Apostila_Física_Moderna
Short Description
Download Apostila_Física_Moderna...
Description
Material Elaborado por Caio Guimarães
Física Moderna: Análise da Aplicação da Teoria nos Exercícios do ITA
Capítulo 1: Como tudo Começou Catástrofe do Ultravioleta e Efeito Fotoelétrico Nota do Autor A idéia desse artigo é apresentar os conceitos (geralmente incomuns nos cursos de ensino médio) do inicio da teoria de Física Moderna. Não nos preocuparemos muito com a demonstração rigorosa de todos os resultados que aqui discutiremos, até porque muitos deles se baseiam em teorias avançadas demais (e desnecessárias no momento) para os alunos do ensino médio (ou que querem prestar o vestibular do ITA). Lembrando aos que prestarão ITA, esse assunto como é cobrado no vestibular, não chega a ser de complexidade tão alta, porém são coisas que o aluno precisa ter tido contato para entender. Sugerimos que o leitor leia com atenção a teoria, e pratique todos os exercícios que estão aqui apresentados. Bons Bons estudos!
Introdução A Física é um ramo da ciência que se preza pela sua consistência de sua teoria. Uma Lei da física é algo que deve ser seguida independentemente da situação em que esteja sendo analisada. No início do século XIX a física parecia já ter mapeado grande parte dos fenômenos naturais com suas leis. Até o momento grandes nomes já haviam sido consagrados com suas teorias explicando fenômenos como o movimento de corpos (mecânica newtoniana newtoniana e gravitação), movimento da luz (óptica), máquinas térmicas, eletromagnetismo... Foi exatamente exatamente então qu e come come çaram çaram su rgi r furos na teoria clássica; furos esses que só seriam explicados com teorias completamente completamente inovadoras e bem diferentes das tendências estudadas até então. Apresentaremos agora alguns fenômenos (esses furos) que foram analisados, e que consequentemente deram inicio à Mecânica Quântica.
A Catástrofe do Ultravioleta A teoria clássica da física apresentava um dos seus primeiros furos ao se estudar a emissão de um corpo negro. Corpo negro é qualquer corpo que absorve totalmente a energia emitida sobre ele. Um corpo negro ao ser incidido com certa energia emitirá energia na forma de energia eletromagnética (produzindo luz e calor). Naturalmente, deveria existir uma lei matemática que nos dá a dependência da intensidade emitida com a temperatura e a freqüência emitida. Os conhecimentos da Física C lássica nos davam a seguinte expressão (elaborada pelo trabalho de Rayleigh-Jeans e Boltzmann): I
8 kT 4
O gráfico da intensidade em função do comprimento de onda é decrescente com o aumento do comprimento de onda. Isso gera o absurdo em questão. Para freqüências no espectro do ultravioleta teríamos uma intensidade tendendo a infinito, o que viola a lei da conservação de energia. Os gráficos experimentais mostravam que a função deveria ter um máximo global, o que não acontecia até então com as teorias conhecidas.
O Efeito Fotoelétrico O efeito fotoelétrico foi primeiramente estudado por Hertz, e posteriormente Einstein. O fenômeno consiste do seguinte. A partir de uma placa metálica, incide-se uma freqüência crescente de energia. A partir de certo instante, elétrons são arrancados dessa placa. Isso pode ser evidenciado com o seguinte experimento de Einstein. Um circuito é montado com duas placas metálicas. Ao aumentarmos a freqüência freqüência de luz incidida sobre a placa metálica, o amperímetro indica passagem de corrente. Tal fenômeno ajudará nas teses (que veremos mais a frente) da dualidade partícula onda. Por enquanto fique registrado o caráter não usual de que apenas a partir de certa freqüência houve emissão de elétrons, não importando a intensidade de energia emitida. Por quê?
A Catástrofe do Ultravioleta A teoria clássica da física apresentava um dos seus primeiros furos ao se estudar a emissão de um corpo negro. Corpo negro é qualquer corpo que absorve totalmente a energia emitida sobre ele. Um corpo negro ao ser incidido com certa energia emitirá energia na forma de energia eletromagnética (produzindo luz e calor). Naturalmente, deveria existir uma lei matemática que nos dá a dependência da intensidade emitida com a temperatura e a freqüência emitida. Os conhecimentos da Física C lássica nos davam a seguinte expressão (elaborada pelo trabalho de Rayleigh-Jeans e Boltzmann): I
8 kT 4
O gráfico da intensidade em função do comprimento de onda é decrescente com o aumento do comprimento de onda. Isso gera o absurdo em questão. Para freqüências no espectro do ultravioleta teríamos uma intensidade tendendo a infinito, o que viola a lei da conservação de energia. Os gráficos experimentais mostravam que a função deveria ter um máximo global, o que não acontecia até então com as teorias conhecidas.
O Efeito Fotoelétrico O efeito fotoelétrico foi primeiramente estudado por Hertz, e posteriormente Einstein. O fenômeno consiste do seguinte. A partir de uma placa metálica, incide-se uma freqüência crescente de energia. A partir de certo instante, elétrons são arrancados dessa placa. Isso pode ser evidenciado com o seguinte experimento de Einstein. Um circuito é montado com duas placas metálicas. Ao aumentarmos a freqüência freqüência de luz incidida sobre a placa metálica, o amperímetro indica passagem de corrente. Tal fenômeno ajudará nas teses (que veremos mais a frente) da dualidade partícula onda. Por enquanto fique registrado o caráter não usual de que apenas a partir de certa freqüência houve emissão de elétrons, não importando a intensidade de energia emitida. Por quê?
Teoria de Max Planck Diante Diante de tais impasses Planck propôs uma teoria que revolucionaria física. E se tudo aquilo que até então acreditássemos fosse apenas uma parte da verdade? Obviamente a teoria clássica não pode estar errada. Ela possui uma consistência suficiente para acreditarmos nela. Planck então propôs um modelo que, apesar de alterar os conceitos físicos já imaginados na época, funcionaria apenas como uma extensão da realidade. Ou seja, a teoria d e Planck, de certa forma engloba a teoria clássica no mundo macroscópico, mas também explica coisas novas no mundo microscópico. A teoria de Planck primeiro surgiu ao tentar atacar o impasse do Corpo Negro. Planck descobriu uma expressão, que nem ele mesmo conseguiu demonstrar teoricamente ao apresentar para seus colegas da Berlin Physical Society. Em 1900, Planck apresentou a função que se ajustava a todos experimentos da emissão do corpo negro, porém que seguia uma teoria completamente inovadora. Eis a teoria t eoria de Planck:
Segundo Planck, um átomo oscilando com freqüência f só pode absorver ou emitir energia em múltiplos inteiros inteiros de h.f onde h é uma constante constante (conhecida como Constante de Planck). Essa quantidade quantidade h.f foi denominada pelo cientista como quantum quantum de energia ou fóton.
n. h. f
E
n
A constante de Planck, determinada para que a equação matemática se ajustasse aos dados experimentais (que a principio Planck não sabia se de fato tinha ou não um significado físico) é dada por:
6, 63 63 .10
h
34
J .s
É comum encontrar o termo h em livros do assunto (usaremos essa notação
mais a frente). Por convenção:
h
h
2
.
Voltando ao problema: Corpo Negro Com base na sua recém teoria era possível encontrar uma função matemática que se ajustasse aos experimentos feitos (uma que não violasse o principio da conservação de energia). A expressão apresentada por Planck foi a seguinte: I
8 hc 5
1
.
hc
e
KT
1
Fica como exercício para o leito r mostrar que essa função possui um maximo global (usando noções básicas de derivada, ver artigo de derivadas no site rumoaoita.com). A figura abaixo mostra o gráfico dessa função.
Encontrando o máximo da função teremos que: b I max
T
Tal expressão é conhecida como lei do deslocamento de Wien, e a constante 3 de Wien é dada por: b 2, 89.10 m.K
Exercício contextualizado Sabemos que a temperatura média da superfície da estrela polar é de 8300K. Qual das opções propostas pode melhor representar o comprimento de onda relativo a radiação espectral máxim c? (a) 3500 Angstrons (b) 2100 Angstrons (c) 4500 Angstrons (d) 1500 Angstrons (e) 5000 Angstrons Solução: A expressão que nos dá o comprimento de onda para o pico de intensidade para uma dada temperatura é a Lei de Deslocamento de Wien. Para obter a expressão, como foi visto anteriormente, bastaria derivar a expressão de Planck para I em função de lambda e T. O resultado nos diz que:
0, 00289 I max
0, 00289 I max
T
8300
3500.10
10
m
Resposta: Item a
Voltando ao problema: Efeito Fotoelétrico O fato que causava problema na compreensão de a intensidade da luz in cidi da não se r fator no arrancamento dos elé tron s po di a ser agora
explicada pela teoria de Planck. A energia emitida é meramente função da freqüência. Discutimos que para que o elétron seja libertado é preciso que receba uma freqüência mínima, chamada de freqüência de corte. Recebendo uma energia correspondente a uma freqüência maior ou igual à de corte há liberaçã o de elétrons (obrigatoriamente deverá ser no mínimo o valor da de corte). Incidindo uma energia h.f numa placa metálica (maior que a energia de corte ) parte da energia será usada para superar o corte e o restante dará energia para os elétrons (a menos q ue haja uma força dissipativa, essa energia será transformada em cinética). A conservação de energia, ou equação de Einstein para o efeito fotoelétrico é dada por: hf
h. f 0
Emax
OBS: A energia de corte (h. f o) é também denominada de função trabalho.
Sendo essa energia máxima transferida totalmente à energia cinética, temos: 1 2
m.V ²
h. f
f0
Sabendo que a energia de corte pode ser dada em função de um potencial (pela definição física Energia = Potencial x Carga), temos: E 0 V 0 e Segue que: V0
h e
. f
f 0
Isto é, o potencial de corte é uma reta em função da freqüência de luz incidente. Um experimento de laboratório interessante é determinar a constante de planck utilizando dados experimentais (é só lembrar que o coeficiente angular da reta resultante será h/e). É importante então concluir que o potencial de corte depende do material porém seu coeficiente angular h/e é constante para todos os materiais. Podemos inclusive fazer uma análise de como é o comportamento do gráfico da corrente de elétrons l iberados em função da voltagem estabelecida.
Para uma dada intensidade de luz incidida temos um aumento de corrente com o aumento da voltagem. Notar que basta aplicar uma ddp com a voltagem de corte negativa para zerar a corrente. Tal ddp que zera a corrente é a mesma independente da intensidade do feixe incidido, porém a corrente de saturação não é (veja a figura acima).
Exercício contextualizado resolvido Sobre um circuito de efeito fotoelétrico são incididos radiações de duas freqüências diferentes, de comprimentos 1 e 2 (maiores que a frequência de corte do material). Os elétrons liberados por cada incidência têm velocidades V 1 e V2 tais que a razão entre V1 e V2 é dada por k. Determine o valor da função trabalho do material usado em função de k, h, c (velocidade da luz), 1 e
2.
Solução: Da conservação de energia (lembrando que a função trabalho é constante para um dado material):
1 2 1 2
m.V1 ²
hf1
E0
m.V2 ²
hf 2
E0
Dividindo as duas equações: 2
V 1
hf1
E 0
V2
hf 2
E0
k
Lembrando que c = .f , segue: hc
k²
E 0
hc.k ²
1
hc
E 0
hc
k ² E0
2
E0
1
2
1 k ² E0
E 0
h.c 1 k ²
h.c.
1
k ²
1
2
1
k ²
1
2
Exercícios Propostos: 1. (ITA) Incide-se luz num material fotoelétrico e não se observa a emissão de elétrons. Para que ocorra a emissão de elétrons do mesmo material basta que aumente(m):
a) a intensidade de luz b) a frequência da luz c) o comprimento de onda da luz d) a intensidade e a freqüência da luz e) a intensidade e o comprimento de onda da luz 2. Uma luz monocromática de comprimento de onda 450 nm incide sobre uma 19 placa de sódio cuja função trabalho é 3,7.10 J . Qual é a energia cinética máxima dos elétrons emitidos? Qual é a freqüência de corte para o sódio? 3. Qual é o valor da razão entre a função trabalho e a freqüência de corte do e feito fotoelétrico? 4. (ITA 2006) Aplica-se instantaneamente uma força a um corpo de massa m=3,3 kg preso a uma mola, e verifica -se que este passa a oscilar livremente com a frequência angular de 10 rad/s. Agora, sobre esse mesmo corpo preso à mola, mas em repouso, faz-se incidir um feixe de luz monocromática de freqüência f=500.1012 Hz, de modo que toda a energia seja absorvida pelo corpo, o que acarreta uma distensão de 1mm da sua posição de equilíbrio. Determine o numero de fótons contido no feixe de luz. Considere a constante de Planck h=6,6 .10-34 Js
5. Uma luz de comprimento de 7000 A incide sobre uma placa metálica cuja função trabalho vale 1,79 eV. O que é correto dizer a respeito do que acontecerá? a) não ocorrerá efeito fotoelétrico b) apenas existe energia para romper o vínculo com a placa c) depende da intensidade de luz incidente d) elétrons são emitidos da placa com energia cinética de 1,768 eV e) depende da área luminada da placa. Gabarito: 1. b
2. f= 0,56. 1015 Hz ; E=0,7.10 -19 J
4.
5.
a
3. h
Material Elaborado por Caio Guimarães
Física Moderna: Análise da Aplicação da Teoria nos Exercícios do ITA
Capítulo 2: Postulados de Bohr Rydberg e Balmer No final dos século XIX , início do século XX a física mostrava ter mudanças em sua teoria com a recente formada teoria de Planck a respeito da quantização de emissão/absorção de energia. Enquanto isso, cientistas como Rydberg e Balmer estudavam o fenômeno da emissão de luz na passagem de um elétron de uma camada de seu átomo para o outro. O estudo ainda era muito limitado, mas Rydberg conseguiu encontrar uma expressão matemática que relacionasse o comprimento de onda da freqüência emitida com o número dos níveis do qual o elétron estaria saltando. O trabalho de Balmer foi semelhante porém menos geral que o de Rydberg (incorporando apenas alguns níveis). Vale ressaltar que o trabalho de Rydberg foi encontrar uma função de dados encontrados experimentalmente, e daí a complexidade de tal trabalho. 1
R H .
1
1
ni2
n2f
Onde R H é a constante de Rydberg, obtida experimentalmente.
Modelo de Niels Bohr O cientista dinamarquês Niels Bohr, no inicio do século XX se propôs a explicar a tese de Rydberg, criando um modelo atomístico diferente do que já se conhecia na época. Os experimentos até então, realizados por Rutherford mostravam que o átomo consistia de uma nuvem eletricamente carregada em torno de um centro, denso, e positivamente carregado chamado núcleo.
Tal proposta de Rutherford leva ao mundo da física propor o modelo planetário para os elétrons, onde o núcleo estaria agindo como o Sol e os elétrons em volta do núcleo como planetas em órbita. Importante! O modelo planetário tinha uma falha muito aparente, talvez uma das questões mais interessantes a surgir na física moderna. Naquela época, os trabalhos de eletromagnetismo desenvolvidos pelo modelo de Maxwell explicavam toda e qualquer manifestação eletromagnética conhecida. Uma das leis de Maxwell dizia que uma carga acelerada, obrigatoriamente, emite radiação eletromagnética.
Ora, um elétron em volta de um núcleo está acelerado (aceleração centrípeta)! Se esse elétron emitir onda eletromagnética, ele estará perdendo energia, e com isso sua órbita deveria diminuir gradativamente até chegar ao núcleo, gerando uma colisão catastrófica. Sabemos que isso não é verdade, e não poderia ser, uma vez que a estabilidade da matéria é algo concreto.
Uma esperança de explicação Experimentos da época de descarga elétrica em tubos de gás a baixa pressão mostravam que a emissão de luz ocorre (a emissão eletromagnética), mas apenas em freqüências discretas. Baseado nisso e nas recém descobertas de Max Planck de quantização, no início do século Bohr propôs um modelo que explicaria tais impasses. O modelo de Bohr foi apresentado em 1913 por meio de postulados (regras não demonstradas matematicamente, mas que explicariam o comportamento observado). A seguir, estão os postulados de Bohr. O elétron se move numa órbita circular em torno de um núcleo sob ação da força elétrica como força centrípeta. -
As órbitas do elétron são restritas, isto é, nem todas órbitas são permitidas em qualquer situação. A restrição é que o momento angular do elétron é necessariamente quantizado: -
mv
r
n.
h 2
n. h
Os elétrons em órbita NÃO emitem energia eletromagnética enquanto na órbita, e com isso não perdem energia. A emissão de energia (ou absorção) só ocorre na passagem de níveis (quando um elétron muda de um nível para outro). -
Cada órbita tem uma energia associada, e a difer ença de energia entre dois níveis é igual à energia emitida/absorvida na mudança. -
A Matemática do Modelo de Bohr Sabemos dos postulados de Bohr que a interação eletrostática núcleo/elétron atua como força centrípeta no movimento circular. Sendo e a carga do elétron, a carga do núcleo será Z.e onde Z é o numero atômico do átomo: mv ² r
k .e ² . Z r²
²mv
Z 4
.
e²
0
r
A energia total do elétron no átomo de Bohr é dada pela soma de sua energia cinética e energia potencial: Etotal
Ecinética 1 2 1 2
Epotencial k .Z .e ²
mv ²
r Z
mv ²
1
4
Z
2 4
. 0
. 0
e² r
e²
Z 4
r
. 0
e² r
Z .e² 1 . 8 0 r
Esse resultado é muito importante, e nele concluímos que a energia da órbita é uma função do seu Raio de órbita. E total
1
r
Exercício contextualizado
Mostre que o momento linear do elétron no átomo de hidrogêneo é dado por: m.e² 4
0
r
Vamos tentar expressar o raio da órbita em função do n.
Do postulado: mvr
n.
h
h²
v2
2
4.m ².r ² ²
. n²
Lembrando que: Z
mv ²
m.
4
. 0
e² r
h²
Z
4.m².r ² ² 0
.h²
m.e ².Z .
. n²
4
. 0
e² r
r
Ou seja, o raio da órbita é uma função do numero n do nível: r ( n)
0
.h ²
m.e ².Z .
. n²
r
n²
Ou seja, conhecido o raio da primeira órbita R, teremos que o da 2ª será igual a 4R (ou seja, 2².R), o da 3ª será 9R, o da 4ª será 16 R e assim em diante.
h
n.
Do postulado de Bohr que diz mvr
, é possível expressarmos a
2
energia total do elétron como sendo uma função de n (ou seja, do nível em que se encontra o elétron), tornando -se possível então determinar a energia de cada nível. Vimos que: Z .e² 1 . 8 0 r
E
Como sabemos que a energia do nível é inversamente propo rcional a r , podemos expressar a energia como função do número n do nível, também. m.Z ².e4
(E ) n
.
2 0
9.h ².
1
1 n²
E
n²
A
Substituindo os valores das constantes para o caso do Hidrogênio teremos: (E )n
13, 6.
1
n²
eV
Esse resultado se aproxima do resultado de Balmer e Rydberg, uma vez que a energia emitida num salto será dada pela diferença das energias dos níveis em questão:
E
A.
1
n2
A. f
1
E
n2 i
Lembrando do resultado de Planck que
h. f
E
A.
h.c
1
1
n2 i n2
f
, chegamos
matematicamente (a partir do modelo de Bohr) à função proposta por Balmer e Rydberg numa abrangência ainda maior. 1
R.
1
1
ni2
n2f
Exercício contextualizado Resolvido Determine, no átomo de Hidrogênio de Bohr, o valor do menor comprimento de onda possível emitida por um fóton num salto de um elétron de um nível para seu adjacente.
Solução:
A partir da expressão da diferença de energia entre 2 níveis adjacentes:
E
13, 6.
13, 6.
1
1
ni2
n 2f
n 1
13, 6.
2
n²
n² n
1
1
n²
n 1
2n 1
13, 6.
2
2
n².(n 1)²
A expressão da diferença de energia em módulo em função de n é estritamente decrescente pois:
d dn
E
13,6.
2n ².(n 1)²
2n 1 ².2(n 1).n
n 4 .( n 1)4 ( n 1)
13, 6.
2n².(n 1)²
( n 1)
2(n 1).(2n 1).n.(2n 1)
n4 .(n 1)4
0
Portanto a diferença de energia é máxima no salto do nível 2 pro nível 1. Queremos a diferença máxima para que a freqüência seja máxima e com isso, o comprimento de onda seja mínimo.
max
13, 6.E
1
1
4
1
13, 6.
3 4
10, 2
Segue que:
h
c
Emax
10,2 eV
min
10,2 min
hc
unidades de comprimento
eV
Exercícios Propostos: 1. (ITA 99) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso. 0
E 0 E
7, 0
2
E
13,0
eV
3
E
17,4
eV
1
eV
ionização 21, 4 eV
Dentro as possibilidades abaixo, a energia que poderia restar a um elétron com energia de 15eV, após colidir com um átomo de X seria de: a) 0 eV b) 4,4 eV c) 16,0 eV d) 2,0 eV e) 14,0 eV 2. (ITA 2006)
O átomo de hidrogênio no modelo de Boh é constituído de um elétron de carga e e massa m, que se move em órbitas circulares de raio r em torno do próton, sob a influência da atraç ão coulombiana. Sendo a o raio de Bohr, determine o período orbital para o nível n, envolvendo a permissividade do vácuo. 3. Suponha que o átomo de hidrogênio emita energia quando seu elétron sofre uma transição entre os estados inicial n=4, e final n=1. Qual é a energia do fóton emitido? Qual é a freqüência da radiação emitida (Constante de Planck = 6,63 .10-34 J.s) 4. (ITA 2002) Sabendo que um fóton de energia 10,19 eV excitou o átomo de hidrogênio do estado fundamental (n=1) até o estado p, qual deve ser o valor de p? Justifique.
5. (ITA 2003) Utilizando o modelo de Bohr para o átomo, calcule o número aproximado de revoluções efetuadas por um elétron no primeiro estado excitado do átomo de hidrogênio, se o tempo de vida do elétron, nesse estado excitado, é de 10-8 s. São dados: o raio da órbita do estado fundamental é de 5,3 . 10-11 m e a velocidade do elétron nessa órbita é de 2,2.106 m/s 6. Determine a expressão para a velocidade do elétron na órbita em função do numero n do nível.
Gabarito: 2) T
4
0
.n ³.
0
.m.a
3) E= 12,75 eV f = 3,07.1015 Hz e 4) p=1 . A energia não é suficiente para levar a o nível 2 . A energia necessária seria no mínimo 10,2 eV 1) d
5) Aproximadamente 8 milhões de revoluções 6) v(n)
e² 2 0 .h
.
1
n
v
1
n
Créditos O material é de origem original, digitado e compilado por mim, porém com várias referencias. Utilizei o caderno de um professor, um dos melhores professores de física do ensino médio Brasil em minha opinião: Ricardo Luiz, para o acervo de questões propostas. Foram utilizadas informações de pesquisa no wikipedia.org . O material tem como intuito ser utilizado para es tudo apenas, principalmente para aqueles que não têm acesso tão facilmente a informação, e JAMAIS ser vendido ou utilizado com objetivos financeiros.
Material Elaborado por Caio Guimarães
Física Moderna: Análise da Aplicação da Teoria nos Exercícios do ITA
Capítulo 3: A Dualidade Partícula Onda & Hipótese de De Broglie ; Princípio de Incerteza Introdução A resposta à dúvida do caráter ora ondulató rio e ora de partícula das emissões eletromagnética pôde ser analisada com o experimento do efeito fotoelétrico de Einstein. O choque de uma emissão eletromagnética contra uma placa arrancava elétrons da mesma, evidenciando sob certas condições (como vimos, a freqüência para o fenômeno é restrita) o caráter de partícula por parte de ondas. Estudaremos a seguir um segundo fenômeno que corroborou a tese de Einstein.
Efeito Compton O fenômeno descoberto pelo físico Arthur Holly Compton em 1923, chamado Efeito Compton, analisa a diminuição de energia de um fóton quando esse colide com matéria. A diminuição de energia ocorre com a mudança no comprimento de onda (aumenta). Tal mudança nos evidencia que a luz, por exemplo, não tem caráter puramente ondulatório (a ssim como Einstein já havia evidenciado em seu experimento do efeito fotoelétrico). Usaremos um resultado do Eletromagnetismo de que radiações eletromagnéticas carregam momento linear (p) : E Eletromagnetismo
.p c Planck
A situação descrita no efeito Compton está ilustrada ao lado. Deduziremos agora uma expressão para o aumento no comprimento de onda do fóton após o choque.
hf
p
hf c
É importante deixar claro que algumas passagens da dedução parecerão complicadas a primeira vista, pois utilizaremos resultados da Física relativística. Pedimos que mesmo que o conceito ainda não esteja completamente claro ainda (veremos mais isso mais a frente nesse curso de Físi ca Moderna), que o leitor acredi te nos resultados que estaremo s usando . Tais resultados são: Energia associada à matéria (energia de repouso):
E
² ² mc
E
Energia associada a matéria com velocidade:
mc² .p c²
Voltando ao problema, considerando uma colisão entre o fóton e um elétron em repouso (veja figura), temos da conservação de energia: Erepouso
Efoton
particula
inicial
mc ² hf1
mc²
Evelocidade
hf 2
2
mc ² hf1
pe ²
particula
mc ² ²
hf1
Efoton
pe .c ²
mc ² ²
hf 2
final
2
hf 2
pe .c ²
mc ² ²
c²
Na direção da colisão, não há forças externas, portanto podemos conservar também a quantidade de movimento naquela direção e na direção perpendicular a mesma.: p
p
foton inicial
p
foton final
p
foton
inicial
p
inicial
f h1 c
foton
eletron final
.cos
eletron
final
. foton sen
inicial
Lembrando que p
p
final
p . foton sen final
p final
p .cos foton
h
f 2
foton
c
Temos então o sistema: hf1
pe .cos hf1 c
hf 2
c c hf 2 .sen c
.sen
.cos
Resolvendo e eliminando o parâmetro (Fica como exercício para o leitor), chegamos à seguinte expressão para pe: pe ²
h² f1 ²
h² f 2 ²
c²
c²
2
h ². f1. f 2 .cos c²
Da conservação de energia já tínhamos obtido que: mc ² hf1
pe ²
hf 2
2
mc ² ²
c²
Logo: pe ²
mc ² hf1
hf 2
2
mc ² ²
c²
h ² f1 ²
h² f 2 ²
c²
c²
2
h². f1. f 2 .cos c²
Arrumando a igualdade e lembrando que c= f (fica como exercício), chegamos à expressão conhecida do efeito Compton: h 2
1
mc
1 cos
Exercício Proposto 1. Calcule a modificação percentual do comprimento de onda no
espalhamento de Compton a 180o de um raio X de 80 keV ; b. de um raio g oriundo da aniquilação de um par elétron- pósitron em repouso. a.
Hipótese de DeBroglie A esse ponto não restava dúvida de que de fato ondas poderiam se comportar como partículas em certas situações (Efeito Fotoelétrico, Efeito Compton). Até esse ponto na física sempre foi razoável testar o efeito contrário de cada fenômeno. No eletromagnetismo, Faraday e Lenz estudaram o fenômeno de geração elétrica a partir de uma variação no campo magnético local, e foi razoável aceitar a tese provada por Ampére de que uma variação do campo elétrico também gera campo magnético. Esse é apenas um dos inúmeros exemplos de simetria que ocorrem na física.
Bom, os resultados conhecidos diziam que para ondas vale: E
hf
p. c
c h
pc h p
De Broglie propôs então que a matéria teria um comprimento de onda associado a ela, dado pela expressão: h materia
mv
De acordo com a expressão o caráter ondulatório da matéria só seria perceptível para massas extremamente peque nas. Ou seja, seria um absurdo propor que se atirássemos inúmeras bolas de tênis numa fenda única, haveria difração... A hipótese de De Broglie foi comprovada em 1927 (3 anos após a data em que De Broglie fez sua proposta), por Davisson e Germer ao estudarem a natureza da superfície de um cristal de Níquel. Eles perceberam que ao incidirem um feixe de elétrons (partículas) contra a superfície, ao invés de haver reflexão difusa, houve uma reflexão similar à observada na incidência de raios X. A incidência de raios X num cristal geram uma forte reflexão a certo ângulo de tal maneira que haja interferência construtiva e um reforço seja perceptível.
Analisando os ângulos nos quais isso aconteciam para o Raio X e os ângulos nos quais isso aconteciam para os elétrons, percebeu-se que nessas situações os elétrons possuíam o exato comprimento de onda proposto por De Broglie. Ora, então De Broglie estava certo! A interferência construtiva observada nos cristais NUNCA ocorreria de acordo com a teoria corpuscular do elétr on.
Conseqüências da hipótese de De Broglie pro átomo de Bohr Uma das mais importantes conseqüências da teoria de De Broglie é que a mesma justificava os antes indemonstráveis postulados de Bohr (ver capítulo 2). De Broglie explicou que cada elétron do átomo de Bohr é acompanhado de uma onda estacionária associada guiando seu movimento, dessa maneira a aceleração não estaria contribuindo para a emissão de energia ele tromagnética. Para que uma onda estacionária se ajustasse à órbita circular do elétron, devemos ter que o comprimento da órbita circular equivalha a um número inteiro de comprimento de ondas do elétron. Ou seja: 2 r
n
n
comprimento da orbita circular
h
Da hipótese de De Broglie:
mv
2 r
mvr
n
h
n
mv
n
h 2
n
A expressão acima já é conhecida! É mais de uns previamente indemonstráveis postulados de Bohr. Concluímos que a teoria de De Broglie foi bastante razoável e apresentava total consistência com a teoria de Bohr!
Exercício Contextualizado Resolvido 1. Um elétron em movimento manifesta uma onda de matéria com comprimento de onda de De Broglie igual a 10-10 m . Sendo a massa do elétron igual a 9,1. 10-31 kg, sua carga é 1,6.10-19 C e a constante de Planck igual a 6,63 . 10-34 J.s, qual a DDP necessária para acelera-lo do repouso até a velocidade necessária? Solução: Da Hipótese de De Broglie, segue:
h
v
mv
6,63.10
h m
34
31
9,1.10 .10
6 7,28.10 m
10
s
Utilizando o Teorema do Trabalho e Energia Cinética, desconsiderando o efeito relativístico do elétron:
Wcampo
E cinetica
elétrico
U .q U
1 2
m.v ² 0
m.v ² 2q
9,1.10
31
12
.7,28².10
2.1, 6.10
19
150,7 V
A DDP necessária é de aproximadamente 150,7 V.
Princípio de Incerteza de Heisenberg Conforme foi dito na introdução desse artigo, muitos dos conceitos aqui apresentados carecem de demonstrações rigorosas. Isso é compreensível se formos pensar que a teoria que estamos estudando levou a criação da Mecânica Quântica, um ramo da física que envolve muita teoria e matemática pesada (fugindo então dos propósitos desse curso). É importante que entendamos os conceitos extraídos dos resultados desses cientistas, e sabermos como aplica-los (principalmente nos exercícios do ITA, como o curso se propõe a fazer). Werner Heisenberg é um cientista alemão que se propôs a mostrar, ou exprimir matematicamente, sua tese de que a posição e velocidade do elétron em torno do núcleo do átomo são impossíveis de precisar simultaneamente.
Para medir experimentalmente a posição do elétron precisamos de instrumentos de medidas (um dos métodos conhecidos na época consistia de incidir um tipo de radiação sobre o mesmo). Os instrumentos de medida, por sua vez possuem incertezas de medição. Quanto menor a incerteza, mais precisa é a localização do elétron. Com base na base da teoria da mecânica quântica já desenvolvida, Heisenberg enunciou que o produto da incerteza da posição pela incerteza do momento linear de um elétron não pode ser inferior (em ordem de grandeza) à metade da constante de Planck reduzida. Ou seja: p. x
h 2
h 4
A conclusão é que o elétron não está bem definido na sua órbita do átomo. Quanto mais preciso soubermos sua posição, menos preciso para nós será sua velocidade, tornando assim impossível descrever o elétron em cada instante. Esse enunciado é conhecido como Princípio da Incerteza de Heisenberg.
Exercícios Propostos de Revisão 1. Um arma dispara um projétil de 20 g a uma velocidade de 500 m/s . Determine o comprimento de onda de De Broglie associado ao projétil e explique por que o caráter ondulatório não é aparente nessa situação.
2. Um microscópio eletrônico pode resolver estruturas de pelo menos 10 vezes o comprimento de onda de De Broglie do elétron. Qual é a menor estrutura que pode ser resolvida num microscópio eletrônico, usando elétrons com energia cinética de 10000 eV ? 3. (ITA 2003) Marque verdadeiro ou falso. I No efeito fotoelétrico, quando um metal é iluminado por um feixe de luz monocromática a quantidade de elétrons emitidos pelo metal é diretamente proporcional à intensidade do feixe incidente, independente da freqüência da luz. II As órbitas permitidas ao elétron em um átomos são aquelas em que o momento angular é nh/2 para n=1,3,5... III Os aspectos corpuscular e ondulatório são necessários para a descrição completa de um sistema quântico.
IV A natureza complementar do mundo quântico é expressa, no formalismo da Mecânica Quântica, pelo princípio de incerteza de Heisenberg. 4. (ITA 2004) Um elétron é acelerado a partir do repouso por meio de uma
diferença de potencial U, adquirindo uma quantidade de movimento p. Sabese que, quando o elétron está em movimento, sua energia relativ ística é dada ( m0 c²)² p² c² em que mo é a massa de repouso do elétron e c é a por E velocidade da luz no vácuo. Obtenha o comprimento de onda de De Broglie do elétron em função de U e das constantes fundamentais pertinentes. OBS do autor: Essa questão é muito parecida com o exercício contextualizado resolvido.
5. (ITA 2005) Um átomo de hidrogênio inicialmente em repouso emite um fóton numa transição do estado de energia n para o estado fundamental. Em seguida, o átomo atinge um elétron em repouso que com ele se liga, assim permanecendo após a colisão. Determine literalmente a velocidade do sistema átomo + elétron após a colisão. Dados: a energia do átomo de
hidrogênio no estado n é E n
E 0 n²
;
o momento linear do fóton é hf /c , e a
energia deste é hf, em que h é a constante de Planck, f é a freqüência do fóton e c é a velocidade da luz. 6. (ITA 2005) Num experimento, foi de 5,0.10³m/s a velocidade de um elétron, medida com precisão de 0,003%. Calcule a incerteza na determinação da posição do elétron, sendo conhecidos: massa do elétron 9,1.10-31 kg e constante 34 de Planck reduzida h 1,1.10 J .s Gabarito: 1) 6,63.10-35 m 4)
2) 5.10-10 m
3) F-F-V-V
5)
6) A incerteza mínima é de, aproximadamente, 0,04 %
Material Elaborado por Caio Guimarães e Eurico Nicacio
Física Moderna: Análise da Aplicação da Teoria nos Exercícios do ITA
Capítulo 4: Relatividade de Einstein Introdução Histórica Com a pu bli cação Sob re a Ele trod in âmica de Corpos em Movimento , Albert Einstein em 1905 enunciou
sua teoria restrita da Relatividade. Nele é explicado que a teoria até então seguida pelos físicos, proposta por Galileu, que explicavam os conceitos de velocidade e movimento de um corpo de acordo com um dado sistema referencial não valeriam mais para o eletromagnetismo (que havia sido fortemente enriquecido pelo modelo de Maxwell). Estudaremos agora no que consiste essa teoria.
O porquê da proposta De acordo com os recentes estudos do eletromagnetismo, observar um fenômeno eletromagnético depende do referencial do observador. Ou seja, dependendo da velocidade com que um observador se aproxima da luz ele pode observar um campo magnético ou um campo elétrico. Isso vai contraria as teorias da relatividade de Galileu que dizia que um fenômeno mantinha sua natureza independente do referencial. Tal teoria era válida para a física Newtoniana, porém precisaria ser reavaliada para incluir os conceitos do eletromagnetismo.
A nova idéia de Simu ltaneid ade Antes de enunciarmos os dois postulados que regem a teoria da relatividade, vamos descrever um fenômeno que nos dará uma noção da diferença do conceito de Galileu para o conceito novo proposto por Einstein. Imagine um trem passando por uma estação com velocidade constante. No momento exato em que o trem está passando, duas pessoas (uma em cada extremidade do trem) enviam um sinal luminoso para uma pessoa localizada no centro do trem. Para alguém fora do trem o sinal deve chegar ao centro simultaneamente, é claro.
Agora imagine o ponto de vista dessa pessoa que está fora do trem. Para ela o observador do centro do trem está se aproximando na direção do ponto de partida de um dos raios luminosos, e se afastando do ponto de partida de outro raio luminoso. Obviamente, então, para o re ferencial inercial o sinal luminoso de um chegará ao observador central antes do outro. Isso é um absurdo de acordo com a teoria da relatividade de Galileu. Para Galileu o tempo é único independente do referencial (o tempo passa independentemente para todos, simultaneamente). Então, como dois raios luminosos, emitidos ao mesmo tempo, percorrendo a mesma distância, teriam tempos de chegadas diferentes?
A Transformação de Lorentz Dilatação do Tempo Em 1913, Einstein publicou um texto explicando como poderiam ser aplicadas transformações conhecidas como transformações de Lorentz, para descrever a diferença na simultaneidade de eventos de acordo com o seu sistema referencial. Imagine dois espelhos paralelos, separados de uma distância d, no qual um deles manda um raio luminoso retilíneo para o outro. O espelho receptor passa a se mover com velocidade v para um lado. Vamos considerar essa situação em dois referenciais distintos. (i) Para um referencial fixo ao espelho receptor (Receptor II).
Nesse caso o sinal continua sendo vertical. O tempo de percurso nesse referencial é ta que: t2 .c d
(i i) Para um referencial fixo ao
espelho emissor (Referencial I)
Nesse caso o sinal é oblíquo em relação a vertical. Para o observador f ixo ao espelho em movimento, o sinal ainda será vertical. De tal forma que podemos tirar a seguinte relação de Pitágoras. (t1.c)²
d²
(vt1 )²
Das duas observações, eliminando o parâmetro d: t1 ². c ²
v²
t 2 ².c ²
c² v ²
t1
t 2
c²
t2
t 1.
1
v² c²
Devido a esse resultado, comumente encontramos em materiais didáticos a expressão fator de Lorentz , que é dado por: 1 1
v² c²
Ou seja, para um referencial com velocidade v em relação ao outro referencial, o tempo é dividido pelo fator de Lorentz.
t1
t 0
caso to = t2 é o tempo de travessia do raio sem o movimento de referencial. Nesse
Mostraremos com mais detalhes mais a frente que a velocidade de um corpo não pode exceder a velocidade da luz, o que está coerente com nossa expressão uma vez que o radicando deverá ser positivo. Vale notar que para quanto maior for a relação v²/c² mais influente fica o fator de Lorentz (que é sempre um número maior que 1). É comum ouvir-se falar de um objeto como sendo relativístico ou não-relativístico. O objeto será relativístico quanto mais próximo de 1 for a razão v/c. No caso da velocidade entre dois referenciais, temos que o tempo é dilatado para o observador do referencial I. O observador I vê o tempo dilatado em relação ao tempo medido no referencial II. A esse fenômeno denominamos Dilatação do Tempo. O tempo passa mais lentamente para o referencial em movimento
Contração do Espaço Semelhantemente ao que fizemos para deduzir a expressão de Lorentz para a dilatação do tempo, poderíamos ter percebido uma alteração no espaço para os dois referenciais. Considere o seguinte problema: Uma pessoa A se encontra numa plataforma de trem de tamanho natural Lo. Um trem com uma velocidade v muito alta passa pela estação. A pessoa A mede o tempo de travessia do trem (tempo entre o instante em que a frente do trem passou pelo começo da plataforma e o instante em que a frente do trem
passou pelo final da plataforma). Sua medida foi:
t A
L0 v
Uma pessoa B, dentro do trem faz o mesmo procedimento. O seu tempo de medida é dado por:
t B
L B v
. Da dilatação do tempo temos que:
t A
t B.
Logo: L0
L B
v
v
.
L B
L0
Ou seja, para o referencial em movimento, o comprimento da plataforma diminuiu. A esse fenômeno chamamos d e Contração do Espaço .
Experimento de Michelson e Morley Antes de 1905, muitos acreditavam que o universo estava preenchido com um meio com propriedades peculiares, conhecido com éter. Acreditava-se que a luz era uma onda mecânica, que induzia vibrações em tal meio elástico. Este meio teria que ser ao mesmo tempo um sólido com elevada densidade para suportar a luz propagando a altíssimas velocidades e um fluido extremamente leve para que não exercesse qualquer interferência no movimento dos planetas. No meio científico, o experimento de Michelson e Morley não foi capaz de detectar a presença do éter e, além disso, indicou a invariância da velocidade da luz, ou seja, a velocidade da luz era sempre a mesma, independentemente do movimento relativo entre fonte e observador. É importante ressaltar que os experimentos de Michelson-Morley nos anos de 1881 e 1887, mesmo não tendo detectado o movimento da Terra em relação ao éter, foram interpretados por diversos cientistas sem descartar a teoria do éter.
Portanto é inverídico do ponto de vista histórico que tenham sido cruciais para a física clássica. O próprio Michelson aferrou -se à teoria do éter até o
final de sua vida. Tais experimentos também foram secundários para a gênese da teoria da relatividade restrita de Einstein. Com esse experimento, Michelson e Morley concluíram que a velocidade da luz não é influenciada pelo movimento da Terra. Tal resultado é facilmente compreendido em termos dos postulados de Einstein. Para maiores informações, visite : http://en.wikipedia.org/wiki/Michelson -Morley_experiment
Postulados de Einstein Mais a frente, discutiremos algumas conseqüências do que acabamos de ver. Mas, primeiramente, vamos citar os postulados de Einstein que definiram a teoria da relatividade: Todas as leis da física tornam a mesma forma em todos os referenciais inerciais; É impossível realizar experiência, num determinado referencial, para medir o seu próprio mov imento do sistema de referência. (Princípio da Relatividade) -
- A luz se propaga através do espaço vazio com uma velocidade constante c,
independente do estado do movimento do corpo emissor (independe do referencial). (Postulado da Luz) Note que o segundo pos tulado justifica o primei ro, uma vez que um experimento que medisse a luz num determinado referencial nos possibilitaria detectar o movimento do mesmo.
O Múon O múon é uma partícula de origem cósmica com um tempo de vida muito pequeno (em torno de 2,2 microsegundos). Uma das evidencias para o estudo de contração do espaço (dilatação do tempo) foi a evidência de abundância de partículas múon no nível do mar. O tempo de queda da sua origem (cerca de 2km acima do nível do mar) até o nível do mar seria maio r do que seu tempo de vida, e portanto seria um absurdo ter abundância dessas partículas a nível do mar.
Vamos ver que, com a teoria de Einstein, o fato evidenciado torna-se possível. A velocidade em que viaja o múon é de aproximadamente 0,9952c. O tempo de vida do múon, considerando a dilatação do tempo (para o referencial terra é): tvida
2, 2 s
v
1
2, 2 s 2
1
0, 9952
2
22,5 s
c
A distância que o múon pode percorrer a essa v elocidade antes de desintegrar é:
s
0, 9952.c.tvida
6, 712 m
Como a distância permitida é maior que a distância que o múon teria que percorrer para chegar ao lugar onde foi observado (devido à contração de espaço), a observação torna-se possível.
Paradoxo dos Gêmeos Vamos analisar a seguinte situação. Dois gêmeos idênticos A e B são tais que A passará por uma viajem numa nave espacial sob uma velocidade muito próxima da velocidade da luz, enquanto que B permanecerá parado na Terra. Sabemos que para o gêmeo B, que está na Terra, a nave está se movendo, então, segundo a teoria que vimos, ele afirma que o tempo para o seu irmão gêmeo dentro da nave está passando mais lentamente. Enquanto isso, o ir mão A vê a Terra se afastar dele com velocidade perto de c, e afirma que o tempo passa mais de vagar para o seu irmão. Qual dos dois está correto? Na verdade, com o problema proposto, ambas as afirmações estão erradas. Segundo o postulado de Einstein, não é possível comparar o passar do tempo entre duas pessoas com referenciais movendo-se um em relação ao outro. O correto, sim, seria dizer que o tempo passa mais devagar para B quando medido no referencial de A, e vice-versa.
Porém, se analisarmos um problema segundo o referencial inercial Terra, existe uma resp osta para qual dos dois irmãos está mais envelh ecido? . O
gêmeo viajante A mudou de referencial inercial ao sair da Terra, passando a um referencial com velocidade constante próxima a da luz, e mai s tarde, ao retornar voltou ao referencial da Terra. Ou seja, como a comparação final é feita no referencial da Terra, conclui -se que B está mais envelhecido que A, devido à dilatação do seu tempo em relação ao referencial.
Massa de Repouso Podemos definir massa pela segunda Lei de newton, como sendo: F
m
dv dt
Note que aumentando a força indefinidamente estaríamos aumentando indefinidamente sua velocidade. Ora, mas sabemos que a velocidade tem um limite (velocidade da luz no vác uo c). Portanto é de se esperar que haja uma alteração no valor da massa para velocidades próximas da luz. A partir da 2ª lei de Newton e da Lei da conservação do Impulso é possível demonstrar que: m
m0 1
v²
m0
c²
Onde mo é a massa do objeto em repouso. Não incluímos a prova nesse artigo, por ser de complexidade matemática excessiva, fugindo ao interesse do artigo.
Energia Relativística Junto com seu trabalho matemático sobre relatividade, Einstein mostrou que a expressão relativística precisa para a energia de uma massa de repouso mo e momento linear p é: 2
m0 . c²
E
pc ²
Devemos então notar a consistência, para os casos: - Objeto de massa de repouso não-nula, com velocidade nula:
p 0
m0 . c²
E
(Famosa Relação de Einstein para energia de repouso)
- Objeto de massa de repouso nula:
m0
E
0
pc
(Consistência com o resultado do eletromagnetismo)
Método Mnemônico de lembrar a expressão da energia O Triângulo ao lado resume as expressões de energia: E
E0
Ecinetica
E
m0 c²
Ecinetica
Onde, E é a energia relativística total e Eo é a energia de repouso. Do teorema de Pitágoras: E²
E0 ²
pc ²
E
m0 c² ²
( pc)²
Exercícios Propostos 1) Uma régua move-s e com a velocidade v=0,6c na direção do observador e
paralelamente ao seu comprimento. a) Calcular o comprimento da régua, medida pelo observador, se ela possui um metro no seu próprio referencial b) Qual o intervalo de tempo necessário para a régua passar pelo observador?
2) A vida média própria dos mésons é 2,6.10 8 s. Imagine um feixe destas partículas, com velocidade 0,9c. a) Qual seria a vida -média medida no laboratório? b) Que distância percorreriam antes de desintegrar -se? c) Q ual seria a resposta do item anterior, se desprezássemos a dilatação do tempo? 3) A energia liberada quando o sódio e o cloro se combinam para formar NaCl é 4,2 eV. a) Qual é o aumento de massa (em unidades de massa atômica) quando uma molécula de NaCl se dissocia em um átomo de Na e outro de Cl? b) Qual o erro percentual que se comete ignorando essa diferença de massa? Dados: A massa atômica do Na é cerca de 23 u e a do Cl vale 35 u. 4) Um elétron, com energia de repouso 0,511 MeV, tem energia total 5 MeV . a) Calcular o seu momento em unidade MeV/c. b) Calcular a razão da sua velocidade e da velocidade da luz.
5) A energia em repouso de um próton é 938 MeV. Sendo a sua energia cinética também igual a 938 MeV, calcular o seu momento linear em unidade MeV/c. 6) Um elétron desloca-se a uma velocidade tal que pode circunavegar a Terra, no Equador, em 1,00 s no referencial da Terra. a) Qual é a sua velocidade, em termos da velocidade da luz? b) Qual é a sua energia cinética K? c) Qual é o erro percentual cometido se a energi a cinética K for calculada pela fórmula clássica?
View more...
Comments