Aerodynamics Lab 2 - Airfoil Pressure Measurements

March 26, 2018 | Author: David Clark | Category: Lift (Force), Airfoil, Fluid Dynamics, Reynolds Number, Gases
Share Embed Donate


Short Description

Download Aerodynamics Lab 2 - Airfoil Pressure Measurements...

Description

Aerodynamics Lab 2 Airfoil Pressure Measurements

David Clark Group 1 MAE 449 – Aerospace Laboratory

Abstract The characterization of lift an airfoil can generate is an important process in the field of aerodynamics. The following exercise studies a NACA 0012 airfoil with a chord of 4 inches. By varying the angle of attack at a known Reynolds number, the lift coefficient, Cl, can be determined by using a series of pressure probes along the body of the foil. The lift coefficient of such an airfoil in flow with a Reynolds number of 250,000 is 0.939, 0.721, 0.459, and 0 for angles of attack of 10, 7, 4, and 0 degrees respectively. At the same but negative angles of attach, the lift coefficient is equal but opposite.

2|Page

Contents Abstract .................................................................................................................................................. 2 Introduction and Background................................................................................................................. 4 Introduction........................................................................................................................................ 4 Governing Equations .......................................................................................................................... 4 Similarity ............................................................................................................................................. 5 Aerodynamic Coefficients .................................................................................................................. 5 Equipment and Procedure ..................................................................................................................... 6 Equipment .......................................................................................................................................... 6 Experiment Setup ............................................................................................................................... 6 Basic Procedure .................................................................................................................................. 7 Data, Calculations, and Analysis ............................................................................................................. 7 Raw Data ............................................................................................................................................ 7 Preliminary Calculations ..................................................................................................................... 8 Results .................................................................................................................................................... 9 Conclusions........................................................................................................................................... 13 References ............................................................................................................................................ 13 Raw Data .............................................................................................................................................. 13

3|Page

Introduction and Background Introduction The following laboratory procedure explores the aerodynamic lift and drag forces experienced by a NACA 0012 cylinder placed in a uniform free-stream velocity. This will be accomplished using a wind tunnel and various pressure probes along an airfoil as the subject of study. When viscous shear stresses act along a body, as they would during all fluid flow, the resultant force can be expressed as a lift and drag component. The lift component is normal to the airflow, whereas the drag component is parallel. To further characterize and communicate these effects, non-dimensional coefficients are utilized. For example, a simple non-dimensional coefficient can be expressed as  =



1 2 



 

Equation 1

where F is either the lift or drag forces, AREF is a specified reference area, ρ is the density of the fluid, and V is the net velocity experienced by the object.

Governing Equations To assist in determining the properties of the working fluid, air, several proven governing equations can be used, including the ideal gas law, Sutherland’s viscosity correlation, and Bernoulli’s equation. These relationships are valid for steady, incompressible, irrotational flow at nominal temperatures with negligible body forces. The ideal gas law can be used to relate the following  =  Equation 2

where p is the pressure of the fluid, R is the universal gas constant (287 J/(kg K)), and T is the temperature of the gas. This expression establishes the relationship between the three properties of air that are of interest for use in this experiment.

4|Page

Another parameter needed is the viscosity of the working fluid. Sutherland’s viscosity correlation is readily available for the testing conditions and can be expressed as =

 .  1+ 

Equation 3

where b is equal to 1.458 x 10-6 (kg)/(m s K^(0.5)) and S is 110.4 K. Finally, Bernoulli’s equation defines the total stagnation pressure as 1  =  + 

2 Equation 4

Similarity Using the previous governing equations, we can use the Reynolds number. The Reynolds number is important because it allows the results obtained in this laboratory procedure to be scaled to larger scenarios. The Reynolds number can be expressed as  =

  

Equation 5

where c is a characteristic dimension of the body. For a cylinder, this dimension will be the diameter. As a result, the Reynolds number based on diameter is referenced as ReD.

Aerodynamic Coefficients Three aerodynamic coefficients are used to explore the lift and drag forces on the test cylinder. First, the pressure coefficient expresses the difference in local pressure, the pressure at one discrete point on the cylinder, over the dynamic pressure.  =

 −  1 2   Equation 6

The theoretical value for Cp can be calculated as  = 1 − 4 !" #180° − '( Equation 7

5|Page

The pressure coefficient can be used in the determination of the 2-D lift coefficient, Cl. 8 :; 9

) = cos#α( .

8 : 9

7 /)0123 − 423 56   Equation 8

Equipment and Procedure Equipment The following experiment used the following equipment: •

A wind tunnel with a 1-ft x 1-ft test section



NACA 0012 airfoil section with a 4-inch chord and an array of 9 pressure taps along its upper surface



A transversing mechanism to move the pitot tube to various sections of the test section



A Pitot-static probe



Digital pressure transducer



Data Acquisition (DAQ) Hardware

Experiment Setup Before beginning, the pressure and temperature of laboratory testing conditions was measured and recorded. Using equations 2 and 3, the density and viscosity of the air was calculated. The UAH wind tunnel contains cutouts to allow the NACA airfoil to be mounted inside the test section. A degree wheel is rigidly attached to airfoil such that the angle at which the foil is aligned in relation to the fluid flow can easily be adjusted and measured. The table below lists the distance of each tap, x, from the leading edge of the airfoil.

6|Page

Pressure Tap Locations Tap 1 2 3 4 5 6 7 8 9

x (mm) 4 10 20 30 40 50 60 70 80 Table 1

Basic Procedure To ensure the working flow is relatively laminar and within a range acceptable for study, the procedure initiated flow with a Reynolds number of 250,000. The velocity at which the laboratory air must be accelerated was determined by solving equation 5 for velocity. First, the density and viscosity of the air must be calculated using equations 2 and 3 respectively. Using the DAQ hardware, the difference in pressure between each pressure port and the reference pitot tube was recorded for -10, -7, -4, 0, 4, 7, and 10 degrees of rotation. The raw data from this step is included in the data section.

Data, Calculations, and Analysis Raw Data The following table catalogs the pressure read by the DAQ hardware for the specified rotations. Three data sets were taken to ensure integrity.

7|Page

Data Set 1 Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

Tap 9

-10

832

590

370

275

218

176

144

122

104

-7

750

462

260

185

149

124

109

105

110

-4

570

280

107

61

47

40

43

57

79

0

-51

-192

-252

-228

-19

-159

-125

-85

-49

4

-800

-664

-580

-486

-404

-343

-290

-187

-117

7

-1553

-1115

-885

-723

-538

-453

-370

-283

-190

10

-2463

-1354

-1190

-919

-720

-582

-460

-340

-226

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

Tap 9

-10

838

597

374

274

216

173

137

113

91

-7

765

477

269

193

155

128

113

107

110

-4

565

272

101

55

42

36

39

53

76

0

52

-122

-200

-189

-159

-131

-103

-65

-27

Data Set 2 Angle of Attack

4

-850

-699

-607

-505

-422

-361

-297

-197

-128

7

-1538

-1104

-880

-728

-538

-452

-371

-285

-192

10

-2661

-1472

-1233

-953

-750

-600

-475

-350

-234

Tap 9

Data Set 3 Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

-10

835

594

372

274

216

171

138

112

91

-7

744

454

250

176

142

117

103

100

106

-4

570

277

105

58

45

39

41

54

76

0

54

-120

-200

-188

-158

-130

-102

-65

-27

4

-902

-730

-629

-525

-438

-375

-291

-205

-139

7

-1680

-1200

-944

-707

-570

-478

-389

-296

-198

10

-2525

-1388

-1205

-934

-735

-590

-465

-347

-230

Table 2

Preliminary Calculations First, the density and viscosity of the air at laboratory conditions was calculated. This can easily be accomplished using equation 2 and 3. =

 98.9=>? =B = = 1.1675 G  287 A 295.15C F =BC Equation 9

=B JK .  . H1.458 × 10 F C . M N#295.15 C( O =B = = = 2 × 10  110.4 C F 1+ 1+ 295.15 C Equation 10

For a Reynolds number of 250,000, the velocity of the airflow must therefore be 8|Page

=B #250000( H2 × 10 M   F F = = = 38.42 =B  H1.1675 G M #0.1016 × 10J F( F Equation 11

This value is determined using the definition of the Reynolds number where c, the reference length, is the known value of the chord, 0.1016 meters. For reference, the value for q can be calculated as 1 1 =B F Q =  = H1.1675 G M 38.42 = 861.68 >? 2 2 F Equation 12

All three data sets can be combined by averaging the three records for each angle.

Average Pressure Tap Reading Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

-10

835

594

372

274

217

173

140

116

Tap 9 95

-7

753

464

260

185

149

123

108

104

109

-4

568

276

104

58

45

38

41

55

77

0

52

-145

-217

-202

-112

-140

-110

-72

-34

4

-851

-698

-605

-505

-421

-360

-293

-196

-128

7

-1590

-1140

-903

-719

-549

-461

-377

-288

-193

10

-2550

-1405

-1209

-935

-735

-591

-467

-346

-230

Table 3

The value recorded by the DAQ represents the difference in pressure from the pressure port on the airfoil to the pitot probe in the test section away from the foil. Inserting these values into equation 6 will yield the pressure coefficient on the surface of the cylinder at the specified angle. For example, the pressure coefficient for tap 1 at 0 degrees angle of attack can be calculated as

,;,S2T =

∆ 52>? − 861.68>? = = −0.031 Q 861.68 >? Equation 13

Results Using equation 6, the following table catalogs the pressure coefficient for each pressure tap at each angle of attack.

9|Page

Pressure Coefficient Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

Tap 9

-10

-0.031

-0.311

-0.568

-0.682

-0.749

-0.799

-0.838

-0.866

-0.889

-7

-0.126

-0.461

-0.699

-0.786

-0.827

-0.857

-0.874

-0.879

-0.874

-4

-0.340

-0.679

-0.879

-0.933

-0.948

-0.956

-0.952

-0.937

-0.911

0

-0.939

-1.168

-1.252

-1.234

-1.130

-1.162

-1.128

-1.083

-1.040

4

-1.987

-1.810

-1.703

-1.586

-1.489

-1.417

-1.340

-1.228

-1.149

7

-2.846

-2.323

-2.048

-1.835

-1.637

-1.535

-1.437

-1.334

-1.224

10

-3.959

-2.630

-2.403

-2.085

-1.853

-1.685

-1.542

-1.401

-1.267

Table 4

A plot of Cp and the theoretical Cp over versus angle may better visualize the behavior of the system.

-Cp Versus Pressure Tap 4.500 4.000

-Cp

3.500 3.000

-10 Degrees

2.500

-7 Degrees -4 Degrees

2.000

0 Degrees 1.500

4 Degrees

1.000

7 Degrees

0.500

10 Degrees

0.000 1

3

5

7

9

Pressure Tap

Figure 1

The negative angle of attacks represent the lower section of the airfoil. Reorganizing table 3 to accommodate for this fact helps to better understand the results, as well as prepare for calculating Cl.

10 | P a g e

Pressure Coefficient Angle of Attack 10

7

4

0

-4

-7

-10

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

Tap 9

Upper

-3.959

-2.630

-2.403

-2.085

-1.853

-1.685

-1.542

-1.401

-1.267

Lower

-0.031

-0.311

-0.568

-0.682

-0.749

-0.799

-0.838

-0.866

-0.889

Delta

3.928

2.319

1.835

1.404

1.104

0.887

0.704

0.535

0.378

Upper

-2.846

-2.323

-2.048

-1.835

-1.637

-1.535

-1.437

-1.334

-1.224

Lower

-0.126

-0.461

-0.699

-0.786

-0.827

-0.857

-0.874

-0.879

-0.874

Delta

2.719

1.861

1.349

1.049

0.809

0.678

0.563

0.455

0.350

Upper

-1.987

-1.810

-1.703

-1.586

-1.489

-1.417

-1.340

-1.228

-1.149

Lower

-0.340

-0.679

-0.879

-0.933

-0.948

-0.956

-0.952

-0.937

-0.911

Delta

1.647

1.130

0.824

0.654

0.541

0.462

0.387

0.291

0.238

Upper

0.939

1.168

1.252

1.234

1.130

1.162

1.128

1.083

1.040

Lower

0.939

1.168

1.252

1.234

1.130

1.162

1.128

1.083

1.040

Delta

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Upper

-0.340

-0.679

-0.879

-0.933

-0.948

-0.956

-0.952

-0.937

-0.911

Lower

-1.987

-1.810

-1.703

-1.586

-1.489

-1.417

-1.340

-1.228

-1.149

Delta

-1.647

-1.130

-0.824

-0.654

-0.541

-0.462

-0.387

-0.291

-0.238

Upper

-0.126

-0.461

-0.699

-0.786

-0.827

-0.857

-0.874

-0.879

-0.874

Lower

-2.846

-2.323

-2.048

-1.835

-1.637

-1.535

-1.437

-1.334

-1.224

Delta

-2.719

-1.861

-1.349

-1.049

-0.809

-0.678

-0.563

-0.455

-0.350

Upper

-0.031

-0.311

-0.568

-0.682

-0.749

-0.799

-0.838

-0.866

-0.889

Lower

-3.959

-2.630

-2.403

-2.085

-1.853

-1.685

-1.542

-1.401

-1.267

Delta

-3.928

-2.319

-1.835

-1.404

-1.104

-0.887

-0.704

-0.535

-0.378

Table 5

The “Delta” row is the difference between low and upper pressure coefficients at the respective pressure taps, as expressed in equation 8. Finally, to calculate the pressure coefficient, a final table will be constructed to numerically integrate each angle of attack’s pressure tap readings. For example, the first trap and lift coefficient for 10 degrees is exemplified below. VW?X =

#∆(X + #∆(XY; 7 7 ×Z + Z 2  X  XY; Equation 14

VW?;,;S2T =

3.928 + 2.319 × |0.0393 − 0.0984| = 0.18 2 Equation 15

To numerically integrates the integral of equation 8, Cl can be calculated as. ^

) = cos #\( ] VW?X X

Equation 16

11 | P a g e

) = cos#106B(#0.184 + 0.204 + 0.159 + 0.123 + 0.098 + 0.078 + 0.061 + 0.045( = 0.939 Equation 17

The table below outlines the numerical integration for each angle of attack.

Numerical Integration Table x/c

0.0393

0.0984

0.196

0.295

0.393

0.492

0.590

0.688

0.787

cos(α) 0.985 0.993 0.998 1.000 0.998 0.993 0.985

trap 1 0.184 0.135 0.082 0.000 -0.082 -0.135 -0.184

trap 2 0.204 0.158 0.096 0.000 -0.096 -0.158 -0.204

trap 3 0.159 0.118 0.073 0.000 -0.073 -0.118 -0.159

trap 4 0.123 0.091 0.059 0.000 -0.059 -0.091 -0.123

trap 5 0.098 0.073 0.049 0.000 -0.049 -0.073 -0.098

trap 6 0.078 0.061 0.042 0.000 -0.042 -0.061 -0.078

trap 7 0.061 0.050 0.033 0.000 -0.033 -0.050 -0.061

trap 8 0.045 0.040 0.026 0.000 -0.026 -0.040 -0.045

Cl 0.939 0.721 0.459 0.000 -0.459 -0.721 -0.939

Table 6

Cl vs Angle of Attack 1.500

1.000

0.500

Cl

0.000

-15

-10

-5

0

5

10

15

-0.500

-1.000

-1.500 Angle of Attack (Degrees)

Figure 2

12 | P a g e

Conclusions The lift coefficient of a NACA 0012 airfoil with a chord of 4 inches in flow with a Reynolds number of 250,000 is 0.939, 0.721, 0.459, and 0 for angles of attack of 10, 7, 4, and 0 degrees respectively. At the same but negative angles of attach, the lift coefficient is equal but opposite.

References

“Aerodynamics Lab 2 – Airfoil Pressure Measurements”. Handout

Raw Data Aero Lab 1 Fall 07 p t row u q V

98900 22 1.1675 2E-05 861.68 38.42

R= b= S=

287 1E-06 110.4

T= c= Re=

295.15 0.1016 250000

Data Set 1 Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

-10

832

590

370

275

218

176

144

122

Tap 9 104

-7

750

462

260

185

149

124

109

105

110

-4

570

280

107

61

47

40

43

57

79

0

51

-192

-252

-228

-19

-159

-125

-85

-49

4

-800

-664

-580

-486

-404

-343

-290

-187

-117

7

-1553

-1115

-885

-723

-538

-453

-370

-283

-190

10

-2463

-1354

-1190

-919

-720

-582

-460

-340

-226

Tap 9

Data Set 2 Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

-10

838

597

374

274

216

173

137

113

91

-7

765

477

269

193

155

128

113

107

110

-4

565

272

101

55

42

36

39

53

76

0

52

-122

-200

-189

-159

-131

-103

-65

-27

4

-850

-699

-607

-505

-422

-361

-297

-197

-128

7

-1538

-1104

-880

-728

-538

-452

-371

-285

-192

13 | P a g e

10

-2661

-1472

-1233

-953

-750

-600

-475

-350

-234

Tap 9

Data Set 3 Angle of Attack

Tap 1

Tap 2

Tap 3

Tap 4

Tap 5

Tap 6

Tap 7

Tap 8

-10

835

594

372

274

216

171

138

112

91

-7

744

454

250

176

142

117

103

100

106

-4

570

277

105

58

45

39

41

54

76

0

54

-120

-200

-188

-158

-130

-102

-65

-27

4

-902

-730

-629

-525

-438

-375

-291

-205

-139

7

-1680

-1200

-944

-707

-570

-478

-389

-296

-198

10

-2525

-1388

-1205

-934

-735

-590

-465

-347

-230

14 | P a g e

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF