Aritmetica Del Computador

January 19, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Aritmetica Del Computador...

Description

 

C[JQMÊQJDC ABL DOMVRQCAO[

 

C[JQMÊQJDC ABL DOMVRQCAO[ •

Crjtmêdc kjgcrjc Go bs mãs qub cqubllc crjtmêdc qub sb ac bg bl  —

 —

sjstbmc gumbr gumbrcdjôg cdjôg los ab dôajeos kcsb ;, yabl qub bs uljzcacab pcrc dogstrujr domputcaor. Opbrcdjogbs crjtmêdcs0 sumc, rbstc, mulpljdcdjôg y ajvjsjôg •

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmcs ab gumbrcdjôg

Tjstbmcs ab gumbrcdjôg •



Dog`ugto ab símkolos uscaos pcrc rbprbsbgtcr jghormcdjôg Bl gðmbro abgumêrjdc. símkolos ab bstb dog`ugto abpbgab ab lc kcsb abl abl sjstbmc sjstbmc ab gumbrcdjôg.



B`bmplos0

Kjgcrjo {6,3}

Odtcl {6,3,;,4,1,2,8,5}

Abdjmcl {6 {6,,3,;,4,1,2,8,5,>,:}

Nbxcabdjmcl {6,3,;,4,1,2,8,5,>,:,C,K,D,A,B,H}

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmcs ab gumbrcdjôg •



Domðgmbgtb0 Bl sjstbmc ab gumbrcdjôg abdjmcl. Bg domputcdjôg los mãs uljzcaos sog0 bl kjgcrjo pcrc bhbdtucr opbrcdjogbs crjtmêdcs, bl odtcl y nbxcabdjmcl pcrc bhbdtucr dôajeos jgtbrmbajos qub rbsultcg mãs hcvorcklbs qub dogvbrr abdjmclbs c kjgcrjos o cl dogtrcrjo.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc abdjmcl •

Tjstbmc abdjmcl Tb domkjgcg ab ugc mcgbrc sjstbmãdc ajbz  —

 —

 —

símkolos (6,3,;,4,1,2,8,5,>,:). lc hormc ebgbrcl  uljzcac pcrc rbprbsbgtcr duclqujbr gðmbro ab kcsb “k” “ k”,, lc ducl bs0 ....T;T3T6.T-3T-;.... Tj tomcmos domo rbh rbhbrbgdjc brbgdjc bl sjstbmc abdjmcl, T  rbprbsbgtcríc rbprbsbg tcríc ug símkolo duclqujbrc ab los 36 aíejtos ab bstb sjstbmc y bl sukígajdb jgajdcríc lc posjdjôg abl símkolo dog rblcdjôg cl pugto abdjmcl.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc abdjmcl •

B`bmplo0

G=domo0 >;24 sb lo pubab bxprbscr bg gotcdjôg bxpcgajac 

G36= > * 364 + ; * 36; + 2 * 363 + 4 * 366 Bg aogab 364 rbprbsbgtc cl 3666, y > * 3666 bs jeucl c >666 …, por lo qub bl oktbgarícmos qub0 >;24= >666 + ;66 + 26 + 4

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc abdjmcl •



Duclqujbr vclor hrcddjogcrjo rbprbsbgtcao bg bl sjstbmc abdjmcl por ugc dcabgc ab aíejtos abdjmclbs `ugto dog ug pugto abdjmcl jgtbrdclcao, pubab bxprbscrsb tcmkjêg bg gotcdjôg bxpcgajac uscgao potbgdjcs gbecvcs gbecvcs ab 36. Bspbdídcmbgtb Bspbdídcmbg tb bl vclor posjdjogcl ab los aíejtos c lc abrbdnc abl pugto abdjmcl bs rbspbdvcmbgtb0 36-3 = 3/36 36-; = 3/366 36-4 = 3/3666 ......

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc abdjmcl •



B`bmplo0

Bxprbscr bl gðmbro >45.2;8 bg gotcdjôg bxpcgajac. Toludjôg0 Ncdjbgao uso ab lc hormc ebgbr ebgbrcl cl y lc gotcdjôg bxpcgajac oktbgbmos. T;T3T6.T-3T-; T-4

> 4 5. 2 ; 8 >45.2;8= > * 36; + 4 * 363 + 5 * 366 + 2 * 36-3 + ; * 36-; + 8 * 36-4 >45.2;8= >66 + 46 +5 + 2/36 + ;/366 + 8/3666

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc abdjmcl B`brdjdjos0

Bsdrjkjr bg gotcdjôg bxpcgajac los gðmbros0 •



;18> 318.5;4

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc kjgcrjo •

Tjstbmc kjgcrjo

Bl sjstbmc ab kcsb ; uljzc aos aíejtos0 6 y 3, bg bl ducl dcac ugo rbprbsbgtc ug kjt ab jghormcdjôg.  —

Duclqujbr gðmbro kjgcrjo bstã hormcao por ugc sudbsjôg ab kjts, aogab cqubllos qubqub go go bgbg pcrtb hrcddjogcrjc, bs abdjr cqubllos bgbg ug pugto kjgcrjo, sb llcmcg bgtbros kjgcrjos.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tjstbmc kjgcrjo

Los vclorbs ab posjdjôg bg bl sjstbmc kjgcrjo sog lcs potbgdjcs ab lc kcsb ;. •

;6 ;3 ;; ;4  ..... Los vclorbs ab posjdjôg ab lc pcrtb hrcddjogcrjc ab ug gðmbro kjgcrjo sog lcs potbgdjcs gbecvcs.

;-3 ;-; ;-4 .....

 

C[JQMÊQJDC ABL DOMVRQCAO[ •

Bg domputcdjôg los gðmbros kjgcrjos go sjbmprb rbprbsbgtcg ugc dcgaca gumêrjdc. C vbdbs sog djbrto po ab dôajeo qub rbprbsbgtc jghormcdjôg go gumêrjdc. Lcs domputcaorcs pubabg rbdogodbr bg ug gðmbro kjgcrjo djgdo hugdjogbs0  —

Actos gumêrjdos rbclbs.

 —

 —

 —

 —

Gðmbros dorrbspogajbgtbs dorrbspogajbgtbs c ugc ajrbddjôg bg lc mbmorjc. Rg dôajeo ab jgstruddjôg. Rg dôajeo qub rbprbsbgtc dcrcdtbrbs clhcgumêrjdos. Jghormcdjôg Jghor mcdjôg sokrb lcs dogajdjogbs ab ajsposjvos jgtbrgos o bxtbrgos c lc domputcaorc”. domputcaorc”.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Dogvbrsjôg bgtrb sjstbmcs ab gumbrcdjôg 

Dogvbrsjôg Dogv brsjôg ab abdjmcl c kjgcrjo

Qrcgshormcr ug gðmbro abdjmcl c kjgcrjo dogsjabrcgao los pcsos0 3. Tbpc Tbpcrrcr lc pcr pcrtb bg bgtbrc ab ab lc lc p pcr crttb

B`bmplo0 16.52

hrcddjogcrjc.

16 +6.52

;.

Ajvj Ajvjaj ajrr lc lc pcr pcrtb tb bgtb bgtbrrc pcr pcrcc ; ncst ncstcc qub qub bl ðlmo dodjbgtb sbc 3. Bstb ðlmo dodjbgtb, sbeujaos ab los sudbsjvos rbsjauos lbíaos ab abrbdnc c jzqujbrac, acg lc hormc dogvbgdjogcl abl gðmbro bgtbro bqujvclbgtb bg kjgcrjo.

16

T6=6

; ;6 T3=6

; 36

;

T;=6

2 T4=3

; ; T1=6

; 3

Ab bstc opbrcdjôg oktbgbmos qub0 16 = 363666

 

C[JQMÊQJDC ABL DOMVRQCAO[0

Dogvbrsjôg bgtrb sjstbmcs ab gumbrcdjôg  4. Mulpl Mulpljd jdcr cr lc lc hrcdd hrcddjôg jôg abdjm abdjmcl cl p por or ; y lc pcrtb bgtbrc ab bstb proaudto sbrã lc prjmbrc djhrc ab lc hrcddjôg kjgcrjc. Lc pcrtb hrcddjogcrjc abl proaudto sb mulpljdc gubvcmbgtb por ; y lc pcrtb bgtbrc bstb proaudto djhrc abab lc hrcddjôg kjgcrjcbsylc csísbeugac sudbsjvcmbgtb ncstc qub sudbac ugc ab lcs sjeujbgtbs sjeujbgtbs sjtucdjogbs0 •

  Sub lc pcrtb hrcddjogcrc hrcddjogcrc abl cleðg proaudto por ; sbc 6, bg duyo dcso lc hrcddjôg bxcdtc, ab bs abdjr bgb ug kjgcrjc gðmbrobsljmjtcao djhrcs.

Ncdbmos qub0 6.5236 = 6.33;

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Dogvbrsjôg Dogvbr sjôg ab abdjmcl c kjgcrjo •



 Sub lc pcrtb

hrcddjogcrjc hrcddjogcrjc abl proaudto por ; domjbgdb c rbpbrsb jgajvjauclmbgtb o por erupos, bg duyo dcso acrã ugc hrcddjôg kjgcrjc pbrjôajdc purc o mjxtc, aogab lcs djhrcs sb rbpjtcg jgabgjacmbgtb.   Sub lc pcrtb hrcddjogcrjc hrcddjogcrjc ab los proaudtos proaudtos por ; sb prbsbgtb prbsbgtb sjg gjgeðg orabg, lo qub ac orjebg c ugc hrcddjôg kjgcrjc jgbxcdtcc go pbrjôajdc, bs abdjr ug gðmbro kjgcrjo jrrcdjogcl. jgbxcdt

Lc dogvbrsjôg domplbtc qubacríc0 16.5236 = 363666.33;

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Dogvbrsjôg Dogvbr sjôg ab abdjmcl c kjgcrjo

B`brdjdjos

Dogvjbrtc los sjeujbgtbs gðmbros abdjmclbs c •



sus bqujvclbgtbs bg kcsb ;. ;3: 3;:>.;36

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Dogvbrsjôg ab kjgcrjo c abdjmcl Dogvbrsjôg ab kjgcrjo c abdjmcl

[bprbsbgtcr bl gðmbro bg su hormc bxpcgajac y sjmpljdcr abdjmcl, pcrc oktbgbr bl uljzcgao gðmbro bglclccrjtmêdc hormc dogvbgdjogcl. B`bmplo0

3636.363; c kcsb 36 3636.363; =3 * ;4 + 6 * ;; + 3 * ;3 + 6 * ;6 + 3 * ;-3 + 6 * ;-; + 3 * ;-4  = > + 6 + ; + 6 + 6.;2 + 6 + 6.3;2 =36.8;2

Lubeo0 3636.363;= 36.8;236

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Dogvbrsjôg Dogvbr sjôg ab kjgcrjo k jgcrjo c abdjmcl

B`brdjdjos0

Dogvbrr ab kjgcrjo c abdjmcl los gðmbros0 •



336336 363.33

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Opbrcdjo Opbrcdjogbs gbs kjgcrjcs Opbrcdjogbs kjgcrjcs Opbrcdjogbs Lcs opbrcdjogbs ab0 sumc, rbstc, mulpljdcdjôg y ajvjsjôg qub sog prodbscacs bg lc CLR (Rgjaca Crjtmêdo — Lôejdc) abl domputcaor y rbcljzcacs bg dôajeos bxprbscaos bg sjstbmc kjgcrjo. Cajdjôg kjgcrjc

Bg ugc bxprbsjôg jgtbrvjbgbg blbmbgtos o gðmbros y bl opbrcaor qub bspbdjdc bl prodbajmjbgto c sbeujr dog cquêllos. Bg lc cajdjôg los blbmbgtos rbdjkbg bl gomkrb ab sumcgao y bl opbrcaor bs bl sjego (+).

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Cajdjôg kjgcrjc •

 Lc tcklc ab lc cajdjôg kjgcrjc sb rbprbsbgtc 0 6+6=6 6+3=3 3+6=3 3 + 3 = 6, Llbvcgao 3 3 + 3 + 3 = 3, Llbvcgao 3



Lc cajdjôg bs dogmutcvc, dogmutcvc, bs abdjr abdjr 3 + 6=3 y 6 + 3=3.





Oksbrvbab qub, lc opbrcdjôg sb rbcljzc bxcdtcmbgtb bxcdtcmbgt b jeucl sjstbmc gumbrcdjôg abdjmcl tbgjbgao bg dubgtc qubqub sj sbbg bl bxdbab bx dbab lc kcsb sb llbvc l lbvc domo cdcrrbo ugc ugjaca bg lc sjeujbgtb djhrc ab orabg supbrjor. Bg lc tcklc sb jgajdc jgajdc qub 3 + 3 =36 y abkb bg bgtbgabrsb tbgabrsb 36 bg kcsb kjgcrjc (36;) qub bs bl bqujvclbgtb abl ; bg bl sjstbmc abdjmcl.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Cajdjôg kjgcrjc B`bmplo 0





 Tumb lc prjmbrc dolumgc bstã mãs c lc abrbdnc), bg bstb dcso0 3 + 3(lc= qub 6, dog ugo qub sb llbvc.  

Bl sjeujbgtb pcso dogsjstb bg sumcr0 3 + 3 + 6 = 6, dog   ugo qub sb llbvc. •

 Tumcmos 3 + 3 + 3 = 3, dog 3 qub sb llbvc.



 Lubeo 3 + 6= 3



 

C[JQMÊQJDC ABL DOMVRQCAO[0 Cajdjôg kjgcrjc •

B`brdjdjos rbsubltos0

 

33633.63 + 363.3363 36663.6663  

363333 366333 + 33333 3336363

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Cajdjôg kjgcrjc •

B`brdjdjos

[bcljzcr lcs opbrcdjogbs sjeujbgtbs. c) 366333 + 33363 k) 3363.63 + 363.63 k) 363663633663.3333 + 3333366.66633

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tustrcddjôg kjgcrjc •

Tustrcddjôg kjgcrjc Tustrcddjôg [bdoracr qub lc rbstc go bs dogmutcvc y por  —

 —

tcgto abkbgbg ajsgeujrsb blbmbgtosbsqub jgtbrvjbgbg lc mjsmc. los Bl mjgubgao bl blbmbgto abl ducl sb rbstc bl sustrcbgao. Cl jeucl qub bg bl sjstbmc ab gumbr gumbrcdjôg cdjôg abdjmcl sb bgb bg dubgtc qub sj sb bxdbab lc kcsb sb llbvc bg lc sjeujbgtb djhrc ugc ugjaca ab orabg supbrjor

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tustrcddjôg kjgcrjc 6-6=6 3-6=3 3-3=6 6 — 3= 3, 3 , prbstcgao prbstcgao ug 3 ab lc sjeujbgtb dolumgc. Bg bstc ðlmc sb tomc ug 3 abl gðmbro ab lc •



jzqujbr jzqujbrac, ac,pcrc bs abdjr ab lc dolumgc ab orabg jgmbajcto supbrjor doghormcr doghormcr lc opbrcdjôg 36 — 3= 3. Tj bl mjgubgao bs gbecvo, lc opbrcdjôg sb dogvjbrtb bg ugc cajdjôg dog bl rbsultcao gbecvo.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tustrcddjôg kjgcrjc B`bmplos0

Oksbrvcr qub prbstcmos ug 3 ab lc tbrdbrc dolumgc abkjao c lc ajhbrbgdjc ab 6 — 3 bg lc sbeugac dolumgc.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Tustrcddjôg kjgcrjc •

B`brdjdjos0

Abscrrollcr lcs sustrcddjogbs0 c) 3363 - 336 k) 333636.66366 - 3333.66663 d) 33363633 — 3633363

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Mulpljdcdjôg Mulpljdcdj ôg kjgcrjc Mulpljdcdjôg kjgcrjc

Bg lc mulpljdcdjôg los blbmbgtos sb llcmcg mulpljdcgao y mulpljdcaor, y qub bl opbrcaorr bs bl opbrcao bl sjego (*). Lc mulpljdcdjôg kjgcrjc bs dogmutcvc, csodjcvc y ajstrjkuvc dog rblcdjôg c lc sumc.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Mulpljdcdjôg Mulpljdcdj ôg kjgcrjc 6*6=6 6*3=6 3*6=6 3*3=3 Vcrcc mulpljdcr gðmbros qub Vcr qu b bgbg pcrtb bgtbrc y pcrtb hrcddjogcrjc opbrcbljeuclmbgtb domo bl sjstbmc abdjmcl. Aogab, pcrcsb dolodcr pugto kjgcrjo sb bg dubgtc lc dcgaca ab djhrcs hrcddjogcrjcs tcgto bg bl mulpljdcgao domo bg bl mulpljdcaor,, y bstc dcgaca sb sbpcrc bg bl proaudto o mulpljdcaor rbsultcao.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Mulpljdcdjôg Mulpljdcdj ôg kjgcrjc B`bmplos0

B`brdjdjos0

Bhbdtucr Bh bdtucr lcs mulpljdcdjogbs jgajdcacs0 jga jdcacs0 c) 366333 * 363 k) 33.363 * 3.63

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Ajvjsjôg kjgcrjc •



Bg bstc opbrcdjôg kjgcrjc los blbmbgtos sog bl ajvjabgao y ajvjsor. ajvjsor. Domo bg lc ajvjsjôg abdjmcl ab bgtbros, bgtbr os, ug rbsjauo bs posjklb ducgao ug bgtbro bgtbro kjgcrjo sb ajvjab por otro. o tro. Vrodbajmjbgto0 Tb tomc bl mjsmo gðmbro ab djhrcs bg bl ajvjabgao qub lcs qub bgb bl ajvjsor, sj go cldcgzc sb tomc ugc mãs. Tb rbstc, sb kc`c lc sjeujbgtb djhrc y sb sjeub bl mjsmo prodbajmjbgto

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Ajvjsjôg kjgcrjc Csí mjsmo, lc ajvjsjôg ab hrcddjogbs kjgcrjcs sb mcgb`c ab lc mjsmc mcgbrc qub lc ajvjsjôg ab hrcddjogbs abdjmclbs9 domprokêmoslo rbvjscgao pcrc bllo bl cleorjtmo0



  Absplczcr bl pugto kjgcrjo, tcgto bg bl ajvjabgao domo bg bl ajvjsor, ncstc qub bl ajvjsor sbc ug gðmbro bgtbro. •

B`bmplo0 36.63 õ 3.3

Ducgao bl gðmbro ab djhrcs hrcddjogcrjcs abl ajvjsor bs mcyor qub lcs abl ajvjabgao, bs gbdbscrjo cerbecr c bstb ðlmo los dbros qub sb prbdjsbg. •

Lubeo, sb abtbrmjgc sj bl gðmbro ab djhrcs abl ajvjsor bs jeucl o mbgor qub bl gðmbro ab aíejtos ab lc jzqujbrac abl ajvjabgao. Tj csí sudbab, sb bsdrjkb ug (3) bg bl dodjbgtb y bl ajvjsor sb rbstc ab bsos aíejtos, y c bstb rbsjauo sb lb cerbec lc djhrc sjeujbgtb abl ajvjabgao. Tj, por bl dogtrcrjo, bl ajvjsor bs supbrjor c los aíejtos •

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Ajvjsjôg kjgcrjc •

B`brdjdjos0

Bhbdtucr lcs ajvjsjogbs sjeujbgtbs0 c) 3333 õ 363 k) k) 363 363.3 .363 633 3 õ 3. 3.33 33

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Domplbmbgtos Domplbmbgt os kjgcrjos Domplbmbgtos kjgcrjos •



Bs posjklb rbsbrvcr ug kjt pcrc abgotcr bl sjego ab ug gðmbro, 6 pcrc gðmbros posjvos (+) y 3 pcrc gðmbros gbecvos (-). Bl sjstbmc mãs bmplbcao p pcrc crc rbprbs rbprbsbgtcr bgtcr gðmbros kjgcrjos dog sjego bs bl ab domplbmbgto c ;. Vcrc dogsjabrcr bstb sjstbmc bs gbdbscrjo tbgbr bg dubgtc bl ðlmo domplbmbgto c 3, bl ducl sb okbgb dcmkjcgao dcac kjt abl gðmbro por su domplbmbgto.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Domplbmbgtos kjgcrjos •



Bl domplbmbgto c ; ab ug gðmbro kjgcrjo sb okbgb tomcgao bl domplbmbgto c 3 y sumãgaolb ugc ugjaca cl kjt mbgos sjegjdcvo. B`bmplo0  [bprbsbgtcr bl gðmbro dog sjego +14 sb cerbec ug kjt 6 cablcgtb abl gðmbro kjgcrjo puro, csí0 14 = 363633 +14= 6363633

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Domplbmbgtos kjgcrjos Bg dcmkjo pcrc oktbgbr bl gðmbro gbecvo  —14 sb bgdubgtrc bgdubgtrc bl do domplbmbgt mplbmbgto o c ; abl gðmbro posjvo0 Gðmbro kjgcrjo posjvo0 6363633 Domplbmbgto c 30 3636366  ___ +3 Domplbmbgto c ;0 3636363 •

Vor lo qub0 3636363= -14

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Domplbmbgtos kjgcrjos •

Bl domplbmbgto c ; ab ug gðmbro dog sjego dcmkjc ug gðmbro posjvo por ugo gbecvo y vjdbvbrsc, bs abdjr, qub bl domplbmbgto c aos dcmkjc lc polcrjaca abl gðmbro.

 

C[JQMÊQJDC ABL DOMVRQCAO[0 Domplbmbgtos kjgcrjos •

B`brdjdjos0

[bprbsbgtcr los sjeujbgtbs gðmbros kjgcrjos dog sjego0 c) -34 k) + 32 d) -3:

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF