ADN Mitocondrial
November 12, 2016 | Author: AnthonyKleinNuñezAlarcon | Category: N/A
Short Description
ADN Mitocondrial...
Description
Pregunta 4 seminario bio Si existe algún daño en las mitocondrias de una persona ¿cuál de los siguientes procesos se verían directamente afectados?, explique brevemente cada uno delos procesos afectados: a. Glucolisis. b. Ciclo de Krebs. c. Transporte de electrones. d. Fosforilación oxidativa. e. Fermentación La mitocondria tiene como funciones: • Oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) • Obtención de ATP mediante la fosforilación oxidativa. • También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas. • La principal función de las mitocondrias es generar energía para mantener la actividad celular mediante procesos de respiración aerobia. los procesos que se verian afectados por el daño mitocondrial serian; ciclo de Krebs y la fosforilación oxidativa. Ciclo de Krebs Los nutrientes se escinden en el citoplasma celular para formar ácido pirúvico que penetra en la mitocondria. En una serie de reacciones, parte de las cuales siguen el llamado ciclo de Krebs o del ácido cítrico, el ácido pirúvico reacciona con agua para producir dióxido de carbono y diez átomos de hidrógeno. Estos átomos de hidrógeno se transportan hasta las crestas de la membrana interior a lo largo de una cadena de moléculas especiales llamadas coenzimas. Una vez allí, las coenzimas donan los hidrógenos a una serie de proteínas enlazadas a la membrana que forman lo que se llama una cadena de transporte de electrones. La cadena de transporte de electrones separa los electrones y los protones de cada uno de los diez átomos de hidrógeno. Los diez electrones se envían a lo largo de la cadena y acaban por combinarse con oxígeno y los protones para formar agua.
La energía se libera a medida que los electrones pasan desde las coenzimas a los átomos de oxígeno y se almacena en compuestos de la cadena de transporte de electrones. A medida que éstos pasan de uno a otro, los componentes de la cadena bombean aleatoriamente protones desde la matriz hacia el espacio comprendido entre las membranas interna y externa. Los protones sólo pueden volver a la matriz por una vía compleja de proteínas integradas en la membrana interior. Este complejo de proteínas de membrana permite a los protones volver a la matriz sólo si se añade un grupo fosfato al compuesto difosfato de adenosina (ADP) para formar ATP en un
proceso llamado fosforilación. El ATP se libera en el citoplasma de la célula, que lo utiliza prácticamente en todas las reacciones que necesitan energía. Se convierte en ADP, que la célula devuelve a la mitocondria para volver a fosforilarlo. Fosforilación oxidativa La fosforilación oxidativa es un proceso metabólico que utiliza energía liberada por la oxidación de nutrientes para producir adenosín trifosfato (ATP). Se le llama así para distinguirla de otras rutas que producen ATP con menor rendimiento, llamadas "a nivel de sustrato". Se calcula que hasta el 90% de la energía celular en forma de ATP es producida de esta forma. Consta de dos etapas: en la primera, la energía libre generada mediante reacciones químicas redox en varios complejos multiproteicos -conocidos en su conjunto como cadena de transporte de electrones- se emplea para producir, por diversos procedimientos como bombeo, ciclos quinona/quinol o bucles redox, un gradiente electroquímico de protones a través de una membrana asociada en un proceso llamado quimiosmosis. La cadena respiratoria está formada por tres complejos de proteínas principales (complejo I,III, IV), y varios complejos "auxiliares", utilizando una variedad de donantes y aceptores de electrones. Los tres complejos se asocian en supercomplejos para canalizar las moléculas transportadoras de electrones, la coenzima Q y el citocromo c, haciendo más eficiente el proceso. La energía potencial de ese gradiente, llamada fuerza protón-motriz, se libera cuando se translocan los protones a través de un canal pasivo, la enzima ATP sintasa, y se utiliza en la adición de un grupo fosfato a una molécula de ADP para almacenar parte de esa energía potencial en los enlaces anhidro "de alta energía" de la molécula de ATP mediante un mecanismo en el que interviene la rotación de una parte de la enzima a medida que fluyen los protones a través de ella. En vertebrados, y posiblemente en todo el reino animal, se genera un ATP por cada 2,7 protones translocados. Algunos organismos tienen ATPasas con un rendimiento menor. Existen también proteínas desacopladoras que permiten controlar el flujo de protones y generar calor desacoplando ambas fases de la fosforilación oxidativa. Aunque las diversas formas de vida utilizan una gran variedad de nutrientes, casi todas realizan la fosforilación oxidativa para producir ATP, la molécula que provee de energía al metabolismo. Esta ruta es tan ubicua debido a que es una forma altamente eficaz de liberación de energía, en comparación con los procesos alternativos de fermentación, como la glucólisis anaeróbica. Pese a que la fosforilación oxidativa es una parte vital del metabolismo, produce una pequeña proporción de especies reactivas del oxígeno tales como superóxido y peróxido de hidrógeno, lo que lleva a la propagación de radicales libres, provocando daño celular, contribuyendo a enfermedades y, posiblemente, al envejecimiento. Sin embargo, los radicales tienen un importante papel en la señalización celular, y posiblemente en la formación de enlaces disulfuro de las propias proteínas de la membrana interna mitocondrial. Las enzimas que llevan a cabo esta ruta metabólica son blanco de muchas drogas y productos tóxicos que inhiben su actividad.
Pregunta 5 seminario bio ¿Qué utilidad tiene el ADN mitocondrial en la medicina forense? Mencione algunas aplicaciones. El genoma mitocondrial (ADN mitocondrial, ADNmt/ADNm o mtDNA/mDNA en ingles), es el material genético de las mitocondrias, los orgánulos que generan energía para la célula. El ADN mitocondrial se reproduce por sí mismo semi-autónomamente cuando la célula eucariota se divide. El ADN mitocondrial fue descubierto por Margit M. K. Nass y Sylvan Nass utilizando microscopia electrónica y un marcador sensitivo al ADN mitocondrial.1 Evolutivamente el ADN mitocondrial desciende de genomas circulares pertenecientes a bacterias, que fueron englobadas por un antiguo ancestro de las células eucariótas. Aplicaciones: El análisis de mDNA se aplica también en investigación forense. Recientemente se ha establecido la identidad de unos esqueletos atribuidos a Nicolás II, último zar de Rusia, y a su familia utilizando mDNA. El obtenido de un pariente vivo de la familia del zar resultó ser idéntico al encontrado en los restos de Alejandra de Rusia, esposa de Nicolás, y en tres de sus hijos. Como el mDNA se hereda por línea materna, el del esqueleto del zar no coincidía con el hallado en los restos de la zarina y de sus hijos. El ADN mitocondrial puede ser usado para identificar individuos junto con otra evidencia. También es usado por laboratorios forenses para caracterizar viejas muestras de esqueleto humano. Distinto que el ADN nuclear, el ADN mitocondrial no sirve para identificar individuos sin ambigüedad, pero si para detectar parentescos entre grupos de individuos; es usado entonces para comparaciones entre personas desaparecidas y restos no identificados y sus familiares. • ADNmt para determinar parentescos El ADN mitocondrial humano tiene características únicas que lo hacen muy apropiado para estudios microevolutivos: la herencia del genoma mitocondrial se realiza exclusivamente por la vía materna, sin recombinarse; hay un fragmento en este genoma de 400pb (pares de bases) altamente polimórfico, y posee una alta frecuencia de mutaciones (5 a 10 veces mayor que el DNA nuclear)10 Este ADN se puede extraer de muestras de cualquier tejido, incluso de la sangre y del tejido óseo. Gracias a su presencia en el hueso se puede obtener el genoma de individuos ya muertos desde hace muchos años. El análisis de la secuencia genómica se usa para estudiar las relaciones filogenéticas, no sólo en humanos sino, también en muchos otros organismos. Por este motivo se utiliza para determinar variabilidad en poblaciones naturales (para ver si hay o no endogamia), información útil para la conservación de especies en peligro de extinción. • Otras aplicaciones Hay estudios de investigación que utilizan genes mitocondriales que pueden ocasionar
algún tipo de enfermedad. Algunos investigadores defienden que es posible que la tendencia a la obesidad se herede por genes mitocondriales de vía materna.[cita requerida] Este descubrimiento supone una vía de actuación contra este problema si se consiguiera regular el ADN mitocondrial con ciertos fármacos. El genoma mitocondrial posee infinidad de ventajas para estudiar relaciones evolutivas: Debido a su menor tamaño, el estudio del ADNmt es más fácil que el del ADN nuclear; además se puede extraer en grandes cantidades, porque cada célula tiene varias mitocondrias. El ADNmt evoluciona más rápido y no se recombina, pasando intacto entre generaciones salvo por las mutaciones; facilitando la identificación de las relaciones entre organismos muy parecidos.
View more...
Comments