Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2-1

January 22, 2017 | Author: Şerban Bârlău | Category: N/A
Share Embed Donate


Short Description

Labguide for MPLS Alcatel...

Description

Version 2.1 Nov 24, 2011

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Alcatel-Lucent Multiprotocol Label Switching (MPLS) Lab Guide

TABLE OF CONTENTS

3.1. 3.2. 3.3. 3.4. LAB 3 LAB 4 LAB 4 LAB 5 5.1. 5.2. 5.3. 5.4. 5.5. LAB 5 LAB 6 6.1. 6.2. 6.3. 6.4. LAB 6

MPLS INFRASTRUCTURE AND LDP CONFIGURATION.....................................................4 MPLS Infrastructure Verification and IGP Configuration.................................................................6 Configuring and Verifying the Provide Core for LDP .......................................................................9 Section 3.3 – Enabling LDP ECMP..................................................................................................13 Applying Export Policy for Label Distribution.................................................................................17 REVIEW QUESTIONS ..........................................................................................................................19 IGP-BASED RSVP LSP ESTABLISHMENT .............................................................................20 REVIEW QUESTIONS ..........................................................................................................................23 ENABLING RSVP-TE LSP TUNNELS.......................................................................................24 Configure Link Coloring for Constraint-Based LSP Tunnels...........................................................26 DiffServ TE LSP – Maximum Allocation Method (MAM) ................................................................36 DiffServ TE LSP – Russian Doll Model (RDM)................................................................................45 Configure LDP over RSVP across OSPF Areas...............................................................................50 Configure RSVP for IP Routing........................................................................................................54 REVIEW QUESTIONS ..........................................................................................................................57 RSVP-TE RESILIENCY FEATURES .........................................................................................59 Enabling Primary and Secondary LSP Tunnels ...............................................................................61 Using SRLG for Path Resiliency.......................................................................................................66 FRR Facility Backup Protection.......................................................................................................72 FRR One-to-One Protection .............................................................................................................79 REVIEW QUESTIONS ..........................................................................................................................83

LAB SOLUTIONS AND ANSWERS ...............................................................................................................84

2/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

LAB 3

FIGURE 3-1: LAB TOPOLOGY OVERVIEW ................................................................................................................4 FIGURE 3-2: IMPLEMENTING PROVIDER CORE LDP ................................................................................................9 FIGURE 3-3: ENABLING LDP ECMP .....................................................................................................................13 FIGURE 3-4: APPLYING EXPORT POLICY FOR LABEL DISTRIBUTION ....................................................................17 FIGURE 4-1: IGP BASED LSPS ..............................................................................................................................20 FIGURE 5-1: ENABLING LINK COLORING CONSTRAINT-BASED LSP TUNNELS......................................................26 FIGURE 5-2: DIFFSERV TE LSP – MAXIMUM ALLOCATION METHOD (MAM).....................................................36 FIGURE 5-3: DIFFSERV TE LSP – RUSSIAN DOLL MODEL (RDM)........................................................................45 FIGURE 5-4: ENABLING LDP TUNNELS OVER RSVP .............................................................................................50 FIGURE 5-5: ENABLING LDP TUNNELS OVER RSVP .............................................................................................54 FIGURE 6-1: ENABLING PRIMARY AND SECONDARY LSP TUNNELS ......................................................................61 FIGURE 6-2: ENABLING SRLG STANDBY LSPS .....................................................................................................66 FIGURE 6-3: ENABLING FRR FACILITY BYPASS PROTECTION ...............................................................................72 FIGURE 6-4: ENABLING PRIMARY AND SECONDARY LSP TUNNELS ......................................................................79 LIST OF TABLES TABLE 3-1: LAB 3 CONFIGURATION AND VERIFICATION COMMANDS .....................................................................5 TABLE 3-2: REMOTE LAB ADDRESSING ..................................................................................................................7 TABLE 3-3: INTERFACE IP ADDRESSING..................................................................................................................8 TABLE 4-1: LAB 4 CONFIGURATION AND VERIFICATION COMMANDS ..................................................................21 TABLE 5-1: LAB 5 CONFIGURATION AND VERIFICATION COMMANDS ...................................................................24 TABLE 6-1: LAB 6 CONFIGURATION AND VERIFICATION COMMANDS ..................................................................59

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

3/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

LIST OF FIGURES

Lab 3

MPLS Infrastructure and LDP Configuration

Objective

Once we have the routed core in place, we will begin exploring LDP operations. First, we will enable and verify LDP operation on the CORE and EDGE routers. We will identify the labels that the routers exchange and use to populate their LFIBs, mapping out the labels that an LSP uses for a given FEC. We will configure export policies to allow the routers to generate labels for prefixes other than /32 prefixes and, finally, enable ECMP and view the impact that it has on the LFIBs. Figure 3-1 shows the lab topology. Additional connection details will be provided by the instructor, if required.

Figure 3-1: Lab Topology Overview The Alcatel Multiprotocol Label Switching (MPLS) course labs use 7750 Service Routers for the core infrastructure, as shown in Figure 3-1. The 7750 SR Edge (EDGE) routers and the 7750 SR Core (CORE) routers form the Service Provider Core backbone.

4/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

This lab prepares the routed domain to support the MPLS infrastructure that we will build as we progress through the course. Here, we will verify the operation and physical connectivity between the pods and the routers in the pods. We will verify and, if necessary, configure the interfaces and IGP.

Syntax Table 3-1 provides the configuration and verification commands required for this Lab. Each command may require additional parameters other than those shown in the table. Use the ‘?’ character for help and to explore all command line options. In addition to the commands shown, you may need to use commands learned in previous courses.

A:MPLS_R1# telnet A:MPLS_R1# configure router interface

address

A:MPLS_R1# configure router interface port A:MPLS_R1# configure router ospf area A:MPLS_R1# configure router ospf area interface interface-type A:MPLS_R1# show port A:MPLS_R1# show router interface A:MPLS_R1# show router ospf status A:MPLS_R1# show router ospf interface A:MPLS_R1# show router ospf neighbor A:MPLS_R1#

show router route-table

A:MPLS_R1#

ping

A:MPLS_R1#

traceroute

A:MPLS_R1# configure router ldp interface-parameters interface A:MPLS_R1# configure router ldp export A:MPLS_R1# configure>router>policy-options# begin A:MPLS_R1# configure>router>policy-options# policy-statement A:MPLS_R1# configure>router>policy-options>policy-statement# entry A:MPLS_R1# configure>router>policy-options>policy-statement>entry# action accept A:MPLS_R1# configure>router>policy-options# commit A:MPLS_R1# clear router ldp session A:MPLS_R1# show router status A:MPLS_R1# show router route-table A:MPLS_R1# show router ldp status A:MPLS_R1# show router ldp parameters Table 3-1: Lab 3 Configuration and Verification Commands

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

5/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Lab 3 Command list

Lab 3 Command list (cont’d) A:MPLS_R1# show router ldp discovery [detail] A:MPLS_R1# show router ldp interface A:MPLS_R1# show router ldp session A:MPLS_R1# show router ldp bindings A:MPLS_R1# show router ldp tunnel-table A:MPLS_R1# oam lsp-ping prefix A:MPLS_R1# oam lsp-trace prefix A:MPLS_R1>..# info (from all contexts) A:MPLS_R1>..# exit [all] (from all contexts) A:MPLS_R1# admin save Table 3-1: Lab 3 Configuration and Verification Commands (cont’d)

3.1. MPLS Infrastructure Verification and IGP Configuration NOTE: Ask your instructor if the training center pre-configures the lab equipment. If so, you only need to verify the routing topology with the appropriate show commands. If they have not preconfigured the equipment, you will need to provision the physical cards and ports, the network interfaces, and the routing protocols, using the commands shown in Table 3-1.

Exercise 1. Record your Pod’s router management interface addresses in Table 3-2 below. Use these addresses to establish a telnet connection to your CORE, EDGE, and CE routers. All routers use the default SR OS username and password, admin. If you cannot connect or log in to any of the routers, notify your instructor. Please do not change the admin password unless instructed to do so.

6/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings active

Pod Number

Management Address

Pod 1 – CORE (R1) EDGE (R5) CUSTOMER EDGE (R9) Pod 2 – CORE (R2)

CUSTOMER EDGE (R10) Pod 3 – CORE (R3) EDGE (R7) CUSTOMER EDGE (R11) Pod 4 – CORE (R4) EDGE (R8) CUSTOMER EDGE (R12) Table 3-2: Remote Lab Addressing 2. Familiarize yourself with lab topology, shown in Figure 3-1 and on the lab topology handout. 3. Verify the cards, MDAs, and physical ports, using the appropriate show commands. If your routers are not pre-configured, configure the cards, MDAs, and physical ports, as shown in the diagram. 4. Use the appropriate show commands to verify each interface’s IP addresses, as shown in Table 3-3. For consistency, the last octet of a router’s IP address equals the router number shown in Table 3-2. If not yet configured, configure the interface name, port, and IP addresses, as shown in Figure 3-1 and Table 3-3. 5. Verify that all interfaces are operationally up. If not yet configured, configure the OSPF area 0 and place all but the CE system and CE-EDGE interfaces in OSPF area 0; we will configure the CE interfaces in Lab 5. 6. Verify the routing tables. The CORE and EDGE routers need routes to all subnetworks, including the system IDs, EXCEPT the CE networks. Refer to Table 3-3 for a list of subnet addresses. With all 4 pods in use, the route table contains: a. 10 Ethernet segments b. 8 system addresses c. CORE - 13 OSPF routes d. EDGE – 16 OSPF routes e. CE – 0 OSPF routes 7. If you do not see all that you expect, ask your instructor for help or clarification. 8. You may want to annotate the diagram with the configured addresses or other parameters.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

7/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

EDGE (R6)

9. Verify the routing topology, using available tools such as ping or traceroute; if all is working as designed, you will be able to successfully ping each OSPF area 0 interface from any CORE or EDGE location. Parameter

Value toRy = where y is the opposite router’s router number

Addressing Format

10.x.y.z/27

1st router number

x = 1 (R1), 2 (R2), 3 (R3), 4 (R4), etc.

2nd router number

y = opposite router number

For the last octet of the interface address use the router number from Figure 3-1

z= local interface router number; that is, 10.10.10.1/32= R1’s system IP address

System IP address

10.10.10.z/32

R1 to R2 subnet

10.1.2.z/27

R1 to R3 subnet

10.1.3.z/27

R1 to R4 subnet

10.1.4.z/27

R2 to R3 subnet

10.2.3.z/27

R2 to R4 subnet

10.2.4.z/27

R3 to R4 subnet

10.3.4.z/27

R1 to R5 subnet

10.1.5.z/27

R2 to R6 subnet

10.2.6.z/27

R3 to R7 subnet

10.3.7.z/27

R4 to R8 subnet

10.4.8.z/27

R5 to R9 subnet

10.5.9.z/27

R6 to R10 subnet

10.6.10.z/27

R7 to R11 subnet

10.7.11.z/27

R8 to R12 subnet

10.8.12.z/27

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Interface name

Table 3-3: Interface IP Addressing

8/104

Figure 3-2: Implementing Provider Core LDP

Exercise 1. On your CORE and EDGE routers, enable LDP on all but the EDGE-CE interfaces. 2. Verify that the base IGP and LDP processes are up on your EDGE and CORE routers, and that LDP has been enabled on all the appropriate network interfaces. The example below shows the LDP adjacencies between neighbors. a. How many LDP neighbors should each CORE router have? b. How many should each EDGE router have? A:MPLS_R1# show router ldp discovery =============================================================================== LDP Hello Adjacencies =============================================================================== Interface Name Local Addr Peer Addr AdjType State ------------------------------------------------------------------------------toR2 10.10.10.1 10.10.10.2 Link Estab toR3 10.10.10.1 10.10.10.3 Link Estab toR4 10.10.10.1 10.10.10.4 Link Estab toR5 10.10.10.1 10.10.10.5 Link Estab ------------------------------------------------------------------------------No. of Hello Adjacencies: 4 ===============================================================================

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

9/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

3.2. Configuring and Verifying the Provide Core for LDP

3. Verify that your router’s LDP sessions show “Established.” An example of the output is shown below. a. How many LDP sessions does your CORE router have? b. How many sessions does your EDGE router have? c. What types of adjacencies do your routers form? Why?

============================================================================= LDP Sessions ============================================================================= Peer LDP Id Adj Type State Msg Sent Msg Recv Up Time ----------------------------------------------------------------------------10.10.10.2:0 Link Established 110 111 0d 00:04:48 10.10.10.3:0 Link Established 85 86 0d 00:03:38 10.10.10.4:0 Link Established 71 72 0d 00:02:58 10.10.10.5:0 Link Established 126 126 0d 00:05:33 ----------------------------------------------------------------------------No. of Sessions: 4 =============================================================================

4. Verify the Label Information Base (LIB) of your CORE and EDGE routers. An example is shown on the next page. a. How many prefixes should be present? Explain. b. Should the CORE and EDGE routers have the same number of prefix bindings? c. What label does your CORE router generate for its system address FEC? d. On your CORE router, find the label that the diagonally connected CORE router supplies for its directly connected EDGE router. e. Why does your CORE router show some labels as “not in use”? A:MPLS_R1# show router ldp bindings =============================================================================== LDP LSR ID: 10.10.10.1 =============================================================================== Legend: U - Label In Use, N - Label Not In Use, W - Label Withdrawn S - Status Signaled Up, D - Status Signaled Down E - Epipe Service, V - VPLS Service, M - Mirror Service A - Apipe Service, F - Fpipe Service, I - IES Service, R - VPRN service P - Ipipe Service, WP - Label Withdraw Pending, C - Cpipe Service TLV - (Type, Length: Value) =============================================================================== LDP Prefix Bindings =============================================================================== Prefix Peer IngLbl EgrLbl EgrIntf/ EgrNextHop LspId ------------------------------------------------------------------------------10.10.10.1/32 10.10.10.2 131071U ---10.10.10.1/32 10.10.10.3 131071U ---10.10.10.1/32 10.10.10.4 131071U ---10.10.10.1/32 10.10.10.5 131071U ---10.10.10.2/32 10.10.10.2 -131071 1/1/2 10.1.2.2 10.10.10.2/32 10.10.10.3 131069U 131069 --10.10.10.2/32 10.10.10.4 131069U 131069 --10.10.10.2/32 10.10.10.5 131069U 131069 ---

10/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp session

=============================================================================== LDP Service FEC 128 Bindings =============================================================================== Type VCId SvcId SDPId Peer IngLbl EgrLbl LMTU RMTU ------------------------------------------------------------------------------No Matching Entries Found =============================================================================== LDP Service FEC 129 Bindings ...

============================================================================== AGI SAII TAII Type SvcId SDPId Peer IngLbl EgrLbl LMTU RMTU -----------------------------------------------------------------------------No Matching Entries Found ============================================================================== ==============================================================================

5. Verify that your CORE and EDGE routers’ Label Forwarding Information Base (LFIBs) contains the active labels used by the router for MPLS forwarding. An example is shown below. a. What are the differences between the show router ldp bindings and the show router ldp bindings active commands? Why does the LFIB contain fewer prefix bindings than the FIB? b. Why does your CORE router both PUSH and SWAP labels for your EDGE router’s prefix? Why does it not POP labels for your EDGE router’s prefix? c. Based on the show router ldp bindings active command output, can you identify the system address of the router on which you executed the command? d. Verify each label PUSHed, SWAPed, and POPed along the LSP path from your EDGE router to the diagonally connected EDGE router.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

11/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

10.10.10.3/32 10.10.10.2 131068U 131068 --10.10.10.3/32 10.10.10.3 -131071 1/1/3 10.1.3.3 10.10.10.3/32 10.10.10.4 131068U 131068 --10.10.10.3/32 10.10.10.5 131068U 131068 --10.10.10.4/32 10.10.10.2 131067U 131067 --10.10.10.4/32 10.10.10.3 131067U 131067 --10.10.10.4/32 10.10.10.4 -131071 1/1/4 10.1.4.4 10.10.10.4/32 10.10.10.5 131067U 131067 --10.10.10.5/32 10.10.10.2 131070U 131069 --10.10.10.5/32 10.10.10.3 131070U 131068 --10.10.10.5/32 10.10.10.4 131070U 131067 --10.10.10.5/32 10.10.10.5 -131071 1/1/1 10.1.5.5 10.10.10.6/32 10.10.10.2 131065N 131065 1/1/2 10.1.2.2 10.10.10.6/32 10.10.10.3 131065U 131065 --10.10.10.6/32 10.10.10.4 131065U 131065 --10.10.10.6/32 10.10.10.5 131065U 131065 --10.10.10.7/32 10.10.10.2 131064U 131064 --10.10.10.7/32 10.10.10.3 131064N 131064 1/1/3 10.1.3.3 10.10.10.7/32 10.10.10.4 131064U 131064 --10.10.10.7/32 10.10.10.5 131064U 131064 --10.10.10.8/32 10.10.10.2 131066U 131066 --10.10.10.8/32 10.10.10.3 131066U 131066 --10.10.10.8/32 10.10.10.4 131066N 131066 1/1/4 10.1.4.4 10.10.10.8/32 10.10.10.5 131066U 131066 --------------------------------------------------------------------------------No. of Prefix Bindings: 32

=============================================================================== Legend: (S) - Static =============================================================================== LDP Prefix Bindings (Active) =============================================================================== Prefix Op IngLbl EgrLbl EgrIntf/LspId EgrNextHop ------------------------------------------------------------------------------10.10.10.1/32 Pop 131071 ---10.10.10.2/32 Push -131071 1/1/2 10.1.2.2 10.10.10.2/32 Swap 131069 131071 1/1/2 10.1.2.2 10.10.10.3/32 Push -131071 1/1/3 10.1.3.3 10.10.10.3/32 Swap 131068 131071 1/1/3 10.1.3.3 10.10.10.4/32 Push -131071 1/1/4 10.1.4.4 10.10.10.4/32 Swap 131067 131071 1/1/4 10.1.4.4 10.10.10.5/32 Push -131071 1/1/1 10.1.5.5 10.10.10.5/32 Swap 131070 131071 1/1/1 10.1.5.5 10.10.10.6/32 Push -131065 1/1/2 10.1.2.2 10.10.10.6/32 Swap 131065 131065 1/1/2 10.1.2.2 10.10.10.7/32 Push -131064 1/1/3 10.1.3.3 10.10.10.7/32 Swap 131064 131064 1/1/3 10.1.3.3 10.10.10.8/32 Push -131066 1/1/4 10.1.4.4 10.10.10.8/32 Swap 131066 131066 1/1/4 10.1.4.4 ------------------------------------------------------------------------------No. of Prefix Bindings: 15

6. Verify that the LSPs that are present. An example is shown below. a. For which FECs has your router created LSPs? b. What does the metric value represent for each FEC? A:MPLS_R1# show router tunnel-table protocol ldp =============================================================================== Tunnel Table (Router: Base) =============================================================================== Destination Owner Encap TunnelId Pref Nexthop Metric ------------------------------------------------------------------------------10.10.10.2/32 ldp MPLS 9 10.1.2.2 100 10.10.10.3/32 ldp MPLS 9 10.1.3.3 100 10.10.10.4/32 ldp MPLS 9 10.1.4.4 100 10.10.10.5/32 ldp MPLS 9 10.1.5.5 100 10.10.10.6/32 ldp MPLS 9 10.1.2.2 200 10.10.10.7/32 ldp MPLS 9 10.1.3.3 200 10.10.10.8/32 ldp MPLS 9 10.1.4.4 200 ===============================================================================

7. On your CORE router, shut down the network interface leading to the diagonally connected neighbor CORE router. 8. View your CORE and EDGE router LIBs. How did shutting down the interface change the LIB contents? 9. View your CORE and EDGE router LFIBs. a. How did shutting down the interface change the LFIB contents? b. What path will packets follow when your EDGE router forwards them to the diagonally connect EDGE router?

12/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings active

c. With what label will your CORE router forward a packet sent from your EDGE router to your diagonally connected EDGE router? 10. Use the oam lsp-trace command to verify the path taken to your diagonal EDGE router. NOTE: So that the next exercise succeeds, keep the interface from your CORE router to the diagonally connected CORE router shut down.

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

3.3. Section 3.3 – Enabling LDP ECMP

Figure 3-3: Enabling LDP ECMP

Exercise 1. Verify that you have shut down the diagonal paths in the core. 2. Enable ECMP for 4 equal cost paths. A:MPLS_R1# configure router ecmp 4

3. View your CORE router’s route table. What next-hop does your CORE router use to reach the diagonally connected EDGE router?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

13/104

4. View your CORE and EDGE router LIBs. An example is shown below. a. How does this differ from the LIB entries you saw before you enabled ECMP? b. How many prefix bindings should you see in your CORE and EDGE router LIBs? Explain.

=============================================================================== LDP LSR ID: 10.10.10.1 =============================================================================== Legend: U - Label In Use, N - Label Not In Use, W - Label Withdrawn S - Status Signaled Up, D - Status Signaled Down E - Epipe Service, V - VPLS Service, M - Mirror Service A - Apipe Service, F - Fpipe Service, I - IES Service, R - VPRN service P - Ipipe Service, WP - Label Withdraw Pending, C - Cpipe Service TLV - (Type, Length: Value) =============================================================================== LDP Prefix Bindings =============================================================================== Prefix Peer IngLbl EgrLbl EgrIntf/ EgrNextHop LspId ------------------------------------------------------------------------------10.10.10.1/32 10.10.10.2 131071U ---10.10.10.1/32 10.10.10.3 131071U ---10.10.10.1/32 10.10.10.5 131071U ---10.10.10.2/32 10.10.10.2 -131071 1/1/2 10.1.2.2 10.10.10.2/32 10.10.10.3 131069U 131069 --10.10.10.2/32 10.10.10.5 131069U 131069 --10.10.10.3/32 10.10.10.2 131068U 131068 --10.10.10.3/32 10.10.10.3 -131071 1/1/3 10.1.3.3 10.10.10.3/32 10.10.10.5 131068U 131068 --10.10.10.4/32 10.10.10.2 131067N 131067 1/1/2 10.1.2.2 10.10.10.4/32 10.10.10.3 131067N 131067 1/1/3 10.1.3.3 10.10.10.4/32 10.10.10.5 131067U 131067 --10.10.10.5/32 10.10.10.2 131070U 131069 --10.10.10.5/32 10.10.10.3 131070U 131068 --10.10.10.5/32 10.10.10.5 -131071 1/1/1 10.1.5.5 10.10.10.6/32 10.10.10.2 131065N 131065 1/1/2 10.1.2.2 10.10.10.6/32 10.10.10.3 131065U 131065 --10.10.10.6/32 10.10.10.5 131065U 131065 --10.10.10.7/32 10.10.10.2 131064U 131064 --10.10.10.7/32 10.10.10.3 131064N 131064 1/1/3 10.1.3.3 10.10.10.7/32 10.10.10.5 131064U 131064 --10.10.10.8/32 10.10.10.2 131066N 131066 1/1/2 10.1.2.2 10.10.10.8/32 10.10.10.3 131066N 131066 1/1/3 10.1.3.3 10.10.10.8/32 10.10.10.5 131066U 131066 --------------------------------------------------------------------------------No. of Prefix Bindings: 24 =========================================================================== . .

5. View the LFIBs. An example is shown on the next page. a. How does this differ from the LFIB entries you saw before you enabled ECMP? b. How many equal cost LSPs originate on your CORE router and terminate on the diagonally connected EDGE router?

14/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings

=============================================================================== Legend: (S) - Static =============================================================================== LDP Prefix Bindings (Active) =============================================================================== Prefix Op IngLbl EgrLbl EgrIntf/LspId EgrNextHop ------------------------------------------------------------------------------10.10.10.1/32 Pop 131071 ---10.10.10.2/32 Push -131071 1/1/2 10.1.2.2 10.10.10.2/32 Swap 131069 131071 1/1/2 10.1.2.2 10.10.10.3/32 Push -131071 1/1/3 10.1.3.3 10.10.10.3/32 Swap 131068 131071 1/1/3 10.1.3.3 10.10.10.4/32 Push -131067 1/1/2 10.1.2.2 10.10.10.4/32 Swap 131067 131067 1/1/2 10.1.2.2 10.10.10.4/32 Push -131067 1/1/3 10.1.3.3 10.10.10.4/32 Swap 131067 131067 1/1/3 10.1.3.3 10.10.10.5/32 Push -131071 1/1/1 10.1.5.5 10.10.10.5/32 Swap 131070 131071 1/1/1 10.1.5.5 10.10.10.6/32 Push -131065 1/1/2 10.1.2.2 10.10.10.6/32 Swap 131065 131065 1/1/2 10.1.2.2 10.10.10.7/32 Push -131064 1/1/3 10.1.3.3 10.10.10.7/32 Swap 131064 131064 1/1/3 10.1.3.3 10.10.10.8/32 Push -131066 1/1/2 10.1.2.2 10.10.10.8/32 Swap 131066 131066 1/1/2 10.1.2.2 10.10.10.8/32 Push -131066 1/1/3 10.1.3.3 10.10.10.8/32 Swap 131066 131066 1/1/3 10.1.3.3 ------------------------------------------------------------------------------No. of Prefix Bindings: 19 ===============================================================================

6. View all the LSPs present on your CORE and EDGE routers. An example is shown below. a. How many LSPs do you see connecting your routers to the diagonally connected Pod’s CORE and EDGE routers? b. How many LSPs do you see connecting your routers to the other routers? A:MPLS_R1# show router tunnel-table protocol ldp =============================================================================== Tunnel Table (Router: Base) =============================================================================== Destination Owner Encap TunnelId Pref Nexthop Metric ------------------------------------------------------------------------------10.10.10.2/32 ldp MPLS 9 10.1.2.2 100 10.10.10.3/32 ldp MPLS 9 10.1.3.3 100 10.10.10.4/32 ldp MPLS 9 10.1.2.2 200 10.10.10.4/32 ldp MPLS 9 10.1.3.3 200 10.10.10.5/32 ldp MPLS 9 10.1.5.5 100 10.10.10.6/32 ldp MPLS 9 10.1.2.2 200 10.10.10.7/32 ldp MPLS 9 10.1.3.3 200 10.10.10.8/32 ldp MPLS 9 10.1.2.2 300 10.10.10.8/32 ldp MPLS 9 10.1.3.3 300 ===============================================================================

7. Issue an LSP trace from your CORE router to the diagonally connected neighbor’s CORE router’s system address. Which LSP path does the CORE router choose? 8. Issue an LSP trace from your CORE router to the diagonally connected neighbor’s EDGE router’s system address. Which LSP path does the CORE router choose?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

15/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings active

9. Issue an LSP trace from your EDGE router to the diagonally connected neighbor’s CORE router’s system address. Which LSP path does the EDGE router choose? 10. Issue and LSP trace from your EDGE router to the diagonally connected neighbor’s EDGE router’s system address. Which LSP path does the EDGE router choose?

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

11. Turn up the core interfaces with a no shutdown command and disable ECMP, configure router no ecmp.

16/104

Figure 3-4: Applying Export Policy for Label Distribution

Exercise 1. Configure an Export policy with a single entry set to “action accept”. An example is shown below. A:MPLS_R2# configure router policy-options A:MPLS_R2>config>router>policy-options# begin A:MPLS_R2>config>router>policy-options# policy-statement ldp-export A:MPLS_R2>config>router>policy-options>policy-statement$ entry 10 A:MPLS_R2>config>router>policy-options>policy-statement>entry$ action accept A:MPLS_R2>config>router>policy-options>policy-statement>entry>action$ back A:MPLS_R2>config>router>policy-options>policy-statement>entry$ back A:MPLS_R2>config>router>policy-options>policy-statement# back A:MPLS_R2>config>router>policy-options# commit A:MPLS_R2>config>router>policy-options# exit all

2. Apply the Export policy to your CORE and EDGE routers’ LDP instances. 3. View the LIBs. An example is shown below, truncated for clarity.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

17/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

3.4. Applying Export Policy for Label Distribution

a. What additional FECs do your routers now generate labels for? b. How many prefix bindings do you expect to see? Explain. c. On your CORE routers, why do you see a prefix binding for your Pod’s EDGE to the CE interface? Does this prefix appear in the other CORE router LIBs? Why?

=============================================================================== LDP LSR ID: 10.10.10.1 =============================================================================== ... =============================================================================== LDP Prefix Bindings =============================================================================== Prefix Peer IngLbl EgrLbl EgrIntf/ EgrNextHop LspId ------------------------------------------------------------------------------10.1.2.0/27 10.10.10.2 131062U 131061 --10.1.2.0/27 10.10.10.3 131062U 131062 --10.1.2.0/27 10.10.10.4 131062U 131062 --10.1.2.0/27 10.10.10.5 131062U 131068 --10.1.3.0/27 10.10.10.2 131061U 131060 --10.1.3.0/27 10.10.10.3 131061U 131061 --10.1.3.0/27 10.10.10.4 131061U 131057 --10.1.3.0/27 10.10.10.5 131061U 131067 --10.1.4.0/27 10.10.10.2 131069U 131068 --10.1.4.0/27 10.10.10.3 131069U 131060 --10.1.4.0/27 10.10.10.4 131069U 131071 --10.1.4.0/27 10.10.10.5 131069U 131066 --10.1.5.0/27 10.10.10.2 131064U 131062 --10.1.5.0/27 10.10.10.3 131064U 131067 --10.1.5.0/27 10.10.10.4 131064U 131063 --10.1.5.0/27 10.10.10.5 131064U 131069 --10.2.3.0/27 10.10.10.2 131060N 131059 1/1/2 10.1.2.2 10.2.3.0/27 10.10.10.3 131060U 131057 --10.2.3.0/27 10.10.10.4 131060U 131056 --10.2.3.0/27 10.10.10.5 131060U 131065 --10.2.4.0/27 10.10.10.2 131068N 131065 1/1/2 10.1.2.2 10.2.4.0/27 10.10.10.3 131068U 131059 --10.2.4.0/27 10.10.10.4 131068U 131069 --10.2.4.0/27 10.10.10.5 131068U 131064 --10.2.6.0/27 10.10.10.2 131057N 131054 1/1/2 10.1.2.2 10.2.6.0/27 10.10.10.3 131057U 131054 --10.2.6.0/27 10.10.10.4 131057U 131053 --10.2.6.0/27 10.10.10.5 131057U 131063 --10.3.4.0/27 10.10.10.2 131067U 131064 --10.3.4.0/27 10.10.10.3 131067N 131058 1/1/3 10.1.3.3 10.3.4.0/27 10.10.10.4 131067U 131068 --10.3.4.0/27 10.10.10.5 131067U 131062 --10.3.7.0/27 10.10.10.2 131058U 131057 --10.3.7.0/27 10.10.10.3 131058N 131055 1/1/3 10.1.3.3 10.3.7.0/27 10.10.10.4 131058U 131054 --10.3.7.0/27 10.10.10.5 131058U 131061 --10.4.8.0/27 10.10.10.2 131059U 131058 --10.4.8.0/27 10.10.10.3 131059U 131056 --10.4.8.0/27 10.10.10.4 131059N 131064 1/1/4 10.1.4.4 10.4.8.0/27 10.10.10.5 131059U 131060 --10.5.9.0/27 10.10.10.5 -131054 --10.10.10.1/32 10.10.10.2 131071U ---10.10.10.1/32 10.10.10.3 131071U ---... ------------------------------------------------------------------------------No. of Prefix Bindings: 73 ...

18/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings

4. View the LFIBs. An example is shown below, truncated for clarity.

=============================================================================== Legend: (S) - Static =============================================================================== LDP Prefix Bindings (Active) =============================================================================== Prefix Op IngLbl EgrLbl EgrIntf/LspId EgrNextHop ------------------------------------------------------------------------------10.1.2.0/27 Pop 131062 ---10.1.3.0/27 Pop 131061 ---10.1.4.0/27 Pop 131069 ---10.1.5.0/27 Pop 131064 ---10.2.3.0/27 Swap 131060 131059 1/1/2 10.1.2.2 10.2.4.0/27 Swap 131068 131065 1/1/2 10.1.2.2 10.2.6.0/27 Swap 131057 131054 1/1/2 10.1.2.2 10.3.4.0/27 Swap 131067 131058 1/1/3 10.1.3.3 10.3.7.0/27 Swap 131058 131055 1/1/3 10.1.3.3 10.4.8.0/27 Swap 131059 131064 1/1/4 10.1.4.4 10.10.10.1/32 Pop 131071 ---... ------------------------------------------------------------------------------No. of Prefix Bindings: 25 ===============================================================================

Lab 3

Review Questions

1. Under normal circumstances, over what paths do the EDGE routers route traffic between each other? Issue a traceroute between EDGE routers to verify these paths. Do you have alternate paths available? 2. What router serves as the next-hop between your CORE router and router R5? 3. What metric value does OSPF assign to each link? 4. Which command may be used to view the details of each LDP peer? 5. For which FECs are labels advertised by default? How can additional FECs be advertised? 6. How does a router determine which LSP to use when ECMP LDP is enabled?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

19/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ldp bindings active

Lab 4

IGP-Based RSVP LSP Establishment

Objective

Figure 4-1: IGP based LSPs

Syntax Table 4-1 provides the configuration and verification commands required for this Lab. Each command may require additional parameters other than those shown in the table. Use the ‘?’ character for help and to explore all command line options. In addition to the commands shown, you may need to use commands learned in previous courses.

20/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

In this lab we will build loose hop, IGP-based LSPs, using RSVP signaling. We will use the routers’ OAM tools to verify the LSP’s operation and path.

Lab 4 Command List A:MPLS_R1# configure router mpls no shutdown A:MPLS_R1# configure router rsvp no shutdown A:MPLS_R1# configure router mpls path A:MPLS_R1# configure router mpls lsp A:MPLS_R1# show router mpls path A:MPLS_R1# show router mpls lsp [detail] A:MPLS_R1# show router mpls lsp path detail A:MPLS_R1# show router ospf area detail A:MPLS_R1# show router rsvp session A:MPLS_R1# show router rsvp interface detail A:MPLS_R1# tools perform router mpls cspf to [from ] [bandwidth ] [include-bitmap ] [exclude-bitmap ] [hop-limit ] [exclude-address [...(up to 8 max)]] A:MPLS_R1# oam lsp-ping lsp A:MPLS_R1# oam lsp-trace lsp A:MPLS_R1>..# info (from all contexts) A:MPLS_R1>..# exit [all] (from all contexts) A:MPLS_R1# admin save Table 4-1: Lab 4 Configuration and Verification Commands

Exercise 1. Enable MPLS for all interfaces on your CORE and EDGE routers. Remember to globally turn up both MPLS and RSVP, as SR OS shuts down both by default. 2. Verify that MPLS is enabled on your interfaces and that the relevant interfaces are administratively and operationally up. An example is shown below. A:MPLS_R1# show router mpls interface =============================================================================== MPLS Interfaces =============================================================================== Interface Port-id Adm Opr TE-metric ------------------------------------------------------------------------------system system Up Up None Admin Groups None Srlg Groups None R1-R5 1/1/1 Up Up None Admin Groups None Srlg Groups None R1-R2 1/1/2 Up Up None Admin Groups None Srlg Groups None

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

21/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# configure router mpls lsp to

R1-R3 1/1/3 Up Up None Admin Groups None Srlg Groups None R1-R4 1/1/4 Up Up None Admin Groups None Srlg Groups None ------------------------------------------------------------------------------Interfaces : 5 ===============================================================================

A:MPLS_R1# show router rsvp interface =============================================================================== RSVP Interfaces =============================================================================== Interface Total Active Total BW Resv BW Adm Opr Sessions Sessions (Mbps) (Mbps) ------------------------------------------------------------------------------system Up Up toR2 0 0 1000 0 Up Up toR3 0 0 1000 0 Up Up toR4 0 0 1000 0 Up Up toR5 0 0 1000 0 Up Up ------------------------------------------------------------------------------Interfaces : 5 ===============================================================================

6. On both your CORE and EDGE routers, configure a path named “loose” and do not specify any hops (that is, make it “totally loose”). 7. On your CORE router, configure an LSP to your EDGE router, using the loose path as the primary path. 8. On your EDGE router, configure an LSP to your CORE router, using the loose path as the primary path. 9. Verify each router’s LSP’s operational state, using the show router mpls lsp command. An example is shown below. A:MPLS_R1# show router mpls lsp =============================================================================== MPLS LSPs (Originating) =============================================================================== LSP Name To Fastfail Adm Opr Config ------------------------------------------------------------------------------toR5-1 10.10.10.5 No Up Up ------------------------------------------------------------------------------LSPs : 1 ===============================================================================

10. Use the show router rsvp session command to obtain the LSPs’ full names. The full LSP name takes the form lsp-name::path-name. Also note the LSPs’ Tunnel and LSP IDs. An example is shown on the following page.

22/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5. Verify that RSVP is enabled on your interfaces. An example is shown below.

A:MPLS_R1# show router rsvp session

11. Configure another LSP from your EDGE router to the clockwise Pod’s EDGE router, again using the loose path you created in step 4. a. Can the new LSP use the same path as the first you configured? b. Over what path will your router signal this LSP? c. What determines the path that the head-end router uses to signal this LSP path? 12. Verify the LSPs’ operation and paths using the oam lsp-ping and oam lsptrace commands. Examples are shown below. A:MPLS_R1# oam lsp-ping "toR5-1" LSP-PING toR5-1: 92 bytes MPLS payload Seq=1, send from intf toR5, reply from 10.10.10.5 udp-data-len=32 ttl=255 rtt=1.26ms rc=3 (EgressRtr) ---- LSP toR5-1 PING Statistics ---1 packets sent, 1 packets received, 0.00% packet loss round-trip min = 1.26ms, avg = 1.26ms, max = 1.26ms, stddev = 0.000ms A:MPLS_R1# oam lsp-trace "toR5-1" lsp-trace to toR5-1: 0 hops min, 0 hops max, 116 byte packets 10.10.10.5 rtt=1.23ms rc=3(EgressRtr) A:MPLS_R5# oam lsp-ping "toR6-2" LSP-PING toR6-2: 92 bytes MPLS payload Seq=1, send from intf toR1, reply from 10.10.10.6 udp-data-len=32 ttl=255 rtt=2.69ms rc=3 (EgressRtr) ---- LSP toR6-2 PING Statistics ---1 packets sent, 1 packets received, 0.00% packet loss round-trip min = 2.69ms, avg = 2.69ms, max = 2.69ms, stddev = 0.000ms A:MPLS_R5# oam lsp-trace "toR6-2" lsp-trace to toR6-2: 0 hops min, 0 hops max, 116 byte packets 1 10.10.10.1 rtt=1.55ms rc=8(DSRtrMatchLabel) 2 10.10.10.2 rtt=1.96ms rc=8(DSRtrMatchLabel) 3 10.10.10.6 rtt=2.60ms rc=3(EgressRtr)

Lab 4

Review Questions

1. Over what path does traffic travel when the head end router forwards it toward the LSP’s tail end? 2. Can the head end router recover the LSP if a failure occurs on the primary path? 3. What must be in place in the network before the head end router can signal the LSP requirements to the tail end?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

23/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

=============================================================================== RSVP Sessions =============================================================================== From To Tunnel LSP Name State ID ID ------------------------------------------------------------------------------10.10.10.1 10.10.10.5 1 1536 toR5-1::loose Up ------------------------------------------------------------------------------Sessions : 1 ===============================================================================

Lab 5

Enabling RSVP-TE LSP Tunnels

Objective

Lab 5 Command list A:MPLS_R1# configure router interface shutdown A:MPLS_R1# configure router interface no shutdown A:MPLS_R1# configure router ldp targeted-session peer tunneling A:MPLS_R1# configure router mpls admin-group A:MPLS_R1# configure router mpls interface A:MPLS_R1# configure router mpls interface admin-group A:MPLS_R1# configure router mpls interface srlg-group A:MPLS_R1# configure router mpls lsp A:MPLS_R1# configure router mpls lsp cspf A:MPLS_R1# configure router mpls lsp no igp-shortcut A:MPLS_R1# configure router mpls lsp path include exclude A:MPLS_R1# configure router mpls lsp primary A:MPLS_R1# configure router mpls lsp secondary A:MPLS_R1# configure router mpls lsp secondary srlg A:MPLS_R1# configure router mpls lsp secondary standby A:MPLS_R1# configure router mpls lsp to A:MPLS_R1# configure router mpls no shutdown A:MPLS_R1# configure router mpls path A:MPLS_R1# configure router mpls path hop [strict | loose] A:MPLS_R1# configure router mpls srlg-group value A:MPLS_R1# configure router ospf area interface interface-type point-to-point A:MPLS_R1# configure router ospf ldp-over-rsvp Table 5-1: Lab 5 Configuration and Verification Commands

24/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

In this lab, we will use link coloring techniques to build constraint-based LSPs. Then, we will configure RSVP-TE support over multiple OSPF areas, using LDP over RSVP for multi-area forwarding. We will explore DiffServ-TE LSP behavior based on the Maximum Allocation Model (MAM) and Russian Doll Model (RDM). Finally, we will build RSVP-TE signaled LSPs for tunneling IGP routed traffic from edge-to-edge.

Lab 5 Command list (cont’d) A:MPLS_R1# configure router ospf rsvp-shortcut A:MPLS_R1# configure router ospf traffic-engineering A:MPLS_R1# configure router rsvp no shutdown A:MPLS_R1# show router mpls path A:MPLS_R1# show router mpls lsp path detail A:MPLS_R1# show router mpls lsp terminate detail A:MPLS_R1# show router mpls lsp transit detail A:MPLS_R1# show router ospf area detail A:MPLS_R1# show router ospf status A:MPLS_R1# show router rsvp session A:MPLS_R1# show router ospf opaque-database A:MPLS_R1# show router ospf opaque-database adv-router detail A:MPLS_R1# tools dump router ospf route-table detail Table 5-1: Lab 5 Configuration and Verification Commands (cont’d)

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

25/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls lsp [detail]

Figure 5-1: Enabling Link Coloring Constraint-Based LSP Tunnels

Exercise In this exercise, you will enable traffic-engineering and CSPF on LSPs, connecting your CORE router to the clockwise CORE router. You will create two admin groups, red and green, and to assign each of your core interfaces to the appropriate admin group. On your LSPs, you will include green and exclude red links, and observe the LSP’s behavior as you shut down the direct links between the core routers. Phase I – Enable and verify CSPF 1. On both of your routers, use the show router ospf status command to verify that Traffic Engineering is currently disabled. a. Do your routers support Opaque LSAs by default? b. Why do your routers support Opaque LSAs, though TE support is disabled? 2. Verify that your router’s opaque database is empty. View the opaque database on your CORE router. An example of the output is shown below. Note: If others have already enabled TE on their routers, you may see Opaque LSAs in your routers’ opaque databases.

26/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5.1. Configure Link Coloring for Constraint-Based LSP Tunnels

A:MPLS_R1# show router ospf opaque-database

3. View the number of Type 10 Area Opaque LSAs on your CORE router. An example is shown below. a. How many Type 10 LSAs do your routers report? b. Why would your router report type 10 LSAs if you have not yet enabled TE? A:MPLS_R1# show router ospf area detail =============================================================================== OSPF Areas (Detailed) =============================================================================== ------------------------------------------------------------------------------Area Id: 0.0.0.0 ------------------------------------------------------------------------------Area Id : 0.0.0.0 Type : Standard Key Rollover Int.: 10 Virtual Links : 0 Total Nbrs : 4 Active IFs : 5 Total IFs : 5 Area Bdr Rtrs : 0 AS Bdr Rtrs : 0 SPF Runs : 37 Last SPF Run : 06/23/2010 07:36:18 Router LSAs : 8 Network LSAs : 0 Summary LSAs : 0 Asbr-summ LSAs : 0 Nssa ext LSAs : 0 Area opaque LSAs : 0 Total LSAs : 8 LSA Cksum Sum : 0x324be Blackhole Range : True Unknown LSAs : 0 ===============================================================================

4. For now, enable Traffic Engineering only on your EDGE router. 5. Again, view the number of Type 10 Area Opaque LSAs on your CORE router. An example output is shown below. a. How many Type 10 LSAs do you see? b. Why has this value increased although you have not enabled TE on this router? A:MPLS_R1# show router ospf area detail =============================================================================== OSPF Areas (Detailed) =============================================================================== ------------------------------------------------------------------------------Area Id: 0.0.0.0 ------------------------------------------------------------------------------Area Id : 0.0.0.0 Type : Standard Key Rollover Int.: 10 Virtual Links : 0 Total Nbrs : 4 Active IFs : 5 Total IFs : 5 Area Bdr Rtrs : 0 AS Bdr Rtrs : 0 SPF Runs : 37 Last SPF Run : 06/23/2010 07:36:18 Router LSAs : 8 Network LSAs : 0

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

27/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

=============================================================================== OSPF Opaque Link State Database (Type : All) =============================================================================== Type Id Link State Id Adv Rtr Id Age Sequence Cksum ------------------------------------------------------------------------------------------------------------------------------------------------------------No. of Opaque LSAs: 0

Summary LSAs : 0 Asbr-summ LSAs : 0 Nssa ext LSAs : 0 Area opaque LSAs : 8 Total LSAs : 16 LSA Cksum Sum : 0x33da9 Blackhole Range : True Unknown LSAs : 0 ===============================================================================

6. Enable Traffic Engineering on your CORE router. Confirm that Traffic Engineering is now enabled.

A:MPLS_R1# show router ospf opaque-database =============================================================================== OSPF Opaque Link State Database (Type : All) =============================================================================== Type Id Link State Id Adv Rtr Id Age Sequence Cksum ------------------------------------------------------------------------------Area 0.0.0.0 1.0.0.1 10.10.10.1 95 0x80000001 0x12fe Area 0.0.0.0 1.0.0.2 10.10.10.1 95 0x80000001 0x81ca Area 0.0.0.0 1.0.0.3 10.10.10.1 95 0x80000001 0x6be3 Area 0.0.0.0 1.0.0.4 10.10.10.1 95 0x80000001 0x4afe Area 0.0.0.0 1.0.0.5 10.10.10.1 95 0x80000001 0xde5e Area 0.0.0.0 1.0.0.1 10.10.10.2 10 0x80000001 0x16f8 Area 0.0.0.0 1.0.0.2 10.10.10.2 10 0x80000001 0x5dee Area 0.0.0.0 1.0.0.3 10.10.10.2 10 0x80000001 0x4ef4 Area 0.0.0.0 1.0.0.4 10.10.10.2 10 0x80000001 0xc27b Area 0.0.0.0 1.0.0.5 10.10.10.2 10 0x80000001 0xb57f Area 0.0.0.0 1.0.0.1 10.10.10.3 77 0x80000001 0x1af2 Area 0.0.0.0 1.0.0.2 10.10.10.3 77 0x80000001 0xb790 Area 0.0.0.0 1.0.0.3 10.10.10.3 77 0x80000001 0x2a19 Area 0.0.0.0 1.0.0.4 10.10.10.3 77 0x80000001 0x90b1 Area 0.0.0.0 1.0.0.5 10.10.10.3 77 0x80000001 0x8ca0 Area 0.0.0.0 1.0.0.1 10.10.10.4 60 0x80000001 0x1eec Area 0.0.0.0 1.0.0.2 10.10.10.4 60 0x80000001 0x1232 Area 0.0.0.0 1.0.0.3 10.10.10.4 60 0x80000001 0x84ba Area 0.0.0.0 1.0.0.4 10.10.10.4 60 0x80000001 0xf643 Area 0.0.0.0 1.0.0.5 10.10.10.4 60 0x80000001 0xd854 Area 0.0.0.0 1.0.0.1 10.10.10.5 380 0x80000001 0x22e6 Area 0.0.0.0 1.0.0.2 10.10.10.5 380 0x80000001 0xe166 Area 0.0.0.0 1.0.0.1 10.10.10.6 52 0x80000001 0x26e0 Area 0.0.0.0 1.0.0.2 10.10.10.6 52 0x80000001 0x43f4 Area 0.0.0.0 1.0.0.1 10.10.10.7 41 0x80000001 0x2ada Area 0.0.0.0 1.0.0.2 10.10.10.7 55 0x80000001 0x1a16 Area 0.0.0.0 1.0.0.1 10.10.10.8 46 0x80000001 0x2ed4 Area 0.0.0.0 1.0.0.2 10.10.10.8 46 0x80000001 0xf037 ------------------------------------------------------------------------------No. of Opaque LSAs: 28 ===============================================================================

8. On your CORE router, use the show router ospf opaque-database adv-router detail command, where belongs to your CORE router, for a more detailed description of the opaque LSA for your router. An example output is shown on the following page. a. Why do you not see opaque LSAs generated by the other routers? b. Why is 0.0.0.0 the Area ID shown? c. Which top-level TLV sub-types do the LSAs contain, and what do they specify?

28/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

7. Verify that your CORE router now has opaque LSAs in the database. An example output is shown below.

=============================================================================== OSPF Opaque Link State Database (Type : All) (Detailed) =============================================================================== ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.1 LSA Type : Area Opaque Sequence No : 0x80000001 Checksum : 0x12fe Age : 186 Length : 28 Options : E

Advertisement : ROUTER-ID TLV

(0001) Len

4 : 10.10.10.1

------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.2 LSA Type : Area Opaque Sequence No : 0x80000001 Checksum : 0x81ca Age : 186 Length : 124 Options : E Advertisement :

LINK INFO TLV

(0002) Len 100 :

Sub-TLV: 1 Len: 1 LINK_TYPE : 1 Sub-TLV: 2 Len: 4 LINK_ID : 10.10.10.2 Sub-TLV: 3 Len: 4 LOC_IP_ADDR : 10.1.2.1 Sub-TLV: 4 Len: 4 REM_IP_ADDR : 10.1.2.2 Sub-TLV: 5 Len: 4 TE_METRIC : 100 Sub-TLV: 6 Len: 4 MAX_BDWTH : 1000000 Kbps Sub-TLV: 7 Len: 4 RSRVBL_BDWTH : 1000000 Kbps Sub-TLV: 8 Len: 32 UNRSRVD_CLS0 : P0: 1000000 Kbps P1: 1000000 Kbps P2: 1000000 Kbps P3: 1000000 Kbps P4: 1000000 Kbps P5: 1000000 Kbps P6: 1000000 Kbps P7: 1000000 Kbps Sub-TLV: 9 Len: 4 ADMIN_GROUP : 0 None

9. Again, verify the number of Type 10 Area Opaque LSAs now discovered. An example is shown below. a. Write down the number of Type 10 LSAs now reported. b. How many Type 10 LSAs should be discovered when everyone in the class has finished enabling Traffic Engineering? A:MPLS_R1# show router ospf area detail =============================================================================== OSPF Areas (Detailed) =============================================================================== ------------------------------------------------------------------------------Area Id: 0.0.0.0 ------------------------------------------------------------------------------Area Id : 0.0.0.0 Type : Standard Key Rollover Int.: 10 Virtual Links : 0 Total Nbrs : 4 Active IFs : 5 Total IFs : 5 Area Bdr Rtrs : 0 AS Bdr Rtrs : 0 SPF Runs : 80 Last SPF Run : 06/26/2010 00:17:55 Router LSAs : 8 Network LSAs : 0 Summary LSAs : 0 Asbr-summ LSAs : 0 Nssa ext LSAs : 0 Area opaque LSAs : 28 Total LSAs : 36 LSA Cksum Sum : 0x112590 Blackhole Range : True Unknown LSAs : 0===============================================================================

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

29/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router ospf opaque-database adv-router 10.10.10.1 detail

Phase II – Configure link coloring 10. On your CORE routers, configure two administrative groups: one called “green” with a group value of 1, and the other called “red” with a group value of 2. Assign group green to all CORE outer ring MPLS interfaces, and assign groups green and red to the diagonally CORE interfaces.

11. Verify that the admin groups are on your CORE router, and that you have applied them to the correct interfaces. An example output is shown below. A:MPLS_R1# show router mpls admin-group ================================================= MPLS Administrative Groups ================================================= Group Name Group Value ------------------------------------------------green 1 red 2 -------------------------------------------------No. of Groups: 2 ==================================================

A:MPLS_R1# show router mpls interface =============================================================================== MPLS Interfaces =============================================================================== Interface Port-id Adm Opr TE-metric ------------------------------------------------------------------------------system system Up Up None Admin Groups None Srlg Groups None P1-PE1 1/1/1 Up Up None Admin Groups None Srlg Groups None P1-P2 1/1/2 Up Up None

Admin Groups

green

Srlg Groups P1-P3

None 1/1/3

Up

Up

None

Srlg Groups P1-P4

None 1/1/4

Up

Up

None

Admin Groups Admin Groups

green green

red Srlg Groups None ------------------------------------------------------------------------------Interfaces : 5 ===============================================================================

12. On your CORE router, use the show router ospf opaque-database adv-router detail command, where is the router ID of your CORE router, for a more detailed description of the opaque LSAs for your router. An example is shown below. a. Why are the ADMIN_GROUP values shown not equal to the admin group values you set in the configure router mlps admin-group command?

30/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

For example: If you work with router R2, assign the router R1 and R4 interfaces to the green group, and the router R3 interface to both the green and the red group. See Figure 5-1 for clarification.

b. Which ADMIN_GROUP value represents the green group? Which value represents the red and green groups? c. Why do you see all bandwidth available on the links? Admin-group mapping to bitmap table: 31

28 27

24 23

20 19

16

15

12 11

8

7

4

3

0

Admin Group Sub TLV: 00000006 (6) Decimal (2^1 + 2^2) Hexadecimal 0110 A:MPLS_R1# show router ospf opaque-database adv-router 10.10.10.1 detail =============================================================================== OSPF Opaque Link State Database (Type : All) (Detailed) =============================================================================== ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.1 LSA Type : Area Opaque Sequence No : 0x80000002 Checksum : 0x10ff Age : 716 Length : 28 Options : E Advertisement : ROUTER-ID TLV (0001) Len 4 : 10.10.10.1 ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.2 LSA Type : Area Opaque Sequence No : 0x80000004 Checksum : 0x50f6 Age : 1316 Length : 124 Options : E Advertisement : LINK INFO TLV (0002) Len 100 : Sub-TLV: 1 Len: 1 LINK_TYPE : 1 Sub-TLV: 2 Len: 4 LINK_ID : 10.10.10.2 Sub-TLV: 3 Len: 4 LOC_IP_ADDR : 10.1.2.1 Sub-TLV: 4 Len: 4 REM_IP_ADDR : 10.1.2.2 Sub-TLV: 5 Len: 4 TE_METRIC : 100 Sub-TLV: 6 Len: 4 MAX_BDWTH : 1000000 Kbps Sub-TLV: 7 Len: 4 RSRVBL_BDWTH : 1000000 Kbps Sub-TLV: 8 Len: 32 UNRSRVD_CLS0 : P0: 1000000 Kbps P1: 1000000 Kbps P2: 1000000 Kbps P3: 1000000 Kbps P4: 1000000 Kbps P5: 1000000 Kbps P6: 1000000 Kbps P7: 1000000 Kbps Sub-TLV: 9 Len: 4 ADMIN_GROUP : 00000002 (2) ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------- Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.3 LSA Type : Area Opaque Sequence No : 0x80000004 Checksum : 0xc47d

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

31/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 11 0

13. On your CORE router, configure a loose hop LSP that terminates on the clockwise CORE router. Use the existing loose path for the primary path. Enable CSPF on the LSP, and include admin group “green” and exclude admin group “red” under the primary path context. Use the show router mpls lsp path detail command to verify the path that the LSP takes. An example is shown below. a. Does the LSP follow the IGP chosen best path? Why? b. How does the head end router inform the downstream routers of the path it chose for the LSP? A:MPLS_R1# show router mpls lsp "toR2-lsp1" path detail =============================================================================== MPLS LSP toR2-lsp1 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR2-lsp1 Path loose ------------------------------------------------------------------------------LSP Name : toR2-lsp1 Path LSP ID : 39424 From : 10.10.10.1 To : 10.10.10.2 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/2 Out Label : 131071 Path Up Time: 0d 00:00:16 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 100 Include Grps: Exclude Grps: green red Path Trans : 1 CSPF Queries: 1

32/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Age : 1316 Length : 124 Options : E Advertisement : LINK INFO TLV (0002) Len 100 : Sub-TLV: 1 Len: 1 LINK_TYPE : 1 Sub-TLV: 2 Len: 4 LINK_ID : 10.10.10.3 Sub-TLV: 3 Len: 4 LOC_IP_ADDR : 10.1.3.1 Sub-TLV: 4 Len: 4 REM_IP_ADDR : 10.1.3.3 Sub-TLV: 5 Len: 4 TE_METRIC : 100 Sub-TLV: 6 Len: 4 MAX_BDWTH : 1000000 Kbps Sub-TLV: 7 Len: 4 RSRVBL_BDWTH : 1000000 Kbps Sub-TLV: 8 Len: 32 UNRSRVD_CLS0 : P0: 1000000 Kbps P1: 1000000 Kbps P2: 1000000 Kbps P3: 1000000 Kbps P4: 1000000 Kbps P5: 1000000 Kbps P6: 1000000 Kbps P7: 1000000 Kbps Sub-TLV: 9 Len: 4 ADMIN_GROUP : 00000002 (2) ...

NOTE: In the next steps, work together to ensure that each pod successfully completes the procedures given, and verify that the head end router chooses the best path to the tail end router. We recommend working through steps 14 -16 one pod at a time. 14. On your CORE router, shut down the interface facing the clockwise CORE router. After a few seconds, view the LSP path with the show router mpls lsp path detail command. An example is shown below. a. Is the head end router able to resignal the LSP over a new path? Why or why not? b. Does the new path follow the IGP path? Why or why not? HINT: Use the traceroute and oam lsp-trace commands and compare the results. c. Did the CSPF metric change? Why or why not? A:MPLS_R1# show router mpls lsp "toR2-lsp1" path detail =============================================================================== MPLS LSP toR2-lsp1 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR2-lsp1 Path loose ------------------------------------------------------------------------------LSP Name : toR2-lsp1 Path LSP ID : 39432 From : 10.10.10.1 To : 10.10.10.2 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/3 Out Label : 131071 Path Up Time: 0d 00:01:55 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 300 Include Grps: Exclude Grps: green red

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

33/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Failure Code: noError Failure Node: n/a ExplicitHops: No Hops Specified Actual Hops : 10.1.2.1(10.10.10.1) Record Label : N/A -> 10.1.2.2(10.10.10.2) Record Label : 131071 ComputedHops: 10.1.2.1 -> 10.1.2.2 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 =============================================================================== * indicates that the corresponding row element may have been truncated.

15. On the same CORE router, shut down the interface facing the counter-clockwise CORE router. After a few seconds, view the LSP path with the show router mpls lsp path detail command. An example is shown below. a. Is the head end router able to resignal the LSP over a new path? Why? b. Does the show command output provide any indication as to whether or not the LSP recovered? c. Use the trace commands and compare the results. Is there still an IGP route to the tail end router? A:MPLS_R1# show router mpls lsp "toR2-lsp1" path detail =============================================================================== MPLS LSP toR2-lsp1 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR2-lsp1 Path loose ------------------------------------------------------------------------------LSP Name : toR2-lsp1 Path LSP ID : 39434 From : 10.10.10.1 To : 10.10.10.2 Adm State : Up Oper State : Down Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Down OutInterface: n/a Out Label : n/a Path Up Time: 0d 00:00:00 Path Dn Time: 0d 00:00:57 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 1 NextRetryIn : 4 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : None Record Route: Record Record Label: Record Oper MTU : 0 Neg MTU : 0 Adaptive : Enabled Oper Metric : 65535 Include Grps: Exclude Grps: green red Path Trans : 9 CSPF Queries: 30 Failure Code: noCspfRouteToDestination Failure Node: 10.10.10.1

34/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Path Trans : 8 CSPF Queries: 29 Failure Code: noError Failure Node: n/a ExplicitHops: No Hops Specified Actual Hops : 10.1.3.1(10.10.10.1) Record Label : N/A -> 10.1.3.3(10.10.10.3) Record Label : 131071 -> 10.3.4.4(10.10.10.4) Record Label : 131067 -> 10.2.4.2(10.10.10.2) Record Label : 131059 ComputedHops: 10.1.3.1 -> 10.1.3.3 -> 10.3.4.4 -> 10.2.4.2 ResigEligib*: False LastResignal: n/a CSPF Metric : 300 =============================================================================== * indicates that the corresponding row element may have been truncated.

16. Turn up the interfaces and verify that the routers move the LSP back to the original path. You can use the tools perform router mpls resignal lsp path command to make the head end resignal the LSP more quickly.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

35/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

ExplicitHops: No Hops Specified Actual Hops : No Hops Specified ComputedHops: No Hops Specified ResigEligib*: False LastResignal: n/a CSPF Metric : 0 =============================================================================== * indicates that the corresponding row element may have been truncated.

Figure 5-2: DiffServ TE LSP – Maximum Allocation Method (MAM)

Exercise In this exercise, we will build four loose path LSPs from our CORE router to the diagonally opposite CORE router. Two LSPs will carry data, and two will carry voice over IP traffic. We will define two Class Types, CT0 for data and CT1 for voice, and then assign and allocate bandwidth based on these CTs. We will observe the routers’ behavior as we use up allocated bandwidth on the shortest path, and so force the routers to adjust to the changing conditions by resignaling LSPs as necessary. Phase I 1. On your CORE router, shut down MPLS. Configure RSVP to support DiffServ-TE with the configure router rsvp diffserv-te {mam/rdm} command. We will use MAM to begin. 2. Give CT0 20 percent and CT1 20 percent of the maximum reservable bandwidth. The commands required are shown below. A:MPLS_R1>config>router>rsvp# diffserv-te mam A:MPLS_R1>config>router>rsvp>diffserv-te# class-type-bw ct0 20 ct1 20 ct2 0 ct3 0 ct4 0 ct5 0 ct6 0 ct7 0 A:MPLS_R1>config>router>rsvp>diffserv-te#

36/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5.2. DiffServ TE LSP – Maximum Allocation Method (MAM)

3. On your CORE routers, set the te-classes as shown below. A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te#

te-class te-class te-class te-class exit

0 1 2 3

class-type class-type class-type class-type

0 0 1 1

priority priority priority priority

1 0 1 0

5. View the opaque database and verify the bandwidth allocation information passed in the opaque LSAs. An example is shown below. a. How much bandwidth does your router allocate to CT0? b. How much does it allocate to CT1? c. How much does it allocate to the other CTs? A:MPLSv2_R1# show router ospf opaque-database detail =============================================================================== OSPF Opaque Link State Database (Type : All) (Detailed) =============================================================================== ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.1 LSA Type : Area Opaque Sequence No : 0x8000002f Checksum : 0xb52d Age : 799 Length : 28 Options : E Advertisement : ROUTER-ID TLV (0001) Len 4 : 10.10.10.1 ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.2 LSA Type : Area Opaque Sequence No : 0x80000002 Checksum : 0x547b Age : 818 Length : 164 Options : E Advertisement : LINK INFO TLV (0002) Len 140 : Sub-TLV: 1 Len: 1 LINK_TYPE : 1 Sub-TLV: 2 Len: 4 LINK_ID : 10.10.10.2 Sub-TLV: 3 Len: 4 LOC_IP_ADDR : 10.1.2.1 Sub-TLV: 4 Len: 4 REM_IP_ADDR : 10.1.2.2 Sub-TLV: 5 Len: 4 TE_METRIC : 100 Sub-TLV: 6 Len: 4 MAX_BDWTH : 1000000 Kbps Sub-TLV: 7 Len: 4 RSRVBL_BDWTH : 1000000 Kbps Sub-TLV: 8 Len: 32 UNRSRVD_CLS0 : P0: 200000 Kbps P1: 200000 Kbps P2: 200000 Kbps P3: 200000 Kbps P4: 0 Kbps P5: 0 Kbps P6: 0 Kbps P7: 0 Kbps Sub-TLV: 9 Len: 4 ADMIN_GROUP : 00000002 (2) Sub-TLV: 17 Len: 36 TELK_BW_CONST: BW Model : MAM BC0: 200000 Kbps BC1: 200000 Kbps BC2: 0 Kbps BC3: 0 Kbps BC4: 0 Kbps BC5: 0 Kbps BC6: 0 Kbps BC7: 0 Kbps

6. View the TE classes currently defined on the router. An example is shown on the following page.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

37/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

4. Turn MPLS back up.

=============================================================================== RSVP Status =============================================================================== Admin Status : Up Oper Status : Up Keep Multiplier : 3 Refresh Time : 30 sec Message Pacing : Disabled Pacing Period : 100 msec Max Packet Burst : 650 msgs Refresh Bypass : Disabled Rapid Retransmit : 5 hmsec Rapid Retry Limit : 3 Graceful Shutdown : Disabled SoftPreemptionTimer: 300 sec Implicit Null Label: Disabled DiffServTE AdmModel: Mam Percent Link Bw CT0: 20 Percent Link Bw CT4: 0 Percent Link Bw CT1: 20 Percent Link Bw CT5: 0 Percent Link Bw CT2: 0 Percent Link Bw CT6: 0 Percent Link Bw CT3: 0 Percent Link Bw CT7: 0 TE0 -> Class Type : 0 Priority : 1 TE1 -> Class Type : 0 Priority : 0 TE2 -> Class Type : 1 Priority : 1 TE3 -> Class Type : 1 Priority : 0 IgpThresholdUpdate : Disabled Up Thresholds(%) : 0 15 30 45 60 75 80 85 90 95 96 97 98 99 100 Down Thresholds(%) : 100 99 98 97 96 95 90 85 80 75 60 45 30 15 0 Update Timer : N/A Update on CAC Fail : Disabled ===============================================================================

7. On your CORE router, view the reserved and unreserved bandwidth values on your interfaces. How much of the bandwidth that you allocated is currently available? A:MPLS_R1# show router rsvp interface "toR2" detail =============================================================================== RSVP Interface (Detailed) : toR2 =============================================================================== ------------------------------------------------------------------------------Interface : toR2 ------------------------------------------------------------------------------Interface : toR2 Port ID : 1/1/2 Admin State : Up Oper State : Up Active Sessions : 0 Active Resvs : 0 Total Sessions : 0 Subscription : 100 % Port Speed : 1000 Mbps Total BW : 1000 Mbps Aggregate : Dsabl Hello Interval : 3000 ms Hello Timeouts : 1 Authentication : Disabled Auth Rx Seq Num : n/a Auth Key Id : n/a Auth Tx Seq Num : n/a Auth Win Size : n/a Refresh Reduc. : Disabled Reliable Deli. : Disabled Bfd Enabled : No Graceful Shut. : Disabled ImplicitNullLabel : Disabled* Percent Link Bw Link Bw Link Bw Link Bw

Link Bandwidth for Class Types* CT0 : 20 Link Bw CT4 CT1 : 20 Link Bw CT5 CT2 : 0 Link Bw CT6 CT3 : 0 Link Bw CT7

Bandwidth Constraints for Class Types (Kbps) BC0 : 200000 BC4 BC1 : 200000 BC5 BC2 : 0 BC6 BC3 : 0 BC7

: : : :

0 0 0 0

: : : :

0 0 0 0

38/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router rsvp status

Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv.

Bw Bw Bw Bw Bw Bw Bw Bw

: : : : : : : :

200000 200000 200000 200000 0 0 0 0

IGP Update Up Thresholds(%) : 0 15 30 45 60 75 80 85 90 95 96 97 98 99 100 * Down Thresholds(%) : 100 99 98 97 96 95 90 85 80 75 60 45 30 15 0 * IGP Update Pending : No Next Update : N/A Neighbors : 10.1.2.2 * indicates inherited values ===============================================================================

Phase II We will configure two data and two voice “totally loose” LSPs, all terminating on the diagonally opposite CORE router. Each traffic type includes both consumer and business services. 8. The first LSP, consumer data, requires 200 Mbps of bandwidth. Set the path’s hold and preempt priorities to “1”, and the class-type to “0”. Enable CSPF on the LSP. An example is shown below. A:MPLS_R1>config>router>mpls>lsp# info ---------------------------------------------to 10.10.10.4 cspf primary "loose" bandwidth 200 priority 1 1 class-type 0 exit no shutdown ---------------------------------------------A:MPLS_R1>config>router>mpls>lsp#

9. Verify the path the router chose for this first LSP. An example is shown below, truncated for clarification. a. Did the head end choose the shortest IGP path for this LSP? b. How much bandwidth did the router allocate to this LSP? A:MPLS_R1 # show router mpls lsp "toR4-6" path detail =============================================================================== MPLS LSP toR4-6 Path (Detail) =============================================================================== ... =============================================================================== ------------------------------------------------------------------------------LSP toR4-6 Path loose ------------------------------------------------------------------------------LSP Name : toR4-6 Path LSP ID : 7730 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

39/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 0 TE1-> Resv. Bw : 0 TE2-> Resv. Bw : 0 TE3-> Resv. Bw : 0 TE4-> Resv. Bw : 0 TE5-> Resv. Bw : 0 TE6-> Resv. Bw : 0 TE7-> Resv. Bw : 0

10. Verify the bandwidth your router reserved for this TE class and CT. How much is left unreserved? An example is shown below. A:MPLS_R1# show router rsvp interface "toR4" detail =============================================================================== RSVP Interface (Detailed) : toR4 =============================================================================== ------------------------------------------------------------------------------Interface : toR4 ------------------------------------------------------------------------------Interface : toR4 Port ID : 1/1/4 Admin State : Up Oper State : Up ... Percent Link Bandwidth for Class Types* Link Bw CT0 : 20 Link Bw CT4 : 0 Link Bw CT1 : 20 Link Bw CT5 : 0 Link Bw CT2 : 0 Link Bw CT6 : 0 Link Bw CT3 : 0 Link Bw CT7 : 0 Bandwidth Constraints for Class Types (Kbps) BC0 : 200000 BC4 BC1 : 200000 BC5 BC2 : 0 BC6 BC3 : 0 BC7 Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 200000 TE1-> Resv. Bw : 0 TE2-> Resv. Bw : 0 TE3-> Resv. Bw : 0 TE4-> Resv. Bw : 0 TE5-> Resv. Bw : 0 TE6-> Resv. Bw : 0 TE7-> Resv. Bw : 0

Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv.

Bw Bw Bw Bw Bw Bw Bw Bw

: : : :

0 0 0 0

: : : : : : : :

0 200000 200000 200000 0 0 0 0

...

11. Now configure the business data LSP. Allocate 100 Mbps bandwidth, and set the hold and preempt priorities to “0,” and class-type to “0”. Enable CSPF. View the path that the head end chooses for the business data LSP. An example is shown below.

40/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

OutInterface: 1/1/4 Out Label : 131070 Path Up Time: 0d 00:01:30 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 0 Hold Priori*: 0 Preference : n/a Bandwidth : 200 Mbps Oper Bw : 200 Mbps Hop Limit : 255 Class Type : 0 ... ExplicitHops: No Hops Specified Actual Hops : 10.1.4.1(10.10.10.1) Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131070 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 =============================================================================== * indicates that the corresponding row element may have been truncated.

a. Did the router choose the shortest IGP path again, or another path? b. If the business data LSP needs 100M of the 200M bandwidth allocated for CT0, will the consumer data LSP remain operational?

=============================================================================== MPLS LSP toR4-7 Path (Detail) =============================================================================== ... =============================================================================== ------------------------------------------------------------------------------LSP toR4-7 Path loose ------------------------------------------------------------------------------LSP Name : toR4-7 Path LSP ID : 51210 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/4 Out Label : 131070 Path Up Time: 0d 00:02:10 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 0 Hold Priori*: 0 Preference : n/a Bandwidth : 100 Mbps Oper Bw : 100 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None ... ExplicitHops: No Hops Specified Actual Hops : 10.1.4.1(10.10.10.1) Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131070 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 =============================================================================== * indicates that the corresponding row element may have been truncated.

12. View the consumer data LSP status. Notice that soft preemption occurs on this LSP (you may not see this happen if you do not look immediately after the business LSP comes online). After several seconds, the consumer data LSP comes up on an alternate path. An example of preemption in progress on the consumer data LSP is shown below. A:MPLS_R1# show router mpls lsp "toR4-6" path detail =============================================================================== MPLS LSP toR4-6 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR4-6 Path loose ------------------------------------------------------------------------------LSP Name : toR4-6 Path LSP ID : 7762 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

41/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls lsp "toR4-7" path detail

Path Oper : Out Label : Path Dn Time: Retry Timer : NextRetryIn : Hold Priori*: Oper Bw Class Type

Up 131071 0d 00:00:00 30 sec 0 sec 1

: 200 Mbps : 0

10.1.4.1(10.10.10.1) s Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131071 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 In Prog MBB : MBB Type : SoftPreemption NextRetryIn : 14 sec Started At : 07/13/2010 10:55:47 RetryAttempt: 0 FailureCode: noError Failure Node: n/a =============================================================================== * indicates that the corresponding row element may have been truncated.

13. Run an LSP trace on the consumer and business data LSPs. Verify that the consumer and business LSPs take separate paths to the tail end router. 14. Configure a loose path consumer voice LSP. Allocate 150 Mbps, and set the hold and preempt priorities to “1,” and class type to “1”. Enable CSPF on the LSP, and then view the path the LSP travels. Did the head end signal it over the shortest IGP path? A:MPLS_R1# show router mpls lsp "toR4-8" path detail =============================================================================== MPLS LSP toR4-8 Path (Detail) =============================================================================== ... ------------------------------------------------------------------------------LSP toR4-8 Path loose ------------------------------------------------------------------------------LSP Name : toR4-8 Path LSP ID : 26642 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/4 Out Label : 131071 Path Up Time: 0d 00:01:30 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 0 Hold Priori*: 0 Preference : n/a Bandwidth : 150 Mbps Oper Bw : 150 Mbps Hop Limit : 255 Class Type : 1 ... ExplicitHops: No Hops Specified Actual Hops : 10.1.4.1(10.10.10.1) Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131071 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100

42/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Path Admin : Up OutInterface: 1/1/4 Path Up Time: 0d 00:01:45 Retry Limit : 0 RetryAttempt: 0 SetupPriori*: 1 Preference : n/a Bandwidth : 200 Mbps Hop Limit : 255 ... ExplicitHops: No Hops Specified Actual Hops :

=============================================================================== * indicates that the corresponding row element may have been truncated.

15. Build the commercial loose path voice LSP. Allocate 100 Mbps, and set priorities of “0,” and class type of “1”. Enable CSPF. View the path the head end signals for this LSP. a. Is it the same path as the first voice LSP? b. Did this new LSP “preempt” a data LSP?

=============================================================================== MPLS LSP toR4-9 Path (Detail) =============================================================================== ... ------------------------------------------------------------------------------LSP toR4-9 Path loose ------------------------------------------------------------------------------LSP Name : toR4-9 Path LSP ID : 6154 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/4 Out Label : 131068 Path Up Time: 0d 00:00:32 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 0 Hold Priori*: 0 Preference : n/a Bandwidth : 100 Mbps Oper Bw : 100 Mbps Hop Limit : 255 Class Type : 1 ... ExplicitHops: No Hops Specified Actual Hops : 10.1.4.1(10.10.10.1) Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131068 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 =============================================================================== * indicates that the corresponding row element may have been truncated.

16. View the bandwidth reservations now. Have these values changed from their previous values? a. Which TE classes get reservations on the best IGP path? b. Why did the other classes not remain on the IGP best path? c. If you shut down the higher priority LSPs, will the lower priority LSPs move back to the best path?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

43/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1 # show router mpls lsp "toR4-9" path detail

=============================================================================== RSVP Interface (Detailed) : toR4 =============================================================================== ------------------------------------------------------------------------------Interface : toR2 ------------------------------------------------------------------------------Interface : toR2 Port ID : 1/1/2 Admin State : Up Oper State : Up Active Sessions : 2 Active Resvs : 2 Total Sessions : 2 Subscription : 100 % Port Speed : 1000 Mbps Total BW : 1000 Mbps Aggregate : Dsabl ... Percent Link Bandwidth for Class Types* Link Bw CT0 : 20 Link Bw CT4 Link Bw CT1 : 20 Link Bw CT5 ...

: 0 : 0

Bandwidth Constraints for Class Types (Kbps) BC0 : 200000 BC4 BC1 : 200000 BC5 ...

: 0 : 0

Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 200000 Unresv. Bw : 0 TE1-> Resv. Bw : 0 Unresv. Bw : 200000 TE2-> Resv. Bw : 150000 Unresv. Bw : 50000 TE3-> Resv. Bw : 0 Unresv. Bw : 200000 ... ------------------------------------------------------------------------------Interface : toR4 ------------------------------------------------------------------------------Interface : toR4 Port ID : 1/1/4 Admin State : Up Oper State : Up Active Sessions : 2 Active Resvs : 2 Total Sessions : 2 Subscription : 100 % Port Speed : 1000 Mbps Total BW : 1000 Mbps Aggregate : Dsabl ... Percent Link Bandwidth for Class Types* Link Bw CT0 : 20 Link Bw CT4 : 0 Link Bw CT1 : 20 Link Bw CT5 : 0 ... Bandwidth Constraints for Class Types (Kbps) BC0 : 200000 BC4 BC1 : 200000 BC5 ...

: 0 : 0

Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 0 Unresv. Bw : 100000 TE1-> Resv. Bw : 100000 Unresv. Bw : 100000 TE2-> Resv. Bw : 0 Unresv. Bw : 100000 TE3-> Resv. Bw : 100000 Unresv. Bw : 100000 ... -------------------------------------------------------------------------------

44/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router rsvp interface detail

Figure 5-3: DiffServ TE LSP – Russian Doll Model (RDM)

Exercise We will change the DiffServ TE model to RDM, and observe the routers’ behavior as we turn up each of the LSPs that we built in the previous exercise. 1. On your CORE router, shut down MPLS. Configure RSVP to support DiffServ-TE RDM. You will need to type in the class-type bandwidth and te-class entries once more. NOTE: Copy the DiffServ-TE MAM class-type and te-class entries to a text editor, and then copy and paste these values under the diffserv-te context once you enable RDM. A:MPLS_R1>config>router>rsvp# diffserv-te A:MPLS_R1>config>router>rsvp>diffserv-te# 0 ct5 0 ct6 0 ct7 0 A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te# A:MPLS_R1>config>router>rsvp>diffserv-te#

rdm class-type-bw ct0 20 ct1 20 ct2 0 ct3 0 ct4 te-class te-class te-class te-class exit

0 1 2 3

class-type class-type class-type class-type

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

0 0 1 1

priority priority priority priority

1 0 1 0

45/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5.3. DiffServ TE LSP – Russian Doll Model (RDM)

2. Shut down all four of the LSPs that you configured in the previous exercise. Do not change any LSP characteristics. 3. Shut down the CORE routers’ core ring interfaces. This forces all traffic through the diagonal links. 4. Turn MPLS back up. Enable the consumer data LSP, and view the bandwidth reservation. An example is shown below.

b. Why does TE0 still show 200M of unreserved bandwidth? A:MPLS_R1# show router rsvp interface "toR4" detail =============================================================================== RSVP Interface (Detailed) : toR4 =============================================================================== ------------------------------------------------------------------------------Interface : toR4 ------------------------------------------------------------------------------Interface : toR4 Port ID : 1/1/4 Admin State : Up Oper State : Up ... Percent Link Bw Link Bw Link Bw Link Bw

Link Bandwidth for Class Types* CT0 : 20 Link Bw CT4 CT1 : 20 Link Bw CT5 CT2 : 0 Link Bw CT6 CT3 : 0 Link Bw CT7

Bandwidth Constraints for Class Types (Kbps) BC0 : 400000 BC4 BC1 : 200000 BC5 BC2 : 0 BC6 BC3 : 0 BC7 Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 200000 TE1-> Resv. Bw : 0 TE2-> Resv. Bw : 0 TE3-> Resv. Bw : 0 TE4-> Resv. Bw : 0 TE5-> Resv. Bw : 0 TE6-> Resv. Bw : 0 TE7-> Resv. Bw : 0

Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv.

: : : :

0 0 0 0

: 0 : 0 : 0 : 0 Bw Bw Bw Bw Bw Bw Bw Bw

: : : : : : : :

200000 400000 200000 200000 0 0 0 0

CT0 CT1

...

5. Bring up the second data LSP. View the bandwidth allocations again. A:MPLS_R1# show router rsvp interface "toR4" detail =============================================================================== RSVP Interface (Detailed) : toR4 =============================================================================== ------------------------------------------------------------------------------Interface : toR4 ------------------------------------------------------------------------------Interface : toR4 Port ID : 1/1/4 Admin State : Up Oper State : Up ...

46/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

a. Why does the router allocate more bandwidth for TE classes 0 and 1 than it did with MAM enabled?

Link Bandwidth for Class Types* CT0 : 20 Link Bw CT4 CT1 : 20 Link Bw CT5 CT2 : 0 Link Bw CT6 CT3 : 0 Link Bw CT7

Bandwidth Constraints for Class Types (Kbps) BC0 : 400000 BC4 BC1 : 200000 BC5 BC2 : 0 BC6 BC3 : 0 BC7 Bandwidth for TE Class Types (Kbps) TE0-> Resv. Bw : 200000 TE1-> Resv. Bw : 100000 TE2-> Resv. Bw : 0 TE3-> Resv. Bw : 0 TE4-> Resv. Bw : 0 TE5-> Resv. Bw : 0 TE6-> Resv. Bw : 0 TE7-> Resv. Bw : 0

Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv. Unresv.

Bw Bw Bw Bw Bw Bw Bw Bw

: : : :

0 0 0 0

: : : :

0 0 0 0

: : : : : : : :

100000 300000 100000 200000 0 0 0 0

...

6. Turn up the consumer voice LSP. Verify the results. Does the LSP become operational? If not, why not? A:MPLS_R1# show router mpls lsp "toR4-8" path detail =============================================================================== MPLS LSP toR4-8 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR4-8 Path loose ------------------------------------------------------------------------------LSP Name : toR4-8 Path LSP ID : 26652 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Down Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Down OutInterface: n/a Out Label : n/a Path Up Time: 0d 00:00:00 Path Dn Time: 0d 01:48:24 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 181 NextRetryIn : 25 sec SetupPriori*: 1 Hold Priori*: 1 Preference : n/a Bandwidth : 150 Mbps Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 1 Backup CT : None MainCT Retry: Infinite MainCT Retry: 0 Rem : Limit : Oper CT : None Record Route: Record Record Label: Record Oper MTU : 0 Neg MTU : 0 Adaptive : Enabled Oper Metric : 65535 Include Grps: Exclude Grps: None None Path Trans : 10 CSPF Queries: 196 Failure Code: noCspfRouteToDestination Failure Node: 10.10.10.1 ...

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

47/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Percent Link Bw Link Bw Link Bw Link Bw

7. Turn up the last voice LSP. a. Does this LSP become operational? If so, what effect does it have on the existing LSPs? b. How much bandwidth does each TE class reserve? c. How much bandwidth is left for CT0? And CT1? d. How did the router assign more bandwidth on the link to CT0 than you provisioned under RSVP?

A:MPLS_R1# show router mpls lsp "toR4-9" path detail =============================================================================== MPLS LSP toR4-9 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR4-9 Path loose ------------------------------------------------------------------------------LSP Name : toR4-9 Path LSP ID : 6166 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/4 Out Label : 131069 Path Up Time: 0d 00:15:30 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 0 Hold Priori*: 0 Preference : n/a Bandwidth : 100 Mbps Oper Bw : 100 Mbps Hop Limit : 255 Class Type : 1 ... Actual Hops : 10.1.4.1(10.10.10.1) Record Label : N/A -> 10.1.4.4(10.10.10.4) Record Label : 131069 ComputedHops: 10.1.4.1 -> 10.1.4.4 ResigEligib*: False LastResignal: n/a CSPF Metric : 100 Last MBB : MBB Type : ConfigChange MBB State : Success Ended At : 07/13/2010 14:35:12 Old Metric : 100 =============================================================================== * indicates that the corresponding row element may have been truncated.

NOTE: Using RDM, the router allocates bandwidth to each CT based on its place in the model. A classtype assignment does not determine preemption priorities. For example, you give CT0 10%, CT1, 10%, and CT2, 20%. CT0 can access all unused bandwidth across CTs 0, 1, and 2, for a total of 400M of bandwidth. If a CT0, priority 0 LSP has already reserved 300M and a CT1, priority 1 LSP comes along needing 50M out of its allocated 100M, the new LSP takes the bandwidth from the CT2 pool. The first LSP took all the CT0 and CT1 bandwidth, leaving only the CT2 pool. If a CT2 LSP wants its 50M back, it must have a higher (lower numerical) setup priority than one of the existing LSP’s hold priorities.

48/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

e. Why did the consumer voice LSP fail?

8. Normalize the network. a. Turn off MPLS and reset Diffserv-TE with the configure router rsvp no diffservte command. b. Turn up the CORE router core ring interfaces

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

c. Turn up MPLS.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

49/104

5.4. Configure LDP over RSVP across OSPF Areas Objective

Figure 5-4: Enabling LDP Tunnels over RSVP

Exercise In this exercise, you will configure LDP-over-RSVP tunnels and verify their operation to demonstrate Inter-Area Traffic Engineering. We will incorporate the CE routers in this topology, using these routers as our LDP tunnel head ends. Use CE1 and CE3 for one set of tunnels, and CE2 and CE4 for the other set. 1. On your EDGE and CE routers, create a new OSPF area as shown in Figure 5-4. Put the CE router system, CE-EDGE, and EDGE-CE interfaces in this new area. You may need to create the CEEDGE and EDGE-CE interfaces. 2. Verify that OSPF traffic-engineering is enabled on the CE and EDGE routers with the show router ospf status command. If not, turn up traffic engineering. 3. On your CE router, turn up MPLS and RSVP, put the CE-EDGE interface in MPLS, and configure a totally loose path and LSP to your pod’s EDGE router. Enable CSPF on the LSP.

50/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

In this lab, we will create LDP over RSVP tunnels that will allow cross-area services to take advantage of RSVP-TE resiliency features. Each pod will create a new CE-EDGE OSPF area, and build 3 RSVP LSPs, one in each of three OSPF areas. Each team will then create LDP tunnels over the three RSVP LSPs.

4. On your EDGE router, place the EDGE-CE interface in MPLS. Configure a CSPF enabled LSP to your neighbor’s EDGE router as shown in Figure 5-4. 5. Shut down LDP on the EDGE-CORE router interfaces with the configure router ldp interface-parameters interface “ToR5” shutdown command. This limits the number of LDP-RSVP tunnel associations.

A:MPLS_R6# show router mpls lsp =============================================================================== MPLS LSPs (Originating) =============================================================================== LSP Name To Fastfail Adm Opr Config ------------------------------------------------------------------------------toR10-lsp4 10.10.10.10 No Up Up toR8-lsp4 10.10.10.8 No Up Up ------------------------------------------------------------------------------LSPs : 2 ===============================================================================

7. Log into your neighbor Pod’s EDGE router and configure a CSPF enabled LSP that terminates on its CE router. Verify that this LSP is operational. Do not log out of your neighbor’s router. 8. Back on your CE router, configure a manual T-LDP peering with your EDGE router and enable the “tunneling” option. An example is shown below. Configure targeted peers under the configure router ldp targeted-session sub-context. Use the system IP address as the peer address. #-------------------------------------------------echo "LDP Configuration" #-------------------------------------------------ldp interface-parameters exit targeted-session peer 10.10.10.6 tunneling exit exit exit exit exit

9. On your EDGE router, configure a T-LDP peering to your neighbor Pod’s EDGE router, with “tunneling” enabled. 10. On your neighbor Pod’s EDGE router, configure a T-LDP peering with its CE router, enabling “tunneling” once more. 11. After all users have configured T-LDP, use the show router ldp session command and verify that the routers correctly establish their T-LDP sessions. An example is shown on the following page.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

51/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

6. Verify that the RSVP LSPs become operational. An example is shown below. If the LSP is not operational, verify that TE is enabled, that the route-table contains all routes including system IDs, and that you have enabled MPLS on all necessary interfaces.

A:MPLS_R6# show router ldp session

12. On your CE router, check the LFIB (show router ldp bindings active). An example is shown below. a. Which prefixes are available? b. Do you see an entry for the other area’s CE router system IP address? A:MPLS_R10# show router ldp bindings active =============================================================================== Legend: (S) - Static =============================================================================== LDP Prefix Bindings (Active) =============================================================================== Prefix Op IngLbl EgrLbl EgrIntf/LspId EgrNextHop ------------------------------------------------------------------------------10.10.10.6/32 Push -131071 LspId 1 10.10.10.6 10.10.10.10/32 Pop 131070 ---------------------------------------------------------------------------------No. of Prefix Bindings: 2

13. Enable LDP-over-RSVP in the CE and EDGE routers’ OSPF configuration with the configure router ospf ldp-over-rsvp command. 14. On your CE router, check the LFIB now. Is the entry for the CE router in the other area there now? An example is shown below. A:MPLS_R10# show router ldp bindings active =============================================================================== Legend: (S) - Static =============================================================================== LDP Prefix Bindings (Active) =============================================================================== Prefix Op IngLbl EgrLbl EgrIntf/LspId EgrNextHop ------------------------------------------------------------------------------10.10.10.6/32 Push -131071 LspId 1 10.10.10.6 10.10.10.8/32 Push -131064 LspId 1 10.10.10.6 10.10.10.10/32 Pop 131070 ---10.10.10.12/32 Push -131066 LspId 1 10.10.10.6 -------------------------------------------------------------------------------

15. What does the EgrIntf/LspId field indicate? Determine the LSP supporting the session by viewing the tunnel ID shown in the show router rsvp session command output. An example is shown on the following page.

52/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

============================================================================== LDP Sessions ============================================================================== Peer LDP Id Adj Type State Msg Sent Msg Recv Up Time -----------------------------------------------------------------------------10.10.10.8:0 Targeted Established 12 12 0d 00:00:16 10.10.10.10:0 Targeted Established 10 7 0d 00:00:09 -----------------------------------------------------------------------------No. of Sessions: 2 ==============================================================================

=============================================================================== RSVP Sessions =============================================================================== From To Tunnel LSP Name State ID ID ------------------------------------------------------------------------------10.10.10.10 10.10.10.6 1 51204 toR6-lsp4::loose Up 10.10.10.6 10.10.10.10 1 11776 toR10-lsp4::loose Up ------------------------------------------------------------------------------Sessions : 2 ===============================================================================

16. On your CE router, verify the tunnel by targeting the far end CE router with the oam lsptrace prefix command. An example is shown below. A:MPLS_R10# oam lsp-trace prefix 10.10.10.12/32 lsp-trace to 10.10.10.9/32: 0 hops min, 0 hops max, 104 byte packets 1 10.10.10.6 rtt=23.6ms rc=8(DSRtrMatchLabel) 2 10.10.10.8 rtt=12.9ms rc=8(DSRtrMatchLabel) 3 10.10.10.12 rtt=8.18ms rc=3(EgressRtr)

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

53/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R10# show router rsvp session

Figure 5-5: Enabling LDP Tunnels over RSVP

Exercise In this exercise, you will provision loose path LSPs between your EDGE router and the diagonally opposite EDGE router. You will enable OSPF RSVP shortcut support, and you will enable CSPF in your LSPs. Do not set any constraints on the LSP paths. 1. On your EDGE router, create a loose path LSP that terminates on the diagonally opposite EDGE router’s system ID. Enable CSPF, but do not assign any hops to the path or constraints on the LSP. 2. Verify your LSP’s operational state. An example is shown below. A:MPLS_R5# show router mpls lsp =============================================================================== MPLS LSPs (Originating) =============================================================================== LSP Name To Fastfail Adm Opr Config ------------------------------------------------------------------------------toR8-3 10.10.10.8 No Up Up ------------------------------------------------------------------------------LSPs : 1 ===============================================================================

54/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5.5. Configure RSVP for IP Routing

3. View your route table with the show router route-table command. a. What next-hop appears in your route table entry for the opposite EDGE router’s system ID? b. What metric does the router assign to this route?

NOTE: Enabling rsvp-shortcut can prompt the router to make existing, non-CSPF enabled LSPs operationally down, as this command makes all LSPs shortcut eligible. To exempt certain LSPs from shortcut consideration, use the configure router mpls lsp . no igp-shortcut command. A:MPLS_R6# show router ospf status =============================================================================== OSPF Status =============================================================================== OSPF Cfg Router Id : 0.0.0.0 OSPF Oper Router Id : 10.10.10.6 OSPF Version : 2 OSPF Admin Status : Enabled OSPF Oper Status : Enabled Graceful Restart : Disabled GR Helper Mode : Disabled Preference : 10 External Preference : 150 Backbone Router : True Area Border Router : False AS Border Router : False Opaque LSA Support : True Traffic Engineering Support : True RFC 1583 Compatible : True Demand Exts Support : False In Overload State : False In External Overflow State : False Exit Overflow Interval : 0 Last Overflow Entered : Never Last Overflow Exit : Never External LSA Limit : -1 Reference Bandwidth : 100,000,000 Kbps Init SPF Delay : 1000 msec Sec SPF Delay : 1000 msec Max SPF Delay : 10000 msec Min LS Arrival Interval : 1000 msec Init LSA Gen Delay : 5000 msec Sec LSA Gen Delay : 5000 msec Max LSA Gen Delay : 5000 msec Last Ext SPF Run : Never Ext LSA Cksum Sum : 0x0 OSPF Last Enabled : 06/24/2010 01:36:08 Multicast Import : False Export Policies : None OSPF Ldp Sync Admin Status : Enabled LDP-over-RSVP : Disabled RSVP-Shortcut : Enabled Advertise-Tunnel-Link : Disabled Export Limit : 0 Export Limit Log Percent : 0 Total Exp Routes : 0 =============================================================================== *A:MPLS_R6#

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

55/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

4. In OSPF, enable rsvp-shortcuts. Use the show router ospf status command to verify that rsvp-shortcut is enabled. An example is shown below.

5. View your EDGE router’s route table again. An example is shown below. a. Do you see any routes listed as tunneled via RSVP? b. What does the route table list as these routes’ next-hop interface? c. Why does your router choose RSVP tunnels over IGP routes for this traffic?

A:MPLS_R6# show router route-table =============================================================================== Route Table (Router: Base) =============================================================================== Dest Prefix Type Proto Age Pref Next Hop[Interface Name] Metric ------------------------------------------------------------------------------10.1.2.0/27 Remote OSPF 03d08h27m 10 10.2.6.2 200 10.1.3.0/27 Remote OSPF 03d03h32m 10 10.2.6.2 300 10.1.4.0/27 Remote OSPF 03d08h27m 10 10.2.6.2 300 10.1.5.0/27 Remote OSPF 03d03h08m 10 10.2.6.2 300 10.2.3.0/27 Remote OSPF 03d03h32m 10 10.2.6.2 200 10.2.4.0/27 Remote OSPF 03d01h09m 10 10.2.6.2 200 10.2.6.0/27 Local Local 03d08h27m 0 PE2-P2 0 10.3.4.0/27 Remote OSPF 03d08h27m 10 10.2.6.2 300 10.3.7.0/24 Remote OSPF 00h19m33s 10 10.1.5.1 300 10.3.7.0/27 Remote OSPF 03d03h32m 10 10.2.6.2 300 10.4.8.0/27 Remote OSPF 20h23m54s 10 10.2.6.2 300 10.6.10.0/27 Local Local 01h02m21s 0 toR10 0 10.10.10.1/32 Remote OSPF 03d03h08m 10 10.2.6.2 200 10.10.10.2/32 Remote OSPF 03d08h27m 10 10.2.6.2 100 10.10.10.3/32 Remote OSPF 03d03h32m 10 10.2.6.2 200 10.10.10.4/32 Remote OSPF 20h23m54s 10 10.2.6.2 200 10.10.10.5/32 Remote OSPF 03d03h08m 10 10.2.6.2 300 10.10.10.6/32 Local Local 00h59m27s 0 system 0 10.10.10.7/32 Remote OSPF 00h19m33s 10 10.10.10.7 (tunneled:RSVP:1) 300 10.10.10.8/32 Remote OSPF 20h23m55s 10 10.2.6.2 300 10.10.10.10/32 Remote OSPF 00h57m23s 10 10.6.10.10 1000 ------------------------------------------------------------------------------No. of Routes: 21 ===============================================================================

56/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

NOTE: The route table will likely show other tunneled prefixes as well. Any CSPF-enabled LSPs are shortcut eligible, and so the IGP will use those for forwarding traffic to its configured FECs.

6. Use the tools dump router ospf route-table detail command to view the IGP shortcut tunnel information. An example is shown below.

---------------------------------------------------------------------------OSPFv2 Routing Table (detailed) ---------------------------------------------------------------------------Destination Type(Dest) Cost[E2] NHIF NHIP Stat Other Tunnel-Information ---------------------------------------------------------------------------10.10.10.7/32 IA (HOST) 300 1 10.10.10.7 N (R) A=0.0.0.0 IGP-Shortcut tunnel path 10.10.10.7/0 IA (RTR) 300 1 10.10.10.7 N (N) A=0.0.0.0 IGP-Shortcut tunnel path ---------------------------------------------------------------------------2 OSPFv2 routes found (2 paths)

7. Turn off RSVP-shortcuts with the configure router ospf no rsvp-shortcut command.

Lab 5

Review Questions

1. What type of LSA does OSPF use to advertise traffic engineering information? 2. What top-level TLV does a router automatically send out, once you enable traffic engineering support in the IGP? 3. Once you enable traffic engineering support on a router located in OSPF area 0, that router would see opaque LSAs from what other areas? 4. If you configure an LSP to include green but exclude red links, will it use a link assigned to the red, green, and blue admin groups? 5. The opaque LSA represents a link’s admin group membership in what format(s)? 6. If the head end router chooses a path other than the IGP best path for a loose path LSP, how does it inform the downstream routers of this decision? 7. If the primary path fails on a colored LSP, can the LSP recover on an alternate path? 8. If you configure admin groups on a router, and build an LSP without specifying link admin group membership, can the LSP become operational? 9. In what top-level TLV does the router advertise admin group membership? 10. Why must you use LDP over RSP tunnels when traffic engineering LSPs between OSPF areas? 11. In addition to RSVP LSPs, what must you configure on each hop to support LDP over RSVP tunneling? 12. For MAM and RDM, what are the default Class-Types and te-classes? 13. Assuming two CTs, CT0 and CT1, each assigned 30M on a 100M link, and two LSPs, each reserving 10M of bandwidth, how much bandwidth is left unreserved for each CT? 14. Assuming RDM, and under the following conditions, which LSPs are operational once all are configured correctly, in numerical order, and turned up using loose hops?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

57/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R6# tools dump router ospf route-table 10.10.10.7/32 detail

Single gigabit link, no over or under subscription



CT0=15, CT1=30



TE0=CT0, priority 1



TE1=CT0, priority 0



TE2=CT1, priority 1



TE3=CT1, priority 0



LSP 1, BW 100, CT 0, priority 0,0



LSP 2, BW 150, CT 0, priority 1, 1



LSP 3, BW 200, CT 1, priority 0,0



LSP 4, BW 150, CT 1, priority 1,1

15. What benefit does an LSP shortcut provide over a traditional IGP route? 16. Once you have configured RSVP for IGP shortcuts between two edge routers, what networks will your head end router be able to reach via the tunnel’s tail end? 17. If a router has both an IGP shortcut and a standard IGP route to a destination network in its RIB, which will it place in its FIB?

58/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute



Lab 6

RSVP-TE Resiliency Features

Objective These exercises introduce LSP resiliency features that RSVP-TE supports in an MPLS domain. You will configure and observe the behavior of primary and secondary LSP paths using strict and loose hop definitions, shared risk link groups (SRLG), fast reroute one-to-one, and facility bypass.

A:MPLS_R1# configure router mpls lsp fast-reroute one-toone|facility A:MPLS_R1# show router mpls status A:MPLS_R1# show router mpls lsp path detail A:MPLS_R1# show router mpls lsp transit A:MPLS_R1# show router mpls lsp transit detail A:MPLS_R1# show router rsvp session detail A:MPLS_R1# show router mpls bypass-tunnel detail A:MPLS_R1# show router mpls bypass-tunnel protected-lsp detail A:MPLS_R1# show router rsvp session bypass-tunnel A:MPLS_R1# show router rsvp session bypass-tunnel detail A:MPLS_R1# oam lsp-ping A:MPLS_R1# configure router ldp targeted-session peer tunneling A:MPLS_R1# configure router mpls interface A:MPLS_R1# configure router mpls interface srlg-group A:MPLS_R1# configure router mpls lsp A:MPLS_R1# configure router mpls lsp cspf A:MPLS_R1# configure router mpls lsp primary A:MPLS_R1# configure router mpls lsp secondary A:MPLS_R1# configure router mpls lsp secondary srlg A:MPLS_R1# configure router mpls lsp secondary standby A:MPLS_R1# configure router mpls lsp to A:MPLS_R1# configure router mpls no shutdown A:MPLS_R1# configure router mpls path A:MPLS_R1# configure router mpls path hop [strict | loose] A:MPLS_R1# configure router mpls srlg-group value A:MPLS_R1# configure router ospf area interface interface-type point-to-point Table 6-1: Lab 6 Configuration and Verification Commands

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

59/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Lab 6 Command list

Lab 6 Command list (cont’d) A:MPLS_R1# configure router ospf rsvp-shortcut A:MPLS_R1# show router mpls path A:MPLS_R1# show router mpls lsp [detail] A:MPLS_R1# show router mpls lsp path detail A:MPLS_R1# show router mpls lsp terminate detail

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls lsp transit detail A:MPLS_R1# show router ospf area detail A:MPLS_R1# show router ospf status A:MPLS_R1# oam lsp-trace Table 6-1: Lab 6 Configuration and Verification Commands (cont’d)

60/104

Figure 6-1: Enabling Primary and Secondary LSP Tunnels

Exercise This lab consists of three phases. In phase I, you will configure an LSP with a primary and secondary path, and examine the results. In phase II, you will reconfigure the Secondary path to “standby” mode and again examine the results. In phase III, you will shut down an interface along the primary path and watch the secondary path back up the downed primary path. Phase I 1. Configure an LSP with either your CORE or EDGE router as the tunnel head, and the diagonally connected CORE router as the tail end. For example, if you are in Pod 3, router R3 or R7 would be your tunnel head, and the tail end would be router R2. Follow these steps: a. Configure a strict hop path from your CORE or EDGE router, through the clockwise CORE router, that terminates on the diagonally opposite CORE router. For example, if you are on router R3 or R7, use router R1 in the path to get to router R2. Note that if you choose to start on your EDGE router, your CORE router is an additional hop entry. b. Configure an LSP originating on the same CORE or EDGE router and terminating on the diagonally connected CORE router, using the strict path you just configured as the primary path, and reusing your loose path as the secondary path. Do not configure the standby

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

61/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

6.1. Enabling Primary and Secondary LSP Tunnels

option for the secondary path, and do not allocate bandwidth, set hop-limits or admingroup inclusions/exclusions, or enable CSPF. 2. Perform the verification steps below, then continue with phase two of the lab. Phase II 1. Configure the secondary path as a standby path to enable “hot standby” mode.

Phase III 1. Ask the person using the clockwise CORE router to shut down the interface between their router and your tunnel tail end. For example, if you are on router R3, the router R1 team will shut down their R1-R2 interface. The secondary link should become the new “active link.” Use the show router mpls lsp detail command to verify. 2. Again, perform the verification steps below to confirm that the secondary path has become the active path. 3. Once you have confirmed the path, ask your neighbor to bring back up the interface and ensure that the primary path is now the active path.

Verification 1. Use the show router mpls path command to confirm that the paths you have configured are administratively up, and that the hops have been defined correctly. An example of the output is shown below. a. What is the difference between “Strict” and “Loose” paths? A:MPLS_R1# show router mpls path =============================================================================== MPLS Path: =============================================================================== Path Name Adm Hop Index IP Address Strict/Loose ------------------------------------------------------------------------------loose Up no hops n/a n/a toR4strict

Up

1 2

10.10.10.2 10.10.10.4

Strict Strict

------------------------------------------------------------------------------Paths : 2 ===============================================================================

2. On your CORE and EDGE router, use the show router mpls lsp command to verify that your LSP is operationally up. Also, note that the LSP is an Originating LSP. An example of the output is shown below. A:MPLS_R1# show router mpls lsp =============================================================================== MPLS LSPs (Originating) =============================================================================== LSP Name To Fastfail Adm Opr Config

62/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

2. Perform the verification steps below and note the change in the secondary path state. Continue with phase three of the lab.

------------------------------------------------------------------------------... toR4-lsp1 10.10.10.4 No Up Up ------------------------------------------------------------------------------LSPs : 2 ===============================================================================

3. On your CORE router, determine whether there are any transiting or terminating LSPs. An example of the output is shown below.

b. From where do the terminating LSPs originate? A:MPLS_R1# show router mpls lsp transit =============================================================================== MPLS LSPs (Transit) =============================================================================== Legend : @ - Active Detour =============================================================================== From To In I/F Out I/F State LSP Name ------------------------------------------------------------------------------10.10.10.5 10.10.10.8 1/1/1 1/1/4 Up toR8-lsp1::loose 10.10.10.5 10.10.10.8 1/1/1 1/1/4 Up toR8-lsp3::loose 10.10.10.5 10.10.10.8 1/1/1 1/1/3 Up toR8-lsp2::loose ------------------------------------------------------------------------------LSPs : 3 =============================================================================== A:MPLS_R1# show router mpls lsp terminate =============================================================================== MPLS LSPs (Terminate) =============================================================================== Legend : @ - Active Detour =============================================================================== From To In I/F Out I/F State LSP Name ------------------------------------------------------------------------------10.10.10.5 10.10.10.1 1/1/1 n/a Up R5-R1::loose ------------------------------------------------------------------------------LSPs : 1 ===============================================================================

4. Use the show router mpls lsp path detail command to view the path used, and to show that the secondary LSP had not been signaled and is, therefore, down. An example is shown below. a. What is the operational state of the Primary path? b. What is the operational state of the Secondary path? Explain. A:MPLS_R1# show router mpls lsp "toR4-lsp1" path detail =============================================================================== MPLS LSP toR4-lsp1 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR4R4-lsp4 Path loose ------------------------------------------------------------------------------LSP Name : toR4-lsp1 Path LSP ID : 10754

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

63/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

a. From where do the transiting LSPs originate?

To : Oper State : Path Type : Path Oper : Out Label : Path Dn Time: Retry Timer : NextRetryIn : Hold Priori*: Oper Bw Class Type

10.10.10.4 Up Secondary Down n/a 0d 00:54:37 30 sec 0 sec 0

: 0 Mbps : 0

Record Label: Neg MTU : Oper Metric : Exclude Grps: None CSPF Queries: Failure Node:

Record 0 65535 0 n/a

CSPF Metric : 0

------------------------------------------------------------------------------LSP toR4-lsp4 Path toR4strict ------------------------------------------------------------------------------LSP Name : toR4-lsp1 Path LSP ID : 10752 From : 10.10.10.1 To : 10.10.10.4 Adm State : Up Oper State : Up Path Name : toR4strict Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/1/2 Out Label : 131066 Path Up Time: 0d 01:15:57 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 65535 Include Grps: Exclude Grps: None None Path Trans : 1 CSPF Queries: 0 Failure Code: noError Failure Node: n/a ExplicitHops: 10.10.10.2 -> 10.10.10.4 Actual Hops : 10.1.2.1(10.10.10.1) Record Label : N/A -> 10.1.2.2(10.10.10.2) Record Label : 131066 -> 10.2.4.4(10.10.10.4) Record Label : 131067 ResigEligib*: False LastResignal: n/a CSPF Metric : 0 =============================================================================== * indicates that the corresponding row element may have been truncated.

64/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

From : 10.10.10.1 Adm State : Up Path Name : loose Path Admin : Up OutInterface: n/a Path Up Time: 0d 00:00:00 Retry Limit : 0 RetryAttempt: 0 SetupPriori*: 7 Preference : n/a Bandwidth : No Reservation Hop Limit : 255 Oper CT : None Record Route: Record Oper MTU : 0 Adaptive : Enabled Include Grps: None Path Trans : 2 Failure Code: noError ExplicitHops: No Hops Specified Actual Hops : No Hops Specified Srlg : Disabled ResigEligib*: False LastResignal: n/a

5. Connect to your clockwise neighbor’s CORE router, the one in your Primary path. Use the show router mpls lsp transit detail command to show that this router is in your LSP’s path and to view the labels assigned. An example output is shown below. a. In which direction is the “In Interface” pointing? b. In which direction is the “Out Interface” pointing? c. Which router’s address is the “Previous Hop” address?

e. In Phase III, do you see your LSP transiting on your neighbor’s CORE router? Why? A:MPLS_R2# show router mpls lsp transit detail =============================================================================== MPLS LSPs (Transit) (Detail) =============================================================================== ------------------------------------------------------------------------------LSP toR4-lsp1::toR4strict ------------------------------------------------------------------------------From : 10.10.10.1 To : 10.10.10.4 State : Up SetupPriority : 7 Hold Priority : 0 Class Type : 0 In Interface : 1/1/2 In Label : 131052 Out Interface : 1/1/3 Out Label : 131048 Previous Hop : 10.1.2.1 Next Hop : 10.2.4.4 Reserved BW : 0 Kbps ===============================================================================

6. Use the show router mpls lsp terminate detail command on the destination router (in this case, if you are in Pod 3, the destination router is router R2). An example output is shown below. a. Is there any difference in this output in Phase II? b. Is there any difference in this output in Phase III? A:MPLS_R4# show router mpls lsp terminate detail ===============================================================================

MPLS LSPs (Terminate) (Detail)

===============================================================================

------------------------------------------------------------------------------LSP toR4-lsp1::toR4R4strict ------------------------------------------------------------------------------From : 10.10.10.1 To : 10.10.10.4 State : Up SetupPriority : 7 Hold Priority : 0 Class Type : 0 In Interface : 1/1/3 In Label : 131048 Previous Hop : 10.2.4.2 -------------------------------------------------------------------------------

7. On your CORE or EDGE router, verify the RSVP sessions that are established. a. How many RSVP sessions are there, and what LSPs do they correspond to? b. What identifies the LSP and what identifies the path?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

65/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

d. Is there any difference in this output in Phase II?

Figure 6-2: Enabling SRLG Standby LSPs

Exercise In this exercise, you will configure an LSP originating on your EDGE router and terminating on the diagonally opposite EDGE router. You will configure two loose paths: one as a primary path, and the second as a standby path. You will initially place all core links in SRLG orange and observe the path the LSP chooses for both the primary and secondary paths. You will then modify the SRLG configuration and observe the LSP’s behavior as you disable and re-enable the cross link core interfaces. 1. Use the show router ospf status command on both your routers to verify that traffic engineering is still enabled. 2. On both your EDGE and CORE routers, create an SRLG group “orange”, with a value of 1. 3. Place all your CORE router core MPLS interfaces in the orange SRLG group. A:MPLS_R1# configure router mpls srlg-group orange value 1 A:MPLS_R1# configure router mpls interface toR2 srlg-group orange A:MPLS_R1# configure router mpls interface toR3 srlg-group orange A:MPLS_R1# configure router mpls interface toR4 srlg-group orange

66/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

6.2. Using SRLG for Path Resiliency

4. Create an LSP with the head end on your EDGE router, and the tail end on the diagonally opposite EDGE router. Be sure to enable CSPF, but do not set any LSP constraints. 5. Create two loose paths: one will be the primary path, the other the standby path. Assign the paths to your LSP. You may use your existing loose path for one of the two LSP path assignments. 6. Make the secondary path a standby path, and enable SRLG on the standby path. The commands used are shown below. A:MPLS_R5# configure router mpls path toR8loose no shutdown A:MPLS_R5# configure router mpls path toR8standby no shutdown A:MPLS_R5# configure router mpls lsp toR8-lsp6 A:MPLS_R5>config>router>mpls>lsp$ to 10.10.10.8 A:MPLS_R5>config>router>mpls>lsp$ cspf A:MPLS_R5>config>router>mpls>lsp$ primary toR8loose A:MPLS_R5>config>router>mpls>lsp>primary$ back A:MPLS_R5>config>router>mpls>lsp# secondary toR8standby A:MPLS_R5>config>router>mpls>lsp>secondary$ standby A:MPLS_R5>config>router>mpls>lsp>secondary$ srlg A:MPLS_R5>config>router>mpls>lsp>secondary$ back A:MPLS_R5>config>router>mpls>lsp# no shutdown

7. Verify the LSP’s status with the show router mpls lsp path detail command. An example is shown below. a. Which path does the router choose for the primary path? Why? b. Is secondary path operational? Why or why not? c. Why did the router not use the same path for both? A:MPLS_R5# show router mpls lsp "toR8-lsp6" path detail =============================================================================== MPLS LSP toR8-lsp6 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== LSP Name : toR8-lsp6 Path LSP ID : 10766 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toR8loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131046 Path Up Time: 0d 00:00:02 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit :

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

67/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R5# configure router mpls srlg-group orange value 1

STOP: Wait for everyone to complete the preceding steps before continuing.

68/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 300 Include Grps: Exclude Grps: None None Path Trans : 9 CSPF Queries: 4 Failure Code: noError Failure Node: n/a ExplicitHops: No Hops Specified Actual Hops : 10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) Record Label : 131046 -> 10.1.4.4(10.10.10.4) Record Label : 131044 -> 10.4.8.8(10.10.10.8) Record Label : 131058 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.4.4 -> 10.4.8.8 ResigEligib*: False LastResignal: n/a CSPF Metric : 300 ------------------------------------------------------------------------------LSP toR8-lsp6 Path toR8srlg ------------------------------------------------------------------------------LSP Name : toR8-lsp6 Path LSP ID : 10768 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toR8srlg Path Type : Standby Path Admin : Up Path Oper : Down OutInterface: n/a Out Label : n/a Path Up Time: 0d 00:00:00 Path Dn Time: 0d 00:00:33 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 1 NextRetryIn : 29 sec SetupPriori*: 7 Hold Priori*: 0 Preference : 255 Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Oper CT : None Record Route: Record Record Label: Record Oper MTU : 0 Neg MTU : 0 Adaptive : Enabled Oper Metric : 65535 Include Grps: Exclude Grps: None None Path Trans : 6 CSPF Queries: 21 Failure Code: noCspfRouteToDestination Failure Node: 10.10.10.5 ExplicitHops: No Hops Specified Actual Hops : No Hops Specified ComputedHops: No Hops Specified Srlg : Enabled SrlgDisjoint: False ResigEligib*: False LastResignal: n/a CSPF Metric : 0 =============================================================================== * indicates that the corresponding row element may have been truncated.

8. Once all pods have completed the preceding procedures, remove the CORE cross connect links from the orange SRLG group, and create a new blue SRLG group on all routers with a value of 2. Place the cross connect interfaces in this new group.

9. Shutdown, then turn up your LSP. Again, verify the LSP status. An example is shown below. a. Does the primary path change? b. What happens to the standby path? A:MPLS_R5# show router mpls lsp "toR8-lsp6" path detail =============================================================================== MPLS LSP toR8-lsp6 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toR8-lsp6 Path toR8loose ------------------------------------------------------------------------------LSP Name : toR8-lsp6 Path LSP ID : 10770 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toR8loose Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131048 Path Up Time: 0d 00:03:42 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 300 Include Grps: Exclude Grps: None None Path Trans : 11 CSPF Queries: 5 Failure Code: noError Failure Node: n/a ExplicitHops: No Hops Specified Actual Hops : 10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) Record Label : 131048 -> 10.1.4.4(10.10.10.4) Record Label : 131045 -> 10.4.8.8(10.10.10.8) Record Label : 131068 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.4.4 -> 10.4.8.8 ResigEligib*: False LastResignal: n/a CSPF Metric : 300

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

69/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

NOTE: If assigning one interface to an SRLG, assign them all. Though the secondary standby can come up if only some links are SRLG members, this behavior is unpredictable, and in some cases the primary and standby end up sharing links. Best practice is to define link SRLG memberships throughout the MPLS domain.

10. On your CORE router, view the SRLG membership information the router advertises in opaque LSAs. An example is shown below. A:MPLS_R1>config>router>mpls# detail

show router ospf opaque-database adv-router 10.10.10.1

=============================================================================== OSPF Opaque Link State Database (Type : All) (Detailed) =============================================================================== ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.1 LSA Type : Area Opaque Sequence No : 0x8000002c Checksum : 0xbb2a Age : 1328 Length : 28 Options : E Advertisement : ROUTER-ID TLV (0001) Len 4 : 10.10.10.1 ------------------------------------------------------------------------------Opaque LSA ------------------------------------------------------------------------------Area Id : 0.0.0.0 Adv Router Id : 10.10.10.1 Link State Id : 1.0.0.2 LSA Type : Area Opaque

70/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

------------------------------------------------------------------------------LSP toR8-lsp6 Path toR8srlg ------------------------------------------------------------------------------LSP Name : toR8-lsp6 Path LSP ID : 10768 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toR8srlg Path Type : Standby Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131047 Path Up Time: 0d 00:05:47 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : 255 Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 400 Include Grps: Exclude Grps: None None Path Trans : 7 CSPF Queries: 35 Failure Code: noError Failure Node: n/a ExplicitHops: No Hops Specified Actual Hops : 10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) Record Label : 131047 -> 10.1.3.3(10.10.10.3) Record Label : 131071 -> 10.3.4.4(10.10.10.4) Record Label : 131044 -> 10.4.8.8(10.10.10.8) Record Label : 131062 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.3.3 -> 10.3.4.4 -> 10.4.8.8 Srlg : Enabled SrlgDisjoint: True ResigEligib*: False LastResignal: n/a CSPF Metric : 400 =============================================================================== * indicates that the corresponding row element may have been truncated.

...

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

71/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Sequence No : 0x8000000c Checksum : 0x73a6 Age : 935 Length : 132 Options : E Advertisement : LINK INFO TLV (0002) Len 108 : Sub-TLV: 1 Len: 1 LINK_TYPE : 1 Sub-TLV: 2 Len: 4 LINK_ID : 10.10.10.2 Sub-TLV: 3 Len: 4 LOC_IP_ADDR : 10.1.2.1 Sub-TLV: 4 Len: 4 REM_IP_ADDR : 10.1.2.2 Sub-TLV: 5 Len: 4 TE_METRIC : 100 Sub-TLV: 6 Len: 4 MAX_BDWTH : 1000000 Kbps Sub-TLV: 7 Len: 4 RSRVBL_BDWTH : 1000000 Kbps Sub-TLV: 8 Len: 32 UNRSRVD_CLS0 : P0: 1000000 Kbps P1: 1000000 Kbps P2: 1000000 Kbps P3: 1000000 Kbps P4: 1000000 Kbps P5: 1000000 Kbps P6: 1000000 Kbps P7: 1000000 Kbps Sub-TLV: 9 Len: 4 ADMIN_GROUP : 00000002 (2) Sub-TLV: 16 Len: 4 SRLG_LIST : Num SRLGs: 1 1

Figure 6-3: Enabling FRR Facility Bypass Protection

Exercise Figure 6-3 shows the primary LSPs from Pod 3’s perspective. Each pod will create two strict path LSPs, one from their EDGE to the diagonally opposite EDGE, and another from their CORE to the diagonally opposite CORE router, both transiting the clockwise CORE router. For example, if you are on Pod 3’s EDGE router, then this LSP originates at router R7, travels clockwise through routers R3, R1, and R2, and terminates on router R6. 1. On your CORE and EDGE routers, create the paths to the diagonally opposite, corresponding routers, following the path specified above. Use strict hops including each downstream router. If you configured a CORE-CORE strict path in Lab 6.1, you may re-use that here. 2. Create the LSPs using the path you just created as the Primary path. Enable facility FRR on the LSP. Do not allocate bandwidth, hop-limit, or admin-group inclusion/exclusion. Remember that you must enable CSPF on the LSP. 3. Verify the configuration with the verification section below. 4. Once your have verified your configuration, ask the person working on the clockwise CORE router to shut down their interface leading towards the LSP termination point. For example, if your LSP originates on router R3, then the Pod 1 team should shut down their R1-R2 interface.

72/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

6.3. FRR Facility Backup Protection

5. Use the verification steps below to confirm the LSP in now using the backup path. 6. Once you have confirmed the backup path, the administrator of your “downed” link may again bring up the interface.

Verification =============================================================================== MPLS Status =============================================================================== Admin Status : Up Oper Status : Up Oper Down Reason : n/a FR Object : Enabled Resignal Timer : Disabled Hold Timer : 1 seconds Next Resignal : N/A Srlg Frr : Disabled Srlg Frr Strict : Disabled Dynamic Bypass : Enabled User Srlg Database : Disabled Least Fill Min Thd.: 5 percent LeastFill ReoptiThd: 10 percent Short. TTL Prop Lo*: Enabled Short. TTL Prop Tr*: Enabled Sec FastRetryTimer : Disabled

Static LSP FR Timer: 30 seconds

LSP Counts Originate Transit Terminate ------------------------------------------------------------------------------Static LSPs 0 0 0 Dynamic LSPs 4 2 1 Detour LSPs 0 0 0 =============================================================================== * indicates that the corresponding row element may have been truncated.

7. From your EDGE router, verify that your LSP is making use of the correct path and that the hops are accurately represented. a. Which routers are used as Node backup? b. Which router is used as a Link backup? A:MPLS_R5# show router mpls lsp path detail =============================================================================== MPLS LSP toPE4-lsp5 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toPE4-lsp5 Path toPE4strict ------------------------------------------------------------------------------LSP Name : toPE4-lsp5 Path LSP ID : 58886 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toPE4strict Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131051 Path Up Time: 0d 00:07:09 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

73/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls status

8. On your CORE router, confirm that both Protected LSPs are backed up by the one bypass tunnel. An example is shown below. a. Which LSPs do the bypass tunnels protect? b. What path does each bypass tunnel take? A:MPLS_R1# show router mpls bypass-tunnel detail =============================================================================== MPLS Bypass Tunnels (Detail) =============================================================================== ------------------------------------------------------------------------------bypass-node10.10.10.2 ------------------------------------------------------------------------------To : 10.1.4.4 State : Up Out I/F : 1/1/4 Out Label : 131067 Up Time : 0d 00:11:03 Active Time : n/a Reserved BW : 0 Kbps Protected LSP Count : 2 Type : Dynamic SetupPriority : 7 Hold Priority : 0 Class Type : 0 Actual Hops : 10.1.4.1 -> 10.1.4.4 ===============================================================================

9. On the CORE router, view the LSPs that are protected by the bypass. An example is shown on the following page. a. What is the Downstream Label?

74/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9194 Neg MTU : 9194 Adaptive : Enabled Oper Metric : 400 Include Grps: Exclude Grps: None None Path Trans : 7 CSPF Queries: 53 Failure Code: noError Failure Node: n/a ExplicitHops: 10.10.10.1 -> 10.10.10.2 -> 10.10.10.4 -> 10.10.10.8 Actual Hops : 10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) @ n Record Label : 131051 -> 10.1.2.2(10.10.10.2) @ Record Label : 131052 -> 10.2.4.4(10.10.10.4) Record Label : 131065 -> 10.4.8.8(10.10.10.8) Record Label : 131070 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.2.2 -> 10.2.4.4 -> 10.4.8.8 ResigEligib*: False LastResignal: n/a CSPF Metric : 400 =============================================================================== * indicates that the corresponding row element may have been truncated.

=============================================================================== MPLS Bypass Tunnels (Detail) =============================================================================== ------------------------------------------------------------------------------bypass-node10.10.10.2 ------------------------------------------------------------------------------To : 10.1.4.4 State : Up Out I/F : 1/1/4 Out Label : 131067 Up Time : 0d 00:18:04 Active Time : n/a Reserved BW : 0 Kbps Protected LSP Count : 2 Type : Dynamic SetupPriority : 7 Hold Priority : 0 Class Type : 0 Actual Hops : 10.1.4.1 -> 10.1.4.4 Protected LSPs LSP Name : From : Avoid Node/Hop : Bandwidth :

toP4-lsp4::toP4strict 10.10.10.1 To 10.10.10.2 Downstream Label 0 Kbps

LSP Name From Avoid Node/Hop Bandwidth

toPE4-lsp5::toPE4strict 10.10.10.5 To 10.10.10.2 Downstream Label 0 Kbps

: : : :

: 10.10.10.4

: 131070

: 10.10.10.8

: 131065

===============================================================================

10. On your CORE router, view the RSVP session for the bypass tunnel. An example is shown below. a. Which router is the PLR? b. Which router is the MP? A:MPLS_R1# show router rsvp session bypass-tunnel =============================================================================== RSVP Sessions =============================================================================== From To Tunnel LSP Name State ID ID ------------------------------------------------------------------------------10.10.10.1 10.1.4.4 63488 2 bypass-node10.10.10.2 Up ------------------------------------------------------------------------------Sessions : 1 ===============================================================================

11. On your CORE router, use the show router rsvp session bypass-tunnel detail command to discover more specific information about your bypass tunnel. An example is shown on the following page. a. What is the Style type of the Bypass tunnel? b. Why is there only 1 Out Label displayed?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

75/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls bypass-tunnel protected-lsp detail

=============================================================================== RSVP Sessions (Detailed) =============================================================================== ------------------------------------------------------------------------------LSP : bypass-node10.10.10.2 ------------------------------------------------------------------------------From : 10.10.10.1 To : 10.1.4.4 Tunnel ID : 63488 LSP ID : 2 Style : FF State : Up Session Type : Bypass Tunnel In Interface : n/a Out Interface : 1/1/4 In Label : n/a Out Label : 131067 Previous Hop : n/a Next Hop : 10.1.4.4 SetupPriority : 7 Hold Priority : 0 Class Type : 0 SubGrpOrig ID : 0 SubGrpOrig Addr: 0.0.0.0 P2MP ID : 0 Path Recd Resv Recd

: 0 : 43

Path Sent Resv Sent

: 42 : 0

Summary messages: SPath Recd : 0 SPath Sent : 0 SResv Recd : 0 SResv Sent : 0 ===============================================================================

12. On your CORE router use the show router mpls bypass-tunnel protected-lsp detail command to determine what bypass tunnel is protecting the LSP you configured from your CORE router to the diagonally connected CORE router. An example output is shown below. This command is useful when there are many bypass tunnels on a router. A:MPLS_R1# show router mpls bypass-tunnel protected-lsp toP4-lsp4::toP4strict detail =============================================================================== MPLS Bypass Tunnels (Detail) =============================================================================== ------------------------------------------------------------------------------bypass-node10.10.10.2 ------------------------------------------------------------------------------To : 10.1.4.4 State : Up Out I/F : 1/1/4 Out Label : 131067 Up Time : 0d 00:23:55 Active Time : n/a Reserved BW : 0 Kbps Protected LSP Count : 2 Type : Dynamic SetupPriority : 7 Hold Priority : 0 Class Type : 0 Actual Hops : 10.1.4.1 -> 10.1.4.4 Protected LSPs LSP Name : From : Avoid Node/Hop : Bandwidth :

toP4-lsp4::toP4strict 10.10.10.1 To 10.10.10.2 Downstream Label 0 Kbps

: 10.10.10.4 : 131070

===============================================================================

13. On your CORE router view the transiting LSPs. An example is shown on the following page. a. Which LSPs transit your CORE router?

76/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router rsvp session bypass-tunnel detail

14. Ask the person working on the CORE router clockwise from you to shutdown the interface leading away from you towards the LSP termination point. For example, if you are on Pod 3, the person on Pod 1 should shutdown the interface between routers R1 and R2. 15. Verify that the LSPs you configured on your EDGE and CORE routers are using the bypass tunnel with the show router mpls lsp path detail command, and by performing an lsp-trace. An example is shown below. a. Why does the lsp-trace result show the LSP path returning to your CORE router before going to the diagonally opposite CORE router? A:MPLS_R5# show router mpls lsp "toPE4-lsp5" path detail =============================================================================== MPLS LSP toPE4-lsp5 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toPE4-lsp5 Path toPE4strict ------------------------------------------------------------------------------LSP Name : toPE4-lsp5 Path LSP ID : 58886 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toPE4strict Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131051 Path Up Time: 0d 00:32:10 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0 Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9194 Neg MTU : 9194 Adaptive : Enabled Oper Metric : 400 Include Grps: Exclude Grps: None None Path Trans : 7 CSPF Queries: 64 Failure Code: tunnelLocallyRepaired Failure Node: 10.10.10.2 ExplicitHops: 10.10.10.1 -> 10.10.10.2 -> 10.10.10.4 -> 10.10.10.8 Actual Hops :

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

77/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R1# show router mpls lsp transit =============================================================================== MPLS LSPs (Transit) =============================================================================== Legend : @ - Active Detour =============================================================================== From To In I/F Out I/F State LSP Name ------------------------------------------------------------------------------10.10.10.2 10.1.4.4 1/1/2 1/1/4 Up bypass-link10.2.4.4 10.10.10.5 10.10.10.8 1/1/1 1/1/2 Up toPE4-lsp5::toPE4strict ------------------------------------------------------------------------------LSPs : 2 ===============================================================================

A:MPLS_R5# oam lsp-trace "toR4-lsp3" lsp-trace to toR4-lsp3: 0 hops min, 0 hops max, 116 byte packets 1 10.10.10.1 rtt=2.14ms rc=8(DSRtrMatchLabel) 2 10.10.10.2 rtt=2.11ms rc=8(DSRtrMatchLabel) 3 10.10.10.1 rtt=2.91ms rc=8(DSRtrMatchLabel) 4 10.10.10.4 rtt=3.21ms rc=8(DSRtrMatchLabel) 5 10.10.10.8 rtt=3.33ms rc=3(EgressRtr) A:MPLS_R2# show router rsvp session bypass-tunnel =============================================================================== RSVP Sessions =============================================================================== From To Tunnel LSP Name State ID ID ------------------------------------------------------------------------------10.10.10.2 10.1.4.4 63488 2 bypass-link10.2.4.4 Up ------------------------------------------------------------------------------Sessions : 1 ===============================================================================

16. Turn back up the interfaces you shut down in step 14.

78/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) @ n Record Label : 131051 -> 10.1.2.2(10.10.10.2) @ # Record Label : 131052 -> 10.1.4.4(10.10.10.4) Record Label : 131065 -> 10.4.8.8(10.10.10.8) Record Label : 131070 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.2.2 -> 10.2.4.4 -> 10.4.8.8 ResigEligib*: False LastResignal: n/a CSPF Metric : 400 In Prog MBB : MBB Type : GlobalRevert NextRetryIn : 20 sec Started At : 06/26/2010 06:34:24 RetryAttempt: 11 FailureCode: noCspfRouteToDestination Failure Node: 10.10.10.5 =============================================================================== * indicates that the corresponding row element may have been truncated.

Figure 6-4: Enabling Primary and Secondary LSP Tunnels

Exercise This lab re-uses the two LSPs created in the previous lab (one LSP from your EDGE router to the EDGE router of the diagonally connected Pod, and one LSP from your CORE router to the CORE router of the diagonally connected Pod. 1. Change both LSPs’ fast reroute configuration to One-to-One. 2. Verify the configuration by using the verification section below. 3. Once your have verified your configuration, ask the person working on the clockwise CORE router to shut down their interface leading towards the LSP termination point. For example, if your LSP originates on router R3, the Pod 1 team should shut down their R1-R2 interface. 4. Use the verification steps below to confirm that the LSP is now using the detour path. 5. Once you have confirmed the detour path, the administrator of your “downed” link may again bring up the interface.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

79/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

6.4. FRR One-to-One Protection

Verification 1. View your LSP’s administrative and operational status. An example is shown below.

=============================================================================== MPLS Status =============================================================================== Admin Status : Up Oper Status : Up Oper Down Reason : n/a FR Object : Enabled Resignal Timer : Disabled Hold Timer : 1 seconds Next Resignal : N/A Srlg Frr : Disabled Srlg Frr Strict : Disabled Dynamic Bypass : Enabled User Srlg Database : Disabled Least Fill Min Thd.: 5 percent LeastFill ReoptiThd: 10 percent Short. TTL Prop Lo*: Enabled Short. TTL Prop Tr*: Enabled Sec FastRetryTimer : Disabled

Static LSP FR Timer: 30 seconds

LSP Counts Originate Transit Terminate ------------------------------------------------------------------------------Static LSPs 0 0 0 Dynamic LSPs 1 0 1 Detour LSPs 0 0 0 =============================================================================== * indicates that the corresponding row element may have been truncated.

2. Verify that your LSP is on the correct path and that the hops are as you provisioned them. An example is shown below. a. Which routers show a Detour Available? b. Which routers show “Node Protect”? A:MPLS_R5# show router mpls lsp "toPE4-lsp5" path detail =============================================================================== MPLS LSP toPE4-lsp5 Path (Detail) =============================================================================== Legend : @ - Detour Available # - Detour In Use b - Bandwidth Protected n - Node Protected s - Soft Preemption =============================================================================== ------------------------------------------------------------------------------LSP toPE4-lsp5 Path toPE4strict ------------------------------------------------------------------------------LSP Name : toPE4-lsp5 Path LSP ID : 58896 From : 10.10.10.5 To : 10.10.10.8 Adm State : Up Oper State : Up Path Name : toPE4strict Path Type : Primary Path Admin : Up Path Oper : Up OutInterface: 1/2/1 Out Label : 131052 Path Up Time: 0d 15:00:46 Path Dn Time: 0d 00:00:00 Retry Limit : 0 Retry Timer : 30 sec RetryAttempt: 0 NextRetryIn : 0 sec SetupPriori*: 7 Hold Priori*: 0 Preference : n/a Bandwidth : No Reservation Oper Bw : 0 Mbps Hop Limit : 255 Class Type : 0 Backup CT : None MainCT Retry: n/a MainCT Retry: 0

80/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

A:MPLS_R5# show router mpls status

3. On your CORE router, view the LSPs that are transiting it. An example is shown below. A:MPLS_R1# show router mpls lsp transit =============================================================================== MPLS LSPs (Transit) =============================================================================== Legend : @ - Active Detour =============================================================================== From To In I/F Out I/F State LSP Name ------------------------------------------------------------------------------10.10.10.5 10.10.10.8 1/1/1 1/1/2 Up toPE4-lsp5::toPE4strict 10.10.10.8 10.10.10.5 1/1/4 1/1/1 Up toR5-lsp6::toR5loose ------------------------------------------------------------------------------LSPs : 2 ===============================================================================

4. On your CORE router use the show router mpls lsp transit detail command. This command provides more information regarding the LSPs transiting this router, and may be used for LSP troubleshooting. a. Which inbound interface does your LSP use? Which outbound interface does it use? b. Which inbound interface does your detour use? Which outbound interface does it use? c. Is this node part of a “Node” or “Hop” detour for the LSP that you configured? How do you know? d. For which LSPs are the other detours shown generated? e. What changes in this output when the interface is shutdown and your LSP makes use of the detour?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

81/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Rem : Limit : Oper CT : 0 Record Route: Record Record Label: Record Oper MTU : 9198 Neg MTU : 9198 Adaptive : Enabled Oper Metric : 400 Include Grps: Exclude Grps: None None Path Trans : 13 CSPF Queries: 165 Failure Code: noError Failure Node: n/a ExplicitHops: 10.10.10.1 -> 10.10.10.2 -> 10.10.10.4 -> 10.10.10.8 Actual Hops : 10.1.5.5(10.10.10.5) Record Label : N/A -> 10.1.5.1(10.10.10.1) @ n Record Label : 131052 -> 10.1.2.2(10.10.10.2) @ Record Label : 131052 -> 10.2.4.4(10.10.10.4) Record Label : 131067 -> 10.4.8.8(10.10.10.8) Record Label : 131070 ComputedHops: 10.1.5.5 -> 10.1.5.1 -> 10.1.2.2 -> 10.2.4.4 -> 10.4.8.8 ResigEligib*: False LastResignal: n/a CSPF Metric : 400 Last MBB : MBB Type : GlobalRevert MBB State : Success Ended At : 06/28/2010 12:12:40 Old Metric : 400 =============================================================================== * indicates that the corresponding row element may have been truncated.

=============================================================================== MPLS LSPs (Transit) (Detail) =============================================================================== ------------------------------------------------------------------------------LSP toPE4-lsp5::toPE4strict ------------------------------------------------------------------------------From : 10.10.10.5 To : 10.10.10.8 State : Up SetupPriority : 7 Hold Priority : 0 Class Type : 0 In Interface : 1/1/1 In Label : 131052 Out Interface : 1/1/2 Out Label : 131052 Previous Hop : 10.1.5.5 Next Hop : 10.1.2.2 Reserved BW : 0 Kbps DetourStatus

: Standby

SetupPriority Class Type DetourActiveTime

: 7 : 0 : n/a

DetourAvoidNode/Hop

InInterface OutInterface NextHop ExplicitHops 10.1.4.1 DetourStatus

: 10.10.10.2

: n/a : 1/1/4

: 10.1.4.4 : -> 10.1.4.4

DetourAvoidNode/Hop

: Up

: 10.2.4.4

DetourType : Originate DetourOrigin : 10.10.10.1 Hold Priority : 0 DetourUpTime InLabel OutLabel

: 0d 11:37:12 : n/a : 131048

-> 10.4.8.8 DetourType

: Terminate

DetourOrigin

: 10.10.10.2

SetupPriority : 7 Hold Priority : 0 Class Type : 0 InInterface : 1/1/2 InLabel : 131050 PreviousHop : 10.1.2.2 ===============================================================================

5. On your CORE router, use the show router rsvp session detail command to view all the RSVP sessions established on the router for every LSP and detour LSP originating, transiting, or terminating on it. This command gives similar information as the show router mpls lsp [transit | terminate] command. a. Identify the LSPs shown, to which LSP each detour belongs, and where these detours terminate. b. Trace the end-to-end path your LSP takes when it uses the detour. *A:MPLS_R1# show router rsvp se lsp-name toPE4-lsp5::* detail =============================================================================== RSVP Sessions (Detailed) =============================================================================== ------------------------------------------------------------------------------LSP : toPE4-lsp5::toPE4strict ------------------------------------------------------------------------------From : 10.10.10.5 To : 10.10.10.8 Tunnel ID : 5 LSP ID : 58896 Style : SE State : Up Session Type : Transit In Interface : 1/1/1 Out Interface : 1/1/2 In Label : 131052 Out Label : 131052 Previous Hop : 10.1.5.5 Next Hop : 10.1.2.2 SetupPriority : 7 Hold Priority : 0 Class Type : 0

82/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

*A:MPLS_R1# show router mpls lsp lsp-name toPE4-lsp5::toPE4strict transit detail

SubGrpOrig ID P2MP ID

: 0 : 0

SubGrpOrig Addr: 0.0.0.0

Path Recd Resv Recd

: 1419 : 1398

Path Sent Resv Sent

Summary messages: SPath Recd : 0 SPath Sent : 0 SResv Recd : 0 SResv Sent : 0 ------------------------------------------------------------------------------LSP : toPE4-lsp5::toPE4strict_detour ------------------------------------------------------------------------------From : 10.10.10.5 To : 10.10.10.8 Tunnel ID : 5 LSP ID : 58896 Style : SE State : Up Session Type : Originate (Detour) In Interface : n/a Out Interface : 1/1/4 In Label : n/a Out Label : 131048 Previous Hop : n/a Next Hop : 10.1.4.4 SetupPriority : 7 Hold Priority : 0 Class Type : 0 SubGrpOrig ID : 0 SubGrpOrig Addr: 0.0.0.0 P2MP ID : 0 Path Recd Resv Recd

: 0 : 1394

Path Sent Resv Sent

: 1415 : 1374

Summary messages: SPath Recd : 0 SPath Sent : 0 SResv Recd : 0 SResv Sent : 0 -------------------------------------------------------------------------------

Lab 6

Review Questions

1. Can you configure a Primary path with strict hops, and a Secondary path with no hops specified? What can be a consequence of doing this? 2. Do the Primary and Secondary paths of an LSP use the same label at the destination router? 3. What is the difference between a Secondary path and a standby Secondary path? 4. Does the label stack grow when a bypass tunnel is used? 5. How does each router compute its detour for a given LSP? 6. If an LSP is created from your EDGE router to the EDGE router in the Pod that is clockwise from yours, will it be protected by the bypass tunnel created by your CORE router for the two LSPs created in this Lab? 7. Does the label stack grow when a detour LSP is used? 8. What happens when node protection is requested but a given router cannot find a path that avoids the next-hop node? 9. How does each router compute its detour for a given LSP? 10. When using SRLGs, what happens to a secondary path if the head end router cannot find a path that is disjointed from the primary path?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

83/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

: 1393 : 1402

Lab Solutions and Answers Lab 3 Section 3.1 – MPLS Infrastructure Verification and IGP Configuration This configuration is for router R1.

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

#-------------------------------------------------echo "IP Configuration" #-------------------------------------------------interface "toR2" address 10.1.2.1/27 port 1/1/2 exit interface "toR3" address 10.1.3.1/27 port 1/1/3 exit interface "toR4" address 10.1.4.1/27 port 1/1/4 exit interface "toR5" address 10.1.5.1/27 port 1/1/1 exit interface "system" address 10.10.10.1/32 exit #-------------------------------------------------echo "OSPF Configuration" #-------------------------------------------------ospf area 0.0.0.0 interface "system" exit interface "toR2" interface-type point-to-point exit interface "toR3" interface-type point-to-point exit interface "toR4" interface-type point-to-point exit interface "toR5" interface-type point-to-point exit exit exit

84/104

Lab 3 Section 3.2 – Configuring and Verifying the Provider Core for LDP

#-------------------------------------------------echo "LDP Configuration" #-------------------------------------------------ldp interface-parameters interface "toR2" exit interface "toR3" exit interface "toR4" exit interface "toR5" exit exit targeted-session exit exit exit

Lab 3 Section 3.2 – Answers to Exercise Questions 2a. How many LDP neighbors should each CORE router have? 4 2b. How many LDP neighbors should each EDGE router have? 1 3a. How many LDP sessions does your CORE router have? 4 3b. How many LDP sessions does your EDGE router have? 1 3c. What types of adjacencies are formed? Why? Link adjacencies are formed because the LDP peers are directly connected to each other. 4a. How many prefix bindings should be present? Explain There should be 32 prefix bindings; there are 8 prefixes (FECs) and the CORE router receives labels for these FECs from 4 peers. 4b. Should the CORE and EDGE routers have the same number of prefix bindings? No. The EDGE router should have 8 prefix bindings; it receives a label for each binding only from one peer, the CORE router. 4c. What label does your CORE router generate for its system address FEC? Depends on output.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

85/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

The configuration below is for router R1.

4d. On your CORE router, find the label the diagonally connected CORE router supplies for its directly connected EDGE router. Depends on output.

5a. What are the differences between the show router ldp bindings and the show router ldp bindings active commands? Why does the LFIB show fewer prefixes than the LIB? The former command gives the LIB and the latter gives the LFIB. The LIB contains all labels received for a given FEC, while the LFIB only contains the label that is actually used to forward packets. This active label corresponds to the label received from the router that is the next-hop to reach that FEC. 5b. Why does your CORE router both PUSH and SWAP labels for your EDGE router’s prefix? Why does it not POP labels for your EDGE router’s prefix? The PUSH operation applies when unlabelled packets destined for the FEC arrive at the router, while the SWAP operation applies when labeled packets with the corresponding ingress label arrive at the router. 5c. Based on the output of the show router ldp bindings active command, can you tell the system address of the router on which the command is executed? Yes, by looking at the prefix for which the operation is POP. 6a. For which FECs has your router created LSPs? Every router’s system address. 6b. For each FEC, what does the metric value represent? This corresponds to the path cost to reach the FEC based on the OSPF metrics of each link. 8. How did shutting down the interface change the LIB contents? The LIB on the CORE router has 8 fewer prefix bindings because the router no longer receives bindings from its diagonally connected neighbor. The LIB on the EDGE router does not change. 9a. How did shutting down the interface change the LFIB contents? On the CORE router the active label binding used to reach the diagonally connected neighbor Pod’s CORE and EDGE routers have changed. The LFIB on the EDGE router has not changed. 9b. What path will the packets follow when your EDGE router forwards them to the diagonally connected EDGE router? Depends on output. 9c. With what label will your CORE router forward a packet sent from your EDGE router to your diagonally connected EDGE router? Depends on output.

86/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

4e. Why does your CORE router show some labels as “not in use”? The labels not in use indicate that the router has generated a label for a given FEC, and that the next-hop to reach that FEC is the peer router. Therefore, the CORE router will not advertise a label to one of its peers, if that peer is the next-hop to reach the FEC for which the label is generated.

Lab 3 Section 3.3 – Enabling ECMP LDP The configuration below is for router R5.

Lab 3 Section 3.3 – Answers to Exercise Questions 3. What next-hop(s) does your CORE router use to reach the diagonally connected EDGE router? The clockwise and counter-clockwise CORE routers. 4a. How does this differ from the LIB entries you saw before you enabled ECMP? The LIB of the EDGE router does not change. On the CORE router it can be seen in the LIB that the router does not use the labels it has generated for the FEC corresponding to the diagonally connected Pod’s CORE and EDGE routers and advertised to the peer routers which are the nexthops to reach that Pod. 4b. How many prefix bindings should you see in your CORE and EDGE router’s LIB? Explain. The LIB of the CORE and EDGE routers have the same number of prefix bindings as before because the LIB contains labels received from all peers for a given FEC. 5a. How does this differ from the LFIB entries you say when you enabled ECMP? The LFIB of the EDGE router has no difference. The LFIB of the CORE router now has two additional entries for the FECs corresponding to the diagonally connected Pod’s CORE and EDGE routers. 5b. How many equal cost LSPs originate on your CORE router and terminate on the diagonally connected neighbor EDGE router? 2. 6a. How many LSPs do you see connecting your routers to the diagonally connected Pod’s CORE and EDGE routers? Two each. 6b. How many LSPs do you see connecting your routers to the other routers? One each. 7. Issue an LSP trace from your CORE router to the diagonally connected neighbor’s CORE router’s system address. Which LSP path does the CORE router choose? The path with the lowest next-hop address. 8. Issue an LSP trace from your CORE router to the diagonally connected neighbor’s EDGE router system address. Which LSP path does the CORE router choose? The path with the lowest next-hop address.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

87/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

#-------------------------------------------------echo "Router (Network Side) Configuration" #-------------------------------------------------router ecmp 4 exit

9. Issue an LSP trace from your EDGE router to the diagonally connected neighbor’s CORE router system address. Which LSP path does the EDGE router choose? The path with the lowest next-hop address from pod’s CORE router’s perspective.

Lab 3 Section 3.4 – Applying Export Policy for Label Distribution The configuration below is for router R1. #-------------------------------------------------echo "LDP Configuration" #-------------------------------------------------ldp export "export" ... exit exit #-------------------------------------------------echo "Policy Configuration" #-------------------------------------------------policy-options begin policy-statement "ldp-export" entry 10 action accept exit exit exit commit exit exit

Lab 3 Section 3.4 – Answers to Exercise Questions 3a. What additional FECs do routers now generate labels for? With the export policy, labels are now generated for all direct connected interfaces on the router. 3b. How many prefix bindings should be present? Explain. There should be 8 additional prefix bindings – one for each link between the routers, except for the links whose interfaces have been shutdown (that is, interfaces between routers R1 and R4, and between routers R2 and R3). 3c. On your CORE router, why do you see a prefix binding for your Pod’s EDGE to CE interface? Does this prefix appear in the other CORE router LIBs? Why? According to the policy, your EDGE router generates a lable for all local networks. The CORE router accepts this label and places it in its LIB. However, since the CORE router has no route to the target prefix, it will not place this network in its LFIB, and will not send a label to its peers.

88/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

10. Issue and LSP trace from your EDGE router to the diagonally connected neighbor’s EDGE router system address. Which LSP path does the EDGE router choose? The path with the lowest next-hop address from pod’s CORE router’s perspective.

Lab 3 – Answers to Review Question 1. Under normal circumstances, over what paths do the EDGE routers route traffic between each other? Issue a traceroute between EDGE routers to verify these paths. Do you have alternate paths available? Through their respective CORE routers and over the direct links between the Pods. 2. What router serves as the next-hop between your CORE router and R5?

3. What metric value does OSPF assign to each link? Either 10 or 100. 4. Which command may be used to view the details of each LDP peer? The show router ldp session detail command may be used to view the details of each LDP peer. 5. For which FECs are labels advertised by default? How can additional FECs be advertised? By default, a 7x50 SR/ESS only advertises labels for its own system interface. An export policy is needed to advertise labels for other FECs in the 7x50 SR/ESS’s routing table. 6. How does a router determine which LSP to use when ECMP LDP is enabled? The LSP used to forward traffic is based on a hashing algorithm.

Lab 4 – IGP-Based RSVP LSP Establishment The configuration below is for router R1. #-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------configure router mpls interface "system" exit interface "R1-R2" exit interface "R1-R3" exit interface “R1-R4” exit interface ”R1-R5” exit exit #-------------------------------------------------echo "RSVP Configuration" #-------------------------------------------------rsvp interface "system" exit interface "R1-R2" exit interface "R1-R3"

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

89/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Router R1

Lab 4 – Answers to Exercise Questions 9a. Can the new LSP use the same path as the first you configured? Yes, the path does not terminate on any specific node or interface. 9b. Over what path will your router signal this LSP? IGP base path. 9c. What determines the path the head-end router uses to signal this LSP path? FIB entry for target prefix.

Lab 4 – Answers to Review Questions 1. Over what path does traffic travel when the head end router forwards it toward the LSP’s tail end? The head end router forwards packets over the FIB’s best path toward the LSP’s tail end. 2. Can the head end router recover the LSP if a failure occurs on the primary path? Yes, if the IGP can find a path to the tail end network, then the head end can resignal the LSP on a new path. 3. So that the head end router can signal the LSP requirements to the tail end, what must first be in place in the network? An IGP path must be in place to the target tail end. This could be a static or dynamic route, though dynamic routes allow the network to recover from outages without operator intervention.

Lab 5 Section 5.1 – Enabling RSVP-TE LSP Tunnels The configuration below is for router R1. #-------------------------------------------------echo "OSPFv2 Configuration" #-------------------------------------------------ospf traffic-engineering exit #-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------mpls admin-group "green" 1 admin-group "red" 2

90/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

exit interface "R1-R4" exit interface "R1-R5" exit no shutdown exit

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

srlg-group "blue" value 2 srlg-group "orange" value 1 interface "system" exit interface "toR2" admin-group "green" srlg-group "orange" exit interface "toR3" admin-group "green" srlg-group "orange" exit interface "toR4" admin-group "red" srlg-group "blue" exit interface "toR5" exit path "loose" no shutdown exit path "toR4strict" hop 1 10.10.10.2 strict hop 2 10.10.10.4 strict no shutdown exit lsp "toR5-1" to 10.10.10.5 primary "loose" exit no shutdown exit lsp "toR4-2" to 10.10.10.4 primary "toR4strict" exit secondary "loose" exit no shutdown exit lsp "toR2-1" to 10.10.10.2 cspf primary "loose" include "green" exclude "red" exit no shutdown exit no shutdown exit ----------------------------------------------

Lab 5 Section 5.1 – Answers to Exercise Questions 1a. Do your routers support Opaque LSAs by default? Yes 1b. Why do your routers support Opaque LSAs though TE support is disabled? RFCs require all TE-capable routers support opaque LSAs.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

91/104

3a. How many Type 10 LSAs do your routers report? 0 3b. Why would your router report type 10 LSAs if you have not yet enabled TE? Someone has already enabled TE on their router. Once you enable TE on the router, it sends out the router address top-level TLV to all adjacent routers within its area.

5b. Why has this value increased even though you have not enabled TE on this router? Your CORE router still receives Type 10 LSAs from the EDGE router 8a. Why do you not see opaque LSAs generated by the other routers? You chose to only view the opaque LSAs your router advertises. 8b. Why is 0.0.0.0 the Area ID shown? There is only one area, and opaque LSAs only flood within the area in which the routers generate them. 8c. Which top-level TLV sub-types do the LSAs contain, and what do they specify? Router address and Link. Router address advertises the router’s router ID, and Link advertises the link attributes, such as admin group membership and available bandwidth. 9a. Write down the number of Type 10 LSAs now being reported. 28 9b. How many Type 10 LSAs should be discovered when everyone in the class has finished enabling Traffic Engineering? 28 – two from each EDGE router, and five from each CORE router. 12a. Why are the ADMIN_GROUP values shown not equal to the admin group values you set in the configure router mlps admin-group command? The show command converts the Admin_Group sub-TLV bit position to a decimal value. For example, admin group 1 becomes decimal 2 because the router sets the 1 bit position in the subTLV, which when converted to decimal equals 2 (10 binary = 2 decimal). 12b. Which ADMIN_GROUP value represents the green group? 2 Which value represents the green and red groups? 6 12c. Why do you see all bandwidth available on the links? You have not reserved any bandwidth. 13a. Did the LSP follow the IGP chosen best path? Why? No. IGP says go direct, but the LSP only allows the head end to use the green links, which are the outer ring links, excluding the diagonal links.

92/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

5a. How many Type 10 LSAs do you see? 2

13b. What does the head end router pass to the downstream routers to inform them of the path it chose for the LSP? Explicit Route Object (ERO)

14b. Does the new path follow the IGP path? Why or why not? No; IGP still chooses the diagonal link, but CSPF prunes that link since it is not a member of the green group. 14c. Did the CSPF metric change? Why or why not? Yes; the cumulative metric changed to reflect the total cost of the path, which now includes an additional link. 15a. Is the head end router able to resignal the LSP over a new path? Why? No; there are no more green links. 15b. Does the show command results provide any indication as to whether or not the LSP recovered? Failure code reads “noCspfRouteToDestination.” 15c. Use the trace commands and compare the results. Is there still an IGP route to the tail end router? Yes, but again the IGP chooses the diagonal link, which you excluded from your LSP.

Lab 5 Section 5.2 – Answers to Exercise Questions 5a. How much bandwidth does your router allocated to CT0? 200Mbps 5b. How much to CT1? 200Mbps 5c. How much to CT2-CT7? 0Mbps 7. How much of the bandwidth you allocated is currently available? All 9a. Did the head end choose the shortest IGP path for this LSP? Yes 9b. How much bandwidth did the router allocate to this LDP? 200Mbps 11a. Did the router again choose the shortest IGP path, or another path? Shortest

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

93/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

14a. Is the head end router able to resignal the LSP over a new path? Why? Yes, goes around the ring in the other direction.

11b. If the business data LSP needs 100M of the 200M bandwidth allocated for CT0, will the consumer data LSP remain operational? Yes, but on alternate path chosen by CSPF. 14. Did the head end signal it over the shortest IGP path? Yes, using the bandwidth reserved for CT1 LSPs.

15b. Did this LSP “preempt” a data LSP? No, consumer voice. 16a. Which TE classes get reservations on the best IGP path? TE1 and TE3 16b. Why did the other classes not remain on the IGP best path? Within their traffic classes, they had the lower priorities and so the router preempted them to provide bandwidth for the higher priority business services. 16c. If you were to shut down the higher priority LSPs, will the lower priority LSPs move back to the best path? No. You would have to manually resignal them because the resignal timer is disabled by default.

Lab 5 Section 5.3 – Answers to Exercise Questions 4a. Why does the router allocate more bandwidth to CT0 than it did with MAM enabled? Now CT0 has access to both class types’ bandwidth. 4b. Why does TE0 still show 200M bandwidth unreserved? CT0 can access up to CT0+CT1 bandwidth, so 400-200=200M unreserved. 6. Does the LSP become operational? If not, why? No it does not. The consumer voice LSP priority is too low to preempt an existing LSP for the bandwidth it needs. 7a. Does this LSP become operational? If so, what effect does it have on the existing LSPs? Yes, none. Uses remaining bandwidth for TE3. 7b. How much bandwidth does each TE class reserve? TE0, 200M; TE1 100M; TE2 0M; TE3 100M 7c. How much bandwidth is left for CT0? CT1? CT0 0, CT1 100M. CT1 did not use all its bandwidth and can preempt a CT0 LSP that is currently using some of the CT1 bandwidth.

94/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

15a. Is this the same path the router chose for the consumer voice LSP? Yes; this LSP preempted the consumer voice LSP forcing it to another path.

7d. How did the router assign to CT0 more bandwidth on the link than you provisioned under RSVP diffserv-te? RDM allows CT0 to use unreserved CT1 bandwidth. 7e. Why did the consumer voice LSP fail? Setup priority too low to override an existing LSP’s hold priority.

12a. Which prefixes are available there? Mine and the diagonally opposite PE. 12b. Do you see any entry for the system IP address of the CE router in the other area? Not yet. 14. Is the entry for the CE router in the other are there now? Yes, can now tunnel over RSVP LSPs. 15. What does the EgrIntf/Lspid field indicate? The LDP LSP tunnel ID.

Lab 5 Section 5.5 – Answers to Exercise Questions 3a. What next-hop appears in your route table entry for the opposite EDGE router’s system ID? The opposite CORE router’s system ID. 3b. What metric does the router assign to this route? Same as the IGP. 5a. Do you see any routes listed as tunneled via RSVP? Yes, those that are reachable via a tunnel terminating on the tail end router. 5b. What does the route table list as these routes’ next-hop interface? The LSP tail end router’s system ID. 5c. Why does your router choose RSVP tunnels over IGP routes for this traffic? Tunnel counts as one hop, versus several hops via IGP route.

Lab 5 – Answers to Review Questions 1. What type of LSA does OSPF use to advertise traffic engineering information? Type 10 Opaque 2. What top-level TLV does a router automatically send out, once you enable traffic engineering support in the IGP? Router ID

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

95/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Lab 5 Section 5.4 – Answers to Exercise Questions

3. Once you enable traffic engineering support on a router located in OSPF area 0, that router would see opaque LSAs from what other areas? None, OSPF only floods type 10 LSAs in the area in which they are generated.

5. The opaque LSA represents a link’s admin group membership in what format(s)? Hexadecimal and decimal. 6. If the head end router chooses a path other than the IGP best path for a loose path LSP, how does it inform the downstream routers of this decision? It sends the ERO in the RSVP path message. 7. If the primary path fails on a colored LSP, can the LSP recover on an alternate path? Yes, if another path exists that meets the LSPs constraints. 8. If you configure admin groups on a router, and build an LSP without specifying link admin group membership, can the LSP become operational? Yes, the LSP will still operate; however, the path the head end chooses for this LSP depends on other constraints, not admin groups. 9. In what top-level TLV does the router advertise admin group membership? Link TLV. 10. Why must you use LDP over RSP tunnels when traffic engineering LSPs between OSPF areas? Opaque LSAs carry TE constraint information, and cannot cross OSPF area boundaries. 11. In addition to RSVP LSPs, what must you configure on each hop to support LDP over RSVP tunneling? Targeted sessions between the EDGE routers and the ABRs and between the ABRs with tunneling enabled. 12. For MAM and RDM, what are the default Class Types and te-classes? None, you must configure them when you enable diffserv-te. 13. Assuming two CTs, CT0 and CT1, each assigned 30M on a 100M link, and one each LSP reserving 10M of bandwidth, how much bandwidth is unreserved for each CT? 20M 14. Assuming RDM, and under the following conditions, which LSPs are operational once all are configured correctly, in numerical order, and turned up using loose hops? • Single gigabit link • CT0=15, CT1=30 • TE0=CT0, priority 1 • TE1=CT0, priority 0 • TE2=CT1, priority 1

96/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

4. If you configure an LSP to include green but exclude red links, will it use a link assign to the red, green and blue admin groups? No, the head end will prune the red links from consideration.

• • • •

TE3=CT1, priority 0 LSP 1, BW 100, CT 0, priority 0,0 LSP 2, BW 150, CT 0, priority 1 1 LSP 3, BW 200, CT 1, priority 0,0 LSP 4, BW 150, CT 1, priority 1,1

LSP 1 and 2 take a total of 250M, including 100M of the CT1 allocation. LSP 3 becomes operational using what is left of the CT1 allocation. So, LSP 4 fails because it is unable to preempt any existing LSP. LSP 3 will not preempt LSP 2 because the links still offers 200M of unreserved bandwidth. 15. What benefit does an LSP shortcut provide over a traditional IGP route? IGP shortcuts allow you to traffic engineer traffic targeting a router which is not MPLS capable by tunneling this traffic to an MPLS-capable edge router and allowing the edge router to route it towards its destination. 16. Once you have configured RSVP for IGP shortcuts between two edge routers, what networks will your head end router be able to reach via the tunnel’s tail end? Any routed network accessible through the tail end router. 17. If a router has in its RIB both an IGP shortcut and a standard IGP route to a destination network, which will it place in its FIB? The IGP shortcut.

Lab 6 Section 6.1 – Enabling Primary and Secondary LSP Tunnels #-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------mpls path "loose" no shutdown exit path "toR4strict" hop 10 10.10.10.2 strict hop 20 10.10.10.4 strict no shutdown lsp "toR4-1" to 10.10.10.4 primary "toR4strict" exit secondary “loose” exit no shutdown exit exit

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

97/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute



Lab 6 Section 6.1 – Answers to Exercise Questions 1a. What is the difference between “Strict” and “Loose” paths? A Strict path requires the next-hop address to be directly connected to the current router, while a Loose path hop makes use of the routing table to find the best path to the next-hop address.

3b. Where do the terminating LSPs originate? From the LSPs created from the diagonally connected neighbor Pod. 4a. What is the operational state of the Primary path? The operational state of the Primary path should be “UP”. 4b. What is the operational state of the Secondary path? Explain The operational state of the Secondary path should be “Down”. The operational state of the Secondary path is “Down” since this Secondary path is in “warm standby”. The LSP Head must signal the Secondary state in order to enable it and bring it into an “up” state. 5a. In which direction is the “In Interface” pointing? The “In Interface” is pointing back towards your CORE router. 5b. In which direction is the “Out Interface” pointing? The “Out Interface” is pointing downstream towards the next router in the path. 5c. Which router’s address is the “Previous Hop” Address? The “Previous Hop” address is the address of your CORE router interface leading to this router. 5d. Is there any difference in this output in Phase II? No. The secondary path does not traverse this router. 5e. In Phase III, do you see your LSP transiting on your neighbor’s CORE router? Why? No because of the link failure the Secondary path is used and the Primary path is down. 6a. Is there any difference in this output in Phase II? Yes, the Secondary path of the LSP also terminates on the destination router since it is preestablished when the ‘standby’ parameter is included in the configuration. 6b. Is there any difference in this output in Phase III? Yes; the Primary path of the LSP no longer appears because it is down after the interface shutdown. 7a. How many RSVP sessions are there, and to what LSPs do they correspond? The router has one RSVP session for each established LSP path that originates, transits, or terminates on it.

98/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

3a. Where do the transiting LSPs originate? From the LSPs created from the clockwise neighbor Pod.

7b. What identifies the LSP and what identifies the path? The LSP is identified by the Tunnel ID, while each path associated with it is identified by the LSP ID.

#-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------mpls srlg-group "blue" value 2 srlg-group "orange" value 1 interface "system" exit interface "toR1" exit lsp "toR8-4" to 10.10.10.8 cspf primary "loose" exit secondary "loose2" standby srlg exit no shutdown exit exit

Lab 6 Section 6.2 – Answers to Exercise Questions 7a. Which path does the router choose for the primary path? Why? IGP best path, did not specify any constraints on the primary path. 7b. Is the secondary path operational? Why or why not? All possible links are in the same SRLG, so the standby path cannot become disjoined. 7c. Why does the router not use the same path for both? Standby must use a link outside of the link group used by the primary path. 9a. Does the primary path change? No; it still follows the IGP best path. 9b. What happens to the standby path? The head end router resignals the standby over one of the outer ring paths, which are disjoined (orange) from the cross link path (blue).

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

99/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

Lab 6 Section 6.2 – Using SRLG for Path Resiliency

Lab 6 Section 6.3 – FRR Facility Backup Protection

#-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------Configure router mpls path "toR4strict" hop 1 10.10.10.2 strict hop 2 10.10.10.4 strict no shutdown exit lsp "toR4-lsp3" to 10.10.10.4 cspf fast-reroute facility exit primary "toR4strict" exit no shutdown exit

Lab 6 Section 6.3 – Answers to Exercise Questions 7a. Which routers are being used as Node backup? You should find that your CORE router is being used as the Node backup. 7b. Which router is being used as a Link backup? You should find that the router to your left (in the path) is providing Link Protection. 8a. Which LSPs do the bypass tunnels protect? The bypass-node tunnel protects the two LSPs you configured on your EDGE and CORE routers. The bypass-link tunnel protects the two LSPs configured on the CORE and EDGE routers in the Pod that is counter-clockwise from yours. 8b. What path does each bypass tunnel take? The bypass-node tunnel should follow the direct path to the diagonally connected CORE router. The bypass-link tunnel may either follow the path via the diagonally connected CORE router, or may follow the path back to the CORE router in the counter-clockwise Pod, since both paths have equal cost. 9. What is the Downstream Label? This is the label that the next-hop node (for link protection) or next-next-hop node (for node protection) expects to see in the incoming packet’s MPLS header. 10a. Which router is the PLR? The PLR is the router in the “From” field (in this example 10.10.10.2 or R1) 10b. Which router is the MP? The MP is the router shown in the “To” field (in this example 10.1.4.4, or R4) 11a. What is the Style type of the Bypass tunnel?

100/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

The configuration is for router R1 Facility Bypass:

The reservation style of the bypass tunnel is Fixed Filter

13a. Which LSPs transit your CORE router? The LSP from your EDGE router to the EDGE router in the diagonally connected Pod, the LSP from the EDGE router in the Pod that is counter-clockwise from yours, to the one that is clockwise from yours, and possibly the bypass-link tunnel from the CORE router that is in the Pod clockwise from yours. 15. Why does the lsp-trace result show the LSP path returning to your CORE router before going to the diagonally opposite router? The bypass tunnel originates on the clockwise CORE router and terminates on the diagonally opposite CORE router. In this case, the bypass originates on 10.10.10.2 and terminates on 10.10.10.4.

Lab 6 Section 6.4 – FRR One-to-One Protection The configuration is for router R1 One to One: #-------------------------------------------------echo "MPLS Configuration" #-------------------------------------------------lsp "toR4-lsp3" to 10.10.10.4 cspf fast-reroute one-to-one exit primary "toR4strict" exit no shutdown exit

Lab 6 Section 6.4 – Answers to Exercise Questions 2a. Which routers show a detour Available? Your CORE router, and the CORE router connected to you clockwise, both show that detour routes are available. 2b. How many routers show “Node Protect”? There should be 1 router showing “Node Protect” (the router with a “n” symbol) 4a. Which inbound interface does your LSP use? Which outbound interface does it use? Depends on output. 4b. Which inbound interface does the detour use? Which outbound interface?

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

101/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

11b. Why does the router only show one Out Label? A bypass tunnel uses only 1 label to represent many Primary tunnels since label stacking is being used.

Depends on output.

4d. For which LSPs are the other detours shown generated? The router contains detours from the LSPs created by other Pods. For example, if you are on R3 there are originating detours for the LSP from Pod4 to Pod1 (R4 to R1 and R8 to R5) and from Pod3 to Pod2 (R3 to R2 and R7 to R6), There are also terminating detours for LSPs from Pod2 to Pod3 (R2 to R3 and R6 to R7). There could also be a transiting detour for the LSP from Pod1 to Pod4 (R1 to R4 and R5 to R8). 4e. What changes in this output when the interface is shut down and your LSP makes use of the detour? The detour status becomes Active and the LSP state is Down. 5a. Identify the LSPs shown, to which LSP each detour shown belongs, and where these detours terminate. To be completed with instructor. Depends on output. Principle is same as for question 4d. 5b. Trace out the end-to-end path taken by your LSP, when the interface is shutdown and the detour is used. To be completed with instructor. Depends on output.

Lab 6 – Answers to Review Questions 1. Can you configure a Primary path with strict hops and a Secondary path with no hops specified? What can be a consequence of doing this? Yes. The Secondary path will be determined based on IGP shortest path and thus could potentially use some of the same resources (links or nodes) as the Primary path, in which case it will not be completely physically diverse. However, if a network failure affects both the Primary and Secondary paths, since the Secondary path is loose, the head=end router will recomputed another route for the Secondary path, if one exists. 2. Do the Primary and Secondary paths of an LSP use the same label at the destination router? No. Each LSP path is signaled separately and therefore makes its own label requests 3. What is the difference between having a Secondary path that standby versus not standby? A Secondary path configured as standby is signaled and established and ready for use as soon as the Primary path fails. A Secondary path that is not in standby must first be signaled and established after the Primary path fails. 4. Does the label stack grow when a bypass tunnel is used? Yes. When the labeled packet reaches the PLR and is forwarded into a bypass tunnel, the PLR PUSHes a new label corresponding to the bypass tunnel onto the stack. 5. How does each router compute its detour for a given LSP?

102/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

4c. Is this node part of a “Node” or “Hop” detour for the LSP you’ve configured? How do you know? This router is being used by the detour as part of a Node protection. The address being used is the system address of the CORE router of the Pod in the counter clock-wise direction from your Pod (the router in transit). Also, the detour path defines the out interface as an interface leading away from the CORE node (the node being protected).

6. If an LSP is created from your EDGE router to the EDGE router in the Pod that is clockwise from yours, will it be protected by the bypass tunnel created by your CORE router for the two LSPs created in this Lab? No, because the bypass tunnel created from the previous lab does node protection and thus avoids the clockwise Pod’s CORE router entirely. Your CORE router will create another bypass tunnel to avoid the next-hop link, to protect this LSP. 7. Does the label stack grow when a detour LSP is used? No. 8. What happens when node protection is requested but a given router cannot find a path which avoids the next-hop node? The router will still attempt to compute a detour which avoids the next-hop link. 9. How does each router compute its detour for a given LSP? The router determines the detour LSP by finding the least cost path to the destination router (i.e. termination point of the protected LSP) while avoiding the next-hop node or link. 10. When using SRLGs, what happens to a secondary path if the head end router cannot find a path disjointed from the primary path? The secondary path stays operationally down.

Alcatel-Lucent Multiprotocol Label Switching Lab Guide v2.1 | All rights reserved © 2011 Alcatel-Lucent

103/104

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

The router determines the bypass tunnel by finding the least cost path to the next-hop router (in the case of link protection) or the next-next-hop router (in the case of node protection) while avoiding the next-hop node or link. If the path computed by the PLR intersects a router that is on the protected LSP’s original path, then the bypass tunnel terminates on that router, and does not terminate on the next-hop or next-next-hop router.

Alcatel-Lucent Confidential for Internal Use ONLY - Do Not Distribute

http: / /www.alcatel-lucent.com/src

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF