API 650 Tank Design
Short Description
Descripción: Design of a liquid storage tank per API 650 2013 Standard....
Description
950 m3 (TYPE-3) TANK CALCULATIONS A) SYSTEM AND DESIGN DATA Design pressure
Atmospheric
Tank inner diameter (m):
Di 11.5
Tank height (m):
H 11
Freeboard (m):
fb 0.5
Liquid level (m):
Hliq H fb
Discharge pipe level (m):
Hd 0
Tank usefull volume:
V
Stored material:
Su
Density of stored material:
1000
Hliq 10.5
m
m 2
Di 4
3
( Hliq Hd)
V 1.091 10
m
kg m
3
Specific gravity:
G
Wind Velocity:
Vwm 36
G1
1000 m
Vw Vwm 3.6
s
Vw 129.6
km h
Tank is outside the building. Design temperature:
Td 30
Snow load (kg/m2):
Sn 100
C kg m
Live Load on Roof (kg/m2):
2
Lr 250
kg m
Seismic Zone : (Turkis h Earthquake Code)
1
Corrosion allowance:
CA 6
Material:
ST37-2
Height of courses (m):
h0 1.5
Minimum Yield Strenght (MPa):
Sy 235
Minimum Tensile Strenght (MPa):
Sut 485
2
mm
The Maximum Allowable Product Design Stress (MPa): Sd1
2 3
Sy
Sd1 156.667
1
MPa
3
Sd2
Sd
Sd1 Sd2
2 5
Sut
Sd2 194
Sd min ( Sd)
MPa
Sd 156.667
Mpa
The Maximum Allowable Hydrostatic Test Stress (MPa): St1
St2
St
St1 St2
3 4 3 7
Sy
St1 176.25
MPa
Sut
St2 207.857
MPa
St min ( St)
Reference Standard:
St 176.25
Mpa
API Standard 650 12th Edition, 2013
B) SHELL DESIGN 1) 1 FOOT METHOD: Di 11.5 m
API 650 Section 5.6.3
60 m
1 Foot method can be used
Design shell thickness ( mm):
td
Hydrostatic test shell thickness ( mm):
tt
4.9 Di ( Hliq 0.3) G Sd
CA
4.9 Di ( Hliq 0.3) St
td 9.669
mm
tt 3.261
mm
2) VARIABLE DESIGN POINT METHOD: L
( 500 Di td)
L 235.787
mm API 650 Section 5.6.4
L Hliq
22.456
1000
Variable Design Point Method can be used.
6
a) The bottom course thickness (t1): Design shell thickness (mm):
t1d 1.06
0.0696 Di Hliq
Hliq G 4.9 Hliq Di G CA Sd Sd
t1d 9.929 mm
Hydrostatic test shell thickness (in):
t1t 1.06
0.0696 Di Hliq
Hliq 4.9 Hliq Di St St
t1t 3.496 mm
2
t
t1d t1t
max ( t) 9.929
t1 max ( t)
t1 9.929
mm
b) The second course thickness (t2): Ratio for the bottom course:
h0 1000
ratio
ratio 6.278
Ri 1000 t1 Calculation of t2a:
H1 H
H2 H1 h0
H2 9.5 m
First trial for second course: t2d
t2t
t
t2d t2t
max ( t ) 9.669
Thickness of lower course:
4.9 Di ( Hliq 0.3) G Sd
CA
t2d 9.669 mm
4.9 Di ( Hliq 0.3)
t2t 3.261 mm
St
tu max ( t)
tu 9.669
Ratio:
tL t1
tL
K
K 1.027
tu
K (K 1)
C
mm
1 K1.5
C 0.013
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H2
x1 184.421
x2 1000 C H2
x2 126.849
x3 1.22 ( Ri 1000 tu)
x3 287.66
x1 x x2 min ( x ) 126.849 xe min ( x ) x3
4.9 Di H2 t2d1
Sd
4.9 Di H2 t2t1
t
t2d1 t2t1
max ( t) 9.371
xe
G 1000 CA t2d1 9.371 mm xe
1000
St
t2a max ( t)
t2t1 2.997
t2a 9.371 mm
t2 9.371
c) The third course thickness (t3): Ratio for the lower course:
ratio
h0 1000
ratio 6.462
( Ri 1000 t2) Calculation of t3a:
H3 H2 h0
H3 8 m
3
mm
First trial for third course: t3d
t3t
t
t3d t3t
max ( t) 8.77
Thickness of lower course:
4.9 Di ( H3 0.3) G Sd
CA
t3d 8.77
4.9 Di ( H3 0.3)
t3t 2.462 mm
St
tu max ( t)
tu 8.77
Ratio:
tL t2
mm
K
C
mm
tL
K 1.069
tu K (K 1)
C 0.034
1 K1.5
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H3
x1 223.265
x2 1000 C H3
x2 269.644
x3 1.22 ( Ri 1000 tu)
x3 273.957
x1 x x2 min ( x ) 223.265 x3
xe min ( x )
4.9 Di H3 t3d1
Sd
4.9 Di H3 t3t1
t
t3d1 t3t1
t3 8.797
max ( t) 8.797
xe
G 1000 CA
t3d1 8.797 mm
xe
1000
St
t3a max ( t)
t3t1 2.486
mm
t3a 8.797
mm
mm
d) The fourth course thickness (t4): Ratio for the lower course:
ratio
h0 1000
ratio 6.669
( Ri 1000 t3) Calculation of t4a:
H4 H3 h0
First trial for fourth course:
t4d
t4t
t
t4d t4t
max ( t) 8.23
H4 6.5
4.9 Di ( H4 0.3) G Sd 4.9 Di ( H4 0.3) St
tu max ( t)
CA
t4d 8.23
mm
t4t 1.982 mm
tu 8.23
4
m
mm
Thickness of lower course:
Ratio:
tL t3
tL
K
K 1.069
tu K (K 1)
C
1 K1.5
C 0.034
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H4
x1 203.091
x2 1000 C H4
x2 219.979
x3 1.22 ( Ri 1000 tu)
x3 265.396
x1 x x2 min ( x ) 203.091 x3
xe min ( x ) xe
4.9 Di H4 t4d1
t4t1
t4d1 t4t1
t4 8.265
max ( t) 8.265
CA
Sd 4.9 Di H4
t
G
1000
xe
t4d1 8.265 mm
1000
St
t4a max ( t)
t4t1 2.013
mm
t4a 8.265
mm
mm
e) The fifth course thickness (t5): Ratio for the lower course:
ratio
h0 1000
ratio 6.881
( Ri 1000 t4) Calculation of t5a:
H5 H4 h0
First trial for fourth course:
t5d
t5t
t
t5d t5t
max ( t) 7.691
Thickness of lower course:
tL t4
H5 5
4.9 Di ( H5 0.3) G Sd
CA
4.9 Di ( H5 0.3)
t5d 7.691 mm
t5t 1.503 mm
St
tu max ( t)
tu 7.691
Ratio:
K
C
Distance of the variable design point from the bottom of the course: (x)
5
m
tL
mm
K 1.075
tu K (K 1)
1 K1.5
C 0.037
x1 0.61 ( Ri 1000 tu) 320 C H5
x1 186.872
x2 1000 C H5
x2 183.117
x3 1.22 ( Ri 1000 tu)
x3 256.549
x1 x x2 min ( x ) 183.117 x3
xe min ( x )
4.9 Di H5 t5d1
t5t1
t5d1 t5t1
t5 7.733
max ( t) 7.733
G
Sd 4.9 Di H5
t
xe
1000
CA
t5d1 7.733 mm
xe
1000
St
t5a max ( t)
t5t1 1.54
mm
t5a 7.733
mm
mm
f) The sixth course thickness (t6): Ratio for the lower course:
ratio
h0 1000
ratio 7.114
( Ri 1000 t5) Calculation of t6a:
H6 H5 h0
First trial for fourth course:
t6d
t6t
t
t6d t6t
max ( t) 7.151
Thickness of lower course:
tL t5
H6 3.5
4.9 Di ( H6 0.3) G Sd
CA
4.9 Di ( H6 0.3)
t6d 7.151 mm
t6t 1.023 mm
St
tu max ( t)
tu 7.151
Ratio:
K
C
tL
mm
K 1.081
tu
K (K 1)
1 K1.5
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H6
x1 168.278
x2 1000 C H6
x2 139.326
x3 1.22 ( Ri 1000 tu)
x3 247.387
6
m
C 0.04
x1 x x2 min ( x ) 139.326 x3
xe min ( x )
4.9 Di H6 t6d1
Sd
4.9 Di H6 t6t1 t
t6d1 t6t1
t6 7.209
max ( t) 7.209
xe
G 1000 CA t6d1 7.209 mm xe
1000
St
t6a max ( t)
t6t1 1.074
mm
t6a 7.209
mm
mm
g) The seventh course thickness (t7): Ratio for the lower course:
h0 1000
ratio
ratio 7.368
( Ri 1000 t6) Calculation of t7a:
H7 H6 h0
First trial for fourth course:
t7d
t7t
t
t7d t7t
max ( t) 6.611
Thickness of lower course:
H7 2
4.9 Di ( H7 0.3) G Sd
CA
t7d 6.611 mm
4.9 Di ( H7 0.3)
t7t 0.544 mm
St
tu max ( t)
tL t6
tu 6.611
Ratio:
m
K
tL
K 1.09
tu
C
mm
K (K 1)
1 K 1.5
C 0.044
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H7
x1 147.168
x2 1000 C H7
x2 88.227
x3 1.22 ( Ri 1000 tu)
x3 237.871
x1 x x2 min ( x ) 88.227 x3
xe min ( x )
4.9 Di H7 t7d1
Sd
7
xe
G 1000 CA t7d1 6.688 mm
4.9 Di H7 t7t1 t
t7d1 t7t1
t7 6.688
max ( t) 6.688
xe
1000
St
t7a max ( t)
t7t1 0.611
mm
t7a 6.688
mm
mm
h) The eighth course thickness (t8): Ratio for the lower course:
h0 1000
ratio
ratio 7.649
( Ri 1000 t7) Calculation of t8a:
H8 H7 h0
First trial for fourth course:
t8d
t8t
t
t8d t8t
max ( t) 6.072
Thickness of lower course:
H8 0.5
4.9 Di ( H8 0.3) G Sd
CA
t8d 6.072 mm
4.9 Di ( H8 0.3)
t8t 0.064 mm
St
tu max ( t)
tu 6.072
Ratio:
tL t7
m
K
tL
K 1.101
tu
C
mm
K (K 1)
1 K1.5
C 0.049
Distance of the variable design point from the bottom of the course: (x) x1 0.61 ( Ri 1000 tu) 320 C H8
x1 121.877
x2 1000 C H8
x2 24.68
x3 1.22 ( Ri 1000 tu)
x3 227.959
x1 x x2 min ( x ) 24.68 x3
xe min ( x )
4.9 Di H8 t8d1
t8t1
t8d1 t8t1
max ( t) 6.171
G
1000
Sd 4.9 Di H8
t
xe
St
t8a max ( t)
8
xe
CA
t8d1 6.171 mm
1000
t8t1 0.152
mm
t8a 6.171
mm
t8 6.171
mm
3) THICKNESSES OF ALL SHELL COURSES: Minimum shell thickness: According to API 650 Section 5.6.1.1. minimum shell thickness can not be less than this values: Tank Diameter (m): Di
Di 15
15 Di 36
36 Di 60
5
6
8
Plate Thickness (mm): t Di 11.5
60 Di 10
m
tmin 5
Selected Thicness of Shell Courses: Number of Shell Courses:
nsh 8
i 1 nsh
Course No
Thickness (mm)
Selected Thickness (mm)
Course Height (m)
1
t1 9.929
th1 12
h1 h0
h1 1.5
2
t2 9.371
th2 12
h2 h0
h2 1.5
3
t3 8.797
th3 10
h3 h0
h3 1.5
4
t4 8.265
th4 10
h4 h0
h4 1.5
5
t5 7.733
th5 8
h5 h0
h5 1.5
6
t6 7.209
th6 8
h6 h0
h6 1.5
7
t7 6.688
th7 8
h7 h0
h7 1.5
8
t8 6.171
th8 8
h8 H8
h8 0.5
Mid Elevations of Shell Courses: Course No
Mid Elevations of Shell Courses h1
1
hm1
2
hm2 h1
3
hm3 hm2
4
hm4 hm3
5
hm5 hm4
6
hm6 hm5
7
hm7 hm6
8
hm8 hm7
Mid Elevations (m) hm1 0.75
2 h2
hm2 2.25
2 h2 2 h3 2 h4 2 h5 2 h6 2 h7 2
h3
hm3 3.75
2 h4
hm4 5.25
2 h5
hm5 6.75
2 h6
hm6 8.25
2 h7
hm7 9.75
2 h8
hm8 10.75
2
9
mm
hi thi Average Thickness of Tank Shell (mm):
i
tav
tav 9.636
mm
hi
i 4
hi thi
Wsh Di 7.85
Weight of Shell Courses (kg):
Wsh 3.006 10
i
hi thi hmi Center of Gravity of Shell Courses (m):
i
Hs
Hs 4.991
hi thi
i
C) BOTTOM PLATES td CA
Product Stress (MPa):
PS
Hydrostatic Test Stress (MPa):
HTS
Stress in First Shell Course (MPa):
th1 CA tt th1
Sd
PS 95.795
St
MPa
HTS 47.898 MPa
max ( PS HTS)
95.795
MPa
According to API 650 Table 5.1 Annular Bottom Plate Thickness (tb): Plate Thickness of First Shell Course, t (mm)
tb 6
Stress in First Shell Course, (MPa) 190
210
230
250
t 19
6
6
7
19 t 25
6
7
10
11
25 t 32
6
9
12
14
32 t 40
8
11
14
17
40 t 45
9
13
16
19
9
mm Selected Annular Bottom Plate Thickness (including Corrosion Allowance):
tbs 12 mm
Selected Bottom Plate Thickness:
tbs 8
If annular plates are used, minimum radial width of annular plates:
w
215 tbs ( Hliq G)
D) TOP AND INTERMEDIATE WIND GIRDERS 1) TOP WIND GIRDER:
10
mm
w 530.804 mm
2
Required minimum section modulus (cm3):
Z
Di H 17
Vw 190
2
3
Z 39.815
cm
H1 94.477
m
Profile UNP100 can be selected with section Z = 41.2 cm3.
2) INTERMEDIATE WIND GIRDER: The top shell course plate thickness:
t 8
The maximum height of the unstiffened shell :
H1 9.47 t
mm
t Di
3
190 Vw
2
Vertical distance between the intermediate wind girder and top wind girder H1:
H1 94.477
m
If the height of the transformed shell, Wtr, is greater than the maximum height H1, an intermediate wind girder is required.
H1 94.477
m
Wtr 8.806
m
The intermediate wind girder is not required.
E) ROOF PLATES Loads Dead Load (the weight of the roof):
DL = t x (7.85) x 0.01
kPa
Design External Pressure:
Pe 0.25
kPa
Roof Live Load:
LR Lr 0.01
LR 2.5
kPa
Snow Load:
S Sn 0.01
S1
kPa
Self supporting cone roof Self supporting cone roofs should conform to the following requirements: Angle of the cone roof elements to the horizontal (degree):
9.5 37
Assume an angle for plate thickness calculation:
18
Dead Load (with plate thickness assumption):
DL 12 ( 7.85) 0.01
DL 0.942
kPa
1) DL + (Lr or S) + 0.4Pe
T1 DL LR 0.4 Pe
T1 3.542
kPa
2) DL + Pe + 0.4(Lr or S)
T2 DL Pe 0.4 LR
T2 2.192
kPa
deg
deg
Greater of load combinations:
11
T max ( T1 T2)
Minimum roof plate thickness:
trmin
T 3.542
Di
4.8 sin 180
T 2.2
kPa
trmin 11.838 mm
2
Calculated minimum roof plate thickness should not be greater than 13 mm according to API 650. Therefore supported cone roof will not be considered. Selected plate thickness of the supported cone roof:
tr 12
mm
F) OVERTURNING STABILITY UNDER WINDLOAD The wind pressure on projected areas of cylindrical surfaces for 100 miles/h wind velocity: fw 0.86
kPa 2
Vw Di H 1000 9.81 190
The wind load acting on tank:
Fw fw
Overturning moment from wind load:
Mw Fw
3
Fw 5.16 10
H
kg 4
kg m
3
kg
Mw 2.838 10
2
Weight of tank: Weight of Bottom Plates:
Wb
Di 0.001 th1 0.52 4
tbs ( 7.85) Wb 7.117 10
4
Weight of Shell Courses:
Wsh 3.006 10
kg
2
( Di 0.5)
Weight of Roof (with stiffeners):
Wro
Resisting weight:
Wres Wsh Wro
Overturning moment from wind load:
Mw 2.838 10
4
4
4
( tr 1) ( 7.85)
kg m
Wro 1.154 10
kg
4
Wres 4.16 10
Wres Di 1.595 105 3 2 2
kg
kg m
There is no overturning due to wind load. Therefore anchor bolts are not required.
G) SEISMIC DESIGN OF TANK (for MCE - Maximum Considered Earthquake) Reference Standard:
API Standard 650, ASCE 7
SEISMIC DESIGN FACTORS Seismic Use Group: Effective Ground Acceleration Coefficient: (for Seismic Zone 1 according to TEC 2007)
SUG 3 Seismic Zone
A0 0.4
Acceleration Coefficient
12
1 2 3 4 0.4 0.3 0.2 0.1
Importance Factor: (API 650 Table E-5)
I 1.5
Response Modification Factor - impulsive: (API 650 Table E-4)
Ri 4
(mechanically anchored)
Response Modification Factor - convective: (API 650 Table E-4)
Rc 2
(mechanically anchored)
1.0 1.25 1.5
Seismic Use Group Importance Factor
SITE GROUND MOTION Acceleration Parameters For sites not addressed by ASCE methods, the peak ground acceleration method shall be used. The peak ground acceleration parameter will be calculated by using the effective ground acceleration coefficient in TE C 2007. With a conservative approach, the effective ground acceleration coefficient in TEC 2007 will be multiplied by two. Peak Ground Acceleration Parameter:
Sp A0 2
Sp 0.8
Mapped MCE, 5% damped, spectral response acceleration parameter at short periods (0.2 sec), %g
Ss 2.5 Sp
Ss 2
Mapped MCE, 5 percent damped, spectral response acceleration parameter at a period of 1 sec, %g
S1 1.25 Sp
S1 1
Modifications for Site Soil Conditions Site Class based on the Site Soil Properties:
E
Acceleration Based Site Coefficient - at 0.2 sec period: (API 650 Table E-1)
Fa 0.9
Velocity Based Site Coefficient - at 1.0 sec period: (API 650 Table E-1
Fv 2.4
Adjusted Maximum Considered Earthquake (MCE) Spectral Response Acceleration Parameters: (According to ASCE 7-05 Section 11.4.3) For short periods:
Sms Ss Fa
Sms 1.8
For 1 second:
Sm1 S1 Fv
Sm1 2.4
Design Spectral Response Acceleration Parameters: (According to ASCE 7-05 Section 11.4.4) For short periods:
Sds
For 1 second:
Sd1
2 3 2 3
Sms
Sds 1.2
Sm1
Sd1 1.6
Design Response Spectrum (DRS): (According to ASCE 7-05 Section 11.4.5) Characteristic Periods:
T0 0.2
Sd1 Sds
13
T0 0.267 s
Sd1
Ts
Ts 1.333 s
Sds
Regional Dependent Transition Period for Longer Period Ground Motion: TL 4
(Regions outside the USA)
s
Natural Vibration Period (s):
T 0.01 0.015 6
Design Responce Spectrum
When
T T0
Sa ( T) Sds 0.4 0.6
When
T0 T Ts
Sa ( T) Sds
When
Ts T TL
Sa ( T)
TL T
Sa ( T) Sd1
When
Sd1 T
TL
T
2
Spectral Response Acceleration
1.2
1
0.8
Sa ( T) 0.6
0.4
0.2
0
1
2
3
4
T Period (s)
STRUCTURAL PERIOD OF VIBRATION Impulsive Natural Period Density of Fluid:
1 10
3
kg m
Height to Diameter Ratio:
Hliq Di
0.913
Coefficient Ci: (API 650 Figure E-1)
Ci 7.2
Elastic Modulus of Tank Material (MPa):
E 2.1 10
5
14
3
5
6
T
T0
Equivalent Uniform Thickness of Tank Shell: (mm) (Average thickness)
tu tav
Impulsive Natural Period (s): (API 650 Eq. E.4.5.1)
Ti
1
Ci Hliq
2000
tu
tu 9.636
mm
Ti 0.127
s
E
Di
Convective (Sloshing) Period Sloshing Period Coefficient:
0.578
Ks
Ks 0.579
3.68 Hliq
tanh
The First Mode Sloshing Wave Period (s ): (API 650 Eq. E.4.5.2)
Di
Tc 1.8 Ks Di
Tc 3.532
s
DESIGN SPECTRAL RESPONSE ACCELERATIONS Impulsive Spectral Acceleration Parameter
I Ri
Ai Sds
Ai 0.45
%g
Convective Spectral Acceleration Parameter Coefficient to adjust the spectral acceleration from 5% - 0.5% damping:
K 1.5
1 I Tc Ri
When
Tc TL
Ac K Sd1
When
Tc TL
Ac K Sd1
TL I 2 Rc Tc Ac 0.255
%g
DESIGN LOADS Effective Weight of Product Diameter to Height Ratio:
Di Hliq
1.095 2
Total weight of tank contents (N):
Wp
Di 4
Hliq 9.81
15
Wp 1.07 10
7
N
Effective Impulsive Weight (N): (API 650 Eq. E.6.1.1)
Selection of Effective Impulsive Weight Equation:
When
Di Hliq
When
tanh 0.866
Di Hliq
Wi
1.333
0.866
Hliq Wp
Di
Hliq
1.333
Di
Wi 1.0 0.218
Di
Wp
Hliq
6
N
Wi 8.144 10
Effective Convective Weight (N): (API 650 Eq. E.6.1.1)
Wc 0.230
Di Hliq
3.67 Hliq Wp Di
tanh
6
Wc 2.689 10
N
Center of Action for Ringwall Overturning Moment The ringwall overturning moment is the portion of the total overturning moment that acts at the base of the tank shell perimeter. This moment is used to determine loads on a ringwall foundation, the tank anchorage forces, and to check the longitudinal shell compression.
Height of the Lateral Seismic Force: Applied to Wi (m) (API 650 Eq. E.6.1.2.1)
Selection of Height Equation:
When
Di Hliq
When
Di Hliq
1.333
1.333
Xi 0.375 Hliq
Xi 0.5 0.094
Di
Hliq Hliq m
Xi 4.169
3.67 Hliq 1 cosh Di Hliq Xc 1.0 3.67 Hliq sinh 3.67 Hliq Di Di
Height of the Lateral Seismic Force: Applied to Wc (m) (API 650 Eq. E.6.1.2.1)
Xc 7.579
m
Center of Action for Slab Overturning Moment The slab overturning moment is the total overturning moment acting across the entire tank base cross section. This overturning moment is used to design slab and pile cap foundation (if any). Height of the Lateral Seismic Force: Applied to Wi (m) (API 650 Eq. E.6.1.2.2) When
Selection of Height Equation:
Di Hliq
1.333
0.866 Di Hliq Xis 0.375 1.0 1.333 1.0 Hliq Di tanh 0.866 Hliq 16
When
Di Hliq
1.333
Xis 0.5 0.06
Di
Hliq Hliq m
Xis 5.94
Height of the Lateral Seismic Force: Applied to Wc (m) (API 650 Eq. E.6.1.2.2)
Xcs 1.0
3.67 Hliq 1.937 Di Hliq 3.67 Hliq 3.67 Hliq sinh Di Di cosh
Xcs 7.785
m
Overturning Moment The seismic overturning moment at the base of the tank is evaluated as the SRSS summation of the impulsive and convective components multiplied by the respective moment arms to the center of action of these forces. 5
Total weight of tank shell (N):
Ws Wsh 9.81
Ws 2.949 10
Height of Shell's Center of Gravity (m)
Xs Hs
Xs 4.991
Weight of Roof (N):
Wr Wro 9.81
Wr 1.132 10
Height of Roof's Center of Gravity (m)
Xr H
Ringwall Overturning Moment (Nm): (API 650 Eq. E.6.1.5) for global evaluations
Mrw
Slab Overturning Moment (Nm): (API 650 Eq. E.6.1.5)
Ms
m 5
Di tan 3 2 180 1
Xr 11.623
2
[ Ai ( Wi Xi Ws Xs Wr Xr) ] [ Ac ( Wc Xc) ]
2
7
2
[ Ai ( Wi Xis Ws Xs Wr Xr) ] [ Ac ( Wc Xcs ) ] 7
Vertical Seismic Effects The vertical seismic acceleration parameter Av is defined as 0.14*Sds in API 650 and as 0.2*Sds in ASCE 7 method. Conservatively 0.2*Sds is choosen in calculations. Av 0.24
Dynamic Liquid Hoop Forces Dynamic hoop tensile stress due to seismic motion of the liquid is calculated by the following formulas. Calculation for the 1.st shell course: Distance from liquid surface to analysis point (m):
Y Hliq
17
Y 10.5 m
Nm
2
Ms 2.363 10
Av 0.2 Sds
N
m
Mrw 1.733 10
Vertical Seismic Acceleration Coeff. (%g):
N
Nm
Impulsive Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
When
Di Hliq
When
Di Hliq
When
Di Hliq
Selection of Force Equation:
2 Y Y tanh 0.866 Di 0.5 Hliq Hliq Hliq
Ni 8.48 Ai G Di Hliq
1.333
1.333
and
Y 0.75 Di
2 Y Y Ni 5.22 Ai G Di 0.5 0.75 Di 0.75 Di
1.333
and
Y 0.75 Di
Ni 2.6 Ai G Di
2
2
N
Ni 154.732
mm
Convective Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
2
1.85 Ac G Di cosh 3.68 Nc
( Hliq Y) Di
3.68 Hliq Di
N
Nc 4.325
mm
cosh
Liquid Hydrostatic Membrane Force in Tank Shell (N/mm): Y G Di
Nh
2
Thickness of the shell ring under consideration (mm):
Total Combined Hoop Stress (MPa):
t
ts th1 CA 2
Nh
N
Nh 592.279
9.81
ts 6
2
Ni Nc ( Av Nh) ts
mm
mm
2
t 133.74
MPa
The maximum allowable hoop tension membrane stress for the combination of hydrostatic and dynamic membrane hoop effects should be less than allowable design stress of the shell increased by 33%. Allowable Stress for MCE seismic design:
Comparison:
t 133.74
Hoop Stress Ratio:
all 1.33 Sd
MPa
all 208.367
SRhs
t all
all 208.367
MPa
SRhs 0.642
OK
MPa
Calculation for the 2.nd shell course: Distance from liquid surface to analysis point (m):
Y Hliq h0
18
Y9
m
Impulsive Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
When
Di Hliq
When
Di Hliq
When
Di Hliq
Selection of Force Equation:
2 Y Y tanh 0.866 Di 0.5 Hliq Hliq Hliq
Ni 8.48 Ai G Di Hliq
1.333
1.333
and
1.333
and
2
Y 0.75 Di
Ni 5.22 Ai G Di
Y 0.75 Di
Ni 2.6 Ai G Di
Y
0.75 Di
2 Y 0.75 Di
0.5
2
N
Ni 154.732
mm
Convective Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
2
1.85 Ac G Di cosh 3.68 Nc
( Hliq Y) Di
3.68 Hliq Di
N
Nc 4.833
mm
cosh
Liquid Hydrostatic Membrane Force in Tank Shell (N/mm): Y G Di
Nh
2
Thickness of the shell ring under consideration (mm):
Total Combined Hoop Stress (MPa):
t
ts th2 CA 2
Nh
N
Nh 507.668
9.81
ts 6
2
Ni Nc ( Av Nh) ts
mm
mm
2
t 117.445
MPa
The maximum allowable hoop tension membrane stress for the combination of hydrostatic and dynamic membrane hoop effects should be less than allowable design stress of the shell increased by 33%. Allowable Stress for MCE seismic design:
Comparison:
t 117.445
Hoop Stress Ratio:
all 1.33 Sd
MPa
all 208.367
SRhs
t all
all 208.367
MPa
SRhs 0.564
OK
MPa
Calculation for the 3.rd shell course: Distance from liquid surface to analysis point (m):
Y Hliq 2 h0
19
Y 7.5
m
Impulsive Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
When
Di Hliq
When
Di Hliq
When
Di Hliq
Selection of Force Equation:
2 Y Y Di Ni 8.48 Ai G Di Hliq 0.5 tanh 0.866 Hliq Hliq Hliq
1.333
1.333
and
1.333
and
2
Y 0.75 Di
Ni 5.22 Ai G Di
Y 0.75 Di
Ni 2.6 Ai G Di
Y
0.75 Di
2 Y 0.75 Di
0.5
2
N
Ni 152.685
mm
Convective Hoop Membrane Force in Tank Shell (N/mm): (API 650 Eq. E.6.1.4)
2
1.85 Ac G Di cosh 3.68 Nc
( Hliq Y) Di
3.68 Hliq Di
N
Nc 6.476
mm
cosh
Liquid Hydrostatic Membrane Force in Tank Shell (N/mm): Y G Di
Nh
2
Thickness of the shell ring under consideration (mm):
Total Combined Hoop Stress (MPa):
t
ts th3 CA 2
Nh
N
Nh 423.056
9.81
ts 4
2
Ni Nc ( Av Nh) ts
mm
mm
2
MPa
t 151.633
The maximum allowable hoop tension membrane stress for the combination of hydrostatic and dynamic membrane hoop effects should be less than allowable design stress of the shell increased by 33%. Allowable Stress for MCE seismic design:
Comparison:
t 151.633
Hoop Stress Ratio:
MPa
all 1.33 Sd
all 208.367
SRhs
t all
all 208.367
MPa
SRhs 0.728
OK
MPa
FOUNDATION LOADS Dead Load per Unit Length (N/m): (Shell and Roof)
DL
Ws Wr
20
Di
DL 1.13 10
4
N m
2
Lr 9.81
( Di 0.5) 4
Live Load per Unit Length (N/m): (Live Load on Roof)
LL
Total Dead Weight (N): (Shell, Roof and Liquid)
Wt Ws Wr Wp
Total Load per Unit Area during Operation (N/m2): (Shell, Roof and Liquid)
Wo
LL 7.677 10
Di
N
3
m 7
Wt 1.111 10
Wt
N N
5
Wo 1.069 10
Di2 4
m
2
Seismic loads: The equivalent lateral seismic forces are calculated by considering the effective mass and dynamic liquid pressures. The seismic base shear is evaluated as the SRSS summation of the impulsive and convective components.
Base Shear due to Seismic Load (N):
Seq
2
[ Ai ( Wi Ws Wr) ] ( Ac Wc )
2 6
N
7
Seq 3.909 10 Ringwall Overturning Moment due to Seismic Load (Nm):
Mrw 1.733 10
Nm
Slab Overturning Moment due to Seismic Load (Nm):
Ms 2.363 10
7
Nm
4
Vertical Seismic Force (N): (Shell and Roof)
Fvs Av ( Ws Wr)
Vertical Seismic Force per Unit Length (N/m): (Shel and Roof)
VSF
Total Vertical Seismic Force (N): (Shell, Roof and Liquid)
Fvst Av Wt
Fvst 2.666 10
N
Total Vertical Load (N): (Total Vertical Seismic and Total Dead W.)
Fvt Fvst Wt
Fvt 1.377 10
7
N
Fvs ( Di )
Fvs 9.795 10
3
VSF 2.711 10
6
N
N m
ANCHORAGE LOADS Resistance to the overturning (ringwall) moment at the base of the shell is provided by mechanical anchorage devices (anchor bolts). The resisting weight of the liquid is neglected in the calculation of the uplift load on the anchors. The anchors are sized to provide at least the minimum anchorage resistance calculated as follows: Distributed Compression Force due to Roof (N/m): wr
Distributed Compression Force due to Shell (N/m): ws Total Distributed Compression Force (N/m):
Wr Di Ws Di
wt wr ws
Vertical Seismic Acceleration (g's):
Minimum Anchorage Resistance (N/m): (API 650 Eq. E.6.2.1.2)
3
wr 3.134 10
N m
3
ws 8.163 10 4
wt 1.13 10
N m N m
Av 0.24
wab
1.273 Mrw wt ( 1 0.4 Av) wab 1.566 105 2 Di 21
N m
ANCHOR BOLT VERIFICATION (LRFD CRITERION) Due to the adoption of shear keys, anchor bolts are subjected to traction loads only. Max applied tractions are evaluated from above calculated anchorage loads and anchor bolt capacity is determined according to ACI 318-05 Appendix D Requirements according to API 650 E.7.1.2:
- Minimum 6 anchors should be provided. - The spacing between anchors should be less than 3 m. - Anchors should have a minimum diameter of 25 mm.
Number of Equally Spaced Anchors Around the Tank Circumference:
nb 24
Distance from bolt center to shell (mm):
Dbs 92
Bolt Circle Diameter (m):
Db Di 2
Bolt Spacing Angle:
Bolt Spacing (m):
Dbs th1 1000
360
Db 11.708
Db
m
degrees
15
nb
Bsp
mm
Bsp 1.533
nb
Concrete strength (MPa):
flc 25
m
MPa
Anchor Bolt Characteristics Cast in headed stud anchor Nominal Diameter of Anchor (mm):
db 48
Threaded Area of Bolt (mm2):
Ath
mm 2
0.75 db 4
3
Ath 1.357 10
Anchor bolt material: S275JR (St44-2) or equivalent Ultimate Tensile Strenght (MPa):
Sub 430
Yield Strenght (MPa):
Syb 275
Maximum traction As LRFD design method is used for anchor bolt verification, following load combination will be adopted U = 0.9 x D + E Bsp 1000
Bolt Spacing to Diameter ratio
db Max traction on single bolt (kN)
Tb
wab Bsp 1000
22
Tb 240
31.929
kN
2
mm
Bolts tension capacity (according to clause D.5) Reduction Factor (according to clause D.4.4.a)
t 0.75
Additional seismic strength reduction factor
s 0.75
Design tensile strength (ACI 318 D.5.1.2) (MPa)
futa min ( Sub 860 1.9 Syb)
Nominal bolt strength in tension (kN)
Nsa Ath min ( futa 860) 10
Nsa 583.582
Bolt tension capacity (kN)
Nsa s t Nsa
Nsa 328.265 kN
Bolt tension demand (kN)
Nua Tb
Nua 240
Comparison:
futa 430
3
Nsa 328.265 kN
Nua 240
Bolt usage ratio:
kN
kN
kN
Nua
FUt
MPa
OK
FUt 0.731
Nsa
Pullout strength in tension (according to clause D.5.3) Modification Factor:
cp 1.4
Reduction Factor:
p 0.75
Bearing area at head of anchor bolt (mm2):
db2 Abrg 160 4
Pull out strength in tension of an headed bolt (kN):
Np 8 Abrg flc 10
Nominal pull out strength (kN):
Npn Np cp
Npn 6.661 10 kN
Design pull out strength (kN):
Np p s Npn
Np 3.747 10 kN
Comparison:
3
Np 3.747 10 kN
2
Nsa 328.265
2
4
Abrg 2.379 10 mm
3
3
Np 4.758 kN 10
3
3
OK
kN
Bolt adequacy for uplift loads According to Table 3.21 of API 650 Dead load of shell minus any corrosion allowance and any dead load including roof plate acting on the shell minus any corrosion allowance (N):
tav CA Wro tr CA 9.81 tav tr
W2 Wsh
Seismic uplift loads (N):
U 4
Ms Di
5
N
7
Nm
W2 1.679 10
W2 ( 1 0.4 Av)
As Ms is used for a verification based on ASD criterion a new evaluation can be made as follows: Slab Overturning Moment (Nm): Ms
2
[ Ai 0.7 ( Wi Xis Ws Xs Wr Xr) ] [ Ac ( Wc Xcs ) ]
23
2
Ms 1.698 10
Levhali
Seismic uplift loads (N):
Uplift load per anchor (N):
Uasd 4
tb
Ms Di
Uasd
al 0.8 Syb
Average induced stress (MPa):
ub
5
6
Nm
N
MPa
al 220
tb
ub 176.627 MPa
Ath ub
SRu
Uasd 5.753 10
tb 2.397 10
nb
Allowable Ancher Bolt Stress (MPa): according to Table 3.21 of API 650
Uplift stress ratio
W2 ( 1 0.4 Av)
OK
SRu 0.803
al
SHEAR KEY VERIFICATION (ASD CRITERION) Shear keys characteristics
Depth of shear key (mm):
dp 100 mm
Width of shear key (mm):
wsk 100 mm
Thickness of shear key (mm):
tsk 20
Number:
nsk 24
Material:
S275 JRG2
Plate minimum yield stress (MPa)
ysk 275
mm
Verification procedure The shear keys are verified for the bending moment and shear stresses in the plates produced by the concrete bearing reaction in the contact area, assumed as uniformly distributed. Two verifications are performed: A global verification at the shear key connection to the annular plate A local verification at the connection of the two vertical plates forming the shear key. 6
Total Base Shear due to seismic load (N):
0.7 Seq 2.736 10
Shear for each shear key (N):
Ssk
Concrete compression (MPa):
fc
0.7 Seq nsk Ssk
wsk dp
Concrete allowable compression (MPa):
fcall 0.65 0.85 flc
Concrete compression ratio
SRck
fc fcall
N 5
Ssk 1.14 10
fc 11.402 MPa
fcall 13.813
MPa OK
SRck 0.825
Global verification Shear area (mm2):
Assk tsk wsk
24
Assk 2 10
3
2
mm
Shear stress (MPa):
Ssk
Shear key allowable bending stress (MPa):
allsk
Shear key allowable shear stress (MPa):
allsk
MPa
57.009
Assk 2 3
allsk 183.333 MPa
ysk
allsk
MPa
allsk 129.636
2 Shear stress ratio:
SR
dp
Arm of the global concrete reaction (mm):
afc
Global bending moment (Nmm):
Mgk Ssk afc
Global inertia moment (mm4):
Igk
afc 50
2
1
mm 6
Mgk 5.701 10
3
12
OK
SR 0.44
allsk
( wsk) tsk ( wsk tsk) tsk
3
4
6
Igk 1.72 10 Global section modulus (mm3):
Shear key global bending stress (MPa):
Shear key global bending stress ratio.
Igk
Wgk
gk
wsk
mm
3
4
Wgk 3.44 10
2
Mgk
mm
gk 165.723 MPa
Wgk
SRgk
Nmm
gk
OK
SRgk 0.904
allsk
Local verification Conservatively we consider a simple cantilever beam of unit width
Shear key overhang (mm):
esk
wsk tsk
Bending moment due to concrete reaction (Nmm/mm): Mlk fc esk 1
Shear key section modulus per unit depth (mm3/mm): Wlk
Shear key bending stress (MPa):
Shear key local bending stress ratio:
esk 40
2
lk
6
2
Mlk Wlk
SRlk
25
tsk
esk
lk allsk
2
mm 3 N mm
Mlk 9.121 10
mm 3
Wlk 66.667
lk 136.821
SRlk 0.746
mm
mm MPa
OK
MAXIMUM LONGITUDILAN SHELL MEMBRANE COMPRESSION STRESS Shell Compression in Mechanically Anchored Tanks The maximum longitudinal shell compression stress at the bottom of the shell for mechanically anchored tanks is evaluated according to API 650 E.6.2.2.2 Thickness of Bottom Shell Course less CA (mm): tsb th1 CA
c wt ( 1 0.4 Av)
1.273 Mrw
1
1000 tsb
2
Di
tsb 6
mm
MPa
c 29.865
Allowable Longitudinal Shell Membrane Compression Stress The seismic allowable stress Fc is evaluated according to API 650 E.6.2.2.3 2
The Parameter:
Para
G Hliq Di
Para 38.573
2
tsb The Allowable Compression Stress (MPa): (API 650 Eq. E.6.2.2.3)
Selection of Stress Equation: 2
G Hliq Di
When
44
2
Fc
tsb
83 tsb Di
2
G Hliq Di
When
2
44
tsb
Fc
83 tsb 2.5 Di
7.5 ( G Hliq) 0.5 Sy Fc 41.625
Comparison:
c 29.865
Compression Stress Ratio:
Rcs
MPa
c
Fc 41.625
MPa
MPa
OK
Rcs 0.717
Fc
ANCHOR CHAIR VERIFICATION (ASD CRITERION) The tank is anchored to the foundation by mean of anchor bolts and chairs. The verification of various components of the chair (top plate and gussets) is performed according to procedure 3-14 "Design of base details for vertical vessels" of Pressure Vessel Design Manual by D. Moss. Used symbols are shown in next figure. Input data Material S235 JRG2 Plate minimum yield stress (MPa):
y Sy
y 235
Plate allowable stress (MPa):
ball Sd
ball 156.667 MPa
Bolt eccentricity (mm):
a Dbs
a 92
26
MPa
mm
Height from top of annular plate (mm):
h 250 mm
Distance between gussets (mm):
b 100 mm
Thickness of bottom shell (mm):
ts th1
Bolt diameter (mm):
ts 12
mm
db 48
mm
Bolt hole in the top plate (mm)
dbh db 24
Top plate thickness (mm):
tc 30
Top plate width (mm):
A 400 mm
Top plate edge distance from bolt axis (mm):
c 85
Top plate width ouside bolt hole (mm):
e c
Thickness of gussets (mm):
tg 25 mm
Bolt pitch (mm):
bp Bsp 1000
bp 1.533 10
3
mm
Base plate span between chairs (mm):
bs bp ( b 2 tg)
bs 1.383 10
3
mm
Number of gussets per chair:
ng 2
Shell reinforcement plate thickness (mm:)
rpt 20 mm
Shell reinforcement plate halfwidth (mm):
rpw 200 mm
dbh 72
mm
mm
mm
dbh
e 49 mm
2
Design loads Bolt traction As ASD design method is used for anchor chair verification, a new evaluation of max bolt traction is done as follows:
Maximum traction on single bolt (N):
Tbc
1.273 Mrw wt ( 1 0.4 Av 0.7) bp 1000 2 Db Tbc 2.305 10
5
N
For additional conservatism we consider the max between the computed traction and the ASD bolt capacity Maximum load considered for the chair verification (N): Tbc max Tbc0.7Nsa1000 Tbc 2.305 10
Maximum compression per unit length (N/m):
C wt ( 1 0.4 Av 0.7)
5
N
1.273 Mrw 2
Di
5
C 1.789 10
27
N m
Annular bottom plate characteristics Selected bottom plate thickness (mm):
tb tbs
tb 8
Annular plate width (mm):
mm
w 530.804
mm
Top plate verification The top plate is assumed as a beam, with dimensions e x A, with partially fixed ends, and a portion (1/3) of the total anchor bolt force Tbc, distributed along part of the span.
Maximum induced bending stress (MPa):
Tbc
tp
2
( 0.375 b 0.22db)
tp 140.808 MPa
e tc
Top plate bending stress ratio
SRtp
tp
OK
SRtp 0.899
ball
Gusset verification Gusset maximum axial compression force (N):
Tbc
Cg
5
Cg 1.152 10
ng
Gusset width at bottom edge (mm):
wo 15 mm
Gusset mean width (mm):
bg
( a c ) wo
bg 96
2
mm
Gusset thickness (mm):
tg 25
Shell reinforcement plate thickness (mm):
rpt 20 mm
Shell reinforcement plate halfwidth (mm):
rpw 200
Section total area (mm2):
Neutral axis distance from midsurface of reinforcement plate (mm):
N
mm
mm 2
3
Ag bg tg rpt rpw
Ag 6.4 10
bg rpt 2 2 na tg bg
na 21.75
Ag
mm
mm
Longitudinal inertia moment (mm4): 3
Il
tg bg 12
2
3
bg rpt na rpw rpt rpt rpw ( na) 2 2 12 2
6
tg bg
Transv ersal inertia moment (mm4):
It
Inertia radius (mm):
rl
12 1
Ag
28
3
bg tg rpt rpw
Il
rt
Il 7.023 10
It Ag
3
7
It 1.346 10
rl 33.125
mm
rt 45.857
mm
4
mm
4
mm
rmin min ( rl rt) Instability Factor:
IF 1
Young's modulus (MPa):
E 210000 MPa
Yield s tress (MPa):
rmin 33.125 mm
y 235
Cc factor:
2 E
Cc
2
y
MPa
Cc 132.813
Allowable compression stress (MPa):
cgall
2 IF h rmin 1 2 2 rmin 3 5 h IF h 1 3 IF 3 3 8 Cc rmin rmin 8 Cc
Max compression stress (MPa)
Compression stress ratio
cg
Cg Ag
SRcg
29
y
cg cgall
cgall 135.608 MPa
cg 18.008
SRcg 0.133
MPa
OK
View more...
Comments