Angle Firing

December 10, 2018 | Author: Mihail Alexandru Isac | Category: N/A
Share Embed Donate


Short Description

Download Angle Firing...

Description

Gravity range / Horizontal distance = the distance gravity affects the bullet

Target Shooter 

UPHILL SHOOTING

SAMPLE SHOOTING SITUATION

Gravity range

Firing angle

Shooter 

25 o

Target

Gravity range

Shooter 

Firing angle

Gravity range

Target

DOWNHILL SHOOTING

Same rules apply for both downhill and uphill shooting

COMPENSATION FOR ANGLE 300 yds * .91 = 273 yds Direct range / Slope distance

To obtain gravity range multiply the direct range by the appropriate multiplier.

Multiplier for  35 degree angle

Gravity range / Horizontal distance

PYTHAGOREAN THEOREM X2 + Y2 = R2 The Pythagorean Theorem can be used to calculate distances.

Degree Degree of angle

Multiplie Multiplier  r 

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50 52.5 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85 87.5 90

1.00 1.00 .99 .99 .98 .97 .96 .95 .94 .93 .91 .89 .87 .85 .82 .80 .77 .74 .70 .67 .64 .61 .57 .54 .50 .46 .42 .38 .34 .30 .26 .22 .17 .13 .09 .05 .00

F o r in f o r m a t io na n a l p ur u r p os o s e s o nl nl y .

X2 + Y2 = R2 X2 = R2 - Y2  Y2 = R2 - X2

Example: Y = 20 yds, R = 100 yds X2 = R2 - Y2 = 1002 - 202 = 9600 = 98

d     

o   

   d

w    n   w  

    r    a

a  

r    d  

  p  w

u

C o p y r ig h t S n ip ip e r w o r l d .c .c o m

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF