Analisis Matricial Excel Ejercicio Resuelto

October 11, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Analisis Matricial Excel Ejercicio Resuelto...

Description

 

Ensamble de la matriz de rigidez global k221 +k115 +k113

k125

k123

0

k215

k222 +k225 +k114

0

k124

k213

0

k223 +k116

k126

0

k214

k216

k224 +k226

K

Encontramos el vector fuerza (global)

" #

r1z

5

r1 m1!

0 0

r2z

5

r2

0

m2!

#

0

r3z

%&5

r3

0

m3!

0

r4z

%&5

r4

0

m4!

0

$on

Ensamblamos la matriz de des'lazamien des'lazamiento to 1 #

1 u #

2 #

u1z

u1z

u1

u1

*1!

*1!

u2z

u2z

u2

u2

1

*2!

1

u3z

u3z

u3

u3

*3!

*3!

u4z

u4z

u4

u4

*4!

*4!

1

3 #

4 #

#

*2!

'ara el elemento 12 * # 0&00 1& 1&5%0%6326,

k221

0&5625

0&0000

1&1250

0&0000

5&0000

0&0000

k222

1&1250

0&0000

3&0000

k000

0

0

0

ki.

0

0

0

k000

0

0

0

cos * # 0&00 sen * # 1&00

-i.

/ # 5&00  # 0&5625  # 3&00  # 1&125 E # 1&13

 

// E EE7$8 3  4 * # 0&00 1&5%0%633

// E EE -113

cos * # 0&00 999

-i. -114

0&,,,

0&0000

1&3333

* # 0&00

0&0000

6&666%

0&0000

cos * # 1&00

1&3333

0&0000

2&666%

999

/ # 6&666%

/ # 2&5000

 # 0&,,,

 # 0&0234

 # 2&666%

 # 0&5000

 # 1&3333

 # 0&03,

E # 1&3333

E # 0&03,

* # 0&00 1&5%0%633

-123

cos * # 0&00 999

-i. -124

0&,,,

0&0000

1&3333

* # 0&00

0&0000

6&666%

0&0000

cos * # 1&00

1&3333

0&0000

1&3333

999

/ # 6&666%

/ # 2&5000

 # 0&,,,

 # 0&0234

 # 1&3333

 # 0&2500

 # 1&3333

 # 0&03,

E # 1&3333

E # 0&03,

* # 0&00 1&5%0%633

-213

cos * # 0&00 999

-i. -214

0&,,,

0&0000

1&3333

* # 0&00

0&0000

6&666%

0&0000

cos * # 1&00

1&3333

0&0000

1&3333

999

/ # 6&666%

/ # 2&5000

 # 0&,,,

 # 0&0234

 # 1&3333  # 1&3333

 # 0&2500  # 0&03,

E # 1&3333

E # 0&03,

* # 0&00 1&5%0%633

-223

cos * # 0&00 999

-i. -224

0&,,,

0&0000

1&3333

* # 0&00

0&0000

6&666%

0&0000

cos * # 1&00

1&3333

0&0000

2&666%

999

/ # 6&666%

/ # 2&5000

 # 0&,,,

 # 0&0234

 # 2&666%

 # 0&5000

 # 1&3333

 # 0&03,

E # 1&3333

E # 0&03,

 

Ensa Ensamb mble le de de la matr matriz iz de de rigi rigid d k221 +k115 +k113 K

k215 k213 0

 

7$8 5 6

3&514 0

-115 -i. -116

2&5000

0&0000

0&0000

0&0000

0&0000

0&0234

0&03,

0&20,3

0&0000

0&03,

0&5000

2&5000 0&0000 k

0&0000 0&,,, 0&0000 1&3333 0&0000

0

-125 -i. -126

2&5000

0&0000

0&0000

0&0000

0&0000

0&0234

0&03,

0&0000

0&0000

0&03,

0&2500 8btenci cio on de de llo os de des'lazamie

[]= 〖 [] 〗 ^(

0

-215 -i. -216

2&5000

0&0000

0&0000

0&0000

0&0234

0&03,

0&0000

0&03,

0&2500 ;u< #

0

-225 -i. -226

2&5000

0&0000

0&0000

0&0000

0&0234

0&03,

0&0000

0&03,

0&5000

;u< #

 

% alculo de defo

 =ue =ue lasf lasfue uerz rzas as e

'ara el elemento 6

3

4

2

3

 

4 5

1

2

2

1

 

2

1

a

;u<

$

a>ora calculamos

 

;k?<

 

 

z global con las res'ec:vas submatrices  

k125 k1

k123

0

k222 +k225 +k114

0

k124

0

k223 +k116

k126

k214

k216

k224 +k226

0&0000

0&20,3

2&5000

0&0000

0&0000

0&,,,

11&601

0&03,

0&0000

0&0234

0&03,

0&0000

0&03,

6&166%

0&0000

0&03,

0&2500

1&3333

0&0000

0&0000

3&514

0&0000

0&20,3

0&0000

0&0234

0&03,

0&0000

11&601

0&03,

0&0000

0&03,

0&2500

0&20,3

0&03,

6&166%

0&0000

0&0000

1&3333

0&0000

0&0000

0&0000

3&3,,

6&666%

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&3333

0&0000

0&0000

0&0000

1&3333

0&0000

0&0000

0&,,,

0&0000

1&3333

2&5000

0&0000

0&0000

0&0000

6&666%

0&0000

0&0000

0&0000

0&0000

1&3333

0&0000

1&3333

0&0000

tos  giros globales

1) ∗[] u1z

2&06331%

0&02544%16 0&55163123,1

1&,1221330,

u1

0&02544%16

0&144340, 0&014%%235,

0&02544%16

*1!

0&5 0&551 5163 6312 123, 3,1 1

0& 0&01 014% 4%% %23 235, 5, 0& 0&36 36,% ,%3 344 442, 2,

0& 0&53 53%0 %056 5643 4334 34

u2z

1&,1221330,

0&02544%16 0&53%0564334

2&06331%

u2

0&02544%16

0&000550652

0&014%%235,

0&02544%16

0&53%0564334

0&014%%235,

0&1%555033

0&55163123,1

*2!

#

u3z u3

3&1104,6013 0&0366,020%6

0&0,156%3, 1&1612%%2% 0&131,0,%3 0&01,340103,

3&1%06561 0&0366,020%6

*3!

0&2 0&220 206 641 412 24 4

0& 0&02 0201 0112 1225 2515 15 0& 0&0, 0,2 20 06 66 6

0& 0&30 3012 1215 152 205 05

u4z

3&1%06561

0&0,156%3, 1&134662511

3&1104,6013

u4

0&0366,020%6

*4!

0&3 0&301 0121 2152 520 05 5

u1z

6%&55,0

u1

1&5253

*1!

22&66%

u2z

6%&55,0

u2

1&5253

*2!

#

22&66%

u3z

13,&30%2

u3

2&0421

0&0006,112%

0&01,340103,

0&0366,020%6

0& 0&02 0201 0112 1225 2515 15 0& 0&1% 1%1% 1%45 4504 041 1

0& 0&22 2206 064 41 124 24

 

 

*3!

1,&,%50

u4z

13,&30%2

u4

2&0421

*4!

1,&,%50

maciones en coordenadas locales  de elementos mecanicos

local

global

  n los elementos elementos en coordenadas coordenadas locales 'ueden 'ueden obtenerse obtenerse a 'ar:r de la ecuacion

 

1 datods / # 20&00 @ @ # 3&00 @

5&0000 E@

0&5625 E@

1&1250 E@

4&00 m 2 3&0000 E@

1&5000 E@

1 b

uaz

0

0

ua

0

0

a

*a!

0

1

1

u1z

6%&55,0

E@

u1

1&5253

6%&55%525342

*1!

22&66%

22&66%,65156

* # 0 0&0 &00 0

;u?<

0 1&52525,004

1&5% 1&5%0% 0%6 632 326, 6,

cos * # 0&00 sen * # 1&00 0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

 la matriz de rigidez de coordenadas locales

 

5&0000 E@

0

0

5&0000 E@

0

0

0

0&5625 E@

1&1250 E@

0

0&5625 E@

1&1250 E@

0

1&1250 E@

3&0000 E@

0

1&1250 E@

1&5000 E@

5&0000 E@

0

0

5&0000 E@

0

0

0

0&5625 E@

1&1250 E@

0

0&5625 E@

1&1250 E@

0

1&1250 E@

1&5000 E@

0

1&1250 E@

3&0000 E@

%&6264%002 a 12&5 ;"?<

a

42&000,,,6% a %&6264%002

1

12&5

1

%&101133

1



 

0&0000

1&3333

0&0000

0&0000

0&0000

6&666%

0&0000

0&0000

0&0000

0&0000

0&0000

1&3333

0&0000

0&0000

0&0000

0&0000

0&0000

0&,,,

0&0000

1&3333

0&0000

0&0000

0&0000

6&666%

0&0000

0&0000

0&0000

1&3333

0&0000

1&3333

0&0000

1&3333

2&5000

0&0000

0&0000

6&601

0&03,

0&0000

0&0234

0&03,

0&03,

3&166%

0&0000

0&03,

0&2500

0&0000

0&0000

3&3,,

0&0000

1&3333

0&0234

0&03,

0&0000

6&601

0&03,

0&03,

0&2500

1&3333

0&03,

3&166%

0&02 0&025 54 44% 4%16 16 0&53 0&53%0 %056 5643 4334 34

3& 3&1 110 104, 4,60 6013 13

0& 0&03 0366 66,0 ,020 20%6 %6 0 0&2 &220 206 641 412 24 4 3& 3&1% 1% 0 066 66

0&00 0&0005 0550 5065 652 2 0&01 0&014% 4%% %23 235, 5,

0& 0&0, 0,1 156 56%3 %3, ,

0& 0&1 13 31, 1,0, 0,%3 %3 0&0 0&020 2011 1122 2251 515 5 0& 0&0, 0,1 156 56%4 %4

0& 0&0 014% 14%%2 %235, 35,

0&1%55 1%555 503 033

1&16 161 12 2%%2 %%2%

0& 0&0 0254 544 4%16 %16 0&5 0&5516 516312 3123,1 3,1

3&1 &1% % 0 065 6561

0& 0&0 01,340 ,3401 103, 03,

0&0, 0,20 2066 66 1& 1&1 1346 346625 625

0& 0&0 036 366 6,02 ,020%6 0%6 0&301 301215 21520 205

3&110 104,6 4,6

0& 0&1 14 443 4340, 40,

0&014% 14%%23 %235 5,

0&0, 0,1 15 56%3 6%3,

0& 0&0 000 006 6,1 ,112% 12%

0&020 020112 1122515 2515 0& 0&0 0,1 ,156% 56%

0& 0&0 014% 14%%2 %235, 35,

0&36,% 6,%344 3442 2,

1&13 1346 466 6251 2511

0& 0&0 01,340 ,3401 103, 03,

0&1%1 1%1%45 %45041 041 1& 1&1 161 612%% 2%%

0&0, 0&0,1 156 56%3 %3, , 1&13 1&1346 4662 6251 511 1 0&00 0&0006 06,1 ,11 12% 2% 0&01 0&01,3 ,340 4010 103, 3,

%& %&1 13% 3%01 0125 2564 64 0& 0&11 1116 16,6 ,645 4561 61

0& 0&0 0201 201122 122515 515

0&1%1% %1%4504 45041 1

1&11 11, ,6 6514 51453

0&0, 0&0,1 156 56%3 %3, , 1&16 1&161 12% 2%%2 %2% %

6& 6&  5, 5,65 653 3

0& 0&11 1116 16,6 ,645 4561 61 1 1&1 &11 1,6 ,651 5145 453 3 6& 6&  5, 5,66 66 0& 0&34 34, ,,% ,%02 026, 6, 0&0 0&031 3166 665 53% 3%1 1 0& 0&11 1116 16,6 ,646 46 0& 0&0 031665 1665 3%1 3%1

0&643 643405 405%14 %14 1& 1&0 04,, 4,,55 55

0& 0&11 1116 16,6 ,645 4561 61 1 1&0 &04, 4,,5 ,55, 5,%5 %5% % %& %&1 13% 3%01 0126 26

0& 0&1 13 31,0 1,0,%3 ,%3

0&01,3 1,34010 40103 3,

0&11 1116 16, ,645 64561

0& 0&0 001 010 0122 122232 232

0&031 031665 6653%1 3%1 0& 0&1 1116 116,65 ,65

0& 0&0 0201 201122 122515 515

0&0,2 ,206 06 6

1&04 04,, ,,5 55,% 5,%5%

0& 0&0 031665 1665 3%1 3%1

0&13 13554 554%3 %3 1& 1&1 11, 1,651 651

 

'ara el elemento 2 6

4

3

datods / # 20&00 @

2

3 1

 

@ # 3& 3&00 00 @ 5& 5&00 0000 00 E@

4

4&00 m

5

2

2

2

1

 

3&0000 E@

2

1

1

a

b

uaz ua

;u<

a

*a!

1

u2z u2 *2!

* # 0& 0&00 00 1&5 1&5%0% %0%63 633 3 cos * # 0&00 sen * # 1&00

$

0&0000

1&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

a>or a>ora a cal calcu cula lamo moss la la ma matr triz iz de rig igid ide ez de de coo coorrde

 

;u?<

0

5&0000 E@

0

0

0

0&5625 E@

0

1&1250 E@

1&52525,004

5&0000 E@

0

6%&55%52534

0

0&5625 E@

22&66%,65156

0

1&1250 E@

0

;k?<

;"?<

 

;"< 0&0366,02 0&3012153

5

0&0006,11 0&0201123

0

0&01,3401 0&1%1%4504

0

0&0366,02 0&220642

5

0&131,0 0&02011225

0

0&01,3401

0&0,20%

0&1116,65 1&04,,55 0&00101222 0&031665 0&0316654

0&13555

0 %&5 0 0

0&1116,65 1&11,651

%&5

0&34,,%03 0&0316654

0

0&0316654 0&643405%

0

 

'ara el elem

0&5625 E@ E@

6

4

3

2

1&1250 E@ E@

3 1

 

4 5

2 2

1

1&5000 E@

 

2

1

 

0

0

0

0

0

1

6%&55,0

E@

;u?<

0

;u<

1&52525,

1&5253

6%&55%53

22&66%

22&66%,65

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

nadas locales

a

$

a>ora calcula

 

0

5&0000 E@

0

0

0

1&1250 E@

0

0&5625 E@

1&1250 E@

0

3&0000 E@

0

1&1250 E@

1&5000 E@

0

5&0000 E@

0

0

1&52525,

1&1250 E@

0

0&5625 E@

1&1250 E@

6%&55%53

1&5000 E@

0

1&1250 E@

3&0000 E@

22&66%,65

%&6264% 12&5 42&000,, %&6264% 12&5 %&10113

;u?<

0

;k?<

 

 

nto 3 datods

4

3

/ # 20&00 @ @ # 2&00 @ 6&666% E@ E@

0&,,, E@ E@

1&3333 E@ E@

3&00 m

1

2

2 2&666% E@

1&3333 E@

1 b

u1z

6%&55,0

1&52525,

u1

1&5253

6%&55%53

a

*1!

22&66%

1

u3z

13,&30%2 E@

;u?<

1

22&66%,65 2&0420,2

u3

2&0421

13,&30%24

*3!

1,&,%50

1,&,%455

* # 0& 0&00 00 1&5%0 1&5%0%6 %633 33 cos * # 0&00 999

 

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

mos la matriz de rigidez de coordenadas locales

 

6&666% E@

0

0

6&666% E@

0

0

1&52525,

0

0&,,, E@

1&3333 E@

0

0&,,, E@

1&3333 E@

6%&55%53

0

1&3333 E@

2&666% E@

0

1&3333 E@

1&3333 E@

6&666% E@

0

0

6&666% E@

0

0

2&0420,2

0

0&,,, E@

1&3333 E@

0

0&,,, E@

1&3333 E@

13,&30%24

0

1&3333 E@

1&3333 E@

0

1&3333 E@

2&666% E@

1,&,%455

3&4453541 %&4%,214 ;"?<

,&%1,136, 3&44535412 %&4%,21 13&%%53504

;u?<

22&66%,65

 

'ara el elemento 4 6

datods

3

 

@ # 2&00 @ 6&666% E@ E@

4

0&,,, E@ E@

1&3333 E@ E@

3&00 m

5

1

2

2

2

1

3

/ # 20&00 @

2

 

2&666% E@

2

1

1

a

b ;u<

1&3333 E@

u2z

6%&55,0

1&52525,

u2

1&5253

6%&55%53

a

*2!

22&66%

1

u4z

13,&30%2 E@

;u?<

1

22&66%,65 2&0420,

u4

2&0421

13,&30%24

*4!

1,&,%50

1,&,%455

* # 0& 0&00 00 1& 1&5%0 5%0%6 %633 33 cos * # 0&00 999

$

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

a>ora calculamos la matriz de rigidez de coordenadas locales

 

;k?<

6&666% E@

0

0

6&666% E@

0

0

0

0&,,, E@

1&3333 E@

0

0&,,, E@

1&3333 E@

0

1&3333 E@

2&666% E@

0

1&3333 E@

1&3333 E@

6&666% E@

0

0

6&666% E@

0

0

0

0&,,, E@

1&3333 E@

0

0&,,, E@

1&3333 E@

0

1&3333 E@

1&3333 E@

0

1&3333 E@

2&666% E@

3&44535412 %&4%,214 ;"?<

,&%1,136, 3&4453541 %&4%,21 13&%%53504

 

'ara el elemento 5 6

datods / # 20&00 @

2

3

 

@ # 1&00 @ 2&5000 E E@@

4

0&03, E@ E@

,&00 m

5

2

2

1

0&0234 E@ E@

 

0&5000 E@

2

1

1

a

b ;u<

0&2500 E@

u1z

6%&55,0

u1

1&5253

a

*1!

22&66%

1

1

u2z

6%&55,0

E@

u2

1&5253

*2!

22&66%

* # 0&00

0

cos * # 1&00 999

$

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

a>ora calculamos la matriz de rigidez de coordenadas locales

 

;u?<

1&52525,

2&5000 E@

0

0

2&5000 E@

6%&55%53

0

0&0234 E@

0&03, E@

0

0

0&03, E@

0&5000 E@

0

2&0420,

2&5000 E@

0

0

2&5000 E@

13,&30%24

0

0&0234 E@

0&03, E@

0

1,&,%455

0

0&03, E@

0&2500 E@

0

22&66%,65

;k?<

0&0000 E@ 4&1%,% E@ ;"?<

16&%14 E@ 0&0000 E@ 4&1%,% E@ 16&%14 E@

 

'ara el elemento 5 6

4

3

datods / # 20&00 @

2

3 1

 

,&00 m

5

2

2

2

1 6%&55%525

@ # 1& 1&00 00 @ 2& 2&50 5000 00 E@

4

 

0&5000 E@

2

1

1

a

b

u3z

1&52525, ;u?<

22&66%,65

u3 ;u<

6%&55%525

a

*3!

1

u4z

1&52525,

u4

22&66%,65

*4! * # 0&00

0

cos * # 1&00 999 0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

$

a>ora a>or a calculamos calculamos la matriz matriz de de rigidez rigidez d

 

0

0

6%&55%525

2&5000 E@

0

0&0234 E@

0&03, E@

1&52525,

0

0&0234 E@

0&03 03, E@

0&2500 500 E@

0

0&03, E@

0

0

6%&55%525

2&5000 E@

0

0&0234 E@

0&03, E@

1&52525,

0

0&0234 E@

0&03, E@

0&5000 E@

22&66%,65

0

0&03, E@

;u?<

22&66%,65

;k?<

;"?<

 

0&0234 E@ E@

0&03, E@ E@

0&2500 E@ 13,&30%2

13,&30%241

2&0421

2&0420,2

1,&,%50

;u?<

1

13,&30%2 E@

 

1,&,%455 13,&30%241

2&0421

2&0420,

1,&,%50

1,&,%455

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

0&0000

0&0000

0&0000

0&0000

1&0000

coordenadas locales

 

0

2&5000 E@

0

0

13,&30%241

0&03, E@

0

0&0234 E@

0&03, E@

2&0420,2

0&5000 E@

0

0&03, E@

0&2500 E@

0

2&5000 E@

0

0

13,&30%241

0&03, E@

0

0&0234 E@

0&03, E@

2&0420,

0&2500 E@

0

0&03, E@

0&5000 E@

1,&,%455

0&0000 E@ 3&4433 E@ 13&%%33 E@ 0&0000 E@ 3&4433 E@ 13&%%3323

;u?<

1,&,%455

 

2 nudos osea :ene 6 grados de libertad encontramos el vector fuerza

;"<

f1z

%5

f1

0

f1

m1!

#

0

f2

f2z

%5

f2

0

m2!

0

ton

encontramos los des'lazamientos des'lazamientos u1z u1 ;u<

1

*1!

2

u2z u2 *!

'ara los elementos 12 'ro'iedades geometricas de las columnas de seccion transversal 40

cuadrad area

40 1600

inercia

87A@$B

213333&333

2&% 100

2 3

%200 16,3000

entonces los coeCcentes de rigidez serianD

5&25 E

0&1301 E

1%&55,3 E

3160&43, E

15,0&246 E

submatricez de rigidez en coordenadas locales elementos 1  2 1

5&25 E

0

0

2%0

 

;k?11< 2 1

0

0&1301 E

1%&55,3 E

0

1%&55,3 E

999

5&25 E

0

0

0

0&1301 E

1%&55,3 E

0 1  1%&55,3 E

999

;k?12< 2 1

5&25 E

2

0 0

1

5&25 E

;k?21<

;k?22<

0 2

0

0

0&1301 E 1%&55,3 E 1%&55,3 E 999 0

0

0&1301 E 1%&55,3 E

0 1  1%&55,3 E

999

de la Cgura nos interesan k221  k222 'ara el elemento 12 * # 0&00 1&5%0%633

k221

0&1301

0&0000

1%&55,3

0&0000

5&25

0&0000

k222

1%&55,3

0&0000

3160&43,

k000

0

0

0

ki.

0

0

0

k000

0

0

0

cos * # 0&00 sen * # 1&00

-i.

/ # 5&25  # 0&1301  # 3160&4  # 1%&55,3 E # 1%&55,3

 

'ara los elementos 3

'ara los ele

'ro'iedades geometricas de las columnas de seccion transversal transversal

'ro'iedades

cuadrad

cuadrad

25

area

40 1000

inercia

87A@$B

3&5

133333&333

100 2 3

350

area 8E"@@E7$E

122500 42,%5000

entonces los coeCcentes de rigidez serianD ki

2&,5%1 E

0&03%3 E

6&5306 E

1523&,05 E

%61&04, E

submatricez de rigidez en coordenadas locales

ki

elementos 1  2 1

submatriz en 2&,5%1 E

0

0

 

;k?11< 2 1

0

0&03%3 E

6&5306 E

0

6&5306 E

999

= 〖 〖 1)

2&,5%1 E 2

0

0

0

0&03%3 E

6&5306 E

2

0

6&5306 E %61&04, E

1

2&,5%1 E

2

0 0

1

2&,5%1 E

0

0

0

0&03%3 E

6&5306 E

0

6&5306 E

999

;k?12<

;k?21<

;k?22< 2

0

'or lo tanto

0

0&03%3 E 6&5306 E 6&5306 E %61&04, E

FB/$@EF FB/ $@EF E7 88E7//F 8/EF // E EE7$8 3 * # 0&00

* # 0&00 0

-113

2&,5%1

0&0000

0&0000

0&0000

0&03%3

6&5306

-114

0&0000

6&5306

1523&,05

-123

2&,5%1

0&0000

0&0000

0&0000

0&03%3

6&5306

-124

0&0000

6&5306

%61&04,

-213

2&,5%1

0&0000

0&0000

0&0000

0&03%3

6&5306

-214

0&0000

6&5306

%61&04,

-223

2&,5%1

0&0000

0&0000

0&0000

0&03%3

6&5306

0&0000

6&5306

1523&,05

cos * # 1&00

-i.

sen * # 0&00 / # 2&,5%1  # 0&03%3  # 1523&,05  # 6&5306 E # 6&5306 * # 0&00

0

cos * # 1&00

-i.

sen * # 0&00 / # 2&,5%1  # 0&03%3  # %61&04,  # 6&5306 E # 6&5306 * # 0&00

0

cos * # 1&00

-i.

sen * # 0&00 / # 2&,5%1  # 0&03%3  # %61&04,  # 6&5306 E # 6&5306 * # 0&00

0

cos * # 1&00 sen * # 0&00 / # 2&,5%1  # 0&03%3

-i. -224

 

 # 1523&,05  # 6&5306 E # 6&5306

 

 

entos 4  geometricas de las columnas de seccion transversal transversal 15

15 2

   E E @A@E

t #

14

87A@$Bz

3&5

350

87A@$B

2&%

2%0

longit lon gitud ud @/ 442&040% 442&040%22 22

0&6560 E

0&6560 E  

0&6560 E

0&6560 E 0&6560 E coordenadas globales

 

〗 ^(−

0&%%1 0&%%142, 42,5% 5% 0&65%0 0&65%0%4 %44 4 3% 3%&64 &64%62 %6206 06 cos * # 0&% 999

 

ecordando =ue la matriz encoordenadas globales

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF