Answer (8)
April 22, 2017 | Author: Meet Shah | Category: N/A
Short Description
Download Answer (8)...
Description
JEE(Advanced)-2013 ANSWERS, HINTS & SOLUTIONS CRT(Set-VI) (Paper-1) ANSWERS KEY
ALL INDIA TEST SERIES
From Long Term Classroom Programs and Medium / Short Classroom Program 4 in Top 10, 10 in Top 20, 43 in Top 100, 75 in Top 200, 159 in Top 500 Ranks & 3542 t o t a l s e l e c t i o n s i n I I T - J E E 2 0 1 2
FIITJEE
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
ANSWER
ANSWER
ANSWER
1.
A
D
B
2.
B
B
B
3.
A
C
B
4.
A
A
C
5.
C
A
D
6.
D
A
D
7.
B
C
D
8.
A, D
B, D
A, D
9.
B, D
A, B, D
B, C, D
10.
A, D
A, B
B, C
11.
A, B
A, C, D
C, D
12.
B
B
A
13.
B
A
D
14.
B
C
B
15.
C
B
C
16.
B
C
D
1.
4
1
2
2.
3
2
2
3.
1
9
3
4.
4
4
0
5.
2
5
2
6.
1
5
3
7.
4
3
1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
2
Physics
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
PART – I SECTION – A
1.
For (1) particle, ut − t1 =
1 2 gt = −H 2
u ± u2 + 2gH u + u2 + 2gH = g g
For (2) particle, t2 =
−u ± u2 + 2gH −u + u2 + 2gH = g g
∴ ∆t = 2u/g 2.
∆W = −∆u m 2 2 ω =q E 4 qE ⇒ω= 2 m
6.
fav =
n1f1 + n2 f2 + n3 f3 n1 + n2 + n3
f Cp = + 1 R 2 7.
Potential drop = 2 volt ∴ q = CV
11.
If r1 and r2 are the resistances of the first and the second coils and v = mains voltage. V2 t2 r t V 2 t1 1 Q= = ⇒ 1 = 1 = r1 r2 t 2 2 r2 In series req = r1 + r2 v 2 t3 v 2 t1 ⇒ Q= ⇒ t3 = 3t = 45 min = r1 + r2 r1 In parallel v 2 t 4 ( r1 + r2 ) v 2 t1 = Q= r1r2 r1 ⇒ t4 =
12.
r2 t = 10 minutes. r1 + r2
Rsh(I – Ig) = Rg . Ig Rg 100 100 = 4 Ω = Rsh = Ω I 10 − 1 9999 −1 Ig
I
Ig
~
Rg
|I – Ig | Rsh
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
13.
3
-3
Ish = 10 – 10 = 9.999 A Power dissipated 100 = 0.9999 Watt. 9999 which is less than 1 watt. Hence it can be used.
P = I2shR sh = (9.999)2 ×
14.
15.
From the data given if orbital speed v = 2 × 105 m/s mv 2 GMm = , where M is mass of the massive object and m is mass of particle r r2 Rv 2 6 × 9.5 × 1015 × 4 × 1010 = ∼ 1037 kg . ⇒ M= G 6.67 × 10−11 Mass of the object Mass of sun
1037 = 107 > 50 1030
∴ It is a black hole. 16.
Rs =
2GM 2 × 6.67 × 10−11 × 6 × 1024 = ≈ 10−3 8 2 C2 ( 3 × 10 )
∴ Radius compression factor =
10−3 ≈ 10−9 6400 × 103
SECTION – C 2.
IR2 + IL2 = (1.5)2 + ( 2 ) = 2.5mA 2
Line current, I =
Circuit impedance, Z = 3.
V 15V = = 6kΩ I 2.5mA
Mirror formula 1 1 1 + = u u f 1 du 1 dv − 2 − =0 u dt v 2 dt 2
dv v 2 du 10 = 2 = × 4 = 1m / sec dt u dt 20 4.
R
cos φ =
2
1 R + − ωL ω C Putting the values, C = 500 µC 2
7.
N N 2 N′ = n + 2n 2 2 2 Where n is no of half lives elapsed for species A N′ 5 1 1 = = n +1 + n Now, +1 N 32 2 2 2
⇒ n=4
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
4
Chemistry
PART – II SECTION – A
1.
Heat capacity and internal energy are exclusive property as their value depends upon mass of sample.
2.
Top to bottom stability increases among sulphates of alkaline earth metals.
3.
N2 has small size, no polarity and smaller surface area.
4.
Both have still a replacable hydrogen thus behaves as an acid.
5.
Due to maximum number of unpaired electron,
6.
Due to angle strain cyclopropane will also give Br2-water test but cyclohexane is free from angle strain
7.
CH3
(A)
8.
CH3
CH3
OH
Cl
(B)
(C)
(A) B – F bond length is smaller in BF3 than in BF4− due to back bonding in BF3. S
S
(B) is more stable due to back bonding. (C) Triplet carbene is more stable than singlet carbene. (D) 9.
( CH 3 )3 Si − OH
is more acidic because
( CH 3 )3 SiO−
is more stable due to pack bonding.
A → B + 3C
(1− 0.1)
( 0.1)
( 0.3 )
PT = (1 + 3 × 0.1) = 1.3 atm ∆P = 0.2 atm or 76×0.3 cm of Hg or 760×0.3 mm Hg = 228 mm of Hg. 10.
(A) Due to strong salvation of smaller Li+, much energy is released which makes LiClO4 more soluble (B) Na reacts with ethanol but not with diethyl ether
C2 H 5OH + Na → C2 H 5ONa +
1 H2 2
(C) Top to bottom basicity increases in alkali metal hydrides. 11.
+ + Since HCOOH is weak its H is always less than H given by HCl solution having same
concentration (ii) HCOONa and NaOH cannot form buffer a mixing 12.
E has abnormally higher IE1 value
13.
Due to very high IE values.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
16.
5
H
Solution for the Q. No. 14 to 15 (P)
(Q) (R)
SECTION – C 1.
Let n atoms be ionized
6 × 1023 × 10 −22 × EA = n × IP 6 ×1023 × 10−22 × 3.6 n= 13 = 16.67 ⇒ 1.66 × 101 2.
trans & cis
3.
Degree of unsaturation in product is 7. Hence, reactant must be having 7 + 2 = 9. C 2 H5
4.
H3C
H
H3C
Br
4-product
C 2 H5
5.
λ2 = 30.4 × 10 −7 cm, λ1 = 108.5 × 10−7 cm + Let excited state of He be n2. It comes from n2 to n1 and then n2 to 1 to emit two successive Given
photon. 1 1 1 = RH × Z 2 2 − 2 λ2 1 n1
1 1 1 = 109678 × 4 × 2 − 2 ⇒ n1 = 2 −7 30.4 ×10 1 n1 Now for λ1 : n1 = 2 and n2 = ?
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
6
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
1 1 = RH × Z 2 2 − 2 λ1 2 n1 1
1 1 1 = 109678 × 4 × 2 − 2 ⇒ n2 = 5 −7 108.5 ×10 2 n1
6.
All oxygen atoms are peroxide oxygen.
7.
M.wt. of
Fe ( SCN )3 is 230 g.
19 g water and 81 g Fe ( SCN )3 is present in 100 g of compound.
∵ 81 g Fe ( SCN )3 combines with 19 g H2O 19 ∴230 g Fe ( SCN )3 = × 230 = 54 g 81 54 No. of water molecules = =3 18
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
Mathematics
7
PART – III SECTION – A
1.
π π ≤ sin−1 x ≤ 2 2 π π − ≤ sin−1 y ≤ 2 2 −π ≤ sin−1 x + sin−1 y ≤ π −
(–1,0) (0,0)
so for sin−1 x + sin−1 y = −π
(0, –1)
π π ⇒ sin x = − and sin−1 y = − 2 2 x = −1 and y = −1 −1
0
∫ −(x + 1) dx 2
area required 1 −
−1
= 1−
2
y = – (x + 1) 1 2 = sq. units. 3 3
b
2.
∫
∴ I = (x − a)3 (b − x)4 dx a
π/2
= 2(b − a)
∫
(a cos2 θ + b sin2 θ − a)3(b – a cos2 θ − b sin2 θ)4 sin θ cos θ dθ
0 π/2
= 2(b − a)8
∫
π/2
sin7 θ cos9 θdθ = 2(b − a)8
0
∫ sin
7
θ(1 − sin2 θ)4 cos θdθ
0
Let sin θ = t ⇒ cos θ dθ = dt 1
1
∫
∫
⇒ I = 2(b − a)8 t 7 (1 − t 2 )4 dt = 2(b − a)8 t 7 (1 − 4t 2 + 6t 4 − 4t 6 + t 8 )dt = 0
0
3.
x1 + x2 + x3 + x4 = 8 ∴ A.M. = 2 x1x2x3x4 = 16 ∴ G.M. = 2 Since all are positive and A.M. = G.M. ∴ x1 = x2 = x3 = x4 = 2
4.
B=
∫
cos ecθ
(
dt
t 1 + t2
1
(b − a)8 280
)
1 −udu =u⇒B= 1 t 1 + u2 ⇒ A + B = 0 ⇒ A = −B
∫
let
A
A2
0
A
2
1
2A 2
∴e
sin θ
−A −1 = 0 −1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
8
5.
As g ( x ) is a curve which is obtained by the reflection of f ( x ) =
⇒ g ( x ) is inverse of f ( x ) .
(
e x − e− x on y = x 2
)
∴ g ( x ) = log x + 1 + x 2 = f −1 ( x )
2x 1 .1 + ≠ 0, ∀x ∈ R = x + 1 + x2 2 1 + x2 1 + x2 ⇒ g ( x ) has no tangent parallel to x-axis also g' ( x ) is always defined, ∀x ∈ R 1
⇒ g' ( x ) =
⇒ g ( x ) has no tangent parallel to y-axis since, g' ( x ) > 0 ⇒ g ( x ) has not any Extremum 6.
sin−1 x = 0, cos−1 x = 0 ⇒ x ∈ ( cos1,sin1)
7.
DA = (1 − x)iˆ + ˆj + kˆ DB = ˆi + (1 − y)jˆ + kˆ DC = ˆi + ˆj + (1 − z)kˆ For all the three vectors DA , DB and DC vectors to be co–planer 1− x 1 1 1 1− y 1 =0 1 1 1− z R1 → R1 – R2 R3 → R3 – R2 −x y 0 1 1− y 1 = 0 −z 0 y –x (–z + zy – y) – y (–z) = 0 zx – zxy + xy + yz = 0 1 1 1 ⇒ xy + yz + zx = xyz ⇒ + + = 1 x y z
8.
Let the focus be ( 0,α )
SM =
SM = SP
2x − y = 1
α +1
M
5
∴ P lies on the line 2x − y + α = 0 at a distance
x −0 y−α = =± 1 2 5
( α + 1)
α +1 5
units from S.
P
• S •
(0,α)
5
5
( α + 1) α +1 2 ( α + 1) 2 ( α + 1) ,α − ,α + or ( x, y ) = − 5 5 5 5 α +1 7α + 2 −α − 1 3α − 2 or x = x= ,y = ,y = 5 5 5 5 5y − 2 5y + 2 α = 5x − 1 = α = −5x − 1 = 3 7 35x − 7 = 5y − 2 3x + y + 1 = 0 7x − y − 1 = 0
( x, y ) =
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
Slope of normal tan θ = −
9.
9
dx dy
∴ The given equation becomes at a general point ( x,y ) is dx dy 2 y x2 − + = x y +1 dy dx 2
(
)
(
)
dy dy − yx 2 + y = .x y2 + 1 dx dx 2
(
)
dy dy y − x y2 + 1 − yx 2 = 0 dx dx yy'2 − xy 2 y' − xy' − yx 2 = 0
(
) (
)
yy ' y ' − xy − x y ' − xy = 0 ∴
dy x dy = = xy or dx dx y
log y = y=
x2 + c (or) x 2 − y 2 = c 2
x2 ke 2
(or) logy 2 = x 2 − logk
logky 2 = x 2 10.
For K = 2, each element has four possibility and three out of four are favorable for the event. n
3 Hence required probability = . 4 n
7 For K = 3, Probability that intersection is empty is 8
n −1
For K = 3, Probability that intersection is singleton =
11.
n 7 8 8
x>0 sin x, x=0 f(x) = 0, 2 tan x , −1 < x < 0 x 2 Hence, lim+ f ( x ) = 0 and lim− f ( x ) = 1 . x →0
x →0
12–13. Equation of tangent at (x, y) is Y − y = p(X − x)
y dy . Then OA = x − and OB = y − px p dx p OA + OB = 1 ⇒ y = px + p −1
Where p =
OA.OB = 4 ⇒ y = px + 2 −p AB = 1 ⇒ y = px −
14.
x2 + y2 =
p 1 + p2
2a2b2 a 2 + b2
∴ radius of the circle
2a2b2 2
a +b
2
=
2 ab a2 + b2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
10
AITS-CRT(Set-VI)-Paper-1-PCM(S)-JEE(Adv)/13
15.
As the lines joining common point of intersection must be equally inclined to the axis tan α = − tan β ⇒ α + β = π
16.
Both the curves intersects at three distinct points Hence number of distinct lines formed will be 3.
SECTION – C 1.
tan θ =
2.
I=4
∫
2
2 h − ab 2 1+ 3 = =2 a+b 1− 3
1 − tan2 x tan2 x sin x cos x e dx = 4 1 + tan2 x
∫
(
)
2
tan x sec 2 x cos6 x 1 − tan2 x etan
x
t = tan2 x ⇒I= 2
∫
(1 − t ) et −2e t dt = (1 + t )3 (1 + t )2 2
= −2cos4 xetan 3.
∫
y
−y
=2
x
+c
sec −1 x − tan−1
∫
−1
−y
+c
(
sec −1 x dx −
)
x 2 − 1 dx =
∫
−1
−y
∫
−1
−y
sec −1 x = 2
(
)
sec −1 x π − sec −1 x dx +
∫
y
1
sec −1 x − sec −1 x dx
∫ ( π − sec x ) dx − π ( y − 1) = π ( y − 1) − 2λ y
−1
1
∴a + b = 3
4.
→
taking dot product with a = abc = p + qcos θ + r cos θ − − − (1) →
taking dot product with c = abc = pcos θ + qcos θ + r − − − (2) from (1) and (2) p = r . 5.
sin–1 x = cos–1 y
1
x = 1 − y2 ..... (1) or sin–1 y = cos–1 x y = 1 − x2 ..... (2) then from equation (1) and (2) & graph π Required area is = = λ 8 16λ 16 π = ⋅ =2 π π 8 7.
y=x
O
–π ≤ θ1 + θ2 – 2π ≤ 0 if θ1 + θ2 ≥ π
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
View more...
Comments