analisa teknis girder wika beton - Ngoro - Mojokerto.pdf

July 14, 2018 | Author: Helmi Hermawan | Category: Beam (Structure), Strength Of Materials, Prestressed Concrete, Concrete, Stress (Mechanics)
Share Embed Donate


Short Description

Download analisa teknis girder wika beton - Ngoro - Mojokerto.pdf...

Description

PROPOSAL TEKNIS PC I GIRDER POSTENSION NONSEGMENTAL

AnalisaTeknis Jembatan Ngrame Mojokerto PC - I Girder L – 16.6 m; H – 90 cm; CTC – 180 cm No. Job: 08004 No. Rev: 00

Innovation and Trust

HEAD OFFICES Jl. D.I. Panjaitan Kav. 3-4 JAKARTA – INDONESIA Telp : (+62-21) 8192808, 8508640, 8508650, 85905570 (Direct to Marketing) Fax : (+62-21) 85903872 Web : www.wika-beton.co.id Email : [email protected]

PROPOSAL TEKNIS PC I GIRDER POSTENSION NONSEGMENTAL

AnalisaTeknis Jembatan Ngrame Mojokerto PC - I Girder L – 16.6 m; H – 90 cm; CTC – 180 cm No. Job: 08004 No. Rev: 00

MENYETUJUI

(

)

Proposal ini berlaku apabila telah mendapat persetujuan dari konsultan/Owner. Proposal ini berlaku hanya untuk produk-produk Wika beton DISETUJUI : TANGGAL :

Ir. M. Zulkarnain,MM,.IPM Manajer Teknik

DIPERIKSA : TANGGAL :

Ir. Gambiro Kabag Teknik

DIBUAT : TANGGAL :

Verly Widantoro, ST. Staf Teknik

PROPOSAL TEKNIS

BALOK POST TENSION NON SEGMENTAL JEMBATAN NGRAME MOJOKERTO PROSPEKTUS Proposal teknis ini dibuat untuk konstruksi Proyek Jembatan Ngrame Mojokerto yaitu pada bagian konstruksi balok jembatan. Balok I girder dirancang menggunakan sistem post tension monolith (non segmental) yaitu merupakan balok yang terdiri dari satu segmen yang kemudian distressing atau diberi gaya prategang pada kondisi kekuatan beton balok telah mencapai kuat tekan yang ditentukan(post tensioning). Hal ini dimaksudkan agar saat balok distressing, balok telah mampu menahan gaya prategang. Sistim pabrikasi balok I girder precast memiliki keuntungan dari segi waktu pelaksanaan proyek yang lebih cepat dan terkontrolnya mutu dan kualitas produk balok sesuai spesifikasi yang direncanakan. Proposal ini dapat dilaksanakan setelah disetujui oleh konsultan atau owner. PROYEK Nama Proyek Lokasi

: Jembatan Ngrame Mojokerto : Mojokerto, Jawa Timur REFERENSI DISAIN

Referensi disain yang digunakan dalam menyusun analisa ini adalah : - Pembebanan berdasarkan Bridge Management System (BMS). - Material berdasarkan standar Japan Industrial Standard (JIS) dan American Society for Testing and Material (ASTM). SPESIFIKASI DISAIN Pelat Jembatan : - Mutu Beton - Tebal pelat Pelat Deck : - Mutu Beton - Tebal Pelat Deck Aspal : - Tebal Aspal Balok : - Post tension Girder Konfigurasi Balok - Tulangan -

Strand

= K-300 = 27 cm (termasuk Pelat dek) = K-350 = 7 cm = 5 cm = H-90cm. = L=16.6m; Ctc balok 1,85m; K-500 = D-13 fy = 400 MPa (tulangan deform). φ 10 U-24 (tulangan polos) = φ 12,7 mm (grade 270, low relaxation)

ANALISA TEKNIS Analisa yang dilakukan adalah perhitungan teknis untuk perencanaan balok I girder Pretension nonsegmental terhadap beban kerja rencana berdasarkan pembebanan Bridge Management System (BMS). Analisa teknis meliputi penentuan konfigurasi tendon dan jumlah strand yang dibutuhkan balok, penulangan balok terhadap gaya dalam yang bekerja dan analisa lendutan yang terjadi. Penggunaan konfigurasi tendon dengan konfigurasi strand pada posisi tertentu yang diberi jacking force akan mengakibatkan tegangan pada penampang balok, tegangan tersebut di check terhadap tegangan yang diijinkan pada kondisi saat transfer dan saat service balok. Pada analisa teknis juga dilakukan kontrol lendutan yang terjadi terhadap lendutan yang diijinkan baik pada saat service. KESIMPULAN Kesimpulan analisa teknis adalah sebagai berikut : PC I Girder Non Segmental Post tension L16,6m Mutu Beton : K-500 Dimensi Balok : Standar Wika Beton H=90 Rancang Jembatan : Panjang Balok 16.6m ctc185cm Jumlah Segmen : 1 Segmen (16.6m) Skiew Jembatan : 0° Strand : φ 12,7 mm (grade 270, low relaxation) Jacking Force : 75% dari Ultimate Tensile Strength (UTS) Kekuatan Beton saat jacking force : 80% dari fc’ Konfigurasi tendon & Strand Tendon

Jumlah Strand

1 2

10 12

Posisi tendon (mm) Tepi Tengah 500 200 250 100

Dari hasil analisa Teknis : φ Mn : 326.38 ton.m Mu : 276.53 ton.m Rasio φMn / Mu = 1.18 Balok mampu menahan beban rencana. Lendutan akibat gara prategang (chamber ) sebesar 2.26 cm ( ↑ ke atas) Lendutan akibat beban hidup 0.78cm < lendutan ijin syarat L/800=2.0cm (↓ ke bawah) Lendutan saat service 1.48cm < lendutan ijin syarat L/360=4.44 mm ( ↑ ke atas )

Post L16.6-I90-185 MONOLITH

RESUME OF PC I GIRDER TECHNICALLY CALCULATION 1. BEAM SPECIFICATION Span Beam Height ( H ) Distance ctc of beam ( s ) Slab thickness Beam Compressive strength Slab Compressive strength

= = = = = =

Segment Arrangement Beam Segment 1 Length (m) 5.00 Additional length at the end of beam Total length of the beam Total beam weight 2. STRESSING Nos of PC Strand = Strand configuration

22

16.00 90.00 185.00 27.00 KK-

m (beam length = cm cm cm (include RC Flat) 500 300

2 6.00 = = =

3 5.00 0.3 16.60 11.20

m m ton

strand φ

12.7

mm (PC Strand 270 grade, low relaxation)

No.

number

H strand bottom (cm)

Tendon

strand

edge

mid

1

0

0

0

2

0

0

0

3

0

0

0

4

10

50

20

5

12

25

10

total

22

36.36

14.55

4 0.00

Jacking Force UTS of Strand Total Losses fc initial

5 0.00

16.60 m)

= = = =

6 0.00

75%

7 0.00

UTS

19000.00 kg/cm2 23.12% 80.0%

fc'

3. LOADING 1. Dead Load a. Precast Beam = 0.64 t/m b. Slab = 1.20 t/m Slab thickness = 27.0 cm (include RC Flat) c. Asphalt = 0.20 t/m Asphalt thickness = 5.0 cm d. Diaphragm = 0.42 ton for 1 diaphragm No. Diaphragm 3 pcs equivalent load = 0.08 t/m 2. Live Load Taken from "Bridge Management System (BMS)" D load a. Dynamic Load Allowance (DLA) = 1.4 for span length <

2 -14.88 kg/cm 2 190.21 kg/cm

2 147.80 kg/cm 2 -8.58 kg/cm

required required

< >

2 172.92 kg/cm 2 -33.06 kg/cm

= = = = =

-1.58 -2.41 -2.26 0.78 -1.48

cm cm cm cm, required < L/800 = cm, required < L/360 =

2.00 cm 4.44 cm

7. MOMENT CAPACITY OF BEAM Mult = 1,2*Beam+1,3*Slab+2*Asphalt+1,2*Diapraghm+2*LL φ Mn Ratio, φ Mn / Mu (>1)

CALCULATION RESUME

= = =

276.53 t.m 326.38 t.m 1.18

Post L16.6-I90-185 MONOLITH

TECHNICAL CALCULATION OF SEGMENTAL PC I BEAM FOR BRIDGE SPAN (ctc) L = 16.00 M I. DATA

0.3

L=

Beam length Beam spacing (s) Concrete Slab thickness Asphalt thickness RC Flat thickness

16.00 M 16.60 185.00 27.00 5.00 7.00

= = = = =

0.3

m ( edge anchor to edge anchor : 16.3 cm cm (include RC Flat) cm A cm

m)

tfl-1 tfl-2 Cross Section

H A B tweb

= = = =

90 35 65 17

cm cm cm cm

tfl-1 tfl-2 tfl-3 tfl-4

= = = =

7.5 7.5 10 12.5

tweb

cm cm cm cm

H

tfl-3 tfl-4 B

II. MATERIAL 2.1 Concrete Beam

Slab

Compressive strength 500 300 at service * fc' = (0.76+0.2*log(σbk/150))*σbk = 432.3 246.1 at initial ( 80% ), fc'i = 345.8 196.8 Allowable stress at initial ………..(AASHTO 1992, Chapt. 9.15.2.1-Design) Compressive 0.55 * fc'I = 190.2 108.3 0.80 * Sqrt(fc'I) = Tensile 14.9 11.2 Allowable stress at service ………. (AASHTO 1992, Chapt. 9.15.2.2-Design) Compressive 0.40 * fc' = 172.9 98.4 1.59 * Sqrt(fc') = Tensile 33.1 24.9 Modulus of elasticity Ec = 313952.2 236864.0 Eci = 280807.3 Modulus rupture fr = 41.2 31.1 Note : * Pedoman Beton 1988, Chapter 3

[kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2]

2.2 Prestressing Cable [Uncoated stress relieve seven wires strand] ( ASTM A 416 Grade 270 Low Relaxation or JIS G 3536 ) dia : - Diameter strand 12.7 [mm] 2 - Eff. Section area Ast : 0.9871 [cm ] 2 - Modulus of elasticity Es : 1.96E+06 [kg/cm ] 2 - Ultimate tensile strength fu : 19000 [kg/cm ] 2.3 Steel Reinforcement - Diameter - Eff. Section area - Modulus of elasticity - Yield stress

dia Ast Es fy

: 13 [mm] 2 : 1.267 [cm ] 2 : 2.10E+06 [kg/cm ] : 3900 [kg/cm2]

page 1 / 13

Post L16.6-I90-185 MONOLITH

III. SECTION ANALYSIS 2

Remark : Ep 1 = 313952 Ep 2 = 236864

2

kg/cm kg/cm 2

5

[Girder] [Slab]

4 Ya

n = Ep 1 / Ep 2 n= 1.33

Ya' 1

3

Yb

2

base line

Yb'

1

PRECAST BEAM

COMPOSITE BEAM

3.1 Precast Beam [ in cm ]

Zone Section

6 5 4 3 2 1 Total

Width

Area

Yb

cm

cm

cm

0.00 262.50 195.00 892.50 410.00 812.50 2572.50

90.0 82.5 75.0 22.5 12.5 0.0

90.0 86.3 79.2 48.8 16.5 6.3 36.3

0 22641 15441 43509 6775 5078 93444

0 1230 878 204996 3026 10579 220710

0 654306 358187 137805 160732 734867 2045897

Area

Level

Yb

Area*Yb

Io

Area*d

Bottom

Upper

cm

0.0 7.5 7.5 52.5 10.0 12.5 90.0

65.0 35.0 17.0 17.0 65.0 65.0

35.0 35.0 35.0 17.0 17.0 65.0

2

Area*Yb

2

Level

Height

3

Io cm

Area*d 4

cm

4

Ix cm

4

0 655537 359065 342801 163758 745446 2266607

3.2 Composite Beam [in cm ] Zone Height

2 1 Total

3.3

Width

2

3

2

4

4

cm

cm

97.0 90.0 0.0

107.0 93.5 36.3 73.4

298690 7078 93444 399212

Area (cm )

Ya (cm)

Yb (cm)

Ix (cm )

Wa (cm )

Wb (cm )

2572.50 5439.70

53.7 43.6 16.6

36.3 73.4

2266607 9078357

42228 208165 546515

62400 123702

Bottom

Upper

cm

20.0 7.0 90.0 117.0

185.0 19.0 65.0

185.0 19.0 35.0

2791.50 75.70 2572.50 5439.70

cm

cm

93050 410 2266607 2360067

Ix cm4

cm

Section

3153620 30620 3534050 6718290

3246669 31030 5800657 9078357

Resume [in cm ] 2

Description

Precast Beam Composite Beam

[composite] [precast]

4

3

3

IV. Loading 4.1 Dead Load Design Carracteristics……. Bridge Management System ( BMS ), Vol.1 Chapter 2.3.1 1. Specific Gravity of Precast Beam = 2.5 ton/m3 ( γPB ) 2. Specific Gravity of Slab = 2.4 ton/m3 ( γS ) 3. Specific Gravity of Asphalt = 2.2 t/m3 ( γasp ) 4. Specific gravity of Diaphragm = 2.4 ton/m3 ( γdiaph ) a. Precast Beam

q1 = Area x γPB x

2.5

=

0.6431

[t/m']

b. Slab

q1 = 0.2573 q2 = Hslab x s x γs q2 = 0.2700 x 1.85 q3 = tasp x s x γasp

x

2.4

=

1.1988

[t/m']

c. Asphalt

q3 = 0.05 1.85 x x p = Volume of diaph. x γdiaph

2.2

=

0.2035

[t/m']

d. Diaphragm

0.15 2.4 x q4 (q ek = p*n/span)

=

0.4234 0.0794

[ton] [t/m']

p = no. diaph.

1.68 3

x 0.7 pcs

x

=

page 2 / 13

Post L16.6-I90-185 MONOLITH

4.2 Live Load Taken from "Bridge Management System (BMS)" D load a. Dynamic Load Allowance [DLA]

b. Knife Edge Load (KEL) c. Distribution Factor (DF) d. Distribution Load q = 0.80 t/m2

…… Vol.1, Chapter 2.3.2-Traffic Loads

DLA = 1 + 0,4 = 1.40 DLA = 1 + (0.0025*span+0.175) DLA = 1 + 0,3 = 1.30 = 4.40 = 1.00

which :

q = 0,8 t/m' q = 0,8 x (0,5 + 15/span) t/m'

e. Live load - Distribution load q' = DF x q x s x = 1.00 0.80 x 1.85 - Line load p' = DF x DLA x KEL x s 1.00 1.400 x 4.400 x x

1.85

Span = 90 m ton/m'

for

Span 30 m

=

1.48

ton/m'

=

11.40

ton

Sec 3-3 11.00 17.69 17.69 32.97 5.60 2.18 40.75 40.70 39.17 79.87 138.31 237.64

Sec 4-4 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sec 5-5 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sec 6-6 8.00 20.58 20.58 38.36 6.51 2.54 47.41 47.36 45.58 92.94 160.94 276.53

V. MOMENT ANALYSIS [in ton-meter ] Type

Description

DL

Precast beam Subtotal Slab ADL Asphalt Diaphragm Subtotal LL Distribution load Line load Subtotal Total (DL + LL) Ultimate total

Mid span 20.58 20.58 38.36 6.51 2.54 47.41 47.36 45.58 92.94 160.94 276.53

Sec 1-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sec 2-2 5.00 17.69 17.69 32.97 5.60 2.18 40.75 40.70 39.17 79.87 138.31 237.64

(m)

Ultimate total = 1,2*Beam+1,3*Slab+2*Asphalt+1,2*Diaphragm+2*LL ( Bridge Management System, Vol.1-Page 2-6 ) Note : DL = Dead Load ADL = Additional Dead Load LL = Live Load

VI. SHEAR ANALYSIS [in ton ] Type

Description

Precast beam Subtotal Slab Asphalt ADL Diaphragm Subtotal Distribution load LL Line load Subtotal Total (DL + LL) Ultimate total DL

span

Sec 1-1 0.00

Sec 2-2 5.00

Sec 3-3 11.00

Sec 4-4 16.00

Sec 5-5 16.00

Sec 6-6 8.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.70 5.70 5.70 11.40

5.15 5.15 9.59 1.63 0.64 11.85 11.84 11.40 23.24 40.23 69.13

1.93 1.93 3.60 0.61 0.24 4.45 4.44 7.83 12.27 18.65 33.05

-1.93 -1.93 -3.60 -0.61 -0.24 -4.45 -4.44 -7.83 -12.27 -18.65 -33.05

-5.15 -5.15 -9.59 -1.63 -0.64 -11.85 -11.84 -11.40 -23.24 -40.23 -69.13

-5.15 -5.15 -9.59 -1.63 -0.64 -11.85 -11.84 -11.40 -23.24 -40.23 -69.13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 -5.70 -5.70 -5.70 -11.40

Mid

(m)

ultimate total = 1,2*Beam + 1,3*Slab + 2*Asphalt + 1,2*Diaphragm + 2*LL ( Bridge Management System, Vol.1-Page 2-6 )

page 3 / 13

Post L16.6-I90-185 MONOLITH

VII. PRESTRESSING CABLE 7.1 Cable Profile [in: cm ] ten-

Nos

don

strand

edge

middle

cm

1 2 3 4 1

0 0 0 10 12 22

0.00 0.00 0.00 50.00 25.00 36.36

0.00 0.00 0.00 20.00 10.00 14.55

0.987 0.987 0.987 0.987 0.987

total

profile

Asp 2

fu

%

Jacking Force

75% 75% 75% 75% 75% 75%

0.00 0.00 0.00 140661.75 168794.10 309455.85

2

(kg)

kg/cm

19000 19000 19000 19000 19000

Parabolic curve : Y = AX Y= A= B= C=

2

+

BX +

C

Average of Strand's position vertically from the bottom of beam ( Value for Y axis ) Constanta : ( (Ymiddle + Yedge)/(L/2)2) Constanta : ( L x A ) Average of strand's position when the parabolic curve reach the Y axis X + 0.3636364 A = 0.003285 Y = 0.003285 X2 + -0.05354 B = -0.05354 tg o = 0.00657 X + -0.05354 Eccentricity [e] Yb - Ys = 21.78 cm Note : Jacking Force = Nos x Asp x Fu x (Tension Persentation) Nos = Number of Strand Yb = Distance of Neutral Axis from the bottom of non composite beam ( Chapter 3.3 - Resume ) Ys = Distance of tendon from the bottom of the beam at the middle span ( Chapter 7.1,Cable Profile-middle)

7.2 Initial Jacking Force Check for two condition at initial for mid span Top stress

σ top = Pi/Ac - Pi.e/Wa + Mbs/Wa Pi

Bottom Stress

σ bot = Pi/Ac + Pi.e/Wb - Mbs/Wb Pi Result :

at service for mid span Top stress σ top = Bottom Stress σ bot =

Pi

=

-14.88 500.82 190.21 302.53

kg/cm 2 ton kg/cm 2 ton

>=
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF