ARIHANT PRAKASHAN K A L I N D I , T.R NAGAR, M E E R U T - 2 5 0 0 0 2
URGETIIT 2 0 0 6 - 0 7
Other Useful Books "7ext S»4 The unit of force
2 = kilogram metre per second
4. Abbreviations for multiples and submultiples: Symbol Prefix Factor 10 24
yotta
Y
10 21
zetta
Z
10 18
exa
E
(b) 1 X-ray unit = l x u = 10 m -to, (c) 1 angstrom = 1 A - 10""" m
10 15
peta
P
10 12
tera
T
(d) 1 micron = 1 (.im = 10~6 m
109
g'g a
G
(e) 1 astronomical unit = 1 Au = 1.49 x 1011 m [Average distance between sun and earth, i.e., radius of earth's orbit]
106
(a) 1 fermi = 1 fm = 10~15 m -13
mega
M
103
kilo
k
102
hecto
h
(f) 1 light year = 1 l y = 9.46 x l 0 1 5 m [Distance that light travels in 1 year in vacuum]
101
deka
da
10- 1
deci
d
(g) 1 parsec = 1 pc = 3.08 x 10 16 m = 3.26 light year [The distance at which a star subtends an angle of parallex of 1 s at an arc of 1 Au].
ur2
centi
cm
10" 3
milli
m
10" 6
micro
10" 9
nano
M n
10" 12
pico
(h) (i) (j) (k)
One One One One
shake = 10 _s second. slug = 14.59 kg pound =453.6 gram weight metric ton =1000 kg
io-
15
femto
P f
8 Units and Measurements Factor 10 -18
atto
a
10- 21
zepto
z
10- 24
yocto
y
10 6
million
109
billion
Prefix
Symbol
8. Dimensions and Dimensional Formulae: The dimensions of a physical quantity are powers raised • to fundamental units to get the derived unit of that physical quantity. The corresponding expression is known as dimensional formula. In the representation of dimensional formulae, fundamental quantities are represented by one letter symbols.
10 12
trillion 5. Some approximate lengths:
Fundamental Quantity
Measurement
Length in metres
Distance to the first galaxies formed
2 x 10 26
Distance to the Andromeda galaxy Distance to the nearest star. (Proxima Centauri)
2 x 10 4 X 10 16
Distance of Pluto
6 X 10 12
Radius of Earth
6 x 106
Height of Mount Everest
9 x 103
Thickness of this page
1 x 10 _ 4
Length of a typical virus
1 x 10" 8
Radius of a hydrogen atom
5 x 107 11
Radius of a proton 6. Some approximate time intervals: Measurement
1 X 10~
on
15
Time interval in second ,39
Life time of a proton (predicted)
1 xlO'
Age of the universe Age of the pyramid of cheops
5 x 10 17 1 x 1 0 11
Human life expectancy
2xl09
Length of a day Time between human heart beats
9 x 10 4 8 x 1 0 -1
Life time of the Muon
2 x 10" 6
Shortest lab light pulse
6x10
Life time of the most unstable particle
1x10
The Plank time
1 x 1 0, - 4 3
R
15
I-23
Object
Mass in kilogram
Known universe
1 x 10 M
Our galaxy
2 x 10 41
Sun
2 x 10 30
Moon
7x
Asteroid Eros
5 x 10 15 10 12
Small mountain
1x
Ocean liner
7 x 107
Elephant
5xl03
Grape
3 x 10~3
Speck of dust
7x10
Penicillin molecule
5 x 10 - 1 7
Uranium atom
4x10
-25
Proton
2x10
-27
Electron
9x10
-31
-10
M L T I K mol cd
Mass Length or Distance Time Electric current Temperature Amount of substance Luminous intensity
Method for finding dimensional formulae : Step I : Write the formula of physical quantity. Step I I : Convert the formula in fundamental physical quantity. Step I I I : Write the corresponding symbol for fundamental quantities. Step I V : Make proper algebraic combination and get the result. Example : Find the dimensions of momentum. Solution : Step I
Momentum = Mass x Velocity Displacement Step II —> Momentum = Mass x Time Step III —> Momentum _=M A
IT]
7. Some approximate masses:
10 22
Symbol
Dimensional formula of momentum = [Momentum] = [MLT - 1 ] The dimensions of momentum are 1 in mass, 1 in length and - 1 in time. Example: The unit of gravitational constant is Nm /kg . Find dimensions of gravitational constant. Solution : Step I —> Write physical quantities of corresponding units. Here,
Nm 2 Force (Length)2 =- = 5 kg 2 (Mass)2
Step II —> Convert derived fundamental quantities. Gravitational constant =
physical
quantities in
Force x (Length) (Mass)2
(Mass x Acceleration) x (Length) (Mass) Mass
Change in velocity
(Mass)2
Time
(Length)'
/ Distance
Mass x Time
Time
^
(Length)2
9 Step III —> Use proper symbols of fundamental quantities. [L2] Gravitational constant = [MT]
Units and Measurements
= [Gravitational constant] =
[L] [T]
MT T
= [M~ 1 L 3 T~ 2 ]
.•. The dimensional formula of gravitational constant 9. Unit and Dimensions of some Physical Quantities s. No.
Physical Quantity
2.
Displacement or distance or length Mass
3.
Time
4.
Electric current
5.
7. 8.
Thermodynamic temperature Amount of substance Luminous intensit" J Area
9.
Volume
10.
Density
11.
Relative density or specific gravity
1.
6.
12.
Velocity or speed
13.
Acceleration or retardation or g
14.
Force (F)
Formula length
—
ampere
A
kelvin
—
length x breadth length x breadth x height mass volume
time mass x acceleration
Pressure
18.
Work
force area force x distance
mass x velocity
equivalent to work
work time
Gravitational constant (G) mim2 Angle (8)
23.
Angular velocity (co)
cd
cubic metre kilogram per cubic metre
density of substance
distance time change in velocity
arc radius angle (9) time
M°L°T¥
mol
candela square metre
M°L 2 T°
m3
M°L 3 T°
kg/m 3
M1L"3T°
kg/m 3 = no unit
—
metre per second metre per square second newton or kilogram metre square second kilogram metre second newton-sec
per per
pascal or newton per square metre kilogram-square metre per square second or joule kilogram square metre per square second or joule watt (W) or joule per second or kilogram square metre per cubic second newton-square metre per square kilogram radian radian per second
Formula change in angular velocity time taken mass x (distance) 2 distance
Angular momentum (L) Torque ( ? )
(Spring) force constant (k) Surface tension Surface energy Stress Strain
Z? force displacement force length energy area force area change in dimenson original dimension or
Young's modulus (Y) Bulk modulus (B)
Compressibility Modulus of rigidity or shear modulus Coefficient of viscosity (r|)
Coefficient of elasticity Reynold's number (R) Wavelength (X) Frequency (v)
Angular frequency (co)
Gas constant (R)
radian second
per
metre kilogram square metre per second newton metre or kilogramsquare metre per square second newton per metre or kilogram per square second newton per metre joule per metre square newton metre No unit
per
Dimensional Formula
square
kilogram square metre
square
rad/s
M°L°T-
kgm2 m
M1L2T° M ^ T
L logitudinal stress logitudinal strain volume s tress or volume strain normal stress volume strain V 7 1_ Bulk modulus shearing s tress shearing strain F 11= /. ^ „ Au A T~ Ax stress strain prVc
kg m 2 /s
MVT-1
N-m or kg m 2 /s 2
M 1 L 2 T~ 2
N/m or kg/s
M 1 L°T~ 2
N/m
M1L°T-2
J/m 2
M ^ T -
N/m 2
M1L-1T-2
newton metre
per
square
newton metre
per
square
square newton newton metre
metre
N/m
per
per square
newton metre no unit
per
square
metre
N/m 1
or poise
N/m
radian per second
joule per mole kelvin
distance
per second
IVTVT2 1
M
L
- 1
t
- 2
M^^T-1 m
il-It-2 M°L°T°
m
MVT0
s" 1 or Hz
MVT-1
per second or hertz
I=ln2n2a2pv or energy watt per square metre transported per unit area per second
velocity change
M'l^T-2
N_1 m2
poise or kilogram per metre per second kg m *s
second
PV
2
N/m
11 distance number of vibrations second co = 2TU>
0
M°L°T°
nT Velocity gradient
SI Units
AL
Time period Intensity of wave (I)
Name of SI Unit
rad/s
mVT-
1
s
MW
W/M
mVT"3
J mol - 1 K" 1
M1L2T_2K_1 M0L0T_1
Units and Measurements
6 S. No.
Physical Quantity
48.
Rate of flow
49.
Thermal conductivity (K)
50. 51.
54.
Stefan's constant (a) Charge
56.
Dielectric constant Electric field
62.
rn
energy frequency PV TNA E AtT" q = It K F AV F E = — or E = —— q a W V:
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.