Algebra Cheat Sheet
May 10, 2017 | Author: Dino | Category: N/A
Short Description
Fits on one page front and back....
Description
Logarithms and Log Properties Definition y = log b x is equivalent to x = b y
Algebra Cheat Sheet Basic Properties & Facts Properties of Inequalities If a < b then a + c < b + c and a - c < b - c
Arithmetic Operations æ b ö ab aç ÷ = ècø c
ab + ac = a ( b + c ) æaö ç ÷ a èbø = c bc
a b < c c a b If a < b and c < 0 then ac > bc and > c c If a < b and c > 0 then ac < bc and
a ac = æbö b çc÷ è ø
a c ad + bc + = b d bd
a c ad - bc - = b d bd
a-b b-a = c-d d -c
a+b a b = + c c c æaö ç b ÷ ad è ø= æ c ö bc çd ÷ è ø
ab + ac = b + c, a ¹ 0 a
Properties of Absolute Value if a ³ 0 ìa a =í if a < 0 î-a a ³0 -a = a
a +b £ a + b
Exponent Properties an 1 = a n -m = m -n am a
a na m = a n+ m
(a )
n m
( ab ) a
-n
n
= a nm
a 0 = 1, a ¹ 0 n
=a b
1 = n a
æaö ç ÷ èbø
-n
n
bn æbö =ç ÷ = n a è aø
n m
n
a =a
m n
1 n
a = nm a
( ) = (a )
a = a
Properties of Radicals
2
Complex Numbers i = -1
1 m
n
n
1 m
i = -1
-a = i a, a ³ 0
( a + bi ) + ( c + di ) = a + c + ( b + d ) i ( a + bi ) - ( c + di ) = a - c + ( b - d ) i ( a + bi )( c + di ) = ac - bd + ( ad + bc ) i ( a + bi )( a - bi ) = a 2 + b2
n
ab = a b
a + bi = a + b
n
a na = b nb
( a + bi ) = a - bi Complex Conjugate 2 ( a + bi )( a + bi ) = a + bi
n
n
a n = a , if n is odd
n
a n = a , if n is even
n
2
For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu.
2
) = r log
b
x
æxö log b ç ÷ = log b x - logb y è yø The domain of log b x is x > 0 Quadratic Formula Solve ax 2 + bx + c = 0 , a ¹ 0
x 2 + 2ax + a 2 = ( x + a )
2
x 2 - 2 ax + a 2 = ( x - a )
2
-b ± b 2 - 4 ac 2a If b 2 - 4ac > 0 - Two real unequal solns. If b 2 - 4ac = 0 - Repeated real solution. If b 2 - 4ac < 0 - Two complex solutions. x=
x 2 + ( a + b ) x + ab = ( x + a )( x + b )
x3 - a 3 = ( x - a ) ( x2 + ax + a 2 )
2
b logb x = x
Factoring Formulas x 2 - a 2 = ( x + a )( x - a )
d ( P1 , P2 ) =
+ ( y2 - y1 )
r
log b ( xy ) = log b x + logb y
log x = log 10 x common log where e = 2.718281828K
x3 + 3ax 2 + 3a 2 x + a 3 = ( x + a )
2
log b ( x
Special Logarithms ln x = log e x natural log
Distance Formula If P1 = ( x1, y1 ) and P2 = ( x2 , y2 ) are two points the distance between them is
n
a æaö ç ÷ = n b èbø 1 n =a a-n
n n
Triangle Inequality
( x2 - x1 )
log b b x = x
Example log 5 125 = 3 because 53 = 125
Factoring and Solving
a a = b b
ab = a b
Logarithm Properties log b b = 1 log b 1 = 0
Complex Modulus
x3 - 3ax2 + 3a 2 x - a 3 = ( x - a )
3
3
Square Root Property If x2 = p then x = ± p
x3 + a 3 = ( x + a ) ( x2 - ax + a 2 )
Absolute Value Equations/Inequalities If b is a positive number p =b Þ p = - b or p = b
x 2 n - a 2 n = ( x n - a n )( x n + a n )
If n is odd then, x n - a n = ( x - a ) ( x n-1 + ax n -2 + L + a n -1 ) xn + an = ( x + a)( x
n -1
- ax
n -2
2 n -3
+a x
-L + a
n -1
Þ
-b < p < b
p >b
Þ
p < - b or
p>b
)
Completing the Square (4) Factor the left side
Solve 2 x 2 - 6 x - 10 = 0
2
2
(1) Divide by the coefficient of the x x 2 - 3x - 5 = 0 (2) Move the constant to the other side. x 2 - 3x = 5 (3) Take half the coefficient of x, square it and add it to both sides 2
2
9 29 æ 3ö æ 3ö x 2 - 3x + ç - ÷ = 5 + ç - ÷ = 5 + = 4 4 è 2ø è 2ø
© 2005 Paul Dawkins
p 0 or left if a < 0 and has a vertex æ æ b ö b ö at ç g ç - ÷ , - ÷ . è è 2a ø 2a ø
Line/Linear Function y = mx + b or f ( x ) = mx + b Graph is a line with point ( 0,b ) and slope m.
Circle 2 2 ( x - h) + ( y - k ) = r2 Graph is a circle with radius r and center ( h, k ) .
Slope Slope of the line containing the two points ( x1 , y1 ) and ( x2 , y2 ) is y2 - y1 rise = x2 - x1 run Slope – intercept form The equation of the line with slope m and y-intercept ( 0,b ) is y = mx + b Point – Slope form The equation of the line with slope m and passing through the point ( x1 , y1 ) is m=
y = y1 + m ( x - x1 )
2
( x - h)
2
f ( x) = a ( x - h) + k 2
The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at ( h, k ) . Parabola/Quadratic Function y = ax 2 + bx + c f ( x ) = ax 2 + bx + c The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex æ b æ b öö at ç - , f ç - ÷ ÷ . è 2a è 2a ø ø
( y - k) +
2
=1 a2 b2 Graph is an ellipse with center ( h, k ) with vertices a units right/left from the center and vertices b units up/down from the center.
( x - h)
-
(y -k)
( y - k)
=1
2
( x - h) = 1 b2 a2 Graph is a hyperbola that opens up and down, has a center at ( h, k ) , vertices b units up/down from the center and asymptotes that pass through center with b slope ± . a
For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu.
Division by zero is undefined!
-32 ¹ 9
-32 = -9 ,
(x
(x
)
2 3
¹ x5
a a a ¹ + b+c b c 1 ¹ x -2 + x-3 x2 + x3
( x + a)
2
x2 + a2 ¹ x + a
( x + a)
n
( -3)
2
= 9 Watch parenthesis!
= x2 x2 x 2 = x6
( x + a)
¹ x2 + a 2
x+a ¹
)
2 3
1 1 1 1 = ¹ + =2 2 1+ 1 1 1 A more complex version of the previous error. a + bx a bx bx = + =1+ a a a a Beware of incorrect canceling! - a ( x - 1) = - ax + a Make sure you distribute the “-“!
a + bx ¹ 1 + bx a
x+ a
¹ x n + a n and
2 ( x + 1) ¹ ( 2 x + 2 )
2
( 2x + 2)
2
2
2
a b Graph is a hyperbola that opens left and right, has a center at ( h, k ) , vertices a units left/right of center and asymptotes b that pass through center with slope ± . a Hyperbola 2
Reason/Correct/Justification/Example
2 2 ¹ 0 and ¹ 2 0 0
n
x+a ¹
n
x+n a
= ( x + a )( x + a ) = x 2 + 2 ax + a 2
2
5 = 25 = 3 2 + 4 2 ¹ 3 2 + 4 2 = 3 + 4 = 7 See previous error. More general versions of previous three errors. 2 ( x + 1) = 2 ( x2 + 2 x + 1) = 2 x 2 + 4 x + 2 2
Hyperbola 2
Error
- a ( x - 1) ¹ - ax - a
Ellipse
2
Parabola/Quadratic Function y = a ( x - h) + k
Common Algebraic Errors
Parabola/Quadratic Function x = ay2 + by + c g ( y ) = ay2 + by + c
2
© 2005 Paul Dawkins
2
¹ 2 ( x + 1)
( 2x + 2)
2
= 4 x2 + 8x + 4 Square first then distribute! See the previous example. You can not factor out a constant if there is a power on the parethesis! 1
- x2 + a2 ¹ - x2 + a2 a ab ¹ æbö c çc÷ è ø æaö ç ÷ ac èbø ¹ c b
- x2 + a2 = ( - x2 + a2 )2 Now see the previous error. æaö ç1÷ a æ a ö æ c ö ac = è ø = ç ÷ç ÷ = æ b ö æ b ö è 1 øè b ø b ç ÷ ç ÷ ècø ècø æaö æaö ç ÷ ç ÷ è b ø = è b ø = æ a öæ 1 ö = a ç ÷ç ÷ c æ c ö è b ø è c ø bc ç ÷ 1 è ø
For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu.
© 2005 Paul Dawkins
View more...
Comments