Algebra Lineal Unidad 6
February 12, 2017 | Author: marlon_leiva | Category: N/A
Short Description
Download Algebra Lineal Unidad 6...
Description
Unidad 6 ortoGonalidad
y
ortonorMalidad Objetivos: Al inalizar la unidad, el alumno: • Determinará cuándo un conjunto de vectores es ortogonal u ortonormal. • Obtendrá las coordenadas de un vector relativas a una base ortogonal y a una base ortonormal. • Construirá la matriz de transición entre bases ortonormales. • Construirá bases ortonormales mediante el proceso de Gram-Schmidt.
Álgebralineal
Introducción
E
n la unidad anterior analizamos el concepto de ángulo entre dos vectores; en el plano cartesiano R2 es frecuente encontrar vectores cuyo ángulo es de 90°, estos vectores, se dice, son perpendiculares u ortogonales. En esta unidad vamos a generalizar el concepto de ortogonalidad a espacios vectoriales cualesquiera.
Se analizó también el concepto de vectores unitarios; al unir ambos conceptos obtendremos el concepto de vectores ortonormales. Ahora veremos las propiedades de estos vectores y las ventajas de trabajar con una base cuyos vectores son ortonormales, así como un procedimiento mediante el cual se pueden construir dichas bases.
6.1. Definición de conjunto de vectores ortogonales. Bases ortogonales Conocemos a R2 como el concepto de vectores cuyo ángulo es de 90°. Ahora generalizaremos este resultado con la definición 6.1.
Definición 6.1. Sea V un espacio vectorial con producto interno y u, v vectores de V. Se dice que u y v son ortogonales si su producto interno es cero, es decir (u, v) = 0
Comprobaremos que la definición anterior es equivalente en R2 al tener un ángulo de 90° o de 270°. De ser comprobable la tomaremos como definición general y analizaremos su significado y las propiedades que tienen en otros espacios vectoriales.
Ejemplo 1 a) Consideremos los vectores u = (2, 0) y v = (0, 3) en R2 Recordemos la definición de vectores ortogonales: son aquellos que tienen entre ellos un ángulo de 90° o de 270° (π/2 o 3π/2). (Definición 5.8)
205
Unidad 6 Vamos a encontrar el ángulo entre u y v. cos ϕ =
u⋅v (2, 0) (0, 3) 0 0 = = = = 0 por tanto ϕ = cos –1 0 = u v 22 + 02 02 + 32 (2)(3) 6
90° o 270° Entonces u y v son ortogonales. Observemos que el producto interno de u y v es cero. Podemos concluir que estas dos definiciones son equivalentes. b)Consideremos ahora el espacio vectorial C[0, 2π]. Sean f(t) = sen t y g(t) = cos t en C[0, 2π]. Entonces ( f, g) =
∫
2π 0
f (t ) g (t )dt = ∫
2π 0
sent cost dt = 12 (sen t )
2
2π
| = 0 por lo 0
tanto podemos asegurar que f y g son ortogonales. c) Sea D2 el espacio vectorial de las matrices diagonales de orden 2×2 con el producto interno definido como la suma de los productos de los elementos de la diagonal principal. (A, B)=a11b11+a22b22 (véase unidad 5, sección 5.3 ejemplo 10a). 1 0 −2 0 Sean A = yB= . 0 2 0 1 Vamos a probar que son ortogonales: (A, B) = (1)(–2) + (2)(1) = –2 + 2 = 0 y por tanto son ortogonales. Basados en lo anterior, podemos tener un conjunto de vectores que sean ortogonales, pero, ¿tendrán propiedades especiales? Consideremos la definición 6.2.
Definición 6.2. Sea V un espacio vectorial con producto interno. Sea {v1, v2, ..., vn} un conjunto de vectores de V, entonces es un conjunto ortogonal si satisface que (vi, vj) = 0 para i ≠ j
206
Álgebralineal Es decir, cuando cada uno de los vectores del conjunto es ortogonal a los demás elementos. Daremos algunos ejemplos de conjuntos ortogonales, especialmente en R2 y R3.
Ejemplo 2 a) Considera los vectores de R3 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1). A continuación probaremos que forman un conjunto ortogonal: (i, j) = (1)(0) + (0)(1) + (0)(0) = 0 (i, k) = (1)(0) + (0)(0) + (0)(1) = 0 ( j, k) = (0)(0) + (1)(0) + (0)(1) = 0 de donde forman un conjunto ortogonal. Sea D3 el espacio vectorial de las matrices diagonales de 3×3, 0 0 0 0 0 0 1 0 0 Sean A = 0 0 0 , B = 0 5 0 , C = 0 0 0 0 0 −3 0 0 0 0 0 0 Probaremos que forman un conjunto ortogonal en D3. (A, B) = (1)(0) + (0)(5) + (0)(0) = 0 (A, C) = (1)(0) + (0)(0) + (0)(–3) = 0 (B, C) = (0)(0) + (5)(0) + (0)(–3) = 0 Así concluimos que forman un conjunto ortogonal. Considerando el espacio euclideano R2, si dos vectores ortogonales tienen entre ellos un ángulo de 90° o de 270°, ¿serán linealmente independientes? Recordemos que en R2 para que dos vectores fueran linealmente dependientes, uno tenía que ser múltiplo del otro, y por tanto el ángulo que formarían entre ellos sería de 0° o 180°. Esto nos lleva a enunciar que dos vectores en R2 ortogonales, deben ser linealmente independientes. ¿Sucederá esto con cualquier espacio vectorial? Veamos el teorema 6.1.
207
Unidad 6
Teorema 6.1. Sea V un espacio vectorial con producto interno. Sea S = {v1, v2, ..., vn} un conjunto finito de vectores ortogonales en V. Entonces S es un conjunto linealmente independiente.
Daremos un ejemplo de este teorema en un espacio vectorial diferente de R 2.
Ejemplo 3 Consideremos el espacio vectorial D3 de las matrices diagonales de 3×3. Retomando las matrices A, B, C del ejemplo 2. 1 0 0 0 0 0 0 0 0 A = 0 0 0 , B = 0 0 0 , C = 0 5 0 0 0 0 0 0 0 0 0 −3 Ya comprobamos en este ejemplo que el conjunto de las matrices {A, B, C} es ortogonal, ahora vamos a probar que son linealmente independientes. Tomemos una combinación lineal de ellas igual a cero: c1 A + c 2 B + c 3 C = 0 0 0 0 0 0 0 1 0 0 c1 0 0 0 + c2 0 5 0 + c3 0 0 0 = 0 0 0 −3 0 0 0 0 0 0
c1 0 0 0 0 entonces 0 0 0 + 0 5c2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 = 0 0 0 0 + 0 0 0 −3c3 0 0 0
Donde c1 = 0; 5c2 = 0; –3c3 = 0; por tanto, c1 = c2 = c3 = 0 siendo el conjunto linealmente independiente. Lo que nos lleva a considerar un conjunto como base ortogonal sólo con pedirle que genere al espacio vectorial.
208
Álgebralineal
Definición 6.3. Sea V un espacio vectorial con producto interno. Sea B un conjunto ortogonal de vectores en V. Entonces B es una base ortogonal de V si V = gen B
Consideremos como ejemplo la base canónica de R2.
Ejemplo 4 (Ver unidad 4, sección 4.3, ejemplo 2a.) Sea B = {i, j}, con i = (1, 0) y j = (0, 1) la base canónica de R2 Probaremos que es un conjunto ortogonal: (i, j) = (1)(0) + (0)(1) = 0; entonces B es un conjunto ortogonal pero como B genera a R2, entonces podemos asegurar que B es una base ortogonal para R2. Vamos ahora a unir el teorema 4.6 (cualesquiera n vectores linealmente independientes en un espacio vectorial de dimensión n forman una base para el espacio), con el teorema 6.1 para obtener un resultado que nos indica que cualquier espacio vectorial finito tiene una base ortogonal.
Teorema 6.2 Sea V un espacio vectorial finito de dimensión n. Sea B = {v1, v2, ..., vn} un conjunto ortogonal de n vectores, entonces B es una base ortogonal de V. Este teorema nos da una condición para tener una base ortogonal de un espacio vectorial de dimensión finita. Veamos algunos ejemplos:
Ejemplo 5 Consideremos el espacio vectorial D2 de las matrices diagonales de orden 2×2. Vamos a probar que la dimensión de D 2 es 2. Sea A una matriz de D 2 , a 0 A = entonces A se puede escribir como 0 b
209
Unidad 6 0 0 a 0 1 0 A = = a + b 0 1 ; 0 b 0 0 1 0 0 0 por tanto el conjunto formado por genera a D2, lo que ; 0 0 0 1 nos indica que la dimensión de D2 es 2.
−2 0 1 0 En el ejemplo 1c) se probó que las matrices A = y B = 0 1 son 0 2 ortogonales, y como son dos forman una base ortogonal para D2.
Ejercicio 1 1. Determina si los siguientes pares de vectores de R3 son ortogonales o no: a) u = (3, 2, –4), v = (2, –3, 4) b) u = (–1, 0, 0), v = (0, 0, –1) c) u = (–2/3, 1/2, 1), v = (1/2, 2/3, 0) d) u = (0, –5, 0), v = (4, 1, 0) 2. Encuentra los vectores en R2 que sean ortogonales a cada uno de los siguientes vectores: a) u = (2, –3) b) v = (–3, 4) c) w = (2, 3) 3. Determina si los siguientes conjuntos son ortogonales o no: a) {(3, –1), (–1, –3), (1, 0)} 1 0 0 0 2 0 b) , , 0 2 0 0 0 −1 4. Determina si las siguientes afirmaciones son verdaderas o falsas: a) {(1, 0, 0), (0, 0, 1)} es una base ortogonal para R3. b) {(1, 1, 1), (2, 2, 2); (0, 0, 0)} es una base ortogonal para R3. c) Todo conjunto linealmente independiente es ortogonal. d) Todo conjunto ortogonal es linealmente independiente. e) Si V es un espacio vectorial de dimensión n, un conjunto ortogonal de m vectores es una base para V.
210
Álgebralineal
6.2. Definición de conjunto de vectores ortonormal. Bases ortonormales En la sección anterior determinamos cómo obtener un conjunto ortogonal de vectores. En la unidad 5 analizamos vectores cuya norma era 1, es decir, vectores unitarios que tienen importantes propiedades además de un manejo más fácil. En esta sección nos ocuparemos de las bases ortonormales, es decir, de conjuntos de vectores ortogonales con norma 1. Consideremos la definición 6.4 (que es una ampliación de la definición 6.1).
Definición 6.4. Sea V un espacio vectorial con producto interno y u, v dos vectores de V, entonces, u y v son vectores ortonormales si son ortogonales y su norma es 1, es decir, (u, v) = 0 y además u = 1, v = 1
Vamos a dar un ejemplo de esta definición en R2 y en D3.
Ejemplo 6 a) Consideremos en R2 los vectores i = (1, 0) y j = (0, 1), veremos si son ortonormales. (i, j) = (1)(0) + (0)(1) = 0, por tanto son ortogonales; u = 12 + 02 = 1 y v = 02 + 12 = 1, son unitarios De ambos resultados decimos que i y j son ortonormales. 1 0 0 0 0 0 b) Sean A = 0 0 0 , B = 0 1 0 en D3; veremos si son ortonormales. 0 0 0 0 0 0
1 0 0 0 0 0 (A, B) = 0 0 0 0 1 0 = (1)(0) + (0)(1) + (0)(0) = 0 y son ortogonales; 0 0 0 0 0 0
211
Unidad 6 A = ( A, A) = 12 + 02 + 02 = 1 y B = ( B, B) = 02 + 12 + 02 = 1 de donde son unitarias. Uniendo ambos resultados tenemos que A y B son ortonormales. Del mismo modo que en la sección anterior, podemos tener un conjunto de vectores ortonormales. Consideremos la definición 6.5.
Definición 6.5. Sea V un espacio vectorial con producto interno y sea S = {v1, v2, ..., vn} un conjunto de vectores de V; entonces S es un conjunto ortonormal si es un conjunto ortogonal y todos los vectores de S son unitarios. Es decir, (vi, vj) = 0 si i ≠ j y además v i = 1 para i = 1, 2,...n Vamos a dar un ejemplo en R3 en el cual se encuentra la definición 6.5 de un conjunto ortonormal.
Ejemplo 7 Consideremos en R 3 el conjunto de vectores i = (1, 0, 0); j = (0, 1, 0); k = (0, 0, 1). Veamos si el conjunto {i, j, k}es ortonormal. En el ejemplo 2a) probamos que el conjunto {i, j, k) es un conjunto ortogonal, por lo que nos faltaría probar que todos son vectores unitarios. Consideremos las normas de cada uno de ellos: i = 12 + 02 + 02 = 1, j = 02 + 12 + 02 = 1, k = 02 + 02 + 12 = 1 Todos son unitarios, por lo que el conjunto es ortonormal. De igual manera podemos pensar en tener bases ortonormales (definición 6.6) que, como veremos más adelante, poseen propiedades muy especiales y son bastante más fáciles de manejar que cualquier otra base.
212
Álgebralineal
Definición 6.6. Sea V un espacio vectorial con producto interno y B una base para V. Entonces B se llama base ortonormal de V si es una base y es un conjunto ortonormal.
En el ejemplo 7 tenemos un conjunto ortonormal para R3, {i, j, k), y sabemos que este conjunto es la conocida base canónica, por tanto es una base ortonormal para R3. Las bases ortonormales nos permiten definir un tipo especial de matriz, lo cual haremos a continuación.
Definición 6.7. Sea A una matriz de n×n, entonces A se llama matriz ortogonal si A–1 = AT Daremos un ejemplo en M3×3
Ejemplo 8 Consideremos la matriz de M3×3 ortogonal: 1 / 2 A = 0 1 / 2 T
1 / 2 0 1 / 2 A = 1 / 2 0 −1 / 2 veamos si es 1 0 0
0 1 , entonces −1 / 2 0 1/ 2 0
1 / 2 0 1 / 2 1 / 2 1/ 2 0 1 0 0 0 1 = 0 1 0 A AT = 1 / 2 0 −1 / 2 0 1 0 1 / 2 −1 / 2 0 0 0 1 0 –1 T Donde A = A y por tanto A es ortogonal.
213
Unidad 6
Teorema 6.3. Una matriz Q de orden n×n es ortogonal, si y sólo si, sus columnas forman una base ortonormal para Rn.
El teorema 6.3 nos brinda una manera de construir matrices ortogonales usando conjuntos de vectores ortonormales.
Ejemplo 9 1 0 0 Usando este teorema podemos afirmar que la matriz A = 0 1 0 es 0 0 1 3 ortogonal pues sus columnas forman una base ortonormal para R .
Ejercicio 2 1. Determina si los siguientes vectores son ortonormales o no. Si no lo son, describe cuál es la propiedad que no se cumple en cada caso: a) u = (1, 0) y v = (0, 3) b) u = (2/3, 1/3, 2/3) y v = (–1, 0, 1) c) u = (1/ 2 , 1/ 2 , 0) y v = (0, 1, 0) 2. Encuentra una base ortonormal para R4(generaliza la base de R3). 2 / 3 2 / 3 −1 / 3 2 / 3 es ortogonal (utiliza el 3. Determina si la matriz A = 2 / 3 −1 / 3 −1 / 3 2 / 3 2 / 3 teorema 6.3).
6.3. Coordenadas de un vector relativas a una base ortogonal y a una base ortonormal En esta sección manejaremos las coordenadas de un vector relativas a una base ortogonal y a una base ortonormal, veremos sus diferencias entre ellas y
214
Álgebralineal con otras bases cualesquiera. Usaremos el espacio euclideano Rn para nuestros ejemplos. Sea B = {(1, –1), (1, 1)}una base ortogonal para R 2. Con x = (x, y) un vector de R 2. Como B es una base, existen c1 y c 2 escalares, tal que x = (x, y) = c1(1, –1) + c2(1, 1) de donde tenemos que c1 = (x–y)/2 y c2 = (x+y)/2 En este caso obtuvimos las coordenadas del vector porque conocíamos los vectores de la base; sin embargo, ¿habrá una manera general de encontrar las coordenadas de un vector aun sin conocer explícitamente los vectores de la base? El teorema 6.4 nos determina la respuesta:
Teorema 6.4 Sea V un espacio vectorial con producto interno y sea B = {e1, e2,...,en} una base ortogonal de V. Si u es un vector de V entonces u=
(u, e n ) (u, e 2 ) (u, e1 ) e1 + e2 + ... + e (e n , e n ) n (e 2 , e 2 ) (e1 , e1 )
Daremos un ejemplo en R3:
Ejemplo 10 Considera el conjunto B = {e = (2, 2, –1), f = (2, –1, 2), g = (–1, 2, 2)}; es una base ortogonal para R3. Sea u = (1, 2, –1) un vector de R3, entonces vamos a usar el teorema 6.4, para encontrar las coordenada del vector u con respecto a la base B. (u, e) = (1, 2, –1)(2, 2, –1) = 2 + 4 + 1 = 7
(e, e) = (2, 2, –1)(2, 2, –1) = 4 + 4 +1 = 9
(u, f) = (1, 2, –1)(2, –1, 2) = 2 – 2 – 2 = –2
(f, f) = (2, –1, 2)(2, –1, 2) = 4 + 1 + 4 = 9
(u, g) = (1, 2, –1)(–1, 2, 2) = –1 + 4 – 2 = 1 (g, g) = (–1, 2, 2)(–1, 2, 2) = 1 + 4 + 4 = 9 por tanto las coordenadas de u con respecto a B son (u) B = (7/9, –2/9, 1/9); es decir, (1, 2, –1) = 7/9 (2, 2, –1) – 2/9 (2, –1, 2) + 1/9 (–1, 2, 2)
215
Unidad 6 Sin embargo, ¿pasará lo mismo con las bases ortonormales? En el caso de las bases ortonormales las normas de todos los vectores de la base es 1, y por tanto las coordenadas de un vector se simplifican como lo indica el siguiente teorema.
Teorema 6.5. Sea V un espacio vectorial con producto interno y B = {e1, e2,...,en} una base ortonormal para V. Si u es cualquier vector de V entonces: u = (u, e1) e1 + (u, e2) e2 + ... + (u, e n)e n Usaremos el teorema 6.5, para encontrar las coordenadas de un vector con referencia a una base ortonormal de R3.
Ejemplo 11 Consideremos en R3 el conjunto B formado por los vectores a = (1 / 2 , 1 / 2, 0) ; b = (0, 0, 1) y c = (1 / 2, −1 / 2,
0) ; este
3
conjunto constituye una base ortonormal para R (ejemplo 8). Sea x = (2, –4, 1) un vector de R3. Vamos a encontrar las coordenadas de x con respecto a la base B. (x, a) = (2, –4, 1) (1 / 2 , 1 / 2,
0) = 2 / 2 − 4 / 2 + 0 = −2 / 2
(x, b) = (2, –4, 1)(0, 0, 1) = 0 + 0 +1 = 1 (x, c) = (2, –4, 1) (1 / 2 , −1 / 2,
0) = 2 / 2 + 4 / 2 + 0 = 6 / 2
Por tanto las coordenadas de x con respecto a B son (x)B = ( −2 / 2 , 1, 6 / 2 )
Ejercicio 3 1. Considera la base ortogonal B = {e = (2, 2, –1), f = (2, –1, 2), g = (–1, 2, 2)}. Encuentra las coordenadas con respecto a esta base de los siguientes vectores:
216
Álgebralineal a) u = (1, 0, 0) b) v = (0, –3, 0) c) x = (2, 1, –1) 2. Considerando la base ortonormal B = {a = (1 / 2 , 1 / 2, 0) ; b = (0, 0, 1); c = (1 / 2, −1 / 2, 0) }; encuentra las coordenadas con respecto a esta base de los siguientes vectores: a) u = (2, –1,4) b) v = (4, –1, 0) c) w = (0, 0, –3)
6.4. Matriz de transición entre bases ortonormales En la sección anterior encontramos una base ortonormal para R3: B = {a = (1 / 2, 1 / 2,
0) ; b = (0, 0, 1); c = (1 / 2,
−1 / 2,
0) };
sabemos que la base canónica también es una base ortonormal para R3. Ahora vamos a encontrar la matriz de transición entre las dos bases y analizar sus propiedades. Sea B1 = {(i = (1, 0, 0); j = (0, 1, 0); k = (0, 0, 1)} y B2 = {a = (1 / 2,
0;)b = (0, 0, 1); c = (1 / 2, − 1 / 2, 0) }; entonces
−1 / 2,
la matriz de transición de B1 a B2 se obtiene definiendo como columnas las coordenadas de los vectores de B1 en función de la base B2 (ver definición 4.7). Procedemos a encontrar las coordenadas de i, j y k en términos de a, b y c. Como B2 es una base ortonormal usaremos el teorema 6.5 para encontrar sus coordenadas: (i, a) = (1, 0, 0) (1 / 2, 1 / 2,
0) = 1 / 2
(i, b) = (1, 0, 0)(0, 0, 1) = 0; (i, c) = (1, 0, 0) (1 / 2,
−1 / 2,
0) = 1 / 2
de donde (i) B2 = ( 1 / 2 , 0, 1 / 2 ). ( j, a) = (0, 1, 0) (1 / 2, 1 / 2,
0) = 1 / 2
217
Unidad 6 ( j, b) = (0, 1, 0)(0, 0, 1) = 0; ( j, c) = (0, 1, 0) (1 / 2,
−1 / 2, 0) = −1 / 2
de donde ( j) B2 = ( 1 / 2 , 0, –1 / 2 ). (k, a) = (0, 0, 1) (1 / 2 , 1 / 2, 0) = 0 (k, b) = (0, 0, 1)(0, 0, 1) = 1; (k, c) = (0, 0, 1) (1 / 2, − 1 / 2, 0) = 0 de donde (k) B2 = (0, 1, 0)
1 / 2 Por tanto la matriz de transición es A = 0 1 / 2
0 1 −1 / 2 0 Vamos a encontrar la matriz de transición de la base B2 a B1: (a, i) = (1 / 2 , 1 / 2 , 0) (1, 0, 0) = 1 / 2 1/ 2 0
(a, j) = (1 / 2, 1 / 2, 0) (0, 1, 0) = 1 / 2 ;
(a, k) = (1 / 2, 1 / 2, 0) (0, 0, 1) = 0 de donde, (a ) B1 = (1 / 2 , 1 / 2 , 0)
(b, i) = (0, 0, 1) (1, 0, 0) = 0
(b, j) = (0, 0, 1) (0, 1, 0) = 0
(b, k) = (0, 0, 1) (0, 0, 1) = 1 de donde (b) B1 = (0, 0, 1)
(c, i) = (1 / 2, − 1 / 2, 0)(1, 0, 0) = 1 / 2
(c, j) = (1 / 2, − 1 / 2, 0) (0, 1, 0) = −1 / 2 ; (c, k) = (1 / 2, − 1 / 2, 0) (0, 0, 1) = 0
de donde, (a ) B1 = (1 / 2 , −1 / 2 , 0)
1 / 2 0 1 / 2 Por tanto la matriz de transición es C = 1 / 2 0 −1 / 2 . 1 0 0 En este caso las columnas de C son las coordenadas de los vectores a, b y c; por tanto es ortogonal. Observemos que la matriz A es la transpuesta de la matriz C de donde podemos asegurar que también es ortogonal.
218
Álgebralineal Podemos generalizar este resultado en el teorema 6.6
Teorema 6.6. Sea V un espacio vectorial con producto interno, sean B1 y B2 dos bases ortonormales para V, entonces la matriz de transición de B1 a B2 y la matriz de transición de B2 a B1 son ortogonales.
Ejemplo 12 Consideremos las bases ortonormales de R2. B1 = {i = (1, 0); j = (0, 1)} y B2 = {a = (−1 / 5 , 2 / 5 ) ; b = (2 / 5 , 1 / 5 ) }
−1 / 5 2 / 5 Entonces la matriz de transición de B1 a B2 es A = 2 / 5 1/ 5
−1 / 5 2 / 5 ; como podemos observar son y la de B2 a B1 es C = 2 / 5 1/ 5 iguales y sus columnas son los vectores a y b que son ortogonales y por tanto las matrices son ortogonales. Este resultado nos será de mucha utilidad en la unidad 10.
Ejercicio 4 1. Encuentra la matriz de transición entre las bases ortonormales de R2 B1 = {(1 / 2 , 1 / 2 ); (1 / 2 , −1 / 2 )} y B2 = {(2 / 5, 1 / 5 ); (−1 / 5,
2 / 5 )}
2. Verifica que la matriz de transición del ejercicio anterior es ortogonal.
219
Unidad 6
6.5. El proceso de ortonormalización de GramSchmidt En las secciones anteriores vimos cómo una base ortonormal es más fácil de manejar que una que no lo es (teoremas 6.4 y 6.5), lo cual confirmaremos en unidades posteriores. En esta sección nos dedicaremos a construir bases ortonormales a partir de una base dada, utilizando el procedimiento llamado de Gram-Schmidt. Este procedimiento se basa en la proyección ortogonal de un vector, como veremos más adelante. Usaremos, como de costumbre, el espacio euclideano R2 con el fin de visualizar lo que estamos construyendo y después generalizaremos el resultado. Observemos en la figura 6.1 lo que pasa con la proyección de un vector (u, v ) sobre otro: proyv u = v 2 v
Figura 6.1. Proyección de un vector sobre otro. En la figura 6.1 podemos ver que el vector proyección proyv u es un vector en la misma dirección que v, sin embargo, si restamos al vector u el vector proyv u obtendremos un vector ortogonal a v. Esta idea nos indica cuál es el camino a seguir en la construcción de un vector ortogonal a otro. Además, si recordamos la definición de vector unitario, podemos siempre construir un vector unitario a partir de otro si lo dividimos entre su norma. Siguiendo estos dos pasos vamos a especificar el procedimiento de ortonormalización de Gram-Schmidt. Consideremos primero el siguiente teorema.
220
Álgebralineal
Teorema 6.7. Sea V un espacio vectorial con producto interno y sean u y v dos vectores en V; entonces el vector w = u – proyv u es un vector ortogonal a v. Comprobaremos que u – proyv u es un vector ortogonal a v.
Ejemplo 13 Tomemos dos vectores en R2, u = (1, 2) y v = ( 2, –3). Vamos a construir la proyección de u sobre v. proyv u =
−
=
(u, v ) v
2
v=
−4 (2, −3) = (−8 / 13, 12 / 13) 13
−4 2−6 (1, 2)(2, −3) (2, −3) = (− (2, −3) = (2, −3) = 13 4+9 (2, −3)(2, −3)
Encontraremos al vector w = u – proyv u w = u – proyv u = (1, 2) – (–8/13, 12/13) = (21/13, 14/13) Probaremos ahora que w y v son ortogonales. (w, v) = (21/13, 14/13)(2, –3) = 42/13 – 42/13 = 0 y por tanto son ortogonales. Ahora ya podemos enunciar el procedimiento de Gram-Schmidt para construir conjuntos ortonormales:
Teorema 6.8. Procedimiento de Gram-Schmidt. Este procedimiento se inicia a partir de un conjunto de vectores en un espacio vectorial con producto interno. Sea S = {v1, v2, ..., vn} un conjunto de vectores de V. Paso 1. Elección del primer vector unitario v1 , entonces (u1, u1) = v1 tanto u1 es unitario. Sea u1 =
v1 v1 1 v v1 ) = 1 ; por = 2 ( 1 v v v 1 1 1
221
Unidad 6
Paso 2. Elección de un segundo vector ortogonal a u1 Sea v'2 = v 2 – proyu1 v2, entonces, aplicando el teorema, v '2 es un vector ortogonal a u1. Notemos que, como u1 es unitario, su norma es 1 y por tanto proyu1 v2 =
(v 2 , u1 ) u1
2
u1 = (v2 u1) u1 de donde v '2 = v2 – (v2•u1) u1
Paso 3. Elección de un segundo vector unitario y ortogonal a u1 Sea u2 =
v'2 , entonces u2 es unitario y ortogonal a u1 v'2
En este momento hemos construido un conjunto ortonormal {u1, u2} Paso 4. Elección de un tercer vector ortogonal a u1 y a u2 Sea v'3 = v3 – (v3u1) u1 – (v3u2) u2, éste es un vector ortogonal a u2 y a u1 Paso 5. Elección de un tercer vector unitario y ortogonal a u1 y a u2 Sea u3 =
v'3 v'3
Por tanto el conjunto {u1, u2, u3 } es ortonormal. Podemos continuar con este proceso hasta construir un conjunto {u1, u2,..., un} ortonormal.
Vamos a ejemplificar este teorema construyendo una base ortonormal para R3, a partir de una base dada.
Ejemplo 14 Consideremos en R3 la base {v1, v2, v3} = {(1,1, 0), (0,1,1), (1, 0,1)}
222
Álgebralineal Paso 1 Como v1 = 2 entonces definimos u1 =
v1 (1, 1, 0) = = (1 / 2, 1 / 2, 0) v1 2
Paso 2 Sea v '2 = v2 – (v2•u1) u1 como
( v 2 u1 ) = (0, 1, 1) (1 / 2, 1 / 2,
0) = 1 / 2 ; entonces,
v '2 = v2 – (v2•u1) u1 = (0, 1, 1) − 1 / 2 (1 / 2, 1 / 2, 0) = (−1 / 2, 1 / 2, 1)
Paso 3 Como v'2 = 3 / 2 , entonces definimos, u2 =
v'2 (−1 / 2, 1 / 2, 1) = = (−1 / 6, 1 / 6, v'2 3/ 2
2 / 6)
Paso 4 Sea v'3 = v3 – (v3•u1) u1 – (v3•u2) u2; como, ( v 3 u1 ) = (1, 0, 1) (1 / 2, 1 / 2,
0) = 1 / 2 y
( v 3 u 2 ) = (1, 0, 1) (−1 / 6, 1 / 6,
2 / 6 ) = 1/ 6
entonces, v'3 = v3 – (v3•u1) u1 – (v3•u2) u2 = (1, 0, 1) − 1 / 2 (1 / 2, 1 / 2, 0) − 1 / 6 (−1 / 6, 1 / 6, = (2 / 3, −2 / 3, 2 / 3)
2 / 6)
Paso 5 Como v'3 = 2 / 3 , entonces definimos u3 =
v'3 (2 / 3, −2 / 3, 2 / 3) = = (1 / 3, v'3 2/ 3
−1 / 3, 1 / 3 )
223
Unidad 6 Por tanto el conjunto {(1 / 2 , 1 / 2 , 0), (−1 / 6 , 1 / 6 , 2 / 6 ), (1 / 3 , − 1 / 3 ,1 / 3 )} es una base ortonormal para R3.
Ejercicio 5 1. Utiliza el procedimiento de Gram-Schmidt para encontrar, a partir de la base dada, una base ortonormal para cada uno de los espacios vectoriales siguientes: a) En R2 usando {(1, 1), (–2, 1)} b) En R3 usando como base {(1, 0, –2), (0, 2, 1), (–1, 1, 0)}
Ejercicios resueltos 1. Detemina si el conjunto de vectores {a = (4, –1, 1), b = (–1, 0, 4), c = (–4, –17, –1)} en R3 es ortogonal, ortonormal o ninguno de las dos. Vamos a determinar el producto interno de cada pareja de vectores: (a, b) = (4, –1, 1) (–1, 0, 4) = – 4 + 4 = 0
(a, c) = (4, –1, 1) (–4, –17, –1) = –16 + 17 –1 = 0 (b, c) = (–1, 0, 4) (–4, –17, –1) = 4 – 4= 0
Por tanto el conjunto es ortogonal. Vamos a calcular la norma de los vectores: a = 16 + 1 + 1 = 18
b = 1 + 0 + 16 = 17
c = 16 + 289 + 1 = 306 Por tanto el conjunto no es ortonormal.
224
Álgebralineal 2. Verifica que el conjunto B = {1, x, x2 , x3} con el producto interno definido de la siguiente manera: si p = a0 + a1x + a2 x2 + a3x3 y q = b 0 + b1x + b2 x2 + b3x3 entonces (p, q) = a0 b 0 + a1b1 + a2b2 + a3b3 es una base ortonormal de P3. Probaremos primero que es un conjunto ortogonal: (1, x) = (1)(0) + (0)(1) + (0)(0) + (0)(0) = 0 (1, x2) = (1)(0) + (0)(0) + (0)(1) + (0)(0) = 0 (1, x3) = (1)(0) + (0)(0) + (0)(0) + (0)(1) = 0 (x, x2) = (0)(0) + (1)(0) + (0)(1) + (0)(0) = 0 (x, x3) = (0)(0) + (1)(0) + (0)(0) + (0)(1) = 0 (x2, x3) = (0)(0) + (0)(0) + (1)(0) + (0)(1) = 0 Por tanto concluimos que el conjunto es ortogonal. Ahora probaremos que son vectores unitarios. Consideremos las normas de los vectores: 1 = 1+ 0 + 0 + 0 =1; x = 0 +1+ 0 + 0 =1; x 2 = 0 + 0 + 1 + 0 = 1 ; x3 = 0 + 0 + 0 + 1 = 1 Por tanto son vectores unitarios y el conjunto es una base ortonormal. 3. Determina las coordenadas del vector x = (–3, 4) con respecto a la base ortogonal B = {b1 = ( 5 , 2 5 ), b2 = (−2 5 ,
5 )}
Usando el teorema 6.4 tenemos que x =
(x, b1 ) (x, b2 ) b1 + b2 (b1 , b1 ) (b2 , b2 )
(x, b1 ) = (−3, 4)( 5 , 2 5 ) = −3 5 + 8 5 = 5 5
225
Unidad 6 (x, b2 ) = (−3, 4)(−2 5 ,
5 ) = 6 5 + 4 5 = 10 5
(b1 , b1 ) = ( 5 , 2 5 )( 5 , 2 5 ) = 5 + 20 = 25 (b2 , b2 ) = (−2 5 ,
Entonces x =
5 )(−2 5 ,
5 ) = 20 + 5 = 25
10 5 5 5 ( 5, 2 5) + (−2 5 , 25 25
5 ) y por tanto
5 2 5 , (x )B = 5 5
4. Determina las coordenadas de x = (5, 10, 15) con respecto a la base ortonormal B = {b1 = (3/5, 4/5, 0), b2 = (–4/5, 3/5, 0), b3 = (0, 0, 1)} Usaremos el teorema 6.5 que indica que x = (x, b1) b1 + (x, b2) b2 + (x, b3) b3 (x, b1) = (5, 10, 15)(3/5, 4/5, 0) = 3 + 8 + 0 = 11 (x, b2) = (5, 10, 15)(–4/5, 3/5, 0) = – 4 + 6 + 0 = 2 (x, b3) = (5, 10, 15)(0, 0, 1) = 0 + 0 + 15 = 15 Entonces x = 11 b1 + 2 b2 + 15 b3; por lo tanto (x) B = (11, 2, 15) 5. Utilizando el procedimiento de Gram-Schmidt, encuentra una base ortonormal para R3 a partir de la base {v1 = (1, 0, 2); v2 = (3, –1, 0), v3 = (0, 1, –2)} Sea u1 =
v1 (1, 0, 2) = = (1 / 5, v1 5
0, 2 / 5 )
Sea v '2 = v2 – (v2•u1) u1 Como (v2•u1) = (3, –1, 0) (1 / 5 , 0, 2 / 5 ) = 3 / 5 , entonces,
v '2 = v2 – (v2•u1) u1 = (3, −1, 0 ) − 3 / 5 (1 / 5, 0, 2 / 5 ) = (12 / 5, − 1, − 6 / 5 ) 226
Álgebralineal Como v'2 = 205 / 5 entonces definimos u2 =
v'2 (12 / 5, −1, −6 / 5) = = (12 / 205 , −5 / 205, v'2 205 / 5
−6 / 205 )
Sea v'3 = v3 – (v3•u1) u1 – (v3•u2) u2 como ( v 3 u1 ) = (0, 1, −2) (1 / 5,
( v 3 u 2 ) = (0, 1, −2)(12 / 205,
0, 2 / 5 ) = −4 / 5 y
−5 / 205,
−6 / 205 ) = 7 / 205 ;
entonces v'3 = v3 – (v3•u1) u1 – (v3•u2) u2 v'3 = (0, 1, −2) − (−4 / 5 ) (1 / 5, −7 / 205 (12 / 205,
−5 / 205,
0, 2 / 5 )
−6 / 205 )
v'3 = (16 / 41, 48 / 41, −8 / 41) Como v'3 = 8 / 41 , entonces definimos u3 =
v'3 (16 / 41, 48 / 41, −8 / 41) = = (2 / 41, 6 / 41, v'3 8 / 41
1 / 5 Por tanto el conjunto 0 , 2 / 5 ortonormal para R3.
−1 / 41)
12 / 205 2 / 41 −5 / 205 , 6 / 41 es una base −6 / 205 −11 / 41
227
Unidad 6
Ejercicios propuestos 1. Encuentra un vector ortogonal a (–2, 5). 2. Encuentra un vector ortonormal a (–2, 5). 2 / 3 2 / 3 1/ 3 3. Determina si la matriz Q = 1 / 3 2 / 3 −2 / 3 es ortogonal. −2 / 3 2 / 3 1 / 3 4. Determina las coordenadas del vector x = (2, –2, 1) con respecto a la base ortogonal: B = {b1 = ( 10 , 0, 3 10 ); b2 = (0, 1, 0); b3 = (−3 10 , 0,
10 )}
5. Determina las coordenadas del vector x = (2, –1, 4, 3) con respecto a la base ortonormal: B = {b1 = (5/13, 0, 12/13, 0); b2 = (0, 1, 0, 0); b3 = (–12/13, 0, 5/13, 0); b4 = (0, 0, 0, 1)}
228
Álgebralineal
Autoevaluación 1. Dos vectores u y v son ortogonales si: a) (u, v) = 1 b) (u, v) = 0 c) v = 1 y u = 1 d) u = v 2. Determina el conjunto ortogonal en R3: a) {(2, 2, –1); (2, –1, 2); (–1, 2, 2)} b) {(1, 1, 1); (2, 2, 2); (–1, –1, –1)} c) {(1, 0, 3); (0, –3, 0); (4, 0, 0)} d) {(1, 0, 0); (2, 0, 0); (0, 2, 3)} 3. Determina el conjunto ortonormal en R2: a) {(1, 1); (1, –1)} b) {(1, 1); (1, 0)} c) {(1, 0); (0, –1)} d) {(1, 0); (–1, 0)} 4. Determina la matriz ortogonal: 1 6 a) 3 −2
1 / 10 b) 3 / 10 1 / 10 c) 3 / 10
1 6 d) 3 2
6 / 40 2 / 40
6 / 40 −2 / 40
5. Los vectores (2, –12) y (3, 1/2) son: a) b) c) d)
Unitarios. Paralelos. Ortonormales. Ortogonales.
229
Unidad 6 6. Es un vector ortogonal a v es: a) u – proyv u b) u + proyv u c) u – proyu v d) proyv u – u 7. Considera la base ortogonal B = {e = (2, 2, –1); f = (2, –1, 2); g = (–1, 2, 2)}, determina las coordenadas del vector (1, –1, 0) referentes a la base B: a) (0, 3, –3) b) (0, 1/3, –1/3) c) (1, –1, 0) d) (0, –3, 3) 8. Es un procedimiento para encontrar una base ortonormal en un espacio vectorial con producto interno: a) Regla de Cramer. b) Proceso de diagonalización. c) Proceso de Gram-Schmidt. d) El método de Gauss-Jordan. 9. Es una expresión verdadera: a) Un conjunto ortogonal de vectores es una base. b) Un conjunto ortogonal de vectores es linealmente independiente. c) Una base es un conjunto ortonormal de vectores. d) Un conjunto linealmente independiente es ortogonal. 10. El proceso de Gram-Schmidt tiene como consecuencia que: a) Todos los espacios vectoriales tienen una base ortonormal. b) Los espacios vectoriales con producto interno tienen una base ortonormal. c) Los espacios vectoriales finitos tienen una base ortonormal infinita. d) Todos los espacios vectoriales tienen una base.
230
Álgebralineal
Respuestas a los ejercicios Ejercicio 1 1. a) No, (3, 2, –4)(2, –3, 4) = –16 b) Sí. c) Sí. d) No; (0, –5, 0)(4, 1, 0) = –5 2. a) Cualquier vector de la forma (3/2b, b) b) Cualquier vector de la forma (4/3b, b) c) Cualquier vector de la forma (–3/2b, b) 3. a) No; (3, –1)(1, 0) = 3 b) Sí. 4. a) Falso. b) Falso. c) Falso. d) Verdadero. e) Falso.
Ejercicio 2 1. a) Son ortogonales pero no ortonormales ya que (0, 3) = 3 y no es unitario. b) Sí son ortonormales. c) Son unitarios pero no son ortogonales. 2. {(1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 1, 0); (0, 0, 0, 1)} 3. Sí es ortogonal.
231
Unidad 6
Ejercicio 3 1. a) (u) B = (2/9, 2/9, –1/9) b) (v) B = (–2/3, 1/3, –2/3) c) (x) B = (7/9, 1/9, –2/9) 2. a) (u) B = (1 / 2,
4, 3 / 2 )
b) (v) B = (3 / 2,
0, 5 / 2 )
c) (w) B = (0, − 3, 0)
Ejercicio 4 3 / 10 1. A = 1 / 10
1 / 10 −3 / 10
2. Sí es ortogonal.
Ejercicio 5 1 / 2 −1 / 2 a) es una base ortonormal de R2. , 1 / 2 1 / 2 1.
1 / 5 b) 0 , −2 / 5
232
2 / 105 −4 / 21 3 10 / 105 , 1 / 21 es una base ortonormal para R . 1 / 105 −22 / 21
Álgebralineal
Respuestas a los ejercicios propuestos 1. (5, 2) 2. (5 / 29 , 2 / 29 ) 3. Sí. 4. (x) B = ( 10 / 20, −2, − 10 / 20) 5. (x) B = (58 / 13, −1, −4 / 13, 3)
Respuestas a la autoevaluación 1. b) 2. a) 3. c) 4. c) 5. d) 6. a) 7. b) 8. c) 9. b) 10. b)
233
View more...
Comments