Answer (6)
April 22, 2017 | Author: Pranav Sharma | Category: N/A
Short Description
aits...
Description
JEE(Advanced)-2013
FIITJEE
ANSWERS, HINTS & SOLUTIONS CRT (Set-III) (Paper–2)
ALL INDIA TEST SERIES
From Long Term Classroom Programs and Medium / Short Classroom Program 4 in Top 10, 10 in Top 20, 43 in Top 100, 75 in Top 200, 159 in Top 500 Ranks & 3542 t o t a l s e l e c t i o n s i n I I T - J E E 2 0 1 2
1 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
ANSWER
ANSWER
ANSWER
1.
D
C
B
2.
B
A
C
3.
C
A
C
4.
C
D
C
5.
C
A
B
6.
D
B
B
7.
A
B
D
8.
A
A
B
9.
B, C
A, B, C, D
A, C
10.
A, C
A, B, D
A, B, C
11.
A, B
A, B, C
A, C
12.
A, C
B, C
B, C, D
1.
(A) → (p, q, t) (B) → (p, s) (C) → (p, r, t) (D) → (p) (A) → (q) (B) → (p) (C) → (s) (D) → (r) 3
(A) → (p, s) (B) → (p, r, s) (C) → (p, q r, s) (D) → (p, q, t) (A) → (p, r) (B) → (q) (C) → (p, r) (D) → (q, s) 4
(A) → (s) (B) → (r) (C) → (q) (D) → (r) (A) → (p) (B) → (p) (C) → (p) (D) → (q) 5
2.
2
1
4
3.
1
3
3
4.
2
2
3
5.
3
6
1
6.
4
5
7
1.
2.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
Physics 1.
2
PART – I
The z-component of the force and the x-component of displacement are ineffective here. dW = Fy dy = 3xy.dy (∵ z = 0 )
(
= 6x 4 dx ∵ y = x 2
)
Integrating between x = 0 and x = 2 gives the result. 2.
3.
λ = 6.77 × 10−2 2 ∴ v = 1000 × 2 × 6.77 × 10-2 m/s γRT MV 2 ⇒ γ= = 1.4 also v = M RT ⇒ diatomic O
τ = mg sin θ× L = Iα
( mgL ) θ =
4mL2 α 3
θ mgsinθ
θ T = 2π α 4.
The speed is due to radial motion as well as due to angular motion.
5.
Young’s modulus, Y =
F.l A × ∆l
F is applied force, A is area of cross-section, l is length and ∆l is change in length. From graph, change in length for 20 N force is 1 × 10–4 m ∴
Y=
20 × 1 A(10 )(1 × 10−4 ) −6
= 2 × 1011 N m–2
6.
7. 8.
9.
1 1 1 − = v u f f m= f +u
u 4 1 −1 = = −1 v f x1
Both a and b will be independent of material.
1 M = (I area) = 2 × π × × 10 = 5π 4 1 1 W = MB 1 − = 5π × 4 = 10π J 2 2 m Here F > µsmg 1 + M
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
3 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13 For m F − µk mg = m.a For M µk mg = MA A = 0.4m / s2
10.
Impulse = change in momentum = 2(v 2 − v1 ) = 2(3iˆ + ˆj)
2
As impulse is in the normal direction of colliding surface 1 tan θ = 3 1 θ = tan−1 3 1 α = 90° + tan−1 . 3 11.
H= ∴
θ 6 α
KAdθ dθ = K(2πrL) dr dr r2
θ
dr 2πKL 2 ∫ r = H ∫ dθ θ r 1
1
2πKL(θ2 − θ1 ) dQ =H= = 80π dt r2 ln r1 dm ⇒ L = 80π dt dm 8π 80π π Kg/second. ⇒ = = = dt L 80 × 4200 4200
12.
4 πρGr 3 where ρ is mass density and r is separation between centre of sphere and centre of cavity. Applying law of Conservation of energy : 1 GMm GMm mVesc 2 − + =0 2 R 45R
Gravitational field inside the cavity is E =
Solving Vesc =
88GM . 45R
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
4
SECTION – B 2.
For central maxima, path diff (∆x) = 0 for any point P on the screen. ∆x = µ m (S 2P ) − [µ m (S1P − x ) + µ x ] masses x = thickness of glass slab. = µ m [S 2P − S1P] − (µ m − µ ) x
µ = 20 – 4t S1
y
µ
y = µ m d. − (µ m − µ ) x = 0 D
Here, Dx 20 − 4t − 5 Dµ −µ x = y = m d 20 − 4t d µm
=
Dx d
S2
15 − 4t 20 − 4t …..(i)
D
At time, t = 0 15 1 15 3 15 Dx 15 y= = × 0 .2 × = = m= cm = 7.5cm . × d 20 2 20 200 40 2 R.I. of medium cannot be less than 1 which become 19 = 4.755. Here after this time R.I. of medium will not change. So position of central At time t = 4 maxima at time t = 5 s will be same as at time t = 4.75 s. ∴y=
1 Dx − 4 = × 0.2 × −4 = - 0.4 m . 2 d 1
|y| =40 cm. For speed of central maxima, differentiating equation (i), w.r.t time we get dy Dx −20 = dt d ( 20 − 4t )2
Central maxima will be at the centre of geometrical centre of screen when R.I. of medium is 5. 15 . Hence at this t = 4 ∴
dy Dx 20 1 20 2 = = m / s = 8 cm/s. − = x 0 .2 x − 15 dt t = d 25 2 25 25 4
Fringe width β =
Dλ 1 100 x10 −10 x = =10-6 m = 1µm. −3 dµ 5 2x10
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
5 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13 SECTION – C
1.
y=
x3 x 2 − 30 10
N
dy x2 x dy = − and at x = 2; =0 dx 10 5 dx d2 y dx2
=
d2y dx 2
Mg
x 1 d2 y − andat x = 2; 2 = +ve 5 5 dx
Approximate graph
Hence the particle is at it’s lowest (minimum) position, in it’s path at x = 2 m d2 y dx dx = 2x −2 2 dt dt dt d2 y = 20m / s2 2 dt at x =2 ⇒ N − mg = m
d2 y dt 2
P = f.v = ( µN) V =
⇒ N = 1(10 + 20 ) = 30N 1 × 30 × 10 = 3 watt 100
2.
Using conservation of charge principle and induction, do charge distribution on each plate.
3.
N = mg µ N = m r ω2 µ mg = m. 2 sin θ ω2 µg ω= 2 sin θ
N mrω
µN
2
mg
0.1× 10 2 × sin30 ω = 1 rad / s. ω=
4.
z
m = I2S S = BA × AD BA = 2diˆ − 2ajˆ
D
AD = 2bkˆ ˆ × 2bkˆ S = 2(diˆ − aj)
x
A
C
B
ˆ M = −4bI(djˆ + ai) | M |= 4bI d2 + a2 = 2 Tesla. 5.
Nuclear reaction is 1 3 3 1 1H +1 H → 2He + 0 n + Q Q = – 1.2745 MeV Using conservation of linear momentum FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
y
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
6
We get, K2 = 1 .44 MeV. K1 = 3 MeV. 6.
x = A cos ωt dx v= = − Aω sin ωt dt dx v= = − Aω sin ωt dt a=
d2 x dt 2
= − Aω2 cos ωt
amax = Aω2 τmax = I αmax a = I max R 1 Aω2 = MR2 2 R 1 = MR Aω2 2 τmax = 4N.m
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
7 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
Chemistry
PART – II SECTION – A
3.
H+ HCO− 3 = 10−4 Ka = 1 [H2CO3 ] H+ CO2− 3 = 10−7 Ka = 2 HCO− 3
CO2− 3 1 2− f CO3 = = 2 − − H CO + HCO + CO 3 3 [H2CO3 ] 2 3 + 1+ CO2− 3
(
=
)
1 10 −10 10 −11
5.
+
10 −5 10 −7
HCO− 3 CO2− 3
=
1 2
H+ H + + + 1 Ka Ka Ka 1 2 2
= 0.01 +1
This diasaccharide is sucrose which is formed by 6
CH2OH H 4
5
OH
O H
6
H
CH2OH
1 & OH
OH 3
H
2
OH
5 HO
H 4
OH
O
OH 2
OH 3
CH2OH 1
H
α-D-(+)-Glucopyranose. 6.
For SHE, E0=0 at every temperature.
7.
No of molecules of K2S in 10 L water = 30.11×4×1022 No. of moles of K2S = 2 mol Molality = 2×10−1 m ∆Tf = iKfm = 1.116oC Tf = 272.034 K
8.
MO2 + 4H+ + PO43− + e− → MPO4 + 2H2O M + PO43− → MPO4 + 3e− The net cell reaction will be 3MO2 + 12H+ +4PO43− + M → 4MPO4 + 6H2O
11.
T → constant PV = nRT (where R and T → constant) n P= V n PI = V
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
8
n 2V n PIII = V 2n PIV = 2V ∴ PII < PIV = P1 = PII ⇒ Average K.E. depends only on absolute T. ∴ (Av. KE)I = (Av. KE)II =(Av. KE)III=(Av. KE)IV Mass ⇒ Density = Volume ∴ dII < dI < dIV = dIII PII =
12.
E = −13.6
Z2 n2
For Li Z=3 9 1 9 Energy of 2s for Li E2 = −13.6 × 4 ∴ E1 < E2 So statement (A) is correct. Shape of all the d-orbital are not same. So statement (B) is wrong. Energy of 3d > energy of 4s So (C) is wrong statement. SECTION – B
Energy of 1s for Li E1 = −13.6 ×
1.
O
(A)
Gives positive test with 2, 4-dinitrophenyl hydrazine and form highly stable hydrate.
O O O
(B) CH OH
O
(C)
CI3 (D)
C
C
Gives positive test with 2, 4-dinitrophenyl hydrazine (>C=O group test) and Fehling solution ( C OH group test). It forms highly stable hydrate also. Gives positive test with 2, 4-dinitrophenylhydrazine, O
C
H
H
Tollen’s reagent and Fehling’s solution (due to group). It forms stable hydrate also.
O
Gives positive test with 2,4-dinitrophenylhydrazine and Tollen’s reagent (due to –CHO group). It gives Perkin’s reaction (being an aromatic aldehyde)
H
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
9 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13 2.
Use relations: 1 pH = ( pKw + pKa + logC ) 2 Salt pOH = pKb + log Base 1 pH = ( pKw + pKa − pKb ) 2 pH + pOH = 14 SECTION – C
1.
→ CO(g) + 2H2(g) CH3OH(g) ← Initially At eq.
rH
2
rmix
=
0.2 mole (0.2−x)
0 x
0 2x
Mmix =2 2 2
Mmix = 16 Mmix =
32(0.2 − X) + X(28) + 2X(2) 0.2 − X + X + 2X
X = 0.1 x(2x)2 0.1× 0.04 = = 0.04 0.2 − x 0.1 100 Kc = 4
Kc =
2.
It is a pyrosilicate. Pyrosilicate ion is Si2 O7−6 O O
O
Si
O
Si
O O O In this two units of Si2 O7−6 joined along a corner containing oxygen atom. 3.
CH3
2 H3C
O ∆ COOH →
HO
CH3
O CH3
O
O H
and OH
H
H
O CH
3
O
O cis
trans
Cis form is optically active. It gives two stereoisomers → d−cis, l−cis. Trans form is optically inactive because it contains center of symmetry. 4. +
H /H2O CH2=C=CH2 → CH
3
O ||
− C− CH3
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
5. CO
6.
CO
CO
CO
Fe
CO
Fe
CO
CO
CO
10
CO
Hg2Cl2 → Hg + HgCl2 ∆H = ? 2Hg + Cl2 → Hg2Cl2 ∆Hf1 = −125 KJ / mole Hg + Cl2 → HgCl2 ∆Hf2= −640 KJ / mole ∆H = ∆Hf2 − ∆Hf1 = −640 + 125 = −515 KJ/ mol −103 x = − 515 ⇒x=5
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
11 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
Mathematics
PART – III SECTION – A
e
1.
e
I = ∫ f ′′ ( x ) ln x dx = ln x.f ( x ) − ∫ e
1
1
I
II
f′(x)
1
x
dx
I = I − I1 e 1 1 1 I1 = ∫ f ′ ( x ) dx = − e 2 x 1 ∴ I = 1−
1 1 3 1 + = − e 2 2 e
2.
4x 2a −p x a p x y z a b c det (B ) = 4t 2b −q = ( 4 )( 2 )( −1) y b q = −8 a b c = −8 p q r = −8 × 2 = −16. 4z 2c −r z c r p q r x y z
3.
Replace x → f (x) =
1 and solve to get x
x +1 2
f (10099 ) =
10099 + 1 10100 = = 5050 2 2
4.
cubic is x3 − 6x2 + 11x − 30 = 0 (x − 5) (x2 − x + 6) = 0 bc 6 Hence a = 5 ; bc = 6 ⇒ = a 5
5.
r=7 R−r 1 = R+r 2 2R − 2r = R + r R = 3r = 21.
sin30° =
6.
0 0 1 1 1 c2 A= 0 c/b 1 = 0− 2 2 ab c/a 0 1 If A is independent of a, b and c then c2 = ab ⇒ a, c, b are G.P.
7.
Cn =
1 n
1
∫n
tan−1 ( t ) sin−1 ( t )
dt
n +1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
12
1
L = lim n2 ⋅ Cn = lim n ⋅ a →∞
a →∞
1
∫n
tan−1 t dt ( ∞ × 0 ) ; L = sin−1 t
∫n
tan−1 t dt sin−1 t
n +1
n +1
1 n
applying Leibnitz rule. 8.
10.
x 2f(x) and f have the same domain as f(x) and f(2x), f(x + 2), 2 ⇒ m = 2, n = 3 π π Verify by considering f(x) = sin−1x ; d : |x| ≤ 1 ; R − , 2 2
f f have the range a f(x). 2
[ 2x ] if x > 0 (A) f(x) = lim ⇒ lim f(x) = 0 ; f(x) = x x →0 x →0 x 0 if x < 0 x (0 − h) x xe1/ x = −0 ; lim− f(x) = (B) lim ; lim+ f(x) = =0 − 1/ x 1/ x x →0 1 + e x →0 x →0 1 1+ e
[x + x ]
1/ 5
(C) lim ( x − 3 ) x →3
Sgn (x – 3) = 0 where sgn is the signum function (bvious)
tan−1 x does not exist as RHL = 1; LHL = –1 x →0 x
(D) lim
11.
Area (T) =
c.c 2 c 3 = 2 2
Area (R) =
c3 c3 c3 c3 − = − x 2 dx = 2 3 6 2
e
∫ 0
∴ lim+ c →0
12.
area (T) c3 6 = lim+ ⋅ =3 area (R) c →0 2 c 3
x+3 > 0 ⇒ x < –3 or x > –1 x +1 As x → –3, y → 0; x → ∞, y → 1 range (0, 1) ∪ (1, ∞) y=
SECTION – B
1.
i2 π i2 π ( n−1) We have zn − 1 = ( z − 1) z − e n ..... z − e n i2 π ( n−1) ……(1) 1 + z + ..... + zn−1 = ( z − 1) .... z − e n π 2π π ..... sin ( n − 1) Put z = 1 and take modulus n = 2n−1 sin sin n n n (A) if n = 21 π 2π 9π 10π 20π ⋅ sin 21 = 220 sin sub .....sin .....sin 21 21 21 21 21
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
13 AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13 2
π 10π ⋅ 220 21 = sin ......sin 21 21 π 10π 21 ..... sin = 10 21 21 2 (B) If n = 22
∴ sin
2
π 2π 10π 22 = 221 sin sin .... sin 22 22 22 π 10π 22 11 ∴ sin ..... sin = 11 = 10 22 22 2 2 (C) Again put z = –1 is ……..(1) and take modulus π 2π π 1 = cos cos ..... cos ( n − 1) 2n−1 . n n n n = 21 π 2π 20π 20 1 = cos cos .... cos 2 21 21 21 π 10π 1 ∴ cos ...... cos = 21 21 210 π 2π 10π 11 (D) sin , sin ..... sin = 10 22 22 22 2 10π 9π π 11 cos cos .... cos = 22 22 22 210 ∵ sin θ = cos ( 90 − θ ) 2.
(A) 1st, 4th, 7th terms are a, a+3d, a+6d ax+by+c=0 ax+(a+3d)y+(a+6d)=0 a(x+y+1)+3d(y+2)=0 passes through (1, –2) (B) a, b, c are three consecutive terms of A.P. a = A+(m–1)d, b = A+md, c = A+(m+1)d. (A+(m–1)d)x+A+md)y+A+(m+1)d = 0 A ( x + y + 1) + d mx + my + m − x + 1 = 0 ∴ x + y + 1 = 0, –x + 1 = 0 x = 1, y = 2
(
)
(
)
(C) a = A + (r–1)d, b = A + r 2 − 1 d , c = A + 2r 2 − r − 1 d
( A + (r − 1) d) x + A + (r 2 − 1) d y + A + ( 2r 2 − r − 1) d = 0 A ( x + y + 1) + d ( r − 1) x + ( r + 1) y + ( 2r + 1) = 0
X + y + 1 = 0, x + y + 1 + r(y + 2) = 0 Y = –2, x = 1
(
)
(
)
(D) a = A + (r–1)d, b = A + r 2 − 1 d , c = A + 3r 2 − 2r − 1 d
( A + (r − 1) d) x + A + (r 2 − 1) d y + A + ( 3r 2 − 2r − 1) d = 0 A ( x + y + 1) + d ( r − 1) x + ( r + 1) y + ( 3r + 1) = 0
x + y + 1 = 0, x + y + 1 + r(y + 3) = 0 y = –3, x = 2 SECTION – C FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-III)-Paper-2-PCM(S)-JEE(Advance)/13
14
tan θ1 / 2 3 AB = implies PB – PA = . This 5 tan θ2 / 2 2 implies locus of P is branch of hyperbola of eccentricity = 5
1.
Let A (z1), B(z2) and P(z) forms a triangle ABC then
2.
tan7x = 0 ⇒
S1 − S3 + S5 − S7 =0 1 − S2 + S 4 − S 6
⇒ 7 tan x − 35 tan3 x + 21tan5 x − tan7 x = 0 3π 2π π π 2π 3π , − tan , − tan ,0,tan ,tan ,tan are the roots of equation 7 7 7 7 7 7 7x − 35x 3 + 21x 5 − x 7 = 0 π 2π 3π ⇒ tan2 ,tan2 ,tan2 are the roots of equation 7 − 35x + 21x 2 − x 3 = 0 7 7 7 π 2π 3π are roots of equation 7x 3 − 35x 2 + 21x − 1 = 0 ⇒ cot 2 ,cot 2 ,cot 2 7 7 7 π 2π 3π ⇒ cot 2 + cot 2 + cot 2 =5 7 7 7
⇒ − tan
3.
(A) 2x + 2yy′ = 0 ⇒ y ' = −
x y
∴ y ' ( 2 ) = −1 = A (B) cos y.y′ + cos x = sin x.cos y.y′ + sin y cos x when x = y = p –y′ – 1 = 0 + 0 (C) 2exy (xy′ + y) + exey y′ + eyex – ex – eyy′ = e.exy(xy′ + y) at x = 1, y = 1 2e(y′ + 1) + e2y′ + e2 – e – ey′ = e2(y′ + 1) ey′ + e = 0 ⇒ y′ = – 1 Hence |A + B + C| = 3 4.
5 11 ⇒ a−b = 3 Focus is ,0 ⇒ Distance of focus from line = 2 6
5.
Put an = tan θn
6.
f K −2 ( x ) = 0 has K distinct roots, f K −1 ( x ) = 0 has K + 1 distinct roots, f K ( x ) = 0 has K distinct
roots ⇒ K + 1 = 8 ⇒ K = 7
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
View more...
Comments