 500 600 700 800 900

7

cien

doscientos trescientos cuatrocientos quinientos seiscientos setecientos ochocientos novecientos

Dec ecen enaas   Unidades DESCOMPOSICIÓN

 NÚMERO  NÚMERO SE LEE LEE

DESCOMP DESC OMPOSIC OSICIÓN IÓN

3 C  +7D + 5 U

375

300 + 70 + 5

Trescientos setenta y cinco

Centenas 

ARITMÉTICA

Decenas   Unidades

  1

7

C   

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 7

C

D

U 5

er

3.   Grado

1

0

2

2 3

3 3

1 8

C

D

U

Actividades 1   Observa y escribe lo que falta. Después escribe



U  

14/02/2014 09:08:22   a.m.

 

(en número)  

LA  CENTENA: RECUERDO   Y   CONTINÚO

357

d)

C

D

U (en número)

el número completo y léelo.

(en número)

a) 2

Observa l  be el núm a)



3  centenas   5  decenas   7  unidades

C

D

U

 b)

  187  b) 350  530 c) 998  > , < o =  para 989 Escribe para indicar  su comparación. d) 764  664 e) 899  899 f)  647  86 a) 149

os  bloques bloques y escri ero.

(en número)

        

 

 

 b)

(en número) centenas 

decenas 

unidades



c)

Ubica los números en cada tablero y resuelve. a) 5 + 102 + 231

(en número)

+

 b)  213 + 51 + 124

1

 

  ARITMÉTICA

8 +

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 8

LA  CENTENA: RECUERDO  Y   CONTINÚO

14/02/2014 09:08:23   a.m.

 

er

3.   Grado

 

c) 163

 

400

 

600

 

255

227+

c)  703 + 57 + 130

514

+

d) 106

 

267

715+

d)   470 + 206 + 14

158 +

5   Resuelve las cuatro adiciones.

a)

6

132

 

Colorea del mismo color  el resultado de las las operaciones con los números escritos en  palabr palabras. as.

   b)  c)  d)   a)

261

431+

400

500

 b) 300 600

335+

250250  229229 790790 106106 123123  400400 937937 + +138138

       0       0       0       0        1       1       1       1

263        0       0       0       0       0       0       0        1       1       1       1       1       1       1

 –  –   –  Quinientos veintitrés + + Setecientos noventa y nueve  –    –  Cuatrocientos sesenta y nueve

510 Seiscientos quinientos ochenta y cuatro

9  

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 9

er 3.   Grado

ARITMÉTICA

  1  

14/02/2014 09:08:23   a.m.

LA  CENTENA: RECUERDO   Y   CONTINÚO

 

Exigimos más 7   Resuelve las operaciones y completa el Pamergrama con los resultados en palabras.  palabras.

560  –  –  128 –   –  427 =   5

 

C

670  –  –  663 + 1 =

999–  998

i n  

300 + 564 –   –  860 =

c o

8   Resuelve mentalmente y escribe la respuesta.

a) 100 + 200  –  300 + 100 =

d) 700 + 200 –   –  50 =

 b) 20 + 20  –  –  10 + 20 –   –  10 =

e) 700 –   –  200 + 50 =

c) 650  –  –  50 + 50 + 50 =

f)  350 + 150 –   –  100 =

9   Representa los datos de las siguientes situaciones  empleando material multibase.  Escribe la operación y

la respuesta. a) Un  veterinario  atiende  348  perritos  perritos  en  el  mes  de  abril  y  174  en  el  mes  de  mayo.  ¿Cuántos   perritos perritos atendió en estos dos meses? En

En  b) Un albañil está haciendo una   pared. pared. Si ya ha colocado  405 ladrillos y aún le faltan 168 ladrillos para  para acabar  la  pared, pared, ¿cuántos ladrillos100  tendrá100  la pared?  pared? 100       abril: Ladrillos colocados: 100 mayo:  Ladrillos faltantes: La pared  pared tendrá

1

ladrillos.

 

  ARITMÉTICA

10

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 10

LA  CENTENA: RECUERDO  Y   CONTINÚO

14/02/2014 09:08:25   a.m.

 

er

3.   Grado

 

 

10   Se corta una torta en 176 tajadas y se reparten. Si 11

sobran  69 tajadas, ¿cuántas  tajadas  se repartieron?

Respuesta.: _______________________   _______________________ 

Un  profesor  profesor  recorre 740 km  para para  ir  al local de Barranco. Si ya recorrió 524, ¿cuántos kilómetros le falta recorrer?

Respuesta.: _______________________   _______________________ 

Demuestro mis habilidades 12   Resuelve el siguiente problema:  problema:

En la  juguetería juguetería había 893 juguetes.  juguetes. Si quedan  258 juguetes,  juguetes, ¿cuántos se vendieron?

Respuesta.: _______________________   _______________________  13   En cada adición busca  busca sumandos que sumen 10 y calcula el total rápidamente.

1 8 7 2 3 4

      

+

2 1 + 4 3 8 9

19 72 + 3 3

24 55 + 3 9

        

      

    

2 6 + 5 3 5 4

6 7 8 + 3 2 1 4

2 5 9 + 1 4 0 5 1

3 5 0 + 5 6 5 1 4

   

   

11

ARITMÉTICA

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 11

er

  1 14/02/2014 09:08:27   a.m.

 

5

5 +

3.   Grado  

3 4 0 6 5

         

6 5 + 1 3 5 2 8

LA  CENTENA: RECUERDO   Y   CONTINÚO

         

6 5 9 + 1 4 0 5 1

2 9 2 + 3 1 6 4 2

         

7 7 + 5 3 2 9 1

         

6 4 3 + 2 5 2 7 5

        

3 1 + 4 6 1 3 2 8

Busca los resultados de la  pregunta pregunta anterior  y colorea las regiones que los contengan. 901

124 750 650

513 109

800

99

113

 

142

472

1144 11 900 270

1

822

 

427 1133 11

720 218

315 1 142 228 3

450

0540 540970 5 82

 

 

850

 

318

800

60

153

724

  822 133   331 14   Efectúa las siguientes adiciones  en forma desarrollada.  _____  +  _____  _____  +  _____  _____ 

2 2 3 + 1 3 4 1 3 2

            

 _____  +  _____  _____  +  _____  _____ 

2 4 1 + 1 2 6 1 1 2

_____  +  _____  _____   _____  +  _____ 

 

=   _____  +  _____  _____  +  _____  _____ 

4 7 6 + 1 2 3

 _____  +  _____  _____  +  _____  _____ 

 

 _____  +  _____  _____  +  _____  _____ 

=   _____  +  _____  _____  +  _____  _____ 

1

  ARITMÉTICA

   

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 12

614

       

3 9 6 + 1 3 5  

351

_____  +  _____  _____  +  _____  _____   _____  +  _____  _____  +  _____  _____  _____  +  _____  _____   _____  +  _____ 

=   _____  +  _____  _____  +  _____  _____ 

 _____  +  _____  _____  +  _____  _____   _____  +  _____  _____  +  _____  _____ 

=   _____  +  _____  _____  +  _____  _____ 

12  

14/02/2014 09:08:27   a.m.

 

LA  CENTENA: RECUERDO  Y   CONTINÚO

er

 

 

15   ¿Cuál es el número que corresponde al gráfico?

17

3.   Grado

¿Cuántas centenas hay en el número 672? a) 6

 b) 60

c) 67

a) 61

b) 600

 

c) 612

18

a) 534    b) 354

16   ¿Cuál  es  la  diferencia   del  mayor   y  menor   nú-

mero que se forman con las cifras 2; 4 y 6? a) 390 b) 396 c) 888

c) 435

13  

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 13

¿Cuál es el número que está formado   por  5U 3D 4C?

ARITMÉTICA

  1  

14/02/2014 09:08:28   a.m.

 

2 

  La  unidad  de  millar:  Lectura,  escritura, comparación y tablero de valor posicional

  Observa la ilustración y responde:  bond  habrá en total, contando todos los  paquetes? paquetes? ¿Cuántas hojas bond Papel Bond Papel Bond

Papel  Bond

Hay 1000 hojas en los  paquetes..  paquetes

Papel  Bond

100 Papel Bond Papel  Bond

100 Papel Bond Papel  Bond

100 Papel Bond Papel  Bond

100 Papel Bond

¿Cuántas hojas habrá en total?

Papel  Bond

100 Papel Bond Papel  Bond

100 Papel Bond

Papel  Bond

Papel  Bond

100 Papel Bond

100 Papel Bond

Papel  Bond

Papel  Bond

100

100

Papel  Bond

Papel  Bond

Papel  Bond

Papel  Bond

Papel   Bond

Papel  Bond

 

 

 

Papel Bond

Papel Bond

Papel Bond

= 1000

hojas

Para  1000

10 centenas forman 1 unidad de millar. 1 unidad de millar  = 10 centenas = 100 decenas = 1000 unidades. 1 Um en cifras: 1000 

1 Um en palabras:  palabras: mil

  Lo representamos gráficamente del siguiente  modo: Lo escribimos en el tablero de valor  posicional  posicional

Dibujamos 10 centenas  juntas juntas o usamos este cuadrado que representa 1000

 

Um

 

1

 

0

C

D

 

 

0

U 0

1 Um = 10 C = 100 D = 1000 U

2

14

  ARITMÉTICA

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 14

 

14/02/2014 09:08:34   a.m.

 

LA  UNIDAD  DE  MILLAR:  LECTURA, ESCRITURA,  COMPARACIÓN   Y 

TABLERO  DE  VALOR   POSICIONAL

3.er  Grado

Actividades 1   Observa el ejemplo:

Julia realizó la descomposición del número de carpetas que hay en el colegio.

Completa el número 1246 en el tablero de valor   posicional..  posicional

Observa cómo lo hizo y completa. Por  el valor  de  posición posición

1 Um + 2 C + 4 D + 6 U

Como notaci

ón desarrollada

C   1000 D  + 200 U + 40 + 6

Um 1

 

2   Completa:

Um

2

 

4

 

6

 

C   D

4

 

Completa:

U

 ________  + ________   ________  + ________   ________  + ________   ________ 

Um

C

D

U

6

7

8

5

6 Um + 7 C + 8 D + 5 U

Se lee: _____________________________  _______________________________  __  Se lee: seis mil setecientos  ochenta y cinco

3   Completa: 5

Um



D   U

 ________  + ________   ________  + ________   ________  + ________   ________ 

 

Completa:

Um    

C

D    

U    

 ________ + ________ + ________ + ________ 

Se lee: _____________________________  ________________________________  ___ 

Se lee: cinco mil trescientos cuarenta y ocho

15

ARITMÉTICA

 2

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 15

 

14/02/2014 09:08:35   a.m.

 

LA  UNIDAD  DE  MILLAR:  LECTURA, ESCRITURA,   COMPARACIÓN  Y 

TABLERO  DE  VALOR   POSICIONAL

3.er  Grado

pantalón, ambos deben tener  el mismo número escrito. 6   Relaciona cada camiseta con un  pantalón, 1C

1 Um 7D 4U 3C

6902

4139

9U 4 Um 3D 5D 2 Um 1U 8C

6 Um 0D 2U 9C

 

1374

3 Um Se lee: mil doscientos  cuarenta y seis. 1D 0U 7C  

2851

3710

Exigimos más 7   Natalia comparó la cantidad de alumnos de dos locales. Observa el ejemplo.

Pamer   

Cajahuaman

Izaguirre Pamer  Um

C

D

U

Um

C

D

U

3

4

8

1

2

3

8

1

>

  2. Entonces, 3 es mayor que 2.

1. Compara la cifra que se ubica en el lugar  de las Um. ¿Cuál es mayor? El tres    

 

 

 

3. Luego, 3481 > 2381 4. En palabras:  palabras: tres mil cuatrocientos ochenta y uno  es mayor  que dos mil trescientos ochenta y uno.

  5. El local de Izaguirre tiene más alumnos.  

2

 

 

  ARITMÉTICA

 

 

 

 

16

 

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 16

14/02/2014 09:08:36   a.m.

LA  UNIDAD  DE  MILLAR:  LECTURA, ESCRITURA,  COMPARACIÓN   Y 

TABLERO  DE  VALOR   POSICIONAL

3.er  Grado

 

8   Observa la cantidad de artículos vendidos en una  tienda de electrodomésticos.  Luego, coloca el

signo  >,   2 Um 34 722 > 32 122 Rpta.: Treinta y cuatro mil setecientos veintidós es mayor  que treinta y dos mil ciento veintidós. Tercer  grado vendió más rifas que quinto grado. Al comparar  dos números se compara cada orden, empezando por   por  el orden mayor, hasta encontrar  una  desigualdad.  Si en todos los casos se obtiene una  igualdad,  los números son iguales.

Dm

Um

C

D

U

5

2

1

6

4

5

..................... + ................... + ..................... + .................... + ..................... = .....................

Se lee: ...................................... ......................................................... ...................................... ....................................... ....................................... ....................................... ....................................... ....................... ....

Dm

Um

C

D

U

6

 

Se lee: setenta y dos mil cuatrocientos veinticinco

3

 

  ARITMÉTICA

22

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 22

14/02/2014 09:08:47   a.m.

LA  DECENA   DE  MILLAR:  LECTURA, ESCRITURA  Y   TABLERO  DE 3.er  Grado

 

 

 VALOR  POSICIONAL

Exigimos más 7   Une  los  números  que  tienen  la  cifra  encerrada  con  su  valor   en  unidades  y  formarás  el  nombre  de  un

 personaje..  personaje 52545

 

A

50

 

 _____ 

57478

 

O

50 000

 __A__ 

27658

 

S

37541

 

I

7 000

 _____ 

57659

 

D

1

 

 _____ 

99999

 

M

90 000

 _____ 

25651

 

D

 

 __O__ 

97398

 

E

 

40350

 



 

60151

 

V

  100 

 

 _____ 

   

70

  20 000  40 000

 _____   _____ 

 

 

90

 _____ 

  juguetes. Une cada caja con su ex8   La directora de un  albergue ha recibido  las siguientes donaciones de juguetes.  presión correspondiente.

56 900

12 650

89 200

26 310

78 050

..................... + ................... + ..................... + .................... + ..................... = .....................

1Dm 2Um 6C 5D

5Dm 6Um 9C

9   Compara los números y escribe > o , 

11   Observa los signos y ordena los números  que se encuentran  en cada saco.

a)

76 421 76 214 67 124 76 241

67 421

 

> >

 

> >

 b)

35 401 35 140 53 401 53 104

 

 

45 821

> >

 

> <

c)

21 450 21 504 21 210 21 045

21 540

 

< <

 

< <

d)

80 600 86 000 80 060 80 006

80 606

 

< <

 

<

 

3

 

  ARITMÉTICA

24

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 24

14/02/2014 09:08:47   a.m.

LA  DECENA   DE  MILLAR:  LECTURA, ESCRITURA  Y   TABLERO  DE

 VALOR   POSICIONAL  

3.er  Grado

   

 

 

 

 

 

   

 

 

 

 

12    para Observa diferentes formas de descomponer un número y completa. Luego, responde las preguntas  cadalas  número.

 

50 000 + 80 +

+ 6 + 700

5 ____ 9 ____ 7C 7C 8D 6U 59 786

 

Dm + 9Um +

 

 

C + 8D +

U

5978D y 6 __  Um 7C 8D 6U

 

5 El número 59 786 tiene:

unidades decenas de millar 

 

597 centenas unidades de millar  decenas

13   Escribe verdadero (V) o falso (F), según corresponda.

a) 60 000 + 3 000 + 20 + 6 = 6326  b) 45 789 = 4Dm 5Um 7C 8D 9U c) 56 098 = 50 000 + 6000 + 90 + 8 d) En 78 987 hay 8Um e) En 89 654 hay 89Um f)  67 435 = 6Dm 7Um 4C 3D 5U g) El número posterior   posterior  a 67 999 es 68 000 h)  El número anterior  a 56 000 es 55 000   i) 1Dm = 1000

   j) 2Dm = 20Um    

Observa con y responde cuidado.

 

ARITMÉTICA

3  

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 25

14/02/2014 09:08:48   a.m.

LA  DECENA   DE  MILLAR:  LECTURA, ESCRITURA  Y   TABLERO  DE

 VALOR   POSICIONAL

3.er  Grado

14   Forma el número mayor  (M) y el número menor  (m)  con las 5 cifras que tiene cada  pulpo. pulpo. Luego, com-

 para los números según los signos.

9  

8

7

3 0

5

9

9

0 0

M=

M=

m=

m=

<

<

<

   + c + d: 15   Calcula a + b

 

abcd = 3 D + 1 C + 4 UM + 8 U a) 8

 b) 15

c) 16

16   Calcula el valor  de «x «x»»

xyz = 127 + 5 C

a) 6

d) 20

 

 

 b) 5

17

c) 4

 b +  p: p: Determina el valor  de a + b 5p6 = a9b a) 20

d) 1

 b) 18

c) 11 d) 9

 

18

Determina el valor  de t + a: ttt = 3aa a) 1    b) 3 c) 6 d) 9

3

 

  ARITMÉTICA

26

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 26

14/02/2014 09:08:49   a.m.

Dm Um

4

C   D

U

3

2

5

0

7

6

2

8

1

8

1

9

0

7

9

0

  6

8

2

3

 

La  adición  y  sus  pro piedades  con números  de  h asta  5  cifras

En la lass últimas elecciones se obtuvieron los siguientes datos de los votantes en 3 diferentes distritos de Lima.

  Comas  J.M.  V.E.S. 

 

 N° votos

Distrito



  Se quiere saber  cuántos votos se efectuaron  en estos 3 distritos.

23 250 18 190 37 628

¡Qué fácil!  Es como una  adición  

 

 

de números cifras. de 4

Sumandos

 

V.E.S. J.M.

Suma En total en los 3 distritos se contabilizaron  79 068 votos. Los términos de la adición se llaman sumandos y el resultado recibe el nombre de suma. Para Los calcular  la suma de números con cinco cifras empezamos con la lass unidades, seguimos con la lass decenas, la lass centenas, la lass unidades de millar  y, al final, las decenas de millar. Si es necesario, se reagrupan la lass unidades, las las decenas, centenas y unidades de millar.

27

ARITMÉTICA

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 27

Comas

 4 14/02/2014 09:08:50   a.m.

 

+ LA  ADICIÓN   Y   SUS  PROPIEDADES   CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

Propiedades de la adición Propiedad

Notación simbólica

Ejemplo

Commutativa

a+b=b+a

5+4=4+5

Asociativa

(a + b)  b) + c = a + (b + c)

(1 + 2) + 3 = 1 + (2 + 3)

a+0=0+a

45 + 0 = 0 + 45

Elemento neutro

aditivo

Actividades

           

1   Completa el cuadro con los sumandos que faltan.  

+

15 349

Recuerda  que los términos de una  adición son los sumandos y la suma.

=

46 525

+

+

41 132

27 740

=

  +  

56 481 S/.3 0470 

= =

33 133

 

Fin

S.6763

2   Escribe en las casillas de las las figuras los números que hacen falta  para para que la lass sumas sean el número del centro.

68 407

24 936

+ 36 458

+

 

S/.8 +  

97 168

+

 

56 732

+   28 312 78 184

45 312 +

 

+

38 610 610

45 606 + 405 0

S22090 3   Observa la ilustración y encierra a las las pers  person onas as que se equivocaron  al calcular  la suma. Escribe tú la suma correcta. Pagaré   S/.11 00 0 S/.27 500

0 /.7

 

S/.29 000

S/. 35 

Pagaré S/.159 00 0000

00

S/. 700 9

/

Erika

 

Felipe

Suma real

4

Suma real

 

  ARITMÉTICA

28

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 28

14/02/2014 09:08:51   a.m.

LA  ADICIÓN   Y   SUS  PROPIEDADES   CON NÚMEROS  DE  HASTA  5  CIFRAS

Pagaré S/.100 100

 

er

3.   Grado

S8 00/

0

 

S/.15 900

 

Pagaré S/.38 20 2000

S/.86 00 S.95000 Betty Pagaré S/.59 250

S/.2900 Suma real S/.15 500

300 Suma real

José Pagaré 690 S/130 690

 

S/.2

/.1

 

S/.7600 S/.19 700

 

Gina

Pedro

Suma real

 

Suma real

 

a) Las Las personas  personas que se equivocaron al sumar  son

 

 b) ¿Cuánto deben  pagar  pagar  realmente Betty, Erika y Gina  juntas? juntas?

S/.

c) ¿Cuánto  deben pagar   pagar  realmente Felipe, José y Pedro juntos?  juntos?

S/.

 

4   ¿Cuánta fruta se ha exportado?  Cambia cada fruta  por  por  el valor  que representa y lo sabrás. Observa el ejemplo:

 

 b) La exportación de  papayas papayas equivale a:

= 16 318 toneladas

 

= 50 784 toneladas

+

+

= 27 0196 toneladas

 

=

 

toneladas

 

c) La exportación de naranjas equivale a: = 7985 toneladas

 

 

+

a) La exportación de uvas equivale a: =   58 769   toneladas

+

Dm 7 0 8

5 5

9 7 7

D

U

8 8 6

5 4 9

+

  +  = 

toneladas

 

d) La exportación de plátanos  plátanos equivale a:

+

 

 

+

 

+

29

 

=

toneladas

ARITMÉTICA

 

 4  

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 29

14/02/2014 09:08:52   a.m.

LA  ADICIÓN   Y   SUS  PROPIEDADES   CON NÚMEROS  DE  HASTA  5  CIFRAS

er

3.   Grado

5   Observa  cada  producto  producto   de  exportación  no   tradicional  y  la  cantidad  de  dinero  que  generó  por   por   ventas.

Luego completa.

Um

C

S/.17 5 8 3  6

 

S/. 7 402 7

 

S/.75 2 9

 

 

D

a)

 b)

 

S/.34 073

Total de dinero obtenido por   por  las exportaciones de muebles y cuero curtido:

9

Dinero producido  producido por   por  la exportación de artesanía de vidrio y ropa de lana:

8

 

2

c)

d)

U

 

S/.937 6

 

S/.57 345

3

6

 

 0

8

 

Dinero recibido  por  por  vender  joyería  joyería de plata,  plata, cuero curtido y papel  papel  blanco: blanco: Dinero que se generó al exportar  ropa de lana, muebles y artesanía de vidrio:

  2

e)

Dinero recibido  por  por  la venta de cuero curtido  y papel  papel  blanco: blanco:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f) Dinero que ingresó al Perú por la venta de cuero curtido, papel blanco,  blanco, ropa de lana y artesanía de vidrio. 6   Calcula:

 

g) 45 735 + 8689 =

d) 32 758 758 + 54 231 231 =

 

 

 

 b) 8932 + 895 =

e) 23 + 54 612 =

h) 11 11 1111 + 8889 =

c) 890 + 8943 =

f) 25 306 + 37 048 =

i) 86 + 73 145 =

 

4

 

 

a) 2345  + 3456 =

 

 

 

  ARITMÉTICA

30

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 30

14/02/2014 09:08:55   a.m.

LA  ADICIÓN   Y   SUS  PROPIEDADES   CON NÚMEROS  DE  HASTA  5  CIFRAS

er

3.   Grado

Exigimos más 7   Calcula:

 

a) 9 + 8 + 63

 

 

c) 21 + 18 + 74 =

 

 

 b) 35 + 8 + 89

=

 

 

e) 23 456 + 12 + 5698 =

 

d) 893 + 105 + 45 =

 

f) 18 632 + 925 + 2333 =

pre senta tados dos   sobre  las 8   Escribe  verdadero   (V)   o  falso  (F),  según  corresponda,  acerca  de  los   datos   presen exportaciones   de   dos   años. Año N°  N° 1

Año  N° N° 2

26 79 7966 + 4 U

<

26 734 734 + 4U

46 23 2355 + 7 C

>

46 253 253 + 7 D

56 21 2188 + 3 Dm

<

87 624 624 + 2 Um

1488 212 14 212 + 2 Cm

=

342 212 212 + 6 Um

+

9   Escribe el nombre de la  propiedad propiedad que  justific justificaa cada expresión:

 

a) 45 + 0 = 45

c) 8 + (3 + 4) = (8 + 3) + 4

Rpta.: 80    + c = a + (b + c)  b) (a + b)

d) 4 + 8 = 8 + 4

 

 

10   Completa las siguientes expresiones con el número adecuado.

 

a) 8 + 17 = 17 +

   

 b) 8 +

c) =8

15 + (12 + 8) = (15 +

d) 0 +

31

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 31

 

)+8

= 15

 4

ARITMÉTICA

14/02/2014 09:08:56   a.m.

 

 

LA  ADICIÓN   Y   SUS  PROPIEDADES   CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado 11   Calcula m  + (n  + 8):

m  + n = 12

 

 

Demuestro mis habilidades 12   Calcula (m  + 8) + (n  + 6):

m + n  = 12

Aplica la  propiedad propiedad asociativa y resuelve. 13   132 + 231 + 10 = 132 + 231 + 10

 

 

16

 _____  + _____   _____  =  ____  ____  +  ____  ____ 

 _____  + _____   _____  + _____   _____  =  ____  ____  +  ____  ____  +  _____  _____  Ejecuta la siguiente adición. 7 8  478 + 4 734

 _____  =  ____  ____ 

145

4 467

14   4360 + 36 + 1636 = 4360 + 36 + 1636

 _____  +  _____  _____  +  _____  _____  =  ____  ____  +  ____  ____  + _____   _____ 

 

17

 _____  =  ____  ____  +  ____  ____   _____  + _____ 

Ejecuta  la  adición  y  compruébala  aplicando  la  propiedad asociativa: 27478+

 _____  =  ____  ____ 

6 587   4 856

15   Aplica la  propiedad conmutativa y completa

3 215

cada ejercicio. a) 846 + 200 = 200 + _________   _________ 

 

248

 

 b) 76 936 +321 = 321 +  _______  _______ 

 

18

Ejecuta  la  adición  y  compruébala  aplicando  la  propiedad conmutativa: 3 4  762 + 8 431 1

312

 436

4

 

  ARITMÉTICA

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 32

 

32  

14/02/2014 09:08:57   a.m.

La  sustracción  y  técnicas  operativas con  números  de  hasta  5  cifras

5 

 

  Observa la siguiente  situación. A los dos partidos  partidos de semifinales de un  Mundial Juvenil de Fútbol asistieron 37 628 espectadores y al de la gran final asistieron 18 190.

 Nota: En una  sustracción se cumple la siguiente relación entre sus términos. Sustraendo + Diferencia Minuendo 

  Lucero quiere saber  en cuántos espectadores  aumentó la asistencia a la final respecto a las semifinales. Para calcular  la diferencia de asistentes entre los dos acontecimientos debemos restar  las 2 cantidades.

Hay más asistentes a la final que a la semifinal. ¿Cuántos asistentes más habrá?

 

 

Dm

 

 

D

 

 

U

 

5

3

7

6

2

8

1

8

1

9

0

sustraendo

1

9

4

3

8

diferencia

 

12

minuendo

17

2

 

 

   las unidades, se sigue por    Para resolver  una  sustracción, siempre se empieza por  las decenas, las centenas, las unidades de millar  y las decenas de millar. Si es necesario, se desagrupan las decenas, las centenas, las unidades de millar  o las decenas de millar.

 – 

Al número mayor  réstale el número menor.

Observación:  Cuando alguna cifra del minuendo es menor  que su correspondiente cifra en el sustraendo, la sustracción se complica. Aplicaremos la estrategia  por  por  canje  para resolver  este tipo de sustracciones. Um C Ejemplo  por  por  canje: En este caso no se descomponen los números sino que se va tra bajando con sus 6 12 valores  posicio451 1 9 5 451 195 → 451  1 9 5 → nales. 7 332 5 3 7

 

    

   

 

 

       

33

ARITMÉTICA

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 33

14/02/2014 09:09:01   a.m.

LA  SUSTRACCIÓN  Y   TÉCNICAS  OPERATIVAS CON   NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

7 8 3  732–  

Paso 2

Um

 5

Saqué

C

→ 

7 8 3  7 3 1  2  –  → 

    

100 100 100

100 100 100

7 8 3   7  3  2 – 

D U

 

 

 

10

10 1

1

1000 1000

 

100

100 100

 

100 10 1000

 

10 1 Restar  cente e  puede restar  8 nas.  presta 1 de 1, se presta Como no  s unidad de mil.

1 11

2178   – 

1844 33 4

Paso 3

Um

D

U

Saqué 1000

1 11

 

10

100 100 100

2178   – 

1

1844 33 4

10 1 10 1

Restar  unidades de mil. Como el resultado es cero, no  se coloca número en esa posición.  posición.

¿Cuál es la respuesta a la pregunta del problema? El domingo llegaron 334 turistas más.

C Al número mayor  réstale el número menor.





5

  Para resolver  una  sustracción siempre se empieza  por  por  las unidades, se sigue  por  por  las decenas, las centenas, las unidades y las decenas de millar.   Si es necesario, se desagrupan las decenas, las centenas, las unidades de millar  o las decenas de millar.

 

  ARITMÉTICA

34

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 34

14/02/2014 09:09:02   a.m.

LA  SUSTRACCIÓN  Y   TÉCNICAS  OPERATIVAS CON   NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

Actividades Utiliza la forma vertical para  para calcular  las restas.  –  2467 1   3121 – 

 

4

 

  –  12 434 53 768 – 

Resolución:

 

R

pta.: 654

 

2   6351 –   –  987

Resolución:

3121   –  2467 -654

3   4778 –   –  99

53768   –  12434 41334

Rpta.: 41 334 5

 

18 719 719 –     9573

6

 

23 480 480 –     8943

9

 

42 000 –   –  32 789

 

345 671 –   –  189 300

Exigimos más 7   567 893 –   –  4567

Resolución:  –  567  893   –  4 567 563  326

10

Rpta.: 563 326    48 397 8   68 300 – 

Demuestro mis habilidades 11   50 324  –  20 325

12   200 000  –  –  89 999

 

35  

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 35

ARITMÉTICA

 5  

14/02/2014 09:09:03   a.m.

 

LA  SUSTRACCIÓN  Y   TÉCNICAS  OPERATIVAS CON   NÚMEROS  DE  HASTA  5  CIFRAS

er

3.   Grado 13   45 368 –   –  27 869

15   10 476  –  –  2789

 

14   4682 –   –  368

16   42 572  –  –   36  489

 

17   Resuelve las sustracciones. Luego, escribe la letra de la respuesta en el lugar  adecuado y leerás un  mensaje.

 

 

40876  –   –    M 13124

76543   –  –  C 35231

67245  –    E

98500  –  A

24456

28654

85432  –   –    P 6789

50000   –  –  D 28987

 –    R  60000  –  9512

–  10010   –  3459

67589  –   –    O

48216   –  – 

24950   –  –  L 12323

   

   

12876  –  G 8543

73101   –  –  U 5791

   

 

45048   –  –  B 22026

 

70123  –   N 9786

 

¡

 

!

 

,

78345   –  –  8543

 

I

–  Y 70300   –  56981

38210  –  3913

 

S

58821   –  –  T

21001   –  – 

20001

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

69802

27752

42789

78643

50488

42789

78643

69846

50488

7009

23022

6551

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

42789

60337

41312

69846

21013

69846

21013

6551

69846

1000

78643

69846

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

50488

69846

8216

42789

50488

42789

9373

7009

50488

4333

67310

9373

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

9373

7009

21013

42789

27752

6551

8216

78643

69846

21013

50488

42789

................ .... 8216

.................... 13319

.................... 27752 60580

.................... 69846

.................... 42789 40000

................ .... 8216

................ .................... .... 9976 50488 48845

................ .... 7009

................ .... 8216

.................... 34297

5

ARITMÉTICA

36

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 36

14/02/2014 09:09:03   a.m.

 

LA  SUSTRACCIÓN  Y   TÉCNICAS  OPERATIVAS CON   NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

 

18   Efectúa las sustracciones.  Luego, ordena los resultados de mayor  a menor  y encontrarás un  mensaje.

Ordena los resultados de mayor  a menor.

PA 78 403 –   –  27 633

SO

ME

46 744  –  –  17 823

48 075  –  –  274 698

HOY 38 467 –   –  19 376

MER  ME R  57 864 –   –  27 842

MOS

LO

Y

89 41 4111  –  –  27 687

59 070  –  –  36 458

45 545 –   –  29 684

PRE PR E

JOR  JO R 

MOS

40 564 –   –  38 464

45 712  –  –  25 689

56 784 –   –  28 689

SIEM 24 167 –   –  12 389

Encontrarás un lindo mensaje.

Mensaje: «SO «S O _____

_____  _____  _____

_____  _____   _____   _____   _____   _____ _____

    37

_____   ___

 

_____  _____   _____ »

ARITMÉTICA

 5

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 37

14/02/2014 09:09:04   a.m.

 

6

Resolución de problemas  con adición y

 

sustracción con números de hasta 5 cifras Procedimiento  para para resolver  un  problema  problema 1.  Datos 

Estrategia general

del problema

Comprender

Analiza los datos significativos del  problema. problema.

2. ¿Qué me  pregunta?

Pensar

Análisisdeltexto.  ¿Cuáleselobjetoquenosproponemos?   egunt Subraya la pr  pregu nta. a.

3. Operaciones

Ejecutar

¿Qué operaciones hay que realizar? Encuentra la relación  entre los datos y el objetivo.

4. Resultado

Responder

Expresa  la  solución  mediante  una   frase.

Ejemplo de la vida cotidiana

Ejemplo para nuestro caso    y La clase de segundo grado siembra 25 árboles de pino 36 de ciprés. ¿Cuántos árboles siembra en total?

La lámpara no funciona

Pasos para resolver problemas

 No ¿Está enchufada la lámpara? 

1. Le Leee e interpreta.

 

Enchufar la

lámpara

2. Escribe el  planteamiento:  planteamiento:

Sí ¿Está quemado el foco? 

3. Escribe en forma vertical:

Sí foco

Cambiar el

Forma 25+ vertical 3 6

 No Comprar  nueva

4. Escribe la respuesta:

lámpara

6

  ARITMÉTICA

25 + 36

 

38

 

61

 

árboles

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 38

14/02/2014 09:09:05   a.m.

 

RESOLUCIÓN  DE  PROBLEMAS  CON  ADICIÓN   Y   SUSTRACCIÓN  CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

Actividades

 

  Le Leee cada enunciado hasta comprenderlo.   Traza una  estrategia, si es necesario haz un  dibujo.



  Opera y escribe la respuesta.

1   Para  una  campaña  de  solidaridad  se  recolectaron  35  309 víveres  en  el local  de  Salamanca; 17  448  en  el

local de Izaguirre y 24 617 en el local de Comas. Si la meta es recolectar  146 345 víveres, ¿cuántos víveres falta recolectar? Resolución: Salamanca =

35 309

35 309 +

146 345  –  – 

Izaguirre =

17 448

17 448

77 374

Comas =

24 617

24 617

68 9 71

77 374 Rpta.: Falta recolectar  68 971 víveres.

2   En una  ciudad de Alemania hay una población  población de 45 895 y en una  ciudad de España, 24 086 habitantes.

¿Cuál es la  población población que hay en las dos ciudades?

Rpta.:  _________________________  _________________________ 

 

3   En  una   granja  hay  9654  vacas.  Si  algunas   fueron  a

 pastar  y quedaron  5834, ¿cuántas  vacas fueron a  pastar?

Rpta.: _______________________________  ___________________________________  ____ 

39

ARITMÉTICA

 6

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 39

14/02/2014 09:09:10   a.m.

 

RESOLUCIÓN  DE  PROBLEMAS  CON  ADICIÓN   Y   SUSTRACCIÓN  CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

4   En  una   fábrica,  el  depósito  tiene  capacidad  para  30  902  cajas.  Si  en  este  momento   hay  15  409  cajas,

podrían  almacenar? ¿Cuántas cajas más se  podrían Resolución: Capacidad total = 30 902

30 902 –   – 

Ya se depositaron = 15 409

15 409 15 493

 

Rpta.: Podría almacenar  15 493 cajas más.

5   Una fábrica produce  produce 34 452 452  pares pares de zapatos. Si un  comerciante  de Gamarra com-

 pra 29 694, ¿cuántos pares  pares de zapatos le faltan para  para comprar  toda la  producci producción? ón?

 _________________________  Rpta.: _________________________ 

6   Se elaboraron 29 567 helados de chocolate  y 12 945 helados de fresa. ¿Cuántos

más de chocolate  que de fresa se elaboraron? Rpta.: ___________________________   ___________________________ 

Exigimos más

 

7   Un  estadio  recibe  45  000 espectadores   y  un   coliseo  19  654.  ¿Cuántos

espectadores   más  recibe  el estadio? Resolución: Rpta.:  __________________________  __________________________ 

   cada Lee bien  problema hasta entenderlo

8   El edificio de una  empresa consume S/. 37 378 en electricidad,

S/.25 478 en agua y S/.7 928 en mantenimiento. ¿Cuánto dinero se gasta en total si se pagan  pagan todas las cuentas?

Rpta.:  ______________________________ ____________________________________________  ______________ 

6

  ARITMÉTICA

40

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 40

14/02/2014 09:09:11  a.m.

 

RESOLUCIÓN  DE  PROBLEMAS  CON  ADICIÓN   Y   SUSTRACCIÓN  CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

Demuestro mis habilidades Observa la tabla de producción  producción de telas y resuelve las siguientes situaciones.

Producción de telas Clases de tela Tocuyo Terciopelo Lino Lanilla Seda

  Producción de

mayo (en metros) 46 234 8432 35 087 27 109 5965

 

12

9   ¿Cuántos metros de tocuyo y terciopelo  se pro pro-

dujeron en total en los meses de mayo y  junio? junio? Se produjeron  produjeron

m.

Producción de  junio (en metros) 32 987 12 087 50 000 45 921 13 500

Si la meta de  producción producción  de seda en mayo y  jujunio era de 20 000 m, ¿cuántos  metros de seda faltaron en cada mes?

 

m.

 

m.

En mayo faltaron En  junio junio faltaron

10   ¿Cuánta más tela de tocuyo y lino  juntas juntas se pro pro-

dujo en  junio junio que en mayo? En junio  junio se produjeron  produjeron

 

13

m más.

11   ¿Cuántos metros de tela de lino y lanilla  juntas juntas

m.

En junio  junio

m.

 

m.

 

m.

En mayo faltaron

se produjeron  produjeron en mayo y cuántos en junio?  junio? En mayo

Si la meta de  producción producción  de lanilla en mayo y en   junio junio   era  63  100  m,  ¿cuántos   metros  fal prod ucir   en  cada  mes? taron  producir 

En  junio junio faltaron

41

ARITMÉTICA

 6

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 41

14/02/2014 09:09:12   a.m.

 

RESOLUCIÓN  DE  PROBLEMAS  CON  ADICIÓN   Y   SUSTRACCIÓN  CON NÚMEROS  DE  HASTA  5  CIFRAS

3.er  Grado

Observa la gráfica de  barras. barras. Juguetes fabricados ajedrez      s      e       t      e      u      g      u        J

videojuegos muñeca trompo canicas

     

0 10 15 20 25 30 Cantidad de  juguetes juguetes (miles)

14   ¿Cuál es la cantidad total de juguetes  juguetes de ajedrez  

 

 

17

y videojuegos fabricados? a) 30 000  b) 35 000 c) 40 000 d) 25 000

 juegos??  juegos a) 5 Dm  b) 3 Dm c) 7 Dm d) 50 Dm

    

     

 

 

 

15   ¿Qué cantidad  de muñecas supera a la de

18

trompos? a) 20 000  b) 15 000 c) 25 000 d) 10 000

   

 

 

 

 

 

d) 25 000

16   ¿Cuál  es  la  cantidad  de  muñecas  y  canicas  fa-

 bricadas?  bricadas? a) 40 000  b) 35 000 c) 55 000 d) 45 000

       

  ARITMÉTICA

¿Qué cantidad de juguetes  juguetes giran (trompo y canicas)? a) 40 000  b) 45 000 c) 10 000

 

 

6

¿Qué cantidad de canicas supera a la de video-

 

42

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 42

14/02/2014 09:09:12   a.m.

 

7 Creación  y  resolución  de  problemas * Lee Lee cada enunciado y completa los espacios en blanco.  blanco. * Le Leee nuevamente y comprueba que el enunciado tenga sentido lógico. * Resuelve el  problema. problema.

Actividades

 

1   Rosa  preparó 12 tejas de  pecanas  pecanas el lunes. Si el martes  preparó  preparó 8 tejas más que el lunes, ¿cuántas tejas

 preparó Rosa el martes?

 

Datos Preparó: Lunes:   12 Martes:   8 En total:   ?

   pecana   tejas de pecanas s     más que el lunes   tejas

Operación

 

   20

12   +   8

=

Rpta: El martes preparó  preparó 20 tejas de  pecana pecanass

•   Inventa los datos y resuelve las siguientes situaciones. 2   Alonso  y  Víctor   jugaron otaal  jugaron  un    partido partido   de  básquet  básquet  y  anotaron   en  tot

canasta tass.  Si  Alonso  anotó

canastas, ¿cuántas canastas anotó Víctor?

 

Datos

Operación

Alonso: Rpta: Víctor  anotó

Víctor: 3   Fernando  pintó pintó

cuadros. Si ve vend ndió ió

=

 

canastas.

cuad cu adro ros, s, ¿cuántos cuadros le falta vender?

 

Datos

Operación =

Pintó: Vendió:

 

Rpta: Le falta vender 

43

cuadros.

ARITMÉTICA

 7

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 43

14/02/2014 09:09:13   a.m.

 

CREACIÓN  Y   RESOLUCIÓN DE  PROBLEMAS

3.er  Grado

4   En una  granja hay gallinas, pavos  pavos y 15  patos. Si en total hay 55 aves, ¿cuántas  aves hay entre gallinas y

 pavos?  pavo s?

Datos

Operación

 = 40

En total:   55 Patos:   15

55  –   –  15

  vos. Hay 40 aves entre gallinas y pavo Rpta: Hay s.  pa

Gallinas y pavos:  pavos:   ?  

5

 

vive en Marruecos. Ella comp compró ró

velos. Si ya tení níaa

velos, ¿cuántos velos tiene ahora?

Datos

Operación

Com omppró velos. Tenía velos.

+

Ahora tien tienee ? velos os.. aba bani niccos os.. Si ella puso  puso

velos.

abanicos en la sala, ¿cuántos abanicos  puso puso en

Datos Decoró con En la sala puso  puso

 

Tiene

  decoró su casa con el resto de la casa?

6

Rpta:

Operación  –

abanicos. abanicos.. abanicos

 

Rpta:

 

Puso

En el resto de la casa puso  puso ? ab abani anico cos. s.

abanicos.

Exigimos más Resuelve los siguientes problemas:  problemas:

 

7   Los  japoneses japoneses son muy trabajadores. Si ellos trabajan  10 horas diarias,  ¿cuántas horas descansan?

Datos

 

El día tiene 24 horas.

Operación

 

24  –

   

Trabajan 10 horas. Descansan   ?   horas.

10

14

 

 

8   María cultivó 65  bonsáis. Si vendió 35 , ¿cuántos  bonsáis  bonsáis le quedan?

Datos

Cul ulttiv ivóó Vendió

Rpta:

 

Descansan  14 horas.

Operación

bonnsáis. bo Rpta:

bons bo nsái áiss.

Le qu qued edan an ? bo bons nsái áis. s.

Le quedan

 

 

   bonsáis.

9   Si hoy resolví  110 adiciones y ayer  resolví 45  sustracciones, ¿cuántas operaciones he resuelto en 2 días?

Datos Ayer Hoy

7

Operación =

opeera op raci cion ones es opera ope racciones

  ARITMÉTICA

Rpta: _____________________________  _________________________________  ____ 

 

44

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 44

14/02/2014 09:09:13   a.m.

 

CREACIÓN  Y   RESOLUCIÓN DE  PROBLEMAS

3.er  Grado

  

10   Si Juan recorrió 5 km a  pie pie y 32 km en bus,  bus, ¿cuántos km recorrió en total?

Datos

A pie  pie

Operación =

km

En bus  bus

Rpta: _____________________________  _________________________________  ____ 

km

11   Si 28 es el resultado de restar  100 a un  número que no se conoce, ¿cuál es el número?

 

Datos

Operación =

Resultado

Rpta: _____________________________  _________________________________  ____ 

Restar  de

Demuestro mis habilidades •   Este cuadro indica el refrigerio  que toma cada una  de las niñas. ¿Cuánto gastan en total en su refrigerio?

 

S/.3

S/.3

S/.12

S/.4

S/.9

LECHE

12

 

S/.15

El refrigerio  de Rosario es __________________   __________________  y  __________________  __________________  . Ella gastó

13

=

El refrigerio  de Lucero es __________________   __________________  y __________________   __________________  . Ella gastó

14

 

 

=

El refrigerio  de Fátima es  __________________  __________________  y __________________   __________________  . Ella gastó

 

=

45

ARITMÉTICA

 7

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 45

14/02/2014 09:09:16   a.m.

 

CREACIÓN  Y   RESOLUCIÓN DE  PROBLEMAS

3.er  Grado

Resuelve los  problemas: problemas:

  

15   Nancy compró 6 docenas de huevos. Si ya cocinó 15 huevos, ¿cuántos  huevos sin cocinar  quedan?

Operación

Datos

Compró Coc ocin inóó

docenas = huevos.

 

 

=

huevos

Rpta:  ________________________________ _________________________________  _ 

 

 

16   Sam tenía 250 nuevos soles. Si gastó 75 en víveres y 150 en ropa, ¿cuánto  dinero le queda?

Datos

Operación

Tiene nuevos soles. Gastó en víveres nuev nu evoos soles. Gastó en ropa

Rpta:  ________________  ________________ 

nuevos soles.

17   Jorge compró 15 lapiceros azules y 32 lapiceros verdes. ¿Cuántos  lapiceros compró en total?

 

Datos

Operación

Lapiceros azules  

Lapiceros verdes

Rpta: ______________________   ______________________ 

 

18   Mi cuaderno  tiene 102 hojas. Si ya he usado 39 hojas, ¿cuántas  hojas me quedan  en  blanco? blanco?

Operación

Datos Tiene

hojas.

He usado

7

  ARITMÉTICA

hojas.

Rpta: ______________________   ______________________ 

 

46

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 46

14/02/2014 09:09:17   a.m.

 

8 Repaso 1   Observa el tablero de valor  posicional  posicional y completa  las expresiones.

Um 8

C   D 5

4

8543 =

Um 5

U 3



El valor  de 8 es 8000 unidades.



El valor  de 5 es

unidades.



El valor  de 4 es

unidades.



El valor  de 3 es

unidades.

+

C   D 3

2

+

+

U 9



El valor  de 5 es



El valor de 3 es

unidades.



El valor  de 2 es

unidades.



El valor  de 9 es

unidades.

 

5329 =

+

+

 

unidades.

   

+

47

 8

ARITMÉTICA

 

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 47

14/02/2014 09:09:18   a.m.

cerás el nombre de una  jugadora jugadora de la selección  peruana peruana  de vóley de 1980.

 

3.er  Grado 2

Resuelve y colorea los recua eraciones cuyos resultados  ue 50 000 y cono-

 NADINE  NADINE 10 462 +

GABRIE GABR IELA LA 15 070 +

12 623 15 398 4 167

  20 613 42 589

DEL 93 745  –  41 236

PEREZ PERE Z 27 465 +

KINA KINA 20 175 +

139  703 798 14 326

4 392 689 17 628

MALPARTIDA MA 65 732 –   –  46 905

SOLAR   89 070 –   –  21843

 

3   Resuelve las siguientes situaciones:

 

a)  Natal  Natalia ia  contó  7  Um  2  C  3  D  5  U  de  cuadernos  y  Luis  contó  7  Um  4  C  3  D  5  U  de cuadernos. ¿Quién contó más cuadernos?  Natalia  Natal ia

HEREDIA 76 302  –  –  42 760

REPASO

c) Bruno  acomodó  6  Um  6  D  4  U  de  hojas  y Rubén acomodó 6 Um 1 C 6 D 2 U de ho jas.. ¿Quién acomodó menos hojas?  jas

 

Bruno

Rubén

Luiss Lui

Papel Bond Papel  Bond Rpta.:  _________________________  _________________________  Rpta.:  _________________________  _________________________ 

 

 b) María escribió el número cinco mil trescientos  dieciocho.  Si  Luis  escribió   el  antecesor  y Elena el sucesor, ¿qué número escri bió cada niño?

 

 

d) Ada  escribió  6000  +  200  +  30  +  5 y  Olga escribió 6 Um 2 C 3 D 5 U. ¿Qué número escribió cada niña? ¿Cómo son esos dos números? Ada:

 

Olga:

  Los dos números son _______________  .

Luis

María

Elena

dros con las op sean mayores q

 

8   ARITMÉTICA

 

48

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 48

14/02/2014 09:09:19   a.m.

er

3.   Grado

REPASO 4   Resuelve y, según el resultado,  escribe el nombre de los  platos.  platos.

Champus

Tortilla de raya

7 283

85 282

Raya, cebolla, china, ají 15 726 + 3 287 45 621 387 20 261

Arroz con cabrito

Causa

54 664

Arroz, frijol, cabrito 32 768 + 15 271 3 989 2 604 32

42 861

  llo, Papa, poll o, alverja,  po choclo, zanahoria, mayonesa 57 832  –  14 971

   azúMaíz, piña, car, canela

90 703  –  83 420

Resuelve y colorea la respuesta correcta: 5   Si al número cuarenta y cinco mil treinta y dos le cambiamos  el cero por    por  el siete, ¿cuántas  unidades más

tiene el nuevo número formado? 7

70

 

700

 

7000

6   Si al número diecisiete mil treinta y cinco le cambiamos  el 7 por   por  el 4 y el 5  por  por  el 6, ¿en cuántas unidades

disminuye? 2999

 

60 000

3626

 

6 000

7   Si al número veinte mil ochocientos diecinueve  le intercambiamos la cifra de las centenas y las decenas

de millar, ¿en cuántas centenas aumenta? 59400

594

 

5940

 

590

8   ¿Cuál es el mayor  número de cinco cifras diferentes  que tiene el 1 en las decenas, la cifra de las unidades

de millar  es el triple de las decenas, y la menor  cifra  par  par  significativa en las unidades?   93 812 93 810 73 512  

93 718

9   ¿Cuál es el mayor  número que se  puede puede formar  con las cifras 5; 9; 0; 4 y 3?  

99 504

 

95 043

95 430

 

49

93 045

 8

ARITMÉTICA

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 49

14/02/2014 09:09:20   a.m.

 

3.er  Grado

REPASO

10   ¿Cuál es el menor  número que se  puede puede formar  con las cifras 4; 9; 6; 1 y 0?

1469

14 069

 

6491

 

10 469

11   Coloca el signo  o =.

  2) 60 400 1) 30 298  

 

32 260

6) 50 000

64 000

7)

6850

 

3)

7390

7380

8) 60 098

4)

4501

4510

9)

5) 40 000

40 001

 

3606

10)  80 078

46 50 5000 6050 60 19 1988

 

3060 www www 80 08 0877

12   Colorea del mismo color  el cartel de la izquierda con el lugar  turístico y con el avión correspondiente.

10 000 + 5000 + 300 + 40 + 6

Laguna de Paca 83 231

Cusco: Treinta y dos mil ochocientos cincuenta y cuatro

50 000 + 8000 + 200 + 10 + 3

Machu Picchu

Junín: Ochenta y tres mil doscientos treinta y uno.

 

32 854 80 000 + 3000 + 200 + 30 + 1

Punta Sal Sal 15 346

Puno: Cincuenta y ocho mil doscientos trece.

30 000 + 2000 + 800 + 50 + 4

Río Amazonas 74 635

Amazonas: Setenta y cuatro mil seiscientos treinta y cinco.

70 000 + 4000 + 600 + 30 + 5

Lago Titicaca

Tumbes: Quince mil trescientos cuarenta y seis.

58 213

Bibliografía

 

1. www.portalplanetasedna www.portalplanetasedna.com.ar/jugar .com.ar/jugar matematica matematica

  3. http://onemperu.wordpress.com 4. Aritmética 2010, Editorial Paz SAC.

2. www.sectormatematica.cl/educbasica.htm  

 

 

 

8   ARITMÉTICA

 

   

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 50

50  

14/02/2014 09:09:21   a.m.

 

 

Matematicas  3er   grado(Aritmetica  -  X  -  Geometria  ).indb 70

 

14/02/2014 09:09:39   a.m.

 

Resolución:

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF