Aeng 411 Notes Merged (2)

March 31, 2019 | Author: Dyesalyn B. Capito | Category: Lift (Force), Wing, Airfoil, Dynamics (Mechanics), Aerospace Engineering
Share Embed Donate


Short Description

aeng 411 notes merged (2)...

Description

AENG 411 Applied Subsonic Aerodynamics Aerodynamics

The MEAN AERODYNAMIC CHORD (MAC) is frequently used to define the moment coefficient.

WING THEORY

For straight tapered wings,

DEFINITION OF WING PROPERTIES

(Leave space for figure)

C = MAC =

 Cr++  +

A simple construction to find the C on an arbitrary straight tapered planform is illustrated in the figure below.

(Leave space for figure)

(Leave space for figure)



GEOMETRIC WINGSPAN (b)  is the distance between tip to tip of the wing, measured perpendicular to the airplane or wing centerline, regardless of the geometric shape of the wing.



WING AREA (S)  is the projection of the plan form on a plane of reference which is usually the chord plane. WING ASPECT RATIO (A) may be defined as:

/

1. A = = the ratio of the square of the wingspan to the total wing area.

  the average chord  A =  = the ratio of the total wing 

2. A =  = the ratio of the wingspan to 3.

area to the square of the average chord

TAPER RATIO λ – λ = /

 defined as the ratio of the tip chord (ct ) to the root chord (cr)

Following the expression of force and moment equations for airfoils the wing aerodynamic forces & moment are written as:

 =  12  =   =  12  =   =  12   =  Rectangular Wing

 =  2  SWEEP ANGLE Λ –

 is the angle between the line perpendicular to the centerline and leading edge or the quarter chord line. It is denoted as

  .

A straight, tapered wing of 30ft span has a leading-edge & trailing-edge sweep angle of , respectively. Its total area is 285.3 sq. ft. Find the magnitudes of root chord, tip chord & the mean aerodynamic chord.

45 & 15

 =  = 4.15′02′  =0.268   1 2   = 3     1 

45 

15 15 15  = 15 2

Sol’n

 =  15..+.++ = 10.57

For ΔCAB Tan45 =    =     =   = 15 For ΔCBD: tan15 =   =  tan15  = 4.02

 CIRCULATION, DOWNWASH, LIFT AND INDUCED DRAG



Induced Drag  part of the drag caused by lift



Downwash velocity  the air velocity deflected perpendicular to the direction of motion of an airfoil, i.e. it is the bending down of the air column c olumn upon which the wing acts while in flight.



Angle of attack  the acute angle between a reference line in a body and the line of the relative wind direction projected on a plane containing the reference line and parallel to the plane of symmetry.



Geometric Angle of Attack  simply reffered to as the angle of attack, has been defined as the angle between the relative wind & wing cord Effective angle of attack - the angle of attack at which an airfoil produces a given lift coefficient in a two  dimensional flow.





Induced Angle of Attack  the difference between the actual angle of attack & the angle of attack for infinite aspect ratio of an airfoil for the same lift coefficient.

Absolute angle of attack the angle of attack of an airfoil, measured from the attitude of zero lift.



Critical Angle of attack  the angle of attack at which the flow about an airfoil changes abruptly as shown by corresponding abrupt changes in the lift & drag.



Relative Wind  the direction from which the air comes in meeting the wing, this direction being the direction of the airstream before it has been disturbed by the approaching wing. wing.

 = ′ 

eq. 5

Since,

 =       =  =   = 

eq. 6

Equating for L: (Leave space for figure)

Let:

 S’ = swept area it is a cross

 = downwash for behind the wing

-section) of the airstream taken perpendicular to the direction of mo motion tion of the wing.

 =   1 =   = 2

eq. 7

Prandtl has shown that, with semielliptic lift distribution, the swept area is a circle whose diameter is the span (b).

Two methods of calculating lift : (Leave space for figure)

1. Momentum method Force X Distance According to the linear momentum principle, assuming uniform



downwash over s’  =   = ′

eq. 4

2. Energy method -the work done on the air mass per unit time equals the kinetic energy increase per unit time.

=′ 

From eq. 4

 =  =2   =  But,

 =    

 = 

Equating for L:

   =   =  =     =  For induced angle of attack,

 = 

, where



Where:

span efficiency factor or Oswald’s

e= efficiency factor (=0.85-0.95 for the wing alone)(= 1 for elliptical) Ae = effective aspect ratio TOTAL DRAG COEFFICIENT FOR A WING

 =       =    



is in radian

For induced drag coefficient,

eqn. 1

Where  is the (lift independent) sum of skin friction & pressure drag.



 =   =   =   =    = 

eqn. 2

Eqns 1 and 2 are valid for wings with elliptical loading (i.e., uniform. This condition can be achieved by using an elliptical planform. Note:



-For elliptical planform downwash is constant along the span -both the downwash and the induced angle of attack go to zero as the wing span becomes infinite.

Glavert has shown that for rectangular wings, more nearly correct formulas are:

A 3 4 5 6 7 8 9

 =  1  =  1 τ 0.11 0.14 0.16 0.18 0.20 0.22 0.23

0.022 0.033 0.044 0.054 0.064 0.074 0.083

EXAMPLE # 1 A rectangular monoplane wing has a span of 14m & a chord of 2m. When  determine: (a) induced angle of attack, (b) induced drag coefficient.

 =0.42,

For non-elliptic lift distribution,

 = 



Given:

 

=14 =2  =0.42 Req’d:   Sol’n:  =  1 ,     = 18. 24  1 ,  . → 180⁄   =  = 142 = 7 =0.2 =0.064 @ =7 421 0.20  = 18.240. 7  = 1.31 . (a) (b)

 = 45 ℎ=3000 =0.85  = ?  =  12  1    =  2  

Req’d: Sol’n:

(a)

At level fight: (leave space for figure)

= =  =  =  12   = 1   2

From the table:

Subst. (b)

 =  1   0. 4 2 =  7 10.064  =0.0085

12  1     =  2    =  1  2

EXAMPLE # 2: An airplane weighing 8500N, has a wing span of 12m. What is the induced drag at 3000m altitude if the airspeed is 45m/s? Assume e = 0.85.

But,

Given:

Subst.

 = 8500  =12

    =     =    1   2

   =  1   2

For wing # 2

 =   ,  =  −  Equating ,

 =    −  =  −   =   −  =     −    =    [ 1 −  1]

Where:

 =    . ℎ  =  1   =1.225  .   0 0651 (−0. )3000  1  288 =0.908   8500  = 0.8510.90812 45     2   =204.37

Since,

 =  = −   =   =    [ 1 − 1 ]           = 1  [ 1 − 1 ]        = 1  [ 1 − 1 ]     

Multiply both sides by

AIRFOIL CHARACTERISTICS CORRECTION Assume that two wings have high but different aspect ratios. Also assume that they have the same airfoil. In that case, according

to Prandtl’s Lift Line Theory if these wings  −      ℎ  ℎ  = −    ℎ         are placed at the one effective angle of attack and , their lift coefficient

Where:

 =      # 1  =      # 2 Let:

 =   = ∞∞  = 1  [ 1 − 1 ]   ∞  ∞  = 1 ∞ 

the angle of zero lift.



For wing # 1

 =    ,  =  − 

Where:

 ∞

 = slope of lift curve of wing with finite aspect ratio  = slope of lift curve of wing with infinite aspect ratio

EXAMPLE: The slope for the lift coefficient curve for infinite aspect ratio is 0.09 per degree. What is the  for a wing with an aspect ratio of 7 at an angle of attack of 9 degrees measured from an angle of zero lift? Assume  = 0.85.





0.15 1.2 If this airfoil is used to construct an elliptical wing of , determine the wing lift curve slope.

  = 7.0

Given: NACA 23012





Sol’n

−

Elliptical wing (

Given:

Req’d:



∞ = 0.09   = 7  = 9 .   = ∞ = 1 ∞ ∗      ∞  = 1 ∞ ∞  = 1 18.24∞  0.09  deg 9  = 18. 0.deg09 2 4 deg 1 70.85  =0.635

EXAMPLE Prob. 4.2 The test results of the NACA 23012 airfoil show the following.

Req’d

=1

0.15 1.2

)

@=7

(leave space for figure)

 =  ∆  −  1.2 − 0.15 ∞ = ∆ =  −  = 9 − 0 Sol’n:

∞ = 0.117  = 1∞∞   = 1 18.∞24∞   0.117  = 18.24 deg0.117   1 7  = 0.090

EXAMPLE PROB. 4.3 A rectangular wing model of 40 in by 5 in has the ff. characteristics determined from a wind tunnel test:

=0.87, =  = 0.09 deg&  = −3,

if a full-scale rectangular wing of 42ft by 6ft is constructed with the same airfoil section, what lift will it develop at under standard sea-level conditions? Assume

 = 5 & 120 ℎ =0.87  ℎ − . Given: Model

Full Scale

SSLC

 =40.  =5   = 0.8 09  =   =0.87  = −3  = 42   = 6   = 7  = 5  =120ℎ  =0.87  = ?

Sol’n  =  12   =  −    = 118.24 [ 1 − 1 ]         0. 0 9 = 118.240.09 [ 1 − 1 ]  70.87 80.87  = 0.087

 = 0.087 5 −−3  =0.696  = 0.696 0.002377  120∗   426    =6,457.05  L

PART I. FUNDAMENTALS OF FLIGHT MECHANICS FOR STEADY SYMMETRICAL FLIGHT

Fig . Definition of angles and velocities in steady symmetrical flight Where: Xb, Y b, Zb – Body axes system (Yb, not shown, is pointing in the paper), with X b along some airplane reference line. Xs, Y s, Zs – Stability axes system (Y s is pointing along Yb) with Xs pointing in the direction of the velocity vector v.

 γ – read (climb path angle). The flight path angle. Positive for ascending flight (climb) and negative for descending flight (glide or dive) α – airplane (airframe) angle of attack θ – pitch altitude angle v – true airspeed vh – horizontal flight speed component vv – vertical flight speed component or rate of climb (R.C.)

δ – rate of descent (R.D.)

Fig . Definition of forces in steady symmetrical flight.

+ ΣFxs = 0 D + Wsin γ - Tcos(α + θT) = 0 CDqS + Wsin γ - Tcos(α + θT) = 0 + ΣFzs = 0 L + Tsin(α + θT) – Wcos γ = 0 CLqS + Tcos(α + θT) - Wcos γ = 0 Where: L – airplane lift D – airplane drag T – airplane thrust W – airplane weight

θT – thrust orientation angle relative to body x-axis

Seven (7) quantities needed to completely define a steady symmetrical state: 1. W 2. h (through ρ) 3. α 4. θT 5. v 6.  γ 7. T In most problems, W, θT and h will be given, leaving for variables. Two variables can be arbitrarily selected. Example cases are  

Level flight ( γ=0) at speed υ. The variables T and α follow from the equations. Flight at a given thrust-level, T and a desired climb angle,  γ. The variables v and α follow from the equations

̅ = ̅  + ̅ 11 =  ̅ = [( + )̅ ] =  1   ̅ = ( +  )̅  =  1      = ( +  ) =̅  .2

Part 2 Unpowered Flight or Glide

R

Vv = V cos α Vv = RD = V sin α

β XB XS

W sin α ZS

Note:

 >0  >0 >0 Fig. 3 Airplane in Gliding Flight

In this flight condition, T = 0

∑ = 0 − =0 = 

 = 0 −sin=0 =sin ̅ =  sin .3  = 0 −cos=0 =cos ̅   = cos .4 ̅ = − ), therefore: Introducing  sin̅.5 ̅ .6 ̅ = sin ̅ .7 ̅ = cos RD = V

But:

 =  −  Substitute;

 =    +  =  1=   =  +  = 

 

Note that the variables here are , h (through ),  v & . By selecting

 , ̅

& h, three variable remain of which one can be arbitrarily selected.

Part IV – Horizontal Distance Covered in a Steady Glide

Where: h= Initial altitude R= Horizontal distance covered in a steady glide

R

t=an̅=   = tan=    =  =ℎ   =ℎ ̅  t a n =   tan̅= ⁄1 ̅ =tan−1 ⁄1 From the given figure

 ̅

Minimum Glide Path Angle γ min & Maximum C L/CD It is seen that to achieve the lowest possible , it is necessary to maximize C L/CD. For a parabolic drag polar CL/CD can be maximize by setting its derivative with CL to zero.

eqn. 1 eqn. 2

But,

. Then Substitute to eqn. 1

 

 =0  =      =  − += 1−      =0 +     =0 =0   ==   = √   Substitute

eqn.3

Hence,

eqn. 4

*

From,

eqn. 5

    ==     == 2   == 1√        = 1  Substitute

to the polar drag equation

Polar Drag Equation

Glide Path

For

Minimum Rate of Descent

 = 1       =0  [ ] =0   += − ()− +           +             311    4=0 3  3 =04 =0 3     =0 It is seen that to achieve the lowest possible RD, it is necessary to minimize  & to maximize parabolic drag polar,

. For a

 can be maximize by setting

its derivative with C L to zero.

*

3=3 =0  ==3√ 3  ==     == 4 3     = √     = √ 16  = 161    = 16    = 16   ,

(CdCl⃒) max= 12  πCdoAe   ..  ⃒max=

MINIMUM AIRSPEED OR STALLING SPEED

VMIN = VS =

 WP

equation 17

=

33.71

To achieve a low minimum airspeed (stalling

w

Rmax = 1500 ft. (33.71)

speed), it is seen that  should be low and C LMAX should be high.

Rmax = 50 565 ft.

EXAMPLE PROBLEMS 1. A glider weighs 800 lbs. and has a wing loading of 12 psf. Its drag equation is: C D = 0.010 + 0.022 C L2. After being launched at 1500 ft. in still air, find:

V @ Rmax =

 Wρ  √ πAeC  ..

CL =

DO

= a) The greatest distance it can cover b) The greatest duration of flight possible over level ground In both cases, find the corresponding flight speeds. Ignore the effect of density changes of the atmosphere and use standard sea level conditions. Given: W = 800 lbs. W/s = 12 psf CDo = 0.010 πAe =

.

h = 1500 ft Required: a) RMAX & V @RMAX b) tMAX & V @ RDMIN

RMAX = h(CL/CD) MAX

V @ Rmax =

 12 psf  .77ug/.7

V @ Rmax = 122.39 ft/s

CcL ⃒max= 163  3πAE CD  D clcd ⃒max= 163 (0.0122) 0.0220.3 010  m⃒ ax = ⃒  12 psf  .77ug/99. ⃒ 995.24

3

ρ = 0.002377 slug/ft (S.S.L.C.)

Solution:

CL = 0.674

RD min=

RD min= 3.19 ft/s

tmax =

   RDin .9 / =

tmax =470.22 s

CL =

(CdCl⃒)max= 21.30  

 3πAeC  ..

=

Rmax = h

CL = 1.17

= (21.30)(2000 ft)

Rmax = 42600 ft

 wP  12 psf  .77 .7

V @ RDmin =

γmin = tan-1

 

= tan-1

.

γmin = 2.69°

=

ρ @ h = 2000 ft

V @ RDmin = 92.90 ft/s

1+ T . −)  ( [1+ 9 R ]

ρ=

2. What greatest horizontal distance can be traveled in a glide if the airplane weighs 4500 lbs, a rectangular wing 42 ft by 7 ft and glides from 2000 ft? the polar drag equation of the airfoil is C D = 0.0340 + 0.0162 CL2. Compute also the minimum glide path angle and minimum rate of descent. Given: W=4500 lbs S = b x c = 42 ft x 7 ft =294 ft2 h = 2000 ft CDO = 0.0340

4.26

=

4.26

Ρ= 2.24 x 10-3 slug/ft3

CcL ⃒max= 163  3πAE CD  D cdcl ⃒max= 163 (0.01162) 0.01620. 3 034 cdcl ⃒max=854.18  Wρ/    9 . −. 

RDmin = πAe = 1/0.0162 Required: Rmax, γmin, RDmin Solution:

(CdCl⃒) max= 12  πCdoAe (CdCl⃒) max= 12  0.01620.1 0340

=

RDmin = 4.0 ft/s

3. Determine the minimum rate of descent of the airplane described in problem 3 if the the wing will be change into a straight-tapered with configuration as shown:

Given: W =4500 lbs S = trapezoid = ½ b (h 1 + h2) h = 2000 ft CD = 0.0340 + 0.0162CL2 CDO = 0.0340 ΠAe = 1/0.0162 Required: RDmin Solution S= =

  b h1+h2  21 ft4 ft+8 ft

s = 126 ft2 x 2 s = 252 ft2 RDmin =

 Wρ/     . −. 

=

RDmin = 4.32 ft/s

Altitude, h(ft) Sea level 5,000 50,000

 =    =   =   ..

Density ratio, σ But,

Then,

STEADY POWERED FLIGHT For stationary (steady), symmetrical powered flight the equations of motion are:

where

   = 0     = 0

= Thrust Orientation Angle and γ = flight path angle and

In the case of conventional airplanes it turns out that the

component to other forces in Tsin(α+θT) is small when compared to

Where: Tv = PAV = power available from the propulsive system Dv = PREQD  = power required to overcome the drag at a given speed v WRC = climb power Therefore in steady symmetrical flight the power available equals the sum of the power required and the climb power

other forces in Tsin(α+θT) + L – Wcosγ For that reason it can be assumed that sin(α+θT)≈0 and cos(α+θT)=1.0. (Insert figure here) Hence equations above become,

 =    =   =   And

It is useful to write

multiplication by the airspeed V.

 in terms of “work” by

In the case of level flight, RC = 0

+ ℎ = 0 ←∑   = 0

 =  =  ∑ = 0 ==0  =  = 

The drag in level flight is

For a given weight, flight configuration and altitude

 =

equations above the certain variables α, v, and t. One of these

 

variables can therefore be arbitrarily selected. Note that  in this case can be written as:

 =   =   =  =   =  =   = 

Therefore, the power required can be written as

 (excess power) (level flight)

Aerodynamic center – lift

Center of gravity – weight This level flight speed follow from equation

1 =   2  = 

 =  (2)(1)  =    =    =   =  =   ( ) (2)(1)  =  ( ) (2)  =  ( ) (2)1⁄

 =  = 

Report No. 6 Calculation of drag and power required for a low speed turboprop transport.

Drag and power required for the case of parabolic drag polars

Given: If a drag polar can be represented by Airplane weight Wing loading Altitude Aerodynamic characteristics Explanation of Table

W = 18,400 kgf 

 = 220⁄ h = 0m

 =     =  12  =      12  1 =    1  =  2   2   =  12    12   =  12  =   = 12 

The drag at some V is given by

Fig 8.17 Or

From:

Substitute:

    1    1  =  2   2  12   =  12  12  

Where:

Do = Parasite drag

Di = Induced drag The power required in level flight therefore follows that

 =  =  12   12   =    =  12     12   =  12   12⁄  =   

Since,

Where:

It is important to recognize that induced drag and induced power required (at 0 given altitude and Speed) is independent on the span loading. The lower the span loading, the lower the induced drag and induced power required.

Flight Speed at Minimum Drag

 = 0  12   12   = 0  2 12   12 2− = 0  =   4  = 0    4 = 0  = 4   = ( ) (2) (1 )  = ( ) (2) √ 1   =  ( ) (2)√ 1   =  12     12  

 =  12 [( ) (2)√ 1 ]   12 [ 2 1 ] √    =        = 2   =     = 2

 1  2 1          [           ]  4     √   =  1 [  2 1 ]⁄ 2   √   =      2   = 2 (1 )(2)    = 2 ( ) (2)  

POWER REQUIRED AT MINIMUM DRAG

 =  12     12   ⁄   1  2 1  =  2 [(  ) () √ ]   1 [ 2 1 ] 2   √ 

HIGH SPEED MINIUM POWER REQUIRED

 = 0  12   12 = 0   12 3 12 − = 0

32  = 21   2 3 = 4  = ( ) (2) (31 )  = ( ) (2)√ 31   =  ( ) (2)√ 31 

 1  2 1          [           ]  4   3  √   =  1 [  2 1  ]⁄ 2   √ 3 1        3  = [  ]⁄ 2 3  = 43  2  3  = 43  ( ) (2) 3

POWER MINIMUM REQUIRED

 =  12    12   ⁄   1  2 1  =  2 [(  ) ()√ 3 ]   1 [  2 1 ]⁄ 2   √ 3

DRAG AT MINIMUM POWER REQUIRED

 =  12    12  

 =  12 [( ) (2)√ 31 ]   1     2  12    =  3   3

Altitude, h(ft) Sea level 5,000 50,000

 =    =   =   ..

Density ratio, σ But,

Then,

STEADY POWERED FLIGHT For stationary (steady), symmetrical powered flight the equations of motion are:

where

   = 0     = 0

= Thrust Orientation Angle and γ = flight path angle and

In the case of conventional airplanes it turns out that the

component to other forces in Tsin(α+θT) is small when compared to

Where: Tv = PAV = power available from the propulsive system Dv = PREQD  = power required to overcome the drag at a given speed v WRC = climb power Therefore in steady symmetrical flight the power available equals the sum of the power required and the climb power

other forces in Tsin(α+θT) + L – Wcosγ For that reason it can be assumed that sin(α+θT)≈0 and cos(α+θT)=1.0. (Insert figure here) Hence equations above become,

 =    =   =   And

It is useful to write

multiplication by the airspeed V.

 in terms of “work” by

In the case of level flight, RC = 0

+ ℎ = 0 ←∑   = 0

 =  =  ∑ = 0 ==0  =  = 

The drag in level flight is

For a given weight, flight configuration and altitude

 =

equations above the certain variables α, v, and t. One of these

 

variables can therefore be arbitrarily selected. Note that  in this case can be written as:

 =   =   =  =   =  =   = 

Therefore, the power required can be written as

 (excess power) (level flight)

Aerodynamic center – lift

Center of gravity – weight This level flight speed follow from equation

1 =   2  = 

 =  (2)(1)  =    =    =   =  =   ( ) (2)(1)  =  ( ) (2)  =  ( ) (2)1⁄

 =  = 

Report No. 6 Calculation of drag and power required for a low speed turboprop transport.

Drag and power required for the case of parabolic drag polars

Given: If a drag polar can be represented by Airplane weight Wing loading Altitude Aerodynamic characteristics Explanation of Table

W = 18,400 kgf 

  = 220⁄ h = 0m

 =     =  12  =      12  1 =    1  =  2    2   =  12    12   =  12  =   = 12 

The drag at some V is given by

Fig 8.17 Or

From:

Substitute:

    1    1  =  2   2  12   =  12   12  

Where:

Do = Parasite drag

Di = Induced drag The power required in level flight therefore follows that

 =  =  12   12   =     =  12     12   =  12   12⁄  =   

Since,

Where:

It is important to recognize that induced drag and induced power required (at 0 given altitude and Speed) is independent on the span loading. The lower the span loading, the lower the induced drag and induced power required.

Flight Speed at Minimum Drag

 = 0   12   12   = 0  2 12   12 22− = 0  =   4  = 0    4 = 0  = 4   = ( ) (2) (1 ) 1  = ( ) (2) √  1  =  ( ) (2) √   =  12     12  

1]  =  12 [[(( ) (2) √    12 [[ 2   √ 1 ]  =        = 2   =     = 2

 1  2 1          [       ]        4      √   =  1 [[  2  1 ]⁄ 2   √      =       2   = 2 (1 ) (2)    = 2  2 ( ) (2)  

POWER REQUIRED AT MINIMUM DRAG

 =  12     12   ⁄   1  2 1  =  2 [(  ) () √  ]      1 [[ 2  1 ] 2   √  

HIGH SPEED MINIUM POWER REQUIRED

 = 0   12   12 = 0   12 33  12 − = 0

32  = 21   2 3 = 4  = ( ) (2) (31 )  = ( ) (2)√ 31   =  ( ) (2)√ 31 

 1  2 1          [           ]  4   3  √   =  1 [  2 1  ]⁄ 2   √ 3 1        3  = [  ]⁄ 2 3  = 43  2  3  = 43  ( ) (2) 3

POWER MINIMUM REQUIRED

 =  12    12   ⁄   1  2 1  =  2 [(  ) ()√ 3 ]   1 [  2 1 ]⁄ 2   √ 3

DRAG AT MINIMUM POWER REQUIRED

 =  12    12  

 =  12 [( ) (2)√ 31 ]   1     2  12    =  3   3

CLIMB PERFORMANCE AND SPEED Equations of motion

Fig. Flight Path Geometry and Forces for Airplane in Accelerated Climbing Flight

Normal to flight path: +

∑ = 0   sin  cos .  ==0   

  .  In normal (straight line) climbing flight, since  = 0, the centrifugal force is zero. Assuming small climb angles  < 15° and     = 0.  si=n0    cos .  .= 0 where C.F. is the centrifugal force

 =

Along the flight path:

→+  = 0

∝   sin     ∙  = 0  sin     ∙  = 0 sin  =     ∙  sin  =    1 ∙  Since the rate of climb, R.C., is equal to the vertical component of the flight speed:

. .= ℎ = sin  sin  = .. .. =    1 ∙ ℎ ∙ ℎ .. =    1 ∙ ℎ ∙ .  .    .  . =    ∙ ℎ ∙ .  . . .( 1  ℎ) =         . .= 1  ℎ  ℎ = Acceleration factor Where:

When the climb is made at a constant true airspeed,

. .=    As written in its present form, eqn.

. .= −

⁄ℎ = 0

. Therefore:

 is applicable to a jet plane. Since a

propeller-driven airplane is related in terms of power; instead of thrust, eqn.

− for propeller-driven airplane as:   can bewritten 

.  . =     .  . =   ′

. .=

       .  .=   =   

(Note: v is constant) CLIMB PERFORMANCE AND SPEED OF PROPELLER DRIVEN AIRPLANES POWER REQUIRED Power required for flight at constant speed is given by: Since for small γ,

And,

Therefore,

At sea level:

where level.

W o should

Equating

; 

′ =  ′ =  =    =  ( ) (2)(1) ′ = 5501   ( ) (2)(1)    2   = 550  (  ) () = 550  ( ) (2)∙    =    =  ()(2)(1) ′ = 550  ()(2)∙  

be interpreted as a reference weight and not as the weight at sea

  =   ′ = ′ ()

Equating

Equating

 

:

 =   ∙  =  ()1 =  ()(1)

  :    ′ = ′ () (1)

REPORT NO.7 POWER REQUIRED AT SEA LEVEL AND ALTITUDES PROBLEM: A single-engine ______________ aircraft has the following characteristics:

 ==116.165325   = 0. =0370. 1.65 064   

(Clean Airplane)

Compute the power required at sea level, 5000ft, 1000ft, 15000ft, and 20000ft altitudes: FOR MINIMUM SPEED:

 = ( ) (2)1  =  (116.  165325  )(0.0023772⁄)(1.165)   = 85.15 ⁄ × 1522 = 58.06 ℎ 22    = 12  = 1(0,002377  1653  ) (× 15 ) 116.25 2     3    ℎ  = 5561.8 ℎ: . ℎ  = (1  )  ==0.     003566 °    = 519°  ℎ =       Where:

TABLE 1 Altitude, h (ft) SEA LEVEL 5000 10000 15000

Density Ratio, 1.000

σ

20000

EXPLANATION OF TABLE 2 Column No.

①, ②, ③, ④, ⑤, ⑥, ⑦,

  

′ ′  ′

=

Given

=

.①

= = = = =

0.0370.064② ③②  ④×①  ①√  ⑤√ 

Power Available The available thrust power is given by:

 = ×

Where: BHP = shaft brake horsepower



 = propeller efficiency

REPORT NO. 8

POWER AVAILABLE AT SEA LEVEL AND ALTITUDES

PROBLEM: For the airplane described in Report No. 7, the engine rated at _______HP at ______RPM is installed. Find the data for the thrust horsepower available vs velocity curve. Given:

 =    = 116   =  = 2800   = 78%  

Solution: At level flight,

 = = 1160.78 =  × = 90.48

By interpolation: V0

THPREQ’Do

mph

hp

130

76.41

VDES

90.48

140

92.57

140130   130 = 90.4876.41 92. 5 776. 4 1  = 138.71 ℎ

POWER SPEED COEFFICIENT, C S

     =   ⁄  ==0.0 =02377     ⁄ __________   =   = ________⁄  ∙  =  = ___________  

where:

In fig. 51: @Cs= _________ and ζ P=78%, BLADE ANGLE, β=_________ In fig. 52:

@β=_________ and Cs= ________,

 = 

Propeller Diameter, D

where:

 =  ⁄  ==   ==__________  ⁄ ________    =  

Explanation of Table:

①,

V

=

Given

②,

% Design V

=

①  

③,

% Design N

=

Obtained from Fig. 449

④,

N

=

③ x DESIGN N

⑤,

BHP

=

③ x DESIGN BHP

⑥,

     

=

①④D ⑥ 

⑦,

% DESIGN

=

⑧, ⑨, ⑩,

% DESIGN

=

Obtained from Fig. 55a

=

⑧ x DESIGN ⑤x⑨

=



⑪,

N

=

⑫,

BHP at reduced N

=

⑬,

BHP

=

⑭, ⑮, ⑯, ⑰, ⑱,

    

=

% DESIGN

=

% DESIGN

=

④x altitude× ⑪factor

  ⑫ x ALTITUDE FACTOR ①× ⑪×D  ⑭  ÷Design

Obtained from

fig. 55a = =

 (fig.55b)

⑯ x DESIGN ⑬x⑰



 (fig. 44b)

CLIMB PERFORMANCE AND SPEED Equations of motion

Fig. Flight Path Geometry and Forces for Airplane in Accelerated Climbing Flight

Normal to flight path: +

∑ = 0   sin  cos .  ==0   

  .  In normal (straight line) climbing flight, since  = 0, the centrifugal force is zero. Assuming small climb angles  < 15° and     = 0.  si=n0    cos .  .= 0 where C.F. is the centrifugal force

 =

Along the flight path:

→+  = 0

∝   sin     ∙  = 0  sin     ∙  = 0 sin  =     ∙  sin  =    1 ∙  Since the rate of climb, R.C., is equal to the vertical component of the flight speed:

. .= ℎ = sin  sin  = .. .. =    1 ∙ ℎ ∙ ℎ .. =    1 ∙ ℎ ∙ .  .   .  . =      ∙  ∙ .  .   ℎ . .( 1  ℎ) =         . .= 1  ℎ  ℎ = Acceleration factor Where:

When the climb is made at a constant true airspeed,

. .=    As written in its present form, eqn.

. .= − 

⁄ℎ = 0

. Therefore:

 is applicable to a jet plane. Since a

propeller-driven airplane is related in terms of power; instead of thrust, eqn.

− for propeller-driven airplane as:   can bewritten 

.  . =     .  . =   ′

. .=

       .  .=   =   

(Note: v is constant) CLIMB PERFORMANCE AND SPEED OF PROPELLER DRIVEN AIRPLANES POWER REQUIRED Power required for flight at constant speed is given by: Since for small γ,

And,

Therefore,

At sea level:

where level.

W o should

Equating

; 

′ =  ′ =  =    =  ( ) (2)(1) ′ = 5501   ( ) (2)(1)    2   = 550  (  ) () = 550  ( ) (2)∙    =    =  ()(2)(1) ′ = 550  ()(2)∙  

be interpreted as a reference weight and not as the weight at sea

  =   ′ = ′ ()

Equating

Equating

 

:

 =   ∙  =  ()1 =  ()(1)

  :    ′ = ′ () (1)

ACTIVITY NO.7 POWER REQUIRED AT SEA LEVEL AND ALTITUDES PROBLEM: A single-engine ______________ aircraft has the following characteristics:

 ==116.165325   = 0. =0370. 1.65 064   

(Clean Airplane)

Compute the power required at sea level, 5000ft, 1000ft, 15000ft, and 20000ft altitudes: FOR MINIMUM SPEED:

 = ( ) (2)1  =  (116.  165325  )(0.0023772⁄)(1.165)   = 85.15 ⁄ × 1522 = 58.06 ℎ 22    = 12  = 1(0,002377  1653  ) (× 15 ) 116.25 2     3    ℎ  = 5561.8 ℎ: . ℎ  = (1  )  ==0.     003566 °    = 519°  ℎ =      

Density Ratio from Sea Level up to Tropopause

Where:

TABLE 1 Density Ratio, Altitude, h (ft) SEA LEVEL

1.000

5000 10000 15000 20000

EXPLANATION OF TABLE 2 Column No. :

①, ②, ③, ④, ⑤, ⑥, ⑦,

  

′ ′  ′

=

Given

=

.①

= = = = =

0.0370.064② ③②  ④×①  ①√  ⑤√ 

Power Available The available thrust power is given by:

 = ×

Where: BHP = shaft brake horsepower



 = propeller efficiency

σ

REPORT NO. 8

POWER AVAILABLE AT SEA LEVEL AND ALTITUDES

PROBLEM: For the airplane described in Report No. 7, the engine rated at _______HP at ______RPM is installed. Find the data for the thrust horsepower available vs velocity curve. Given:

 =    = 116   =  = 2800    = 78%   78%  

Solution: At level flight,

 == 1161160.0.788 =  × = 90.48

By interpolation: V0

THPREQ’Do

mph

hp

130

76.41

VDES

90.48

140

92.57

140130   130 = 900..48  7676..41 92. 5 776. 4 1  = 138.71 ℎ POWER SPEED COEFFICIENT, C S

     =   ⁄  ==0.0 =02377     ⁄ __________   =   = ________⁄  ∙∙   =  = ___________  

where:

In fig. 51: @Cs= _________ and ζP=78%, BLADE ANGLE, β=_________ In fig. 52:

@β=_________ and Cs= ________,

 = 

Propeller Diameter, D

where:

 =  ⁄  ==   ==__________  ⁄ ________    =  

Explanation of Table Column No.:

①,

V

=

Given

②,

% Design V

=

①  

③,

% Design N

=

Obtained from Fig. 44a

④,

N

=

③ x DESIGN N

⑤,

BHP

=

③ x DESIGN BHP

⑥,

     

=

①④D ⑥ 

⑦,

% DESIGN

=

⑧, ⑨, ⑩, ⑪,

% DESIGN

=

Obtained from Fig. 55a

=

⑧ x DESIGN ⑤x⑨

⑫,

BHP at reduced N

=

⑬,

BHP

=

⑭, ⑮, ⑯, ⑰, ⑱,

N

    

=

=

=

% DESIGN

=

% DESIGN

=

 ④x altitude× ⑪factor

  ⑫ x ALTITUDE FACTOR ①× ⑪×D  ⑭  ÷Design

Obtained from

fig. 55a = =

 (fig.55b)

⑯ x DESIGN ⑬x⑰



 (fig. 44b)

ALTITUDE, h Ft 5000 10000 15000 20000

ALTITUDE FACTOR Fig. 44b Fig. E5b

CLIMB PERFORMANCE AND SPEED From the plotted graphs of the power required and available at given altitudes, various performance parameters can be obtained: Maximum flight speed Maximum rate of climb Maximum climb angle All corresponding speeds

maximum climb angle is not less than the stall speed. To find the condition for maximum (R.C. / v) drawn a straight line from the origin tangent to the curve.

ACTIVITY NO. 9

Climb Performance and Speed Problem: For the aircraft described in activity nos. 7 and 8, determine the maximum speed, the maximum R.C., the speed for maximum R.C., the best climb angle and the corresponding flight speed.

The maximum speed in level flight at a given altitude is simply the speed at which the power available and power required curves intersect. The maximum rate of climb occurs when the excess power is maximum. The maximum climb angle occurs when the ratio (R.C. /V) is at maximum

..= si .n. sin =   = sin− (..)  = sin− (..)

In determining the maximum climb angle, care should be taken to make sure that the speed for

h

     = mph

hp

hp

hp

.  33,.=000 ft/min

600.00     )    m500.00    p     f     (  . 400.00    C  .    R  ,     b 300.00    m    i     l    c     f 200.00    o    e    t    a    r 100.00

0.00 0

50

100

150

Flight speed, v (mph)

At h

 sin− .. =

ALTITUDE, h



MAX R.C.

SPEED FOR MAX R.C.

FT

MPH

FT/MIN

MPH

SEA LEVEL 5,000 ...

BEST CLIMB ANGLE,

SPEED FOR BEST CLIMB ANGLE

DEG

MPH



CLIMB PERFORMANCE FOR CONSTANT THP AV AND PARABOLIC DRAG EQUATION For quick performance estimation, it is often assumed to be independent of flight speed. It is further assumed that the airplane drag equation is of the parabolic form:

      =  +  ..= −  = 550  ( ) (2)∗   ∝ 

For general aviation aircraft, typical values of a range from 0.7 to 0.85, Eqn.

  Indicates

that maximum R.C. implies minimum PREQD. However, from eqn.

Therefore, the condition for

maximum R.C. requires

⁄

  to be

maximum. That is the derivative of

⁄

With CL should be zero.

      = 0      +    = 0

     2    ( + )(32 )  = 0    ( +  )      32   + 32   2  = 0 2          3 + 3   4  = 0    3   = 0    1    = 3  = 3  = 3  = √ 3  =  + 3  = 4

An airplane weighs 36,000-lb has a wing area of 450-ft2. The drag polar equation is CD = 0.014 + 0.05 CL2. It is desired to equip this airplane with turboprop engines with available power such that a maximum speed of 602.6-mph at sea level can be reached. The available power is assumed to be independent of flight speed, calculate the maximum rate of climb and the speed at which it occurs.

Given: W = 36,000-lb S = 450-ft2 CD = 0.014 + 0.05 CL2 Vmax = 602.6-mph * SEA LEVEL

 = 883.81fps

THρAV = constant

Req’d:

Max R.C. and Vmax R.C.

Solution:

Sea Level 200

    )    p     h     ( 150    P    H    T 100  ,    r    e    w 50    o    P    e    s 0    r    o 0    H    t    s    u    r     h

At Vmax

Where: D = lb V = fps

THPAV = constant

50

100

150

Airspeed, V (mph)

 =  = 550

200

250

 = 12    36, 000   = 12 0.002377 ⁄ 883.81⁄ 450   = 0.086  = 0.014+0.05   = 0.014+ 0.050.086  = 0.0144  =  12   =    = (0.0.00144860)36000  = 6027.91  6027.95501883.81  =  = = 9686.41 At minimum power required:

 = √ 3 .. =  (2)(1)

At maximum R.C.

= 1083. 0 3ℎ  = √ 3         .  . =  0 00  ×33,     =  3 (0.105) 0.014 9686.436,11083. 0 3 = ( )33, 0 00 0 00  = 0.917 = 7886.42⁄  = 4 = 40.014  = 0.056  =    = (0.0.095617) 36000  = 2,198.47  = 550  = 2198.45507270.93   = 1082.97ℎ CEILINGS AND TIME TO CLIMB

Rate of climb varies in proportions with altitude



  = 0.917.  = 15.68  0.056  = 550  (2) ×  1    36000 2 1   = 36000 ( )( )× 550 450 0.002377 15.68

Using ratio and proportions:

.. = ...ℎ  .  = . ℎ.... .

straight

Using ratio and proportions:

.. = ..100  = ...100 .

Example: Given: W

=

1653lb

R.C.O =

588.33fpm

h

10,000ft

=

R.C.H=10000 =

127.97fpm

Where: H

=

absolute ceiling

Hs

=

service ceiling

h

=

any altitude

R.C.O =

rate of climb at sea level

R.C.HS=

rate of climb at service ceiling (=100fpm)

R.C.h =

rate of climb at any altitude

Absolute Ceiling, H

the maximum altitude above sea level at which a given airplane would be able to maintain horizontal flight under air conditions.

Service Ceiling, Hs the altitude above sea level; under air conditions, at which a given airplane is unable to climb faster than a small specified rate. -

-

-

The altitude where the rate of climb is 100 ft/min An airplane can steady, maintain 100ft/min For jets, 500ft/min

Required: H and Hs

Solution:

 = . ℎ.... . ⁄  3 3    = 588.10000588. 33⁄ 127.97 ⁄  = 12,779.78

   ∗∗ − 100 588.33⁄ − 100    12,779.78588.33 ⁄   10,607.57 Example #2 Given:

  4,000     @  60ℎ @=,  17ℎ Required:

  

Solution: At sea level

..      ∗33,000 60  ∗ 33,000 ..  4000 ..  495/ At h = 10,000 ft

 ∗ 33,000  ∗     17  ∗ 33,000  ∗   4000  ∗   140.25 /    ∗ℎ∗ − ∗ ∗ 

10,000495   495 − 140.25   13,953.49     ∗∗ − 100 − 100    13,953.49495 495   11,134.60  Example #3 An airplane weighs 20kN; its rate of climb at sea level is 350 m/min, its absolute ceiling is 4km. What is its service ceiling? Given:

  20  ∗   350 /   4  Required:



Solution:

   ∗∗ −30.49 − 30.49   4 350 350   3.65 

TIME TO CLIMB

Using ratio & proportion

   ℎ  ∗   ∗  −  ∗  ∗    ∗  − ℎ ∗∗   ∗      ∗  ∗ − ℎ ∗ ∗   ∗      ∗ℎ  − ℎ    ∗   − ℎ     ℎ  ∫    ∗  ∫  − ℎ   −  ∗ ln − ℎ

  −  ∗  − ℎ −  −    −  ∗  − ℎ −     ∗  −  − ℎ    ∗   − ℎ Where:        Example #1: At sea level, an airplane .et rate of climb is 350 m/min. Its absolute ceiling is 4.5 km. How long will it take to climb o 2 km? Given:

 ∗   350 /   4.5  ℎ  2 Required:



Solution:

   ∗   − ℎ  4,500  )[( 4.5  )]    (350 / 4.5  − 2     7.56  Example #2 At sea level, an airplane weighing 5,200 lb has rate of climb of 850 ft/min. Its absolute ceiling is 18,500 ft. (A)How long will it take to climb from SL to 15,000 ft? (B) How long will it take to climb from 15,000 ft to absolute ceiling?

(C)

How long will it take to climb for SL to H?

Given:

  5,200   ∗   850 /   18,500  Required:

  =,  (B) =,    (C)    (A)

Solution: (A)Time to climb from SL to h = 15,000 ft

   ∗   − ℎ 500  [( 18,500  )]    18, 350 / 18,500  − 15,000    36.24  (B) Time to climb from h = 15,000 ft to absolute ceiling At h = 15,000 ft

 ∗    ∗  − ℎ ∗∗  /  ∗   850 /min− 15,00018,350 500   ∗   160.81 /    ∗   − ℎ  [( 18,500  )]   160.18,81500/ 18,500  − 3,500    24.13 

(C)

Time to climb from SL to H

  36.24 + 24.13   60.37  REPORT NO. 10 Ceilings and time to climb



Altitude, h ft Sea level 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 10,607.57 11,000 12,000 12,779.78



R.C. ft/min 588.33 634.37 680.40 726.44



Δh/R.C.

min 0

④ ③

t=Σ

min 0

346.77

127.97

0



Time to climb to service ceiling

   ∗   − 1.) A 22,420 N aircraft has an excess power of 56 kW at sea level and the service ceiling is 3.66 km. Determine: (a)Rate of climb at 2.3 km (b)Rate of climb at service ceiling (c) Rate of climb at absolute ceiling Given:

  22,240    56    3.66  Required: a.) b.) c.)

.. .. ..

Solution:

 56,000  ..     22,240  60   151.20 / ..  2.52 ∗ 1 For H,

    .. ..−30.49     3660157.2/   .... −30.49 151.20 − 30.49   4584.09 ..  ..− ..  151.20/ ..  151.20 − 28004584. 09 ..  58.85 / b.) ..  30.49 / c.) ..  0 a.)

2.) A light airplane has a service ceiling of 4km. Its rate of climb at sea level is 370 m/min. How long will it take to climb to 3 km and time to climb to reach service ceiling? Given:

  5  ..  370 

 

Required: a.) b.)

  3  

Solution:

   .. ..−30.49    .... −30.49   3705370 − 30.49   5.45  a.)

  ..    − ℎ   5.45 ]   (5450  )[ 370 5.45− 3   11.78  b.)

  ..    −   5.45 ]   (5450  )[ 370 5.45 −5   37.43 

TAKE-OFF AND LANDING PERFORMANCE The take-off and landing phases of flight are normally broken down as follows:

TAKE-OFF Accelerating ground-run Rotation Lift-off Climb-out

LANDING Descent Flare Touchdown Decelerating ground-run

For commercial airplanes, Fig 10.1 summarizes the take-off procedures to be followed in case of engine failure. The reader will observe that such a case a pilot has two options. 1. Continue take-off 2. Stop (Discontinue take-off) Item

Speeds

Climb

MILC5011A (Military)

Far Pt 23 (Civil)

Gear up 500fpm

Gear up 300 fpm

 ≥ 1.1   ≥ 1.2 

FAR Pt 25 (Commercial)

  ≥ 1.1  ≥ 1.1   ≥ 1.2   ≥ 1.1  Geardown ½ % @ VLOF

@ S.L (AEO) 100 fpm @S.L (OEI) Take-off distance

Field Length Definition over 50’

@S.L (AEO)

Gear up 3% @ VCL (OEI)

Take-off 115% of takedistance off distance over 50’ with AEO over 35’ or

Notes:

balanced field length AEO = All Engines Operating

OEI = One Engine Inoperative

The operational ground rules governing the take-off of CTOL airplanes are summarized in Table 10.1. The operational speed called out in Fig. 10.1 and in Table 10.1 are important and have the following definitions: VS = One g stall speed out of ground effect VLOF = Lift off speed VR = Rotational speed, i.e., the speed at which rotation is initiated during that take-off to attain the V2 climb speed V1 = decision speed (option 1 or 2) V2 or VCL = climb out speed *CTOL –  Conventional Take-off and Landing

Reverse Thrust Enroute Descent Bell out

Touch Down

Final approach

Initial approach

Flare

Fig. 10.2 Landing Procedures for a Multi-Engine Civil transport Airplane

Table 10.2 Summary of CTOL Landing Rules Item Speeds Field Length

MIL-C-5011A

 ≥ 1.3   ≥ 1.1 

FAR Pt 23(Civil)

 ≥ 1.3   ≥ 1.15 

FAR Pt 25(Commercial)

 ≥ 1.3   ≥ 1.15 

Landing Distance

Landing Distance

Landing Distance

Over 50’

Over 50’

Over 50’ divided

by 0.6 Definition

Fig. 10.2 shows the landing produces normally followed for commercial airplanes. Table 10.2 summarizes the ground rules governing CTOL landing. The associated important speeds have the following definitions: VA = speed over the 50 ft obstacle (also called as the approach speed) VTD = speed at touchdown during landing It should be noted that all speeds specified in tables 10.1 and 10.2 are minimum speeds.

Part 6 Take-off Analysis

VCL R

VG

R

ӨCL

50

VLCF

STR

SG

SCL

SR

Fig 10.3 Geometry for Take-Off performance Analysis For analytical purposes, the take-off consists of ground run rotation, transition, and climb over a 50ft (35ft) obstacle. The total take-9off distance is therefore the sum of the ground distance (S G), Transition distance (STR) and climb distance (SCL). Fig. 10.3 illustrates the geometry used in the analysis of the take-off.

Report no.11 Take-off and Landing Performance

Ground distance, SG (General)

 =±  Where:

VG = Ground speed V = Airspeed VW = Wind Speed If VG = 0

=±    = ±   = ± 

But,

= 

 

(eq.1)

(eq.2)

Substitute (eq.2) in (eq.1)

 = ± 

(eq.3)

Integrating both sides

∫   = ∫ ̅  ± 

   ±     = ∫ ̅  

(eq.4)

The upper sign in (eq.4) is for downwind take-off. The acceleration of an airplane during the ground run may be found by considering the forces acting on the airplane. The airplane is seen to be under the influence of lift, drag, thrust, weight and ground friction forces. The runway inclination  produces two major effects:





(a)A force equal to W  acting along the path to retard the motion if the airplane goes up the slope ( ) and (b)The normal force on the runway which is reduced and which yields a small decrease in the friction force.

∅

 =    = ∅  =    =∅ = ∅    .5

   ±     = ∫ ̅  ∅  Substitute (eq.5) in (eq.4)

    ±     = ∫ ̅   ∅  Coefficient of relations , Concrete : 0.02-0.03



Hard turf : 0.05 Short grass : 0.05 Long grass : 0.10 Soft ground : 0.10-0.32

Wind effect on take-off

  ℎℎ 

= 

-VW = 50% VW1

+VW = 150% VW1 Where: VW1 = wind speed at h 1 VW2 = wind speed at h 2 h1 = height of MAC from the ground h2 = height of tower (=50ft)

(eq.6)

Effect of speed on thrust

Sea level

Thrust

   V    A

VLDF

     

   H    T

Flight speed ,v (mph)

 =  =  Where:

T = is in lbs. VLOF = is in mph

h=h1

MAC

Part 7 Effect of the ground on C L and CD

Lift coefficient in ground level effect

 = ∝ ∝ ∝∆∝

Where: CL(OGE) = lift coefficient in the appropriate configuration out of ground effect

√ 

=

∝ +√ +/+    ∝ + + /+     =

 =

In fig. 10.8

 =ℎ

∆∝=  .  .  ,. CR/2 CL

CT/2

Λ/

Drag Coefficient in Ground Effect

 =   ∆  =   =   ∆ = ′    , =1. 0 Where:

 ______+ ______

(clean airplane)

In fig 10.9

 =ℎ For 0.033 < h/b < 0.25 , the ground influence coefficient from:

 = .−.−.ℎ/ℎ/

′

 can be estimated

Part 8 Approximate method

I

 =   −

for SG (eq.7)

Where:

 =∅  =0  =∅  = Approximate for zero wind speed Assume VW = 0 , (eq.4) becomes

      =  ∫ 22       =  ∫ 222      2  =    ∫ 22 Let

=    =2 

(eq.8) (eq.9)

2    =   ∫ 222 2    =   2   20 2   =2 [{22   2}       2   0 ]  =  [{2 2 2} 

 22]

 =   [ 2 {2}] 2 2        =       2  2    =             

2    =  1  

2    =    = Where:

(eq.11)

(eq.10)

 − = 

(eq.12)

Example 10.1 The wing characteristics of the basic FSO-1 airplane are as follows: A = 2.02

ℎ ̅

2h/b = 0.36 t/c = 0.05

 = 0.32 g

Λ/2

 = 35⁰

Problem 10.1 A jet aircraft weighing 56,000lbs has a wing area of 900ft2 and its drag equation is C D = 0.016 + 0.04CL2 (in ground effect). It is desired to operate this aircraft. On an existing runway of 30,000ft (ground-run distance) with concrete pavement ( ) at sea level. If the lift-off speed is 1.2 V S  and CL max=1.8, compute the thrust required assuming that the jet engine delivers a constant thrust during the take-off run. V W=0.8 &  CL in ground roll = 1.0 .

=0. 0 2

∅=0.

(hint: use equation 10.16 to find Fm, and then use the expression for K to find ln(FS/FLOF)).

Given: W = 56,000ft

CL MAX = 1.8

S = 900ft2

VLOF = 1.2 VS

CD = 0.016 + 0.04CL2

VW = 0.8

SG = 3,000ft



= 0.02

Required: T

∅=0

CL = 1.0

Solution: VLOF = 1.2 VS

=1.2   =1.2 ,. .8 VLOF =204.65 ft/s

CD = 0.016 + 0.04CL2 = 0.016 + 0.04(1)2 CD = 0.056

2    =   2    = 2 

2 56, 0 00204. 6 5 = 232.1743000  = 12,149.41   = − 

    −−∅−  −− − −∅ = ∅ ∅

 2   −−++  −   = () 2  2    −   −  −−− 2 =   2 (  )          −   =   2 −−−   −.  ,   −.,1−.−.2 .. =  0.0560.0212,0.0.02377 204.65 900

− −. =1.142

1120=1.142 2732.75 1120=1.142 2732.751.142  2732.751.142  1120=1.142      2732. 7 5 1. 1 42 1120= 1. 1 421 ...−  − = =14,090.14 

 Approximation for Nonzero Windspeed

  ≠0,.  ∫∓  ± ∫     ∫∓  ± ∫         2        2    ∫∓    ±   2    ln{  } ∓ ±   2    ln{    } { ∓  }± l n              2   ln  + l n    +   ( )±           2    ln(  +) ln±  2    ln  + ±  2   ln  1  +  ±          2  1   ± ln  1  +       ( )    2 1 1    ±   ln   1   +       [ ]       (    2  ) ±

    ( )    2  ± ℎ    1 1       ln   1   +        ̅±  ̅ ̅    ±         (  )   ±     2  ±     2 (  ±2 ±2)  2  ±2 ±  2  ± For Total Tale-Off Time

But,

Subst.

 Approximate Method II for SG

       ⁄2 

 Assuming that the acceleration vary linearly with

̅

√ 2   1 ̅ ∫∓ ±   1̅ ∫∓  ±̅ ∫∓  1 2̅  ∓ ±̅  ∓ 1 2̅   ∓ ±̅   ∓ 1 2̅ ( )±̅  ± 1  21̅ (  ±2 +2)  2̅1 ( ±2 +)  2̅  ±     ±    2     ̅   =   √     ̅        √ 2         ̅    √ 2    ⁄         2 average acceleration  may be calculated at .

 to

, or at

, then ts

   2    +2   2  ̅  +2  ̅  +2    +1   ± 2 2       ±     2   0     +    0   ̅   √ 2 If

Where

  ≅3

 Approximation Method For Rotation Distance,



Where aircraft).



 seconds for modern swept-wing aircraft(less for small

           +        1+      1   

 

 Approximate Method for Trasition Distance, If   is the lift coefficient during the transition, then:

where



 is the frequently assumed to be 0.8

With R calculated, it is necessary to find the climb angle to determine the trasition distance rate of climb is given by:

   .. sin    sin    sin−1 |  |   ___2 +___         0.8       sin It follows that the transition distance,





, is given by:

 

 Approximate Method for Climb Distance,

From Fig. 10.13, it is seen that the climb distance is given by:

50ℎ tan       50ℎ tan ℎℎ 2cos   (1cos )   ℎ  sin (1cos) ℎ >50 35  0. Where:

If

, then

Landing Analysis

ℎ 35′

       ′       5      3     =



     

      ℎ

 Fig 10.18



Type equat i o n here. 

 



Flight Path Geometry for Landing Analysis

In most repects the calculation of landing performance is similar to the take-off calculation, varying only in the treatment of the approach and flare and in the consideration of auxiliary stopping devices such as speed brakes. The term “approach” applies on ly to the air distance consists of two parts.

1. A steady-state glide path where the airplane is in the final landing configuration prior to touchdown, and 2. The flare.  After touchdown, there is a short ground run (approximately 2 seconds) during which no brakes are applied. The remaining ground run is with full brakes to bring the aircraft to a complete stop, Fig. 10.18, shows the schematic used for the following analysis.

 Air Distance, SA

ℎ 50′



 50



 

2  ′ ′ 2

ℎ

Flight Path Geometry for Landing Flare

1.1.3101.15  ℎ  ℎ      ℎ     21    +∆ Where:

By conservation of Energy:

    .  .+ .  .      S  12  ( )+ℎ S        S    2 +ℎ 1    2   ____+____    12  S t  t ≅0  3  S t S a     ̅+∅    ℎ    S Charge in

Where:

(Dirty Airplane)

Free Roll Distance,

The time for the free roll,

 may be taken as

It is found that

Breaking Distance,

Using the acceleration formula, the decoration can be written as:

Where

Since

The breaking distance

 can be written as:

∓  ± S ∫      ± S ∫∓        1   S   ∫∓ ±  ∫∓ 1 2  ∓ ±   ∓

  [  ]              2 2   2    

     +         × −   (−)−     { −  + }  ∅ ̅       ∅    0    ×    −  −           From

Substitute

Where:

Range and Endurance Range- The total horizontal distance traveled by the aircraft. Endurance- The time that an aircraft can stay aloft. •



Propeller- Driven Airplanes Specific Fuel Consumption (sfc), c –  Defined as the amount of fuel measured in lbs per second, consumed or required by an engine for each horsepower or pound of thrust developed (lbs of fuel per second, per ft.lbs/sec of power, or per lbs of thrust) •

Brake Specific Fuel Consumption, BSFC- defined as the amount of fuel per hour used for each horsepower (lbs of fuel per brake horses, hour per brake horsepower)



 at v= 0

 at

v= If

Where:

Note that with the brakes applied. At on concrete may be taken to be 0.4 to 0.6

 −  

Relation Between C and BSFC

−   1,980,000       ̇  = ̇  ×      BSFC

Since the fuel burned is equal to the decrease in airplane weight, it follows that

 eq. ❶

From,



 , substitute eqn ❶

      

eqn ❷

With these basic relations, it is possible to develop expressions and methods for computing range and endurance

   × ln    ×  ln     ×  ln  ln     ×  ln    375 × ×  ×  For best range,



 should be

maximum For the case of parabolic drag Breguet’s Formulas for Range and Endurance Range From eqn 2

        .          ×         ×           ×  At level flight,

Integrating both sides ζρ , C, and CL/CD are all assumed If , ζρ, C, CL and CD are all assumed to have a constant average values throughout the flight.

∫     ∫ 

Where: W0 = Initial gross weight W1 = Final aircraft weight (= W 0-Wf) Wf = fuel weight used

            375×  × ×  Endurance From eqn. ❶

                 × ×          × × ×          ×  ×  () ×    × ×  ×     ×    ×    At level flight,

Substitute

, C,

 are all assumed to have

constant

Average values throughout the flight,

∫    ×    ∫ −   ×    × −              2  ×    × []      Eseconds  ×   2( √     ) 778  ×   (√     ) E=

For the best endurance,



 778    (√     )

Speed for best endurance

       3 Where:

Given W= W0 = Wf= Wfused = Wl= W0 –  Wfused s= CD=_____ + _____ CL2 (Clean Airplane) BHP=  =

 ̇

Calculate: (a)Rbest and corresponding flight speed (b)Ebest and corresponding flight speed

  should

be minimum in the case of parabolic drag polar equation, this yields:

 3     4   

Report No. 12 Range and Endurance

Solution

 ̇   75 ℎ  375            2        Best Range, Rbest : Where:

Flight Speed for R best , VRBest :

Where:

For Best Endurance, Ebest,:

    778    (√     )

   43   Where:

Flight Speed for Best Endurance, VEBest :

      3 Where:

Example 11.1 A Cargo plane has the following characteristics: Initial gross weight= 35,000 lb BSFC= 0.45 lb/ BHP-hr CD = 0.02 + 0.05 CL2 ζ = 0.87 S= 300 ft2 Cruise Altitude= 28,000 ft



This airplane is to carry 3000lb of supply and airdrop it at a distance of 1500 miles away and return to the origin.

Given: Wc = 30 000 lb

CL =

BSFC = 0.45 lb CD = 0.02 + 0.05 CL2

τρ = 0.87 s = 300

ft2

h = 28 000 ft Wsupply = 3000 lb R = 1500 miles

 .0.02

CL = 0.632 CD = 2 CD = 2(0.02) = 0.04

      ....   26 317.92 lb =

=

Amount of fuel consumed Wf used =

Required: Total amount of fuel consumed, W f used(total), and corresponding flying time, Etotal

Wc -W

= 30000 –  26317.92 Wf used = 3682.08 lb

Initial Flight Speed

 

Solution:

V=

The computation will be done in two parts:

At h = 28000 ft

a) To destination

τρ  ln      =      ln f  τρ   = [    (  )]  = [  o   (  )]  R = 375

 =  1+ ℎ   = 0.0023771+ −.    = 0.000957 slug/ft      V=    . .

4.26

3

V= 575.04 fps

Flying time For optimum range, a/ CD should be kept at maximum, CL =

 

 τρ    )    ( E = 778        

  .   .   E = 778  0.000957300 .   .       √ .  √ 

Total Amount of Fuel Consumed Wf used(total) = 3682.08 + 2861.95 Wf used(total) = 6544.03 lb

E = 3.95 hours Total Flying Time b) Return Trip Wc = 26317.92 -3000

Etotal = 3.95 + 4.49 Etotal = 8.44 hours

Wc = 23317.92 lb

= [  o )] (    . . =  .     .. = 20445.97 lb

Problem 11.1

Determine the maximum range, maximum endurance (and speeds for best range and endurance at 10000 ft) of the following airplane: S = 200 ft2

Amount of Fuel Consumed Wf used =

Wc -W

= 23317.92 –  20455.97 Wf used = 2861.95 lb

Flying time

 

τρ   (    )       .   .   E = 778  0.000957300 .   .       √ .  √ . E = 778

E = 4.49 hours

W = 10000 lb Wf = 4000 lb BSFC = 0.52 lb/BHP-hr

Τρ = 0.90

Power required characteristics being (at 10000 lb gross weight) V, mph

THPreq’d

403

1350

350

925

300

600

250

400

200

250

175

215

WI = 10000 - 4000

150

200

WI = 6000 lb

140

205

R(miles) = 375

130

220

125

240

τρ  ln       τρ     E(hours) = 778   (       )  

Req’d: Vbest and VRbest Ebest and VEbest

Centripetal Force

1. A plane of 3800 lb gross weight is turning at 175 mph

Solution:

with an angle of bank of 50˚.

 1+ ℎ 

=  = 0.0023771+ −.    = 0.001755 slug/ft

4.26

(a)What is the centrifugal force? (b)What is the lift? (c)What would be the radius of turn?

3

 C =   

Given:

L

V = 175 mph X

    .    

CL =

  THPreq’d D=  THPreq’d =

D = lbs V = mph D=

 

 = 

where v is in graph

 

= 256.67 ft/sec

=

. , 

W = 3800 lb

Β = 50˚ Req’d: a) CF b) L c) R

Sol’n: a) tan β =

 

CF = W tan β CF = (3800)( tan 50˚) CF = 4528.66 lb

 os  = os˚

b) L =

L= 5911.75 lb

  c) tan β =   R=  β  .   R=  ˚.

Minimum Speed in Turns

1. A cub has a minimum flying speed of 39.3 mph in straight level flight. Assuming unlimited engine powers, what is the

minimum speed in a) a 30˚ banked turn, b) a 50˚ banked turn, & c) a 70˚ banked turn? Given: Vs = 39.3 mph

Req’d: a) Vs @ β = 30˚ b) Vs @ β = 50˚

c) Vs @ β = 70˚

R = 1718.14 ft

Sol’n : 2. An airplane is making a 40˚ banked of 565 ft radius. What should be the airspeed?

Given: β = 40˚

Vs =

a) For Vs @ 30˚ Vs =

R =565 ft

Req’d: v

  tan β = 

 v =  gRtan v =  32.174565tan40˚ v2 = gRtan

v = 123.50 ft/sec

.  = 42.23 mph √ os˚

b) For Vs @ 50˚ Vs =

Sol’n :

  os

.  = 49.03 mph √ os˚

c) For Vs @ 70˚ Vs =

.  = 67.20 mph √ os˚

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF