Aerospace Industry

November 11, 2016 | Author: Piyush Kumar | Category: N/A
Share Embed Donate


Short Description

This is about how to make aerospace parts that are used in aerospace industry....

Description

Chemistry Project Work Presented by: Name: Piyush Kumar Class: 11th –B Roll No: 24 Guided by: Manoj Kumar

Aerospace Industry I

INTRODUCTION

Technicians Testing Missile Aerospace technicians perform a vibration test on a prototype cruise missile. New aerospace technologies must undergo a rigorous testing phase before production. Tests are designed to ensure that the new systems perform as planned and that they are able to handle a variety of adverse conditions and circumstances. Ken Whitmore/Tony Stone Images

Aerospace Industry, complex of manufacturing firms that produce vehicles for flight—from balloons, gliders, and airplanes to jumbo jets, guided missiles, and the space shuttle. The industry also encompasses producers of everything from seat belts to jet engines and missile guidance systems. The term aerospace is a contraction of the words aeronautics (the science of flight within Earth’s atmosphere) and space flight. It came into use during the 1950s when many companies that had previously specialized in aeronautical products began to manufacture equipment for space flight. The aerospace industry traces its origins to the Wright brothers’ historic first flights in a heavier-than-air-machine at Kitty Hawk, North Carolina, on December 17, 1903. Until World War I (1914-1918), airplane construction largely remained in the hands of industry pioneers, who built each wood-framed plane by hand. Wartime military needs drove improvement in aircraft design. By the 1930s all-metal planes featuring retractable landing gear and highperformance engines were commonly used to deliver airmail and carry civilian passengers in Europe and the United States. During World War II (1939-1945) the industry made further strides with the introduction of massive production facilities that turned out tens of thousands of airplanes. World War II research and development resulted in radar, electronic controls, jet aircraft with gas-powered turbine engines, and combat rockets. Postwar tension between the Union of Soviet Socialist Republics (USSR) and the United States drove aerospace technologies to new highs as the two countries raced to establish a presence in space. By the start of the Apollo Program in 1961, development and construction of space flight vehicles and supporting systems occupied a major portion of the American and Soviet aerospace industries. At the close of the 20th century, aerospace firms around the world produced rockets and artificial satellites. Originally developed for national space exploration and military purposes, these spacecraft found peacetime uses in telecommunications, navigation, and meteorology.

II

ECONOMIC IMPORTANCE

Aircraft Manufacture in Germany Manufacturing and heavy industry make up an important segment of the German economy. In addition to being a leading producer of motor vehicles, cement, iron and steel, and machinery, Germany also manufactures aircraft for Airbus, a major European aerospace company. Shown here, an Airbus A321 is assembled at a facility in Hamburg. Deutsche Airbus/Keystone Pressedienst GmbH More than 40 countries have industries engaged in some form of aerospace production. The largest, the American aerospace industry, employs approximately 700,000 people. American manufacturer The Boeing Company leads the world in production of commercial airplanes and military aircraft. Other major U.S. aerospace manufacturers include the Lockheed Martin Corporation, the world’s largest producer of military aircraft and equipment, and the Raytheon Company, a global leader in air traffic control systems and a major supplier of aircraft, weapons systems, and electronic equipment to the U.S. government. The European aerospace industry employs about 420,000 people, with workers from the United Kingdom, France, and Germany accounting for more than two-thirds of these employees. Airbus, headquartered in Toulouse, France, is the world’s second largest manufacturer of commercial aircraft. European Aeronautic Defense and Space Company (EADS) owns 80 percent of Airbus, and Britain’s BAE Systems PLC (formerly British Aerospace) owns the other 20 percent. Canada ranks among the top six aerospace producers in the world. The Canadian industry employs 85,000 people and is a global leader in production of commercial helicopters and business aircraft. Canadian aerospace manufacturer Bombardier ranks third in the production of nonmilitary aircraft and leads the world in the production of business jets and regional jet airliners.

III

PRODUCTS

Products of the aerospace industry fall into four general categories. The largest product category, aircraft, encompasses aircraft produced for military purposes, passenger and cargo transport, and general aviation (business jets, recreational airplanes, traffic helicopters, and all other aircraft). This category also includes aircraft engines. The wide variety of missiles produced for military use makes up another product category. Space vehicles, such as the space shuttle and artificial satellites, and rockets to launch them into space, comprise their own category. The final category is made up of the thousands of different pieces of equipment and equipment systems—both those on board flight vehicles and those on the ground—that make flying a relatively safe and comfortable endeavor.

A

Aircraft and Jet Engines

Sales of aircraft, including their engines and parts, total more than the sales of all other aerospace products combined. The production of military aircraft and accessories has traditionally dominated the field of aircraft production. In the late 20th century, however, the demand for commercial jets increased around the world while global defense spending declined.

A1

Military Aircraft

Harrier Jet A Harrier jet lands on the deck of a British aircraft carrier. The Harrier was the first airplane that could take off and land vertically. A centrally positioned turbine engine is swiveled downward to produce direct lift, then gradually turned back to the horizontal position to propel the airplane forward. REUTERS/THE BETTMANN ARCHIVE

Aerospace firms produce a broad variety of military aircraft , including fighter jets, bombers, attack aircraft, troop transports, and helicopters (see Military Aviation). Each type of craft is designed for a specific purpose. Fighter jets engage enemy aircraft, attack targets on or below the Earth’s surface, and perform reconnaissance missions. Bombers specialize in striking at distant surface targets. Attack aircraft carry lighter bombs than bombers and hit surface targets at closer range. Helicopters are used in rescue work, to transport troops and supplies, and less frequently, on attack missions. The Boeing Company, Lockheed Martin Corporation, and Northrop Grumman Corporation are among the largest builders of military aircraft in the world.

A4

Jet Engines

Jet Engines The three most common types of jet engines are the turbojet, turboprop, and turbofan. Air entering a turbojet engine is compressed and passed into a combustion chamber, oxidizing the fuel. Energy produced by the burning fuel spins the turbine that drives the compressor, creating an effective power cycle. Turboprop engines are driven almost entirely by a propeller mounted in front of the engine, deriving only 10 percent of their thrust from the exhaust jet. Turbofans combine the hot air jet with bypassed air from a fan, also driven by the turbine. The use of bypass air creates a quieter engine with greater boost at low speeds, making it a popular choice for commercial airplanes. © Microsoft Corporation. All Rights Reserved.

Other aerospace firms specialize in designing and building the engines that power aircraft. The three most common types of jet engines are the turbojet, the turboprop, and the turbofan (see Jet Propulsion). In turbojet engines, energy produced by burning fuel spins a turbine that compresses the air entering the engine and directs it into a combustion chamber, where it is mixed with fuel vapor and burned. Turboprop engines are driven almost entirely by a propeller mounted in front of the engine. Turbofans combine air passing through the engine, hot engine exhaust, and air from a fan.

Production of large jet engines for airliners is dominated by American jet engine manufacturers General Electric Company and Pratt & Whitney, and Rolls-Royce of Britain. These companies also produce engines for jet fighters, bombers, and transports. Several manufacturers produce smaller gas turbines for corporate jets and helicopters. AlliedSignal Engines, part of Honeywell International in the United States, supplies a wide range of engines for regional airliners, corporate jets, helicopters, and military aircraft.

IV

RESEARCH AND DEVELOPMENT

Aircraft Wind Tunnel Test Aircraft engineers use a wind tunnel to simulate the effects of high airspeed on an experimental airplane. Wind tunnels let engineers safely test new designs, and the tests provide valuable data that can be used to improve the airplane's performance. NASA/Corbis

The area of research and development constitutes one of the largest expenditures of the aerospace industry. Development of a new flight vehicle might take a decade or more and involve thousands of people. Such an endeavor requires significant advances in equipment and systems—in some cases it calls for entirely new inventions —and several billion dollars. Because the cost of developing new flight vehicles is so high, most large aerospace companies devote their research and development resources to improving existing products. They may redesign aircraft components to make them lighter and more fuel efficient, for example, or redesign wings or body surfaces to make the craft travel faster (see Aerodynamics).

Computer Model of the Airbus A380 The A380, a superjumbo jet being developed by European aircraft manufacturer Airbus, will seat 555 or more passengers in two decks of seating. Computer models, which range from the relatively simple one shown here to much more complex and mathematically detailed models, are an integral part of modern aircraft design. Gontier/The Image Works

Much of the design process takes place on supercomputers capable of performing billions of operations per second. Computer-aided design enables engineers to test thousands of design parameters, such as the shape or angle of wings. The designer uses a computer to create a model of the flight vehicle’s basic structure, or airframe, and then to simulate flight in various atmospheric conditions (see Computer-Aided Design/Computer-Aided Manufacturing). In addition to the shape and size of the airframe, engineers must also consider thousands of details. For example, they must consider the weight and placement of the engines, how and where fuel will be stored, the type and layout of instruments in the cockpit, and details of the passenger compartment, such as the number of seats and their dimensions. In designing commercial airplanes, engineers must also plan for entertainment systems, food storage and preparation, and the location and number of lavatories.

Computer-Aided Design of Jet Engine The plans for this jet turbine engine were created with computer-aided design (CAD) software. Engineers can check the architectural details, slicing through any section of the engine’s computer-generated blueprint or viewing it from any angle. Brownie Harris/The Stock Market

After preliminary computer designs are in place, engineers build a scale model of the aircraft and subject it to a series of tests in a wind tunnel. Wind tunnels simulate the conditions encountered by the flight vehicle as it moves through the air. Many research facilities have their own wind tunnels. Manufacturers also have access to governmentfunded wind tunnels, such as NASA’s Ames Research Center tunnel at Moffett Field, California. This massive wind tunnel can accommodate a full-size aircraft with a wingspan of 22 m (72 ft). Observations made during wind tunnel testing confirm or invalidate design assumptions tested on the computer. Engineers use the results of the wind tunnel tests to refine design as necessary. Once the design has been finalized, engineers build one or more full-size prototypes of the flight vehicle and subject them to a barrage of additional tests. Engineers confirm that the structure can withstand the thundering vibrations and heat produced by the jet engines. They use machines to bend, twist, and push the aircraft to verify that it can withstand the stresses it will likely encounter during flight. Engineers also confirm that flight instruments will withstand the pressure and sub-zero temperatures of high altitudes. The engines, landing gear, navigational systems, and other aircraft equipment undergo equally rigorous testing. Finally, pilots take a prototype for a test flight to verify the results of earlier exercises.

V

MANUFACTURING

Boeing 747 Under Construction Surrounded by scaffolding at the manufacturing plant, a Boeing 747 passenger airplane nears completion. These enormous airplanes, capable of carrying more than 400 passengers, take more than a year to build. Robert Harding Picture Library

The manufacturing process is usually coordinated by a prime contractor that manages a number of subcontractors specializing in particular components of the flight vehicle. Subcontractors build and test their products in their own facilities, then deliver them to the prime contractor’s facility to be integrated into the flight vehicle. The prime contractor oversees the assembly of the flight vehicle, ensures that the project meets schedule and budget requirements, and assumes ultimate responsibility for the safety of the aircraft. Modern aircraft are often built from parts that come from all over the world. For example, the McDonnell Douglas MD-11 commercial jet, which entered production in the early 1990s, incorporated parts from Italy, Spain, Japan, Brazil, Canada, the United States, and Britain. The exterior panels of the plane’s main body, or fuselage, were produced by the Italian company Aeritalia, which also supplied the plane’s vertical stabilizer and other parts. The Spanish firm CASA made landing-gear doors and the horizontal stabilizer. Japanese companies supplied certain tail parts and movable flaps on the wings called ailerons. Additional ailerons came from Brazil, the nose gear originated in Britain, Canadian firms delivered major wing assemblies, and the engines were built in the United States and Britain. The plane came together at the plant of the prime contractor, McDonnell Douglas, in California.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF