Analysis of Sheet Pile Retaining Wall and Tie Back Design for the Abusag Bridge Project
February 24, 2024 | Author: Anonymous | Category: N/A
Short Description
Download Analysis of Sheet Pile Retaining Wall and Tie Back Design for the Abusag Bridge Project...
Description
ABUSAG BRIDGE PROJECT STRUCTURAL CALCULATION FOR THE PROPOSED SHEET PILE October 17, 2019
RAYMOND R. ESTO STRUCTURAL ENGINEER PRC NO. 0108100
ITEM:
ABUSAG BRIDGE
Design:
LRP
PART:
DESIGN OF RETAINING WALL WITH TIE BACK
Check:
RRE
Date:
10/17/2019
1.0 Reference: 1.1 AASHTO 1.2 Principles of Geotechnical Engineering
2.0 Input Parameters:
2.1 Retaining Wall Geometry Hforce
=
8.20 m
height of wall considered for calculation
=
0.50 m
twb
=
0.50 m
wall thickness @ bottom
N1
=
2 pcs
number of tie rod 1
H
=
7.20 m
height of wall above the ground
Ht1
=
1.5 m
depth of tie rod 1
D
=
2.00 m
embedment depth
t1
=
28 mm
diameter of rod 1
Dreq =
1.05 m
required embedment depth
T = fyro =
2.0 m
tributary length of pile
twt
wt.
=
Mu =
wall thickness @ top
110.40 kN weight of pile 169.73 kN-m
Tie Rod
moment on pile
2.2 Design Parameters and Material Properties
414 MPa =
1.40 m
N2
=
2 pcs
t2
=
28 mm
Ht3
=
1.40 m
N3
=
2 pcs
t3
=
28 mm
diameter of rod 3
Ht4
=
1.5 m
depth of tie rod 4 number of tie rod 4
=
35.00 MPa
compressive strength of concrete @N4
=
2 pcs
fy
=
414.00 MPa
yield strength of main bars
t4
=
28 mm
λc
=
Фf
24.0 kN/m3 unit weight of concrete
=
0.9
strength reduction factor for flexure
Фv =
0.85
strength reduction factor for shear
q all =
349 kPa
allowable soil bearing pressure
0 deg
backfill slope angle
=
30 deg
angle of internal friction
=
20 deg
angle of friction bet soil and wall
β
=
0 deg
slope of soil face
θ
=
90 deg
wall face batter angle
γ
=
17 kN/m3 unit weight of backfill soil
i
=
Ф δ
Ka
=
0.297
active earth coefficient
Kp
=
6.105
passive earth coefficient
Ko
=
0.500
at rest earth coefficient
I
=
1
μ
=
0.6
importance factor friction factor at the base
nominal tensile strength of tie rod
Ht2
f'c
OK!
number of tie rod 2 diameter of rod 2
Wall h
150 mm
wall thickness
bar
16 mm
diameter of main bars
12 mm
diameter of temperature bars
12 mm
diameter of shear bars
= = temp= v =
OK! Rebar Weld
number of tie rod 3
diameter of rod 4
t OK!
L
= =
8 mm 125 mm
weld thickness required weld length
t1 t2
OK!
= =
3.0 Loadings: 3.1 Case 2: With EQ
8.20 m
Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
Surcharge (Live Load)
Surcharge (Earth)
Wall Inertia
Earthquake
2.1 m 2.1 m
1.0 m 29 kPa
ground surface
4.3 kPa
5.2 kPa
7.8 kPa
#DIV/0!
7.7
3.1.1 Surcharge
91.8 kPa
3.1.1.1 EARTH SURCHARGE LOAD (ES) S
=
8.5
PES(H)
=
4.3 kPa
kPa , Ko S
yes(H) =
4.10
m
yes(H)
=
yes(H) =
4.10
m
yes(H)
=
yes(H)
=
ywall
=
ywall
=
3.1.1.2 LIVE LOAD SURCHARGE (LS) 8.20 m
hwall
=
heq
=
0.61 m
S
=
10.4 kPa
PES(H)
=
5.2 kPa
, Ko S
3.1.2 Earth Pressure 3.1.2.1 EH1 (active)
3.1.4
p
=
29.3 kPa
, Ka γ * (hsoil)
Tload
=
220.9 kN/m
, 0.65Ka γ *H2
EHH
=
29.3 kPa
Wall Intertia + ES Pwall
3.1.5
, EH
=
7.8 kPa
, kh * Wwall
ywall
4.10
=
m
Earthquake a
=
0.40
acceleration coefficient
kh
=
0.38
horizontal seismic coefficient
kv
=
0
θ
=
20.81
vertical seismic coefficient
KAE =
0.70
PAE =
97.7 kPa
, (1-kv)yKae (hsoil)
PAE(H) =
91.8 kPa
, PAE cos δ
PAE(V) =
33.4 kPa
, PAE sin δ
dynamic soil pressure coefficient yAE(H) =
2.73
m
3.2 Load Factors Load Combination
γDC
γEV
γEH
γLSV
γLSH
γEQ
γP
γES
STR Ia
0.9
1.0
2.27
0.0
1.75
0.0
0.45
1.50
STR Ib
1.25
1.35
2.27
1.75
1.75
0.0
0.45
1.50
STR IV
1.5
1.35
2.27
0.0
0.0
0.0
0.45
1.50
EXT Ia
0.9
1.0
0.0
0.5
0.5
1.0
0.45
0.00
EXT Ib
1.25
1.0
0.0
0.5
0.5
1.0
0.45
0.50
SER I
1.0
1.0
1.0
1.0
1.0
0.0
0.45
1.00
ko/ka
3.3 Pressure Loads (Factored) Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
STR Ia
6.4 kPa
9.1 kPa
66.6 kPa
0.0 kPa
0.0 kPa 0.0 kPa
STR Ib
6.4 kPa
9.1 kPa
66.6 kPa
0.0 kPa
STR IV
6.4 kPa
0.0 kPa
66.6 kPa
0.0 kPa
0.0 kPa
EXT Ia
0.0 kPa
2.6 kPa
0.0 kPa
7.8 kPa
91.8 kPa
EXT Ib
2.1 kPa
2.6 kPa
0.0 kPa
7.8 kPa
91.8 kPa
SER I
4.3 kPa
5.2 kPa
29.3 kPa
0.0 kPa
0.0 kPa
8.20 m
Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
Surcharge (Earth)
Surcharge (Live Load)
Wall Inertia
2.03333
2.06667
2.1 m
2.06667
2.1 m
1.53333 1.0 m 29 kPa
ground surface
0.5 4.3 kPa
5.2 kPa
7.8 kPa
3.4.1 Tie Rod1 Force Calculation Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
STR Ia
13.0 kN/m
18.4 kN/m
102.1 kN/m
0.0 kN/m
0.0 kN/m
133.5 kN/m
STR Ib
13.0 kN/m
18.4 kN/m
102.1 kN/m
0.0 kN/m
0.0 kN/m
133.5 kN/m
STR IV
13.0 kN/m
0.0 kN/m
102.1 kN/m
0.0 kN/m
0.0 kN/m
115.0 kN/m
EXT Ia
0.0 kN/m
5.3 kN/m
0.0 kN/m
15.8 kN/m
140.7 kN/m
161.8 kN/m
EXT Ib
4.3 kN/m
5.3 kN/m
0.0 kN/m
15.8 kN/m
140.7 kN/m
166.1 kN/m
SER I
8.6 kN/m
10.5 kN/m
45.0 kN/m
0.0 kN/m
0.0 kN/m
64.1 kN/m
Trod1 = req =
Tie Rod Force
332.29 kN 23.83 mm
3.4.2 Tie Rod2 Force Calculation Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod Force
STR Ia
13.2 kN/m
18.7 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
169.5 kN/m
STR Ib
13.2 kN/m
18.7 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
169.5 kN/m
STR IV
13.2 kN/m
0.0 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
150.8 kN/m
EXT Ia
0.0 kN/m
5.4 kN/m
0.0 kN/m
16.1 kN/m
189.7 kN/m
211.1 kN/m
EXT Ib
4.4 kN/m
5.4 kN/m
0.0 kN/m
16.1 kN/m
189.7 kN/m
215.5 kN/m
SER I
8.8 kN/m
10.7 kN/m
60.6 kN/m
0.0 kN/m
0.0 kN/m
80.1 kN/m
Trod = req =
431.01 kN 27.14 mm
3.4.3 Tie Rod3 Force Calculation Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod Force
STR Ia
13.2 kN/m
18.7 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
169.5 kN/m
STR Ib
13.2 kN/m
18.7 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
169.5 kN/m
STR IV
13.2 kN/m
0.0 kN/m
137.6 kN/m
0.0 kN/m
0.0 kN/m
150.8 kN/m
EXT Ia
0.0 kN/m
5.4 kN/m
0.0 kN/m
16.1 kN/m
189.7 kN/m
211.1 kN/m
EXT Ib
4.4 kN/m
5.4 kN/m
0.0 kN/m
16.1 kN/m
189.7 kN/m
215.5 kN/m
SER I
8.8 kN/m
10.7 kN/m
60.6 kN/m
0.0 kN/m
0.0 kN/m
80.1 kN/m
Trod = req =
Earthquake
431.01 kN 27.14 mm
91.8 kPa
3.4.4 Tie Rod4 Force Calculation Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod Force
STR Ia
9.8 kN/m
13.9 kN/m
85.4 kN/m
0.0 kN/m
0.0 kN/m
109.1 kN/m
STR Ib
9.8 kN/m
0.0 kN/m
85.4 kN/m
0.0 kN/m
0.0 kN/m
95.2 kN/m
STR IV
0.0 kN/m
4.0 kN/m
0.0 kN/m
11.9 kN/m
117.8 kN/m
133.7 kN/m
EXT Ia
3.3 kN/m
4.0 kN/m
0.0 kN/m
11.9 kN/m
117.8 kN/m
136.9 kN/m
EXT Ib
6.5 kN/m
7.9 kN/m
37.6 kN/m
0.0 kN/m
0.0 kN/m
52.1 kN/m
SER I
0.0 kN/m
0.0 kN/m
0.0 kN/m
0.0 kN/m
0.0 kN/m
0.0 kN/m
Trod = req =
273.89 kN 21.63 mm
3.5 Emberment Depth Calculation Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Reaction
STR Ia
3.2 kN/m
4.5 kN/m
8.3 kN/m
0.0 kN/m
0.0 kN/m
16.0 kN/m
STR Ib
3.2 kN/m
4.5 kN/m
8.3 kN/m
0.0 kN/m
0.0 kN/m
16.0 kN/m
STR IV
3.2 kN/m
0.0 kN/m
8.3 kN/m
0.0 kN/m
0.0 kN/m
11.5 kN/m
EXT Ia
0.0 kN/m
1.3 kN/m
0.0 kN/m
3.9 kN/m
11.5 kN/m
16.7 kN/m
EXT Ib
1.1 kN/m
1.3 kN/m
0.0 kN/m
3.9 kN/m
11.5 kN/m
17.7 kN/m
SER I
2.1 kN/m
2.6 kN/m
3.7 kN/m
0.0 kN/m
0.0 kN/m
8.4 kN/m
R = Qpass =
18 kN/m 47 kPa
Dreq =
0.87 m
3.6 Sheet Pile Moment Calculation Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
Surcharge (Earth)
Surcharge (Live Load)
Wall Inertia
Earthquake
1.0 m
8.20 m
0.5
2.1 m 2.1 m
1.0 m 29 kPa
ground surface
4.3 kPa
5.2 kPa
7.8 kPa
3.6.1 Moment above Tie Rod Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Moment
STR Ia
7 kN-m/m
10 kN-m/m
36 kN-m/m
0 kN-m/m
0 kN-m/m
53 kN-m/m
STR Ib
7 kN-m/m
10 kN-m/m
36 kN-m/m
0 kN-m/m
0 kN-m/m
53 kN-m/m
STR IV
7 kN-m/m
0 kN-m/m
36 kN-m/m
0 kN-m/m
0 kN-m/m
43 kN-m/m
EXT Ia
0 kN-m/m
3 kN-m/m
0 kN-m/m
9 kN-m/m
50 kN-m/m
61 kN-m/m
EXT Ib
2 kN-m/m
3 kN-m/m
0 kN-m/m
9 kN-m/m
50 kN-m/m
64 kN-m/m
SER I
5 kN-m/m
6 kN-m/m
16 kN-m/m
0 kN-m/m
0 kN-m/m
26 kN-m/m
3.6.2 Moment on zero shear Find x: (Zero Shear) Assume x <
1.73 m
Load Combination
Tie Rod Force
Pressure
x
STR Ia
43.7 kN/m
82 kPa
0.53 m
STR Ib
43.7 kN/m
82 kPa
0.53 m
STR IV
38.9 kN/m
73 kPa
0.53 m
EXT Ia
54.5 kN/m
102 kPa
0.53 m
EXT Ib
55.6 kN/m
104 kPa
0.53 m
SER I
20.7 kN/m
39 kPa
0.53 m
x
=
0.53 m
91.8 kPa
Assume x >
1.73 m
3.47 m
<
Load Combination
T1+T2
Pressure
x
STR Ia
213 kN/m
82 kN/m
2.60 m
STR Ib
213 kN/m
82 kN/m
2.60 m
STR IV
190 kN/m
73 kN/m
2.60 m
EXT Ia
266 kN/m
102 kN/m
2.60 m
EXT Ib
271 kN/m
104 kN/m
2.60 m
SER I
101 kN/m
39 kN/m
2.60 m
Assume x >
3.47 m
<
T1+T2+T3
Pressure
x
STR Ia
383 kN/m
82 kN/m
4.67 m
STR Ib
383 kN/m
82 kN/m
4.67 m
STR IV
340 kN/m
73 kN/m
4.67 m
EXT Ia
477 kN/m
102 kN/m
4.67 m
EXT Ib
487 kN/m
104 kN/m
4.67 m
SER I
181 kN/m
39 kN/m
4.67 m
5.20 m
<
2.60 m
x
=
4.67 m
6.96 m
6.70 m
Load Combination T2+T3++T4(1/2hn STR Ia
=
5.20 m
Load Combination
Assume x >
x
525 kN/m
Pressure
x
82 kN/m
6.40 m
STR Ib
511 kN/m
82 kN/m
6.23 m
x
=
STR IV
507 kN/m
73 kN/m
6.96 m
x
=
EXT Ia
660 kN/m
102 kN/m
6.46 m
EXT Ib
585 kN/m
104 kN/m
5.61 m
SER I
196 kN/m
39 kN/m
5.04 m
6.7
CASE 1: MOMENT BETWEEN TIE ROD 1 &2
8.20 m
Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
Surcharge (Earth)
Surcharge (Live Load)
Wall Inertia
Earthquake
1.0 m 1.033
2.1 m 2.1 m
1.0 m 29 kPa
ground surface
4.3 kPa
5.2 kPa
7.8 kPa
91.8 kPa
Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod1
Moment
STR Ia
13 kN-m/m
19 kN-m/m
81 kN-m/m
0 kN-m/m
0 kN-m/m
-71 kN-m/m
42 kN-m/m 42 kN-m/m
STR Ib
13 kN-m/m
19 kN-m/m
81 kN-m/m
0 kN-m/m
0 kN-m/m
-71 kN-m/m
STR IV
13 kN-m/m
0 kN-m/m
81 kN-m/m
0 kN-m/m
0 kN-m/m
-61 kN-m/m
33 kN-m/m
EXT Ia
0 kN-m/m
5 kN-m/m
0 kN-m/m
16 kN-m/m
112 kN-m/m
-86 kN-m/m
47 kN-m/m
EXT Ib
4 kN-m/m
5 kN-m/m
0 kN-m/m
16 kN-m/m
112 kN-m/m
-89 kN-m/m
49 kN-m/m
SER I
9 kN-m/m
11 kN-m/m
36 kN-m/m
0 kN-m/m
0 kN-m/m
-34 kN-m/m
21 kN-m/m
CASE 2: MOMENT BETWEEN TIE ROD 2 &3
8.20 m
Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
ground surface
Surcharge (Earth)
Surcharge (Live Load)
Wall Inertia
Earthquake
1.0 m
3.100
2.1 m 2.1 m
1.0 m 29 kPa
4.3 kPa
5.2 kPa
7.8 kPa
91.8 kPa
Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod1
Tie Rod2
Moment
STR Ia
54 kN-m/m
76 kN-m/m
434 kN-m/m
0 kN-m/m
0 kN-m/m
-347 kN-m/m
-147 kN-m/m
70 kN-m/m
STR Ib
54 kN-m/m
76 kN-m/m
434 kN-m/m
0 kN-m/m
0 kN-m/m
-347 kN-m/m
-147 kN-m/m
70 kN-m/m
STR IV
54 kN-m/m
0 kN-m/m
434 kN-m/m
0 kN-m/m
0 kN-m/m
-299 kN-m/m
-131 kN-m/m
58 kN-m/m 82 kN-m/m
EXT Ia
0 kN-m/m
22 kN-m/m
0 kN-m/m
65 kN-m/m
598 kN-m/m
-421 kN-m/m
-183 kN-m/m
EXT Ib
18 kN-m/m
22 kN-m/m
0 kN-m/m
65 kN-m/m
598 kN-m/m
-432 kN-m/m
-187 kN-m/m
85 kN-m/m
SER I
36 kN-m/m
44 kN-m/m
191 kN-m/m
0 kN-m/m
0 kN-m/m
-167 kN-m/m
-69 kN-m/m
34 kN-m/m
CASE 3: MOMENT BETWEEN TIE ROD 3 & 4
8.20 m
Lateral Earth Pressure
1.5 m
1.0 m
Tie Rod 1 1.7 m Tie Rod 2 1.7 m Tie Rod 3 1.7 m Tie Rod 4 1.5 m
2.1 m
Surcharge (Earth)
Surcharge (Live Load)
Wall Inertia
Earthquake
1.0 m
5.167
2.1 m 2.1 m
1.0 m 29 kPa
ground surface
4.3 kPa
5.2 kPa
7.8 kPa
91.8 kPa
Load Combination
ES
LS
ACTIVE
WALL INER.
EQ
Tie Rod1
Tie Rod2
Tie Rod3
Moment
STR Ia
121 kN-m/m
172 kN-m/m
1072 kN-m/m
0 kN-m/m
0 kN-m/m
-623 kN-m/m
-497 kN-m/m
-203 kN-m/m
42 kN-m/m
STR Ib
121 kN-m/m
172 kN-m/m
1072 kN-m/m
0 kN-m/m
0 kN-m/m
-623 kN-m/m
-497 kN-m/m
-203 kN-m/m
42 kN-m/m
STR IV
121 kN-m/m
0 kN-m/m
1072 kN-m/m
0 kN-m/m
0 kN-m/m
-537 kN-m/m
-442 kN-m/m
-181 kN-m/m
33 kN-m/m 47 kN-m/m
EXT Ia
0 kN-m/m
49 kN-m/m
0 kN-m/m
148 kN-m/m
1477 kN-m/m
-755 kN-m/m
-619 kN-m/m
-253 kN-m/m
EXT Ib
40 kN-m/m
49 kN-m/m
0 kN-m/m
148 kN-m/m
1477 kN-m/m
-775 kN-m/m
-632 kN-m/m
-259 kN-m/m
49 kN-m/m
SER I
81 kN-m/m
99 kN-m/m
472 kN-m/m
0 kN-m/m
0 kN-m/m
-299 kN-m/m
-235 kN-m/m
-96 kN-m/m
21 kN-m/m
Mgovern
=
170 kN-m/m
3.7 Wall Design w
=
104 kN/m
Mu
=
33 kN-m
t
b
=
1600 mm
h
d
=
75.0 mm
v
fc'
=
35.00 MPa
fy
=
414.00 MPa
bar
=
16 mm
∅ 0.85
′
0.85
As N S
1
1 ′
= = =
2 0.85
′
3 8 1291 mm2 6.4192 pcs 150 mm
o.c.
Temp Bars At N S
= = = =
0.0018 432 mm2 3.8197 pcs 250 mm
o.c.
Shear
= = Vc/2 = Vs = Vbar = N = S = R
83 kN
Vc
91 kN 45 kN 83 kN 25 kN 4 pcs 400 mm
o.c.
Deflection
= = I = = allow = w
104 kN/m
E
27806 MPa 315000000 mm3 1.016 mm 3.333 mm
= = = =
0.8 12 mm 150.0 mm 12 mm
=
4.12
=
0.01076
=
0.02156
SINGLY
ITEM: PART:
ABUSAG BRIDGE SHEET PILE DESIGN - PRESTRESSED (Hp= 2.1m)
Design:
LRP
Date:
10/17/2019
Check:
RRE
Date:
10/17/2019
1.0 SHEET PILE DESIGN: 1.1 Reference: 1.1.1 Steel Sheet Piling Manual 1.1.2 National Structural Code of the Philippines Volume 2, 2ND Edition, NSCP 1997 1.2 Geometry
Depth of embedment (Trial) Depth of excavation Sheet pile length (trial) Depth of embedment (Design) Sheet pile length (Design)
DP = HP = SPL =
4.00 m 2.10 m
D = SPL =
4.56 m 6.66 m
Depth water level Weight of surcharge
6.10 m
Dw = W sur = HP - Dw =
0.50 m 11.76 kPa 1.6 m
*Addt'l 15% to have 1.5 to 2 factor of safety
1.2.1 Soil properties Soil unit weight Submerged unit weight Angle of friction Active Earth Pressure
γs = γ's =
17.00 kN/m3 12.00 kN/m3 30 deg
φ = KA =
0.33
KP =
3.00
Backfill slope angle
i =
Angle of friction bet. soil and wall
δ =
Wall face batter angle
α =
0 deg 15 deg 57.00 deg
Slope of soil face
β =
33 deg
Coeff. Passive Earth Pressure Coeff.
1.2.2 Other properties γw =
Water unit weight Kh =
At rest Earth Pressure
0.50
z
=
9.81 kN/m3 0.86
Coeff. Acceleration coeff at I=1
0.40
Hor acceleration coeff.
0.20
a = kh = min kh =
0.54
kv =
0.07
Ѳ =
12.14
Seismic earth pressure co KAE =
0.92
Vert acceleration coeff
Note: Importance ( I ) factor use is 1 since culvert is not part of plant operation.
m
ITEM:
ABUSAG BRIDGE
PART: SHEET PILE DESIGN - PRESTRESSED (Hp= 2.1m) 1.3 Wall Pressures Table 1.3.1 Static Pressures at Given Points POINT Surcharge, S (kPa Soil, P (kPa)
Design:
LRP
Date:
10/17/2019
Check:
RRE
Date:
10/17/2019
Water, W (kPa)
S+P
B A0
3.92
0.00
0.00
3.92
3.92
3.92
9.07
0.00
12.99
12.99
A1
3.92
11.07
4.91
14.99
19.89
A2
3.92
27.07
44.15
33.23
75.13
E
3.92
-116.93
4.91
-130.93
-108.11
J
3.92
240.77
4.91
249.44
249.60
S+P+W
Table 1.3.2 Pressures with Seismic Influence at Given Points POINT
Surcharge, S
Soil, P (kPa)
B A0
3.92
0.00
Water, W (kPa) smic Load, EQ (k Net Pressure 0.00
6.27
10.19
3.92
9.07
0.00
1.49
14.48
A1
3.92
11.07
4.91
0.00
19.89
A2
3.92
29.31
49.64
0.00
82.87
E
3.92
-134.85
4.91
0.00
-126.03
J
3.92
245.52
4.91
0.00
254.35
Static Force, PA = Seismic active earth force, PAE = Seismic active earth force, ∆P =
12.29 kN 32.04 kN (Mononobe Okabe Analysis) 19.76 kN
1.4 Stability Static 1.4.1 ∑F=0 13.53 ZP =
+ 8.22 0.86 m
+
190.05
+
178.85Zp
-
366.48
=
56.37
+
159.13
+
44.60
-
488.64
+
+ 8.59 1.12 m
+
234.29
+
190.19Zp
-
476.28
=
+
206.81
+
80.01
-
723.94
+
=
0.80 m 5.01 kN/m
0
1.4.2 ∑MF=0 78.88
+
147.31
=
-2.36
218.24
=
-43.73
Dynamic 1.4.3 ∑F=0 19.74 ZP =
0
1.4.4 ∑MF=0 114.75
+
60.40
Pile width
1.5 STAAD loading
Wall load (PC wall, beam, column, steel fence)+10% allowance 4.55 kN/m Slope Protection = PC column = 0.00 kN/m PC beam = Steel fence = Surcharge
=
3.14
Earth pressure
=
9.52
kN/m
Ground water
=
3.92
kN/m
Earthquake
=
15.05 kN/m
=
0.00 kN/m 0.00 kN/m
kN/m (Note forces are per pile wiidth)
ITEM:
ABUSAG BRIDGE
PART: SHEET PILE DESIGN - PRESTRESSED (Hp= 2.1m) 1.6 Soil springs
Design:
LRP
Date:
10/17/2019
Check:
RRE
Date:
10/17/2019
Using parameters for Zone 1 liquefied state Depth
Reduced soil springs
Reduced soil springs
m
(kPa/m)
kN/m
Pile width
0.80 m
=
0 1
280,000 *B-3/4
331010
2
280,000 *B-3/4
331010
3
280,000 *B-3/4
331010
1.7 Forces (From STAAD Analysis) 1.7.1 Stresses using parameters for liquefied state Service loads Maximum
Case Sustained loads
Compression 50.428
Tension 0
Moment 30.445
Shear 38.328
50.428
0
55.599
56.21
Compression 65.557
Tension 0
Moment 39.578
Shear 49.827
65.557
0
64.733
67.709
Maximum Total loads Ultimate loads
Maximum
Case Sustained loads Maximum Total loads
Load combination: From NSCP volume 2 Service loads
Ultimate loads
Sustained loads = D+Sur+EP+GW
Sustained loads = 1.3D + 1.495(Sur+EP+GW)
Total loads = D+Sur+EP+GW+EQ
Total loads = 1.3D + 1.495(Sur+EP+GW)+1.3EQ
1.8 Required reinforcement for Reinforced concrete sheet pile 1.8.1 Material properties Concrete compressive strength
f'c =
Concrete cover, cc
cc = φf = φv =
Reduction factor for moment Reduction factor for shear fy (MPa)
40.00 MPa 45 mm
β1
=
Ec
=
0.75 ρuser
ρmax
ρmin
414
0.0279
0.0038
12.18
0.0093
Transverse bars 10
275
0.0486
0.0057
7.19
0.0162
Main bars
29725.41 MPa
0.90
25
Deformed bars
0.76
m
Es =
1.8.2 Concrete sheet pile design
Sheet pile area Effective depth
d =
t = w = Asp = 0.40 m
Transverse bars: Concrete shear capacity
Vc =
339.76 kN
Thickness Width
Ties spacing No. of legs Shear reinf. Area Reinf. Shear capacity Shear capacity
S = N = Av = Vs = Vcap =
0.450 m 0.800 m 0.360 m2
Vdesign =
67.71 kNm
75.00 mm 6.00 471.24 mm2 682.51 kN 766.70 kN
>
Vdesign
Okay
200000 MPa
ITEM: PART:
ABUSAG BRIDGE SHEET PILE DESIGN - PRESTRESSED (Hp= 2.1m)
Design:
LRP
Date:
10/17/2019
Check:
RRE
Date:
10/17/2019
1.8.3 Minimum confinement Minimum spacing at ductile region, s
=
hc
=
Ag
=
Ach
=
P Ash1
=
Ash2
=
90.00 mm 700.00 mm 360000.00 mm2 255600.00 mm2
=
1.8.3 For prestressed design. See separate calculation. Using Interaction diagragm
65.56 kN 2 467.87 mm 2 458.19 mm
>
Vs
Okay
>
Vs
Okay
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
LOSSES IN PRESTRESSED SHEET PILE REFERENCES 1. National Structural Code of the Philippines 2010 6th Edition 2. PCI Design Handbook 6th Edition 3. Design of Prestressed Concrete Structures 3rd Edition Si Version by T.Y. Lin and Ned H. Burns RECTANGULAR SHEET PILE GEOMETRY AND SECTIONS pile length, L = m 5.00
800 800 800 800 800
400 400 400 400 400
7 7 7 7 7
56 56 56 56 56
Basic Section Properties cross-sectional area, Ac,bas = distance from bottom surface to NA, ybas = moment of inertial, Ibas =
7 7 7 7 7
344 344 344 344 344
b, mm dp1,
d2
dp2,
A B C D E
d1 Prestressing Strand Fp2 Fp1 np1 dp1 np2 dp2
h,
Table 1A: Section Profile Section Section h b
BASIC SECTION 2 320,000.00 mm mm 200.00 4 4,266,666,667 mm
MATERIAL PROPERTIES Structural Concrete Precast Beam after transfer of prestressing force (at release) compressive strength, f'ci = MPa 27.60 modulus of elasticity, Eci = 27,606.25 MPa during erection (construction stage) compressive strength, f'c1 = 34.50 modulus of elasticity, Ec1 = 27,606.25 at service condition compressive strength, f'c2 = 34.50 modulus of elasticity, Ec2 = 27,606.25 In-situ deck compressive strength, f'c3 = 27.60 modulus of elasticity, Ec3 = 24,691.78 DESIGN PARAMETERS Reinforcing Steel Bar bar dia. main reinforcement, Øm fym bar dia. stirrups, Øs fys bar dia. web reinforcement, Øw fyw
jacking stress, fj =
1,395.00
MPa
MPa MPa
= 25 mm = 414.00 MPa = 10 mm = 276.00 MPa 10 mm = = 276.00 MPa
Strength reduction factor, Φ for tension-controlled, Φt = for compression-controlled, Φc = for shear and torsion, Φs =
0.9 0.65 0.75
24.00 0.894 0.804
Kre J RH % debonded
= = = =
35.00 MPa 0.040 80% (relative humidity) 0%
y
kN/m3 L
C
Designation LE AP M AP RE
E
left end / (start of debonded strand) arbitrary points / (end of debonded strand) midspan arbitrary points / (end of debonded strand) right end / (start of debonded strand)
D
0 1.25 2.5 3.75 5
MPa MPa
B
A B C D E
Prestressing Steel Strands prestressing type: Grade 270 low-relaxation strand ultimate tensile strength, fpu = 1,860.00 MPa yield strength, fpy = 0.9fpu = 1,674.00 MPa modulus of elasticity, Eps = 195,000 MPa mm2 nominal area of strands, Aps = 98.71
MPa MPa
(for pretensioned members) (for pretensioned members) (for pretensioned members) (for normal weight concrete)
Structural Concrete unit weight of concrete, δc = Ec3 / Ec2, nc = β1 = Table 1B: Section location y
Grade 40 or 276.00 MPa Grade 60 or 414.00 MPa 200,000 MPa
A
Prestressing Steel Strand Kes = 1.0 Kcir = 0.9 Ksh = 1.0 Kcr = 2.0
Reinforcing Steel Bar ###### - ###### = ###### - ###### = modulus of elasticity, Es =
LR
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
LOAD CASES Table 2B: Forces and Moments (service loads) Design Moments (Service load condition), kN-m
L/C
Load Combination
SW
selfweight
Hsus
sustained load
0.00
194.00
364.00
15.00
0.00
Hult
ultimate load
0.00
227.00
411.00
19.00
0.00
A
B
C
D
E
0.00
18.00
24.00
18.00
0.00
LOSSES IN PRESTRESS Immediate losses • due to elastic shortening of concrete, ES (immediate loss) initial prestressing force, Po = (n p1 + n p2 ) f j A ps = 1,927,806.30 N location of Pi from bottom, yp = h basic - (n p1 (d p1 - (h - h basic )) + n p2 (dp2 - (h - h basic )))/(n p1 + n p2 ) = 200.00 mm eccentiricity, eb = h basic /2 - y = 0.00 mm Note: (+) if 'e' is below N.A. and (-) if 'e' is above N.A. ES = K es f cir (E ps /E c1 ) 2 fcir = K cir (P i /(bh basic ) + P i e b /I basic ) - M s e /I basic Time-dependent losses • due to shrinkage of concrete, SH (time-dependent loss) V/S = bh/(2(b+h)) = 0.1333 -6 SH = 8.2x10 K sh E ps (1-0.06(V/S))(100-RH) • due to creep of concrete, CR (time-dependent loss) CR = K cr (E ps /E c1 )(f cir - f cds ) location of Pi from bottom, yf = h - (n p1 d p1 + n p2 d p2 )/(n p1 + n p2 ) = 200.00 mm eccentiricity, ef = y tr,bot - y f = 0.00 mm • due to relaxation of tendons, RE (time-dependent loss) fpi = f j = 1,395.00 MPa RE = (K re - J (SH + CR + ES)) C value of C for stress-relieved strand or wire 1 + 9 (f pi /f pu - 0.7) (f pi /f pu ) (f pi /f pu ) C = - 0.55 0.19 0.85 (f pi /f pu )/3.83
for 0.75 ≥ f pi /f pu ≥ 0.70 for 0.70 > f pi /f pu ≥ 0.51
=
for f pi /f pu < 0.51
value of C for low-relaxation strand or wire (f pi /f pu ) (f pi /f pu ) - 0.55 C = 0.9 0.21 (f pi /f pu )/4.25
for f pi /f pu ≥ 0.54
= 1.0119
for f pi /f pu < 0.54
Table 3A: Summary of Losses ##
Section
LE AP M AP RE
A B C D E
Time-dependent losses
Immediate loss fcir, MPa
ES, MPa
∆1f
fcir, MPa
fcds, MPa
SH, MPa
CR, MPa
RE, MPa
∆2f
5.42 4.81 4.61 4.81 5.42
38.30 34.01 32.58 34.01 38.30
38.30 34.01 32.58 34.01 38.30
5.42 4.84 4.67 4.90 5.54
0.00 6.55 12.29 0.51 0.00
31.72 31.72 31.72 31.72 31.72
76.60 160.94 239.55 76.44 78.29
29.48 26.24 23.12 29.66 29.41
176.10 252.91 326.97 171.83 177.73
Table 3B: Initial and Effective Presstress Section
Total Area of strands
A B C D E
1381.94 1381.94 1381.94 1381.94 1381.94
Initial Prestress (after ES)
Effective Prestress
fi, MPa
Pi, N
fe, MPa
Pe , N
1,356.70 1,360.99 1,362.42 1,360.99 1,356.70
1,874,878 1,880,807 1,882,783 1,880,807 1,874,878
1,218.90 1,142.09 1,068.03 1,223.17 1,217.27
1,684,447 1,578,300 1,475,953 1,690,348 1,682,194
% Loss
87% 82% 77% 88% 87%
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
1.8 STRENGTH INTERACTION DIAGRAM SECTION PROPERTIES SECTION DIAGRAM Section Dimension b = 800.00mm h
=
Steel Cover SCb = SCh =
450.00mm
58.00mm 58.00mm
Reinforcing Steel Bar no. of steel bars along 'x' axis =
4
no. of steel bars along 'y' axis = 2 bar diameter, Øb = 16 mm Prestressing Steel Strand
Hoop type
14 12.70 mm
Minor Axis, y
no. of prestressing steel = prestressing strand diameter, Øps = Tied
MATERIAL PROPERTIES Major Axis, x Structural Concrete min. compressive strength @ 28 days, f'c = modulus of elasticity, Ec =
35.00 MPa 27,805.57 MPa
β = 0.8 Reinforcing Steel Bar yield strength = modulus of elasticity, Es
= =
min. yield strength, fy =
276.00 MPa
≤ 12
414.00 MPa ≥ 200,000.00 MPa
16
414.00 MPa
Prestressing Steel Strand min. specified ultimate strength, fpu = min. specified yield strength, fpy =
1,862.00 MPa 1,675.80 MPa
modulus of elasticity, Eps = effective prestressing stress, fpe =
196,507.00 MPa
area of prestressing strand, Aps =
98.71 mm²
1,145.13 MPa
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
Reinforcing Steel Bar Details
Prestressing Steel Strand Details
Rebar distance 'd' from extreme compression fiber Bundled ## 1 d1 = 392.00 N = Ø Bundled ## 2 d2 = 392.00 N = Ø Bundled ## 3 d3 = 392.00 N = Ø Bundled ## 4 d4 = 392.00 N = Ø Bundled ## 5 d5 = 58.00 N = Ø ## ## ##
6 d6 = 58.00 7 d7 = 58.00 8 d8 = 58.00
9 d9 = ## 10 d10 = ## 11 d11 = ##
## 12 d12 = ## 13 d13 = ## 14 d14 = ## 15 d15 = ## 16 d16 = ## 17 d17 = ## 18 d18 = ## 19 d19 = ## 20 d20 = ## 21 d21 = ## 22 d22 = ## 23 d23 = ## 24 d24 =
Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled
Area of reinforcement steel bar, mm² 1 As1 = 201.06 2 As2 = 201.06 3 As3 = 201.06 4 As4 = 201.06 5 As5 = 201.06 6 As6 = 201.06 7 As7 = 201.06 8 As8 = 201.06
= 16 = 16
Prestressing steel distance 'y' from extreme compression fiber Bundled 1 y1 = 392.00 N = Ø = 12.7 Bundled ## 2 y2 = 392.00 N = Ø = 12.7 Bundled ## 3 y3 = 392.00 N = Ø = 12.7 Bundled ## 4 y4 = 392.00 N = Ø = 12.7
= 16
##
= 16 = 16
##
5 y5 = 392.00 6 y6 = 392.00 7 y7 = 392.00
N
=
Ø
= 16
##
N
=
Ø
##
N
=
Ø
= 16 = 16
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
N
=
Ø
=
## 21 y21 = ## 22 y22 = ## 23 y23 =
N
=
Ø
=
## 24 y24 =
8 y8 = 108.00 ## 9 y9 = 108.00 ## 10 y10 = 108.00 ## 11 y11 = 108.00 ##
## 12 y12 = 108.00 ## 13 y13 = 108.00 ## 14 y14 = 108.00 ## 15 y15 = ## 16 y16 = ## 17 y17 = ## 18 y18 = ## 19 y19 = ## 20 y20 =
Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled Bundled
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
12.7
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
N
=
Ø =
Area of prestressing steel strand, mm² Aps1 = 98.71 1 Aps2 = 98.71 2 Aps3 = 98.71 3 4 5 6 7 8
Aps4 = 98.71 Aps5 = 98.71 Aps6 = 98.71 Aps7 = 98.71 Aps8 = 98.71 Aps9 = 98.71
9 As9 =
9
10 As10 = 11 As11 = 12 As12 =
10
13 As13 = 14 As14 = 15 As15 =
13
16 As16 = 17 As17 = 18 As18 =
16
19 As19 = 20 As20 = 21 As21 =
19 21
Aps20 = Aps21 =
22 As22 =
22
Aps22 =
11 12 14 15 17 18 20
Aps10 = 98.71 Aps11 = 98.71 Aps12 = 98.71 Aps13 = 98.71 Aps14 = 98.71 Aps15 = Aps16 = Aps17 = Aps18 = Aps19 =
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
23 As23 = 24 As24 = AsT = 1,608.48 mm²
Aps23 = Aps24 =
23 24
ApsT = 1,381.94 mm²
POINTS ON INTERACTION CURVE • Pure Axial Load Capacity, Po Pn
= 0.85f' c (A ‐ A psT ‐ A sT ) ‐ A psT (f pe ‐ 0.003E ps ) + A sT f y
Po
= 6,837.43 kN
Φ
=
= 10,519.13 kN Design Axial Load, Pu cap Pcap = S.F. Po
= 5,469.94 kN
• Design Axial Force and Moment at any given value of 'c' 23 c = 397.00 mm a = 317.60 mm Steel Strain when d c 0.003
c ‐ d
Єs =
c
0.003
d ‐ c c
Prestressing Steel Strain when y c f pe E ps
Steel strain 1 Єs1 = 0.000038 2 Єs2 = 0.000038 3 Єs3 = 0.000038 4 Єs4 = 5 Єs5 = 6 Єs6 =
0.000038
7 Єs7 = 8 Єs8 = 9 Єs9 =
0.002562
10 Єs10 = 11 Єs11 = 12 Єs12 = 13 Єs13 = 14 Єs14 = 15 Єs15 = 16 Єs16 = 17 Єs17 = 18 Єs18 = 19 Єs19 = 20 Єs20 =
0.002562 0.002562 0.002562
‐
0.003
c ‐ d c
Prestressing strand strain Єps1 = 0.005790 Єps2 = 0.005790 Єps3 = Єps4 =
0.005790
Єps5 = Єps6 =
0.005790
Єps7 = Єps8 =
0.005790
Єps9 = Єps10 =
0.003644
Єps11 = Єps12 =
0.003644
Єps13 = Єps14 =
0.003644
Єps15 = Єps16 = Єps17 = Єps18 = Єps19 = Єps20 =
0.005790 0.005790 0.003644 0.003644 0.003644 0.003644
Єs =
f pe E ps
+
0.003
c ‐ d c
Steel stress fs1 = 7.60 MPa fs2 = 7.60 MPa fs3 = 7.60 MPa fs4 = 7.60 MPa fs5 = 414.00 MPa fs6 = 414.00 MPa fs7 = 414.00 MPa fs8 = 414.00 MPa fs9 = fs10 = fs11 = fs12 = fs13 =
Prestressing strand stress fps1 = 1,137.78 MPa fps2 = 1,137.78 MPa fps3 = 1,137.78 MPa fps4 = 1,137.78 MPa fps5 = 1,137.78 MPa fps6 = 1,137.78 MPa fps7 = 1,137.78 MPa fps8 = 716.07 MPa fps9 = 716.07 MPa fps10 = 716.07 MPa fps11 = 716.07 MPa fps12 = 716.07 MPa
fs14 = fs15 =
fps13 = 716.07 MPa fps14 = 716.07 MPa fps15 =
fs16 = fs17 =
fps16 = fps17 =
fs18 = fs19 =
fps18 = fps19 =
fs20 =
fps20 =
0.65
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
21 Єs21 = 22 Єs22 = 23 Єs23 = 24 Єs24 =
Єps21 = Єps22 =
fs21 = fs22 =
fps21 = fps22 =
Єps23 = Єps24 =
fs23 = fs24 =
fps23 = fps24 =
Nominal Axial Load and Moment Capacity (Pn, Mn) P n = 0.85f' c (A comp ‐ A' s ‐ A' ps ) + A' s f' s ‐ A' ps f' ps ‐ A s f s ‐ A ps f ps = 6,572.51 kN M n = 0.85f' c (A comp ‐ A' s ‐ A' ps ) e 1 + A' s f' s e 2 ‐ A' ps f' ps e 3 ‐ A s f s e 4 ‐ A ps f ps e 5 = 621.98 kN‐m Ultimate Axial Load and Moment Capacity (Pu, Mu) Єst = ‐0.000038 Φ = 0.65 P u = Φ Pn
M u = Φ Mn
= 4,272.13 kN
= 404.29 kN‐m
13.2.7 Contour Points on Interaction Curve depth of comp. curve, c (mm)
β
1
1
2
19
3
Unfactored Loads Pn (kN) Mn (kN‐m)
Factored Loads Mu (kN‐m) Pu (kN)
depth of comp. block, a (mm)
ɸ
0.8
0.80
0.900
‐3206.43
68.27
‐2885.79
61.44
0.8
15.20
0.900
‐2855.72
143.57
‐2570.15
129.21
‐50.27
37
0.8
29.60
0.900
‐2427.09
225.98
‐2184.38
203.38
‐93.11
4
55
0.8
44.00
0.900
‐1763.30
339.24
‐1586.97
305.32
‐192.39
5
73
0.8
58.40
0.900
‐1125.08
437.07
‐1012.57
393.36
‐388.48
6
91
72.80 87.20
‐581.41
517.35
‐523.27
465.62
‐889.83
109
0.8 0.8
0.900
7
0.900
‐101.00
583.70
‐90.90
525.33
‐5779.21
8
127
0.8
101.60
0.900
343.90
639.77
309.51
575.79
1860.33
9
145
0.8
116.00
0.900
747.38
684.97
672.64
616.47
916.49
10
163
0.8
130.40
0.833
1159.28
724.97
965.68
603.90
625.36
11 12
181 199
0.8 0.8
144.80 159.20
0.772 0.722
1565.25 1962.56
757.70 781.47
1208.37 1416.97
584.94 564.22
484.07 398.19
13
217
0.8
173.60
0.680
2380.71
794.16
1618.88
540.03
333.58
14
235
0.8
188.00
0.650
2806.01
799.95
1823.91
519.97
285.09
15
253
0.8
202.40
0.650
3267.63
794.09
2123.96
516.16
243.02
16
271
0.8
216.80
0.650
3713.55
785.41
2413.81
510.52
211.5
17
289
0.8
231.20
0.650
4146.41
773.55
2695.17
502.81
186.56
18
307
0.8
245.60
0.650
4568.83
758.20
2969.74
492.83
165.95
19
325
0.8
260.00
0.650
4982.61
739.08
3238.70
480.40
148.33
20
343
0.8
274.40
0.650
5388.58
716.06
3502.58
465.44
132.88
21
361
0.8
288.80
0.650
5788.40
688.94
3762.46
447.81
119.02
22
379
0.8
303.20
0.650
6182.94
657.61
4018.91
427.45
106.36
23
397
0.8
317.60
0.650
6572.51
621.98
4272.13
404.29
94.63
24
415
0.8
332.00
0.650
6958.22
581.99
4522.84
378.29
83.64
25
433
0.8
346.40
0.650
7340.29
537.51
4771.19
349.38
73.23
26
451
0.8
360.80
0.650
7719.12
488.56
5017.43
317.56
63.29
27
469
0.8
375.20
0.650
8095.47
435.02
5262.06
282.76
53.74
28
487
0.8
389.60
0.650
8469.01
376.89
5504.86
244.98
44.5
eccentricity, e (mm) ‐21.29
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019 10/17/2019
29
505
0.8
404.00
0.650
8796.02
321.56
5717.41
209.01
36.56
30
523
0.8
418.40
0.650
9165.45
254.13
5957.54
165.18
27.73
31
541
0.8
432.80
0.650
9533.27
182.00
6196.63
118.30
19.09
32
559
0.8
447.20
0.650
9899.33
105.15
6434.56
68.35
10.62
33
577
0.8
461.60
0.650
9987.86
25.17
6492.11
16.36
2.52
34
595
0.8
476.00
0.650
10008.56
‐54.74
6505.56
‐35.58
‐5.47
35
613
0.8
490.40
0.650
10027.93
‐134.47
6518.15
‐87.41
‐13.41
36
631
0.8
504.80
0.650
10046.13
‐214.04
6529.98
‐139.13
‐21.31
37
649
0.8
519.20
0.650
10063.45
‐293.51
6541.24
‐190.78
‐29.17
38
667
0.8
533.60
0.650
10079.75
‐372.80
6551.84
‐242.32
‐36.99
39
685
0.8
548.00
0.650
10095.30
‐452.01
6561.95
‐293.81
‐44.77
40
703
0.8
562.40
0.650
10109.98
‐531.11
6571.49
‐345.22
‐52.53
41
721
0.8
576.80
0.650
10123.93
‐610.13
6580.55
‐396.58
‐60.27
42
739
0.8
591.20
0.650
10137.16
‐689.03
6589.15
‐447.87
‐67.97
43
757
0.8
605.60
0.650
10149.76
‐767.82
6597.34
‐499.08
‐75.65
44
775
0.8
620.00
0.650
10161.95
‐846.58
6605.27
‐550.28
‐83.31
45
793
0.8
634.40
0.650
10173.39
‐925.26
6612.70
‐601.42
‐90.95
46
811
0.8
648.80
0.650
10184.41
‐1003.86
6619.87
‐652.51
‐98.57
47
829
0.8
663.20
0.650
10194.82
‐1082.37
6626.63
‐703.54
‐106.17
48
847
0.8
677.60
0.650
10204.97
‐1160.86
6633.23
‐754.56
‐113.75
49
865
0.8
692.00
0.650
10214.50
‐1239.26
6639.43
‐805.52
‐121.32
50
883
0.8
706.40
0.650
10223.90
‐1317.63
6645.54
‐856.46
‐128.88
51
901
0.8
720.80
0.650
10232.72
‐1395.95
6651.27
‐907.37
‐136.42
ITEM:
ABUSAG BRIDGE
Design:
LRP
Date:
10/17/2019
PART:
DESIGN OF SHEET PILE - PRESTRESSED
Check:
RRE
Date:
10/17/2019
13.2.8 Strength Interaction Curve
STRENGTH INTERACTION DIAGRAM Interaction Curve
Moment and Axial Tension
Axial Compression
Nominal Strength
Moment and Axial Compression
12,000
10,000
8,000
Φ Pn, kN
6,000
5,469.94 kN
4,000
2,000
64.73 kN‐m, 67.71 kN 0 0
100
200
300
400
500
600
700
800
‐2,000
‐4,000
Design Moment and Axial Tension M = Pt =
Φ Mn, kN‐m
Design Moment and Axial Compression M = 64.73 kN‐m Pc = 67.71 kN
900
View more...
Comments