ADDMATH FORM 4

April 25, 2017 | Author: Nor Hanina | Category: N/A
Share Embed Donate


Short Description

DIFFERENTIATION...

Description

10. DIFFERENTIATION Unit A : Determine the first derivative of the function y = axn using formula. Example Exercise 3 1. y= x a. y = x 4 b. y= x5

dy = 3x 3 – 1 dx

c.

y= x7

dy = dx

= 3x2 [5x4] [4x3]

2.

y = 2x

3

a.

dy = 2(3x2) dx

y = 3x

4

[ 7x6] 3

b.

y = 5x

b.

y= –8x

2

c.

y = 10x

c.

y = – 12 x

dy = dx

= 6x2

[12x3] 3.

y = – 2x

3

a.

dy = –2(3x2) dx

y= –5x

4

[15x2] 5

[20x] 2

dy = dx

= – 6x2 [ -20x3]

4.

f(x)

= x

-–2

a.

f ' ( x) = -2  x –2 – 1 = -2x

f(x) = x

-1

[-40x4 ]

b.

f’(x) =

f(x) = x

-5

f(x)

= 3 x -2

a.

f’(x) =

f(x) = 4x -1

b.

[- x62 ] c.

f’(x) =

f(x) = 6x -1 f’(x) =

-3

1 4 x 2 dy 1 = (4 x 4 – 1 ) dx 2 y=

f’(x) =

f(x) = 2x -4

[- x85 ]

[- x42 ] 6.

f(x) = x

[- x56 ]

f’(x) =

f ' ( x) = 3(-2 x -2-1) = -6x

c.

–3

[- x12 ] 5.

[-24x] -3

a.

y=

b.

3 4 x 2

y=

[- x62 ] c.

1 6 x 3

y= 

1 –3 x 6

dy = dx

= 2 x3 [ 6x3]

127

[2x5 ]

[ 2x1 4 ]

7.

2 3 x 3 2 dy =  (3 x3 – 1 ) dx 3 y= 

a.

y= 

2 x 3

b.

–6

dy = dx

f(x) =

c.

5 2x

f ’(x) =

4 3x 6

f(x) = f ’(x) =

= –2x

2

[ x47 ]

[- 2 5x 2 ]

[- x87 ]

Topic : DIFFERENTIATION Unit B : Determine first derivative of a function involving : (a) addition, or (b) subtraction of algebraic terms. 1.

Example

Exercise

y = x2 + 3x +4

a.

y = x2 +4x +3

a.

y = x2 -4x +3

b.

y = x2 + 5x +6

b.

y = x2 - 5x +6

dy = 2x + 3 dx [2x+4]

2.

y = x2 - 3x +4

[2x+5]

dy = 2x - 3 dx [2x-4]

3.

3

2

y = x + 4x + 5

a.

3

2

y = x +5x +7

[2x-5] 3

2

b.

y = x + 6x + 8

b.

y = x - 6x – 8

dy = 3x 2 + 8x dx [3x2 +10x]

4.

3

2

y = x - 3x -6

a.

3

2

y = x -5x -7

[3x2 + 12x] 3

2

dy = 3x 2 - 6x dx [3x2-10x]

5.

y = x(x + 5) y = x2 + 5x

a.

y = x(x - 6)

[3x2 -12x] 2

b.

y = x (x + 5)

b.

2

dy = 2x + 5 dx

[ 3x2 + 10x]

[2x-6]

6.

y = (x+1)(x + 5) y = x2 + 6x + 5

a.

y = (x+1)(x – 6)

y = (x +1)(x - 4)

dy = 2x + 6 dx

[3x2 -8x+1]

[2x-5]

7.

2

y = (x+3) y = x2 + 6x + 9

a.

y = (x+4)

2

b.

128

y = (3x+1)

2

dy = 2x + 6 dx [2(x+4)]

8.

y = x(x+3)2 y = x(x2 + 6x + 9) y = x3 + 6x2 + 9x

a.

y = x(x+4)2

dy = 3x 2 + 12x + 9 dx

y = x(3x+1)2

[27x2 +12x+1] [3x2 + 16x+16]

Example 9.

[6(3x+1)]

b.

Exercise

3 y = x2 + x y = x2 + 3x-1

a .

y = x2 +

b.

5 x

y = x3 -

4 x

dy = 2x - 3x - 2 dx dy 3 = 2x - 2 dx x [3x 2 + x42 ]

[2x - x52 ] 10.

y = x2 +

3 4 + x x2

a

y = x2 +

b.

5 6 + x x2

y = x3 -

4 5 x x2

y = x2 + 3x-1 + 4x-2 dy = 2x - 3x - 2 - 8x -3 dx dy 3 8 = 2- 2 - 3 dx x x 11.

x 3 + 4x + 5 y= x

[3x 2 + x42 + 10 ] x3

[2x - x52 - 12 ] x3 a .

b.

x 3 + 5x - 6 y= x

x 3 - 2x - 7 y= x

y = x2 + 4 + 5x -1 dy = 2 x - 5 x -2 dx

dy 5 = 2x - 2 dx x

[2x +

129

6 x2

]

[2x +

7 x2

]

12.

a .

x 3 + 4x + 5 y= x2

b.

x 3 + 5x - 6 y= x2

x 3 - 2x - 7 y= x2

y = x + 4x -1 + 5x -2 dy = 1 - 4x - 2 - 10x -3 dx dy 4 10 = 1- 2 - 3 dx x x

[1- x52 + 12 ] x3

[1+ x22 + 14 ] x3

Topic : DIFFERENTIATION Unit C : To determine the first derivative of a product of two polynomials. Example Exercise 1 y= x ( x3+1) a. y= x ( x4+2) b. y= ( x 5+1)x 3 u=x , v =x +1 du dv  1,  3x 2 dx dx dy d  (uv) dx dx dv du =u v dx dx =

y= ( x3-1)x

x(3x2)+(x3+1)(1) .

=

3x3+x3+1 = 4x3 +1

[ 5x4+2]

2

c.

2

3

y= 2x ( x +1) u=2x2 , v =x3+1 du dv  4x  3x 2 dx dx dy d  (uv) dx dx dv du =u v dx dx

a.

2

3

y= 3x ( x -1)

[ 6x5+1]

b.

= 2

2x (3x2)+(x3+1)(4x) =

6 x4+4x4 +4x = 10x4 +4x

130

3

2

y= ( x -1)(5x )

[4x3 -1]

c.

3

y= ( x -1)(-4x2)

[15x4-6x]

3

3

f(x)= (x+1) ( x +1) u=x+1 , v =x3+1

a.

[25x4-10x]

3

f(x)= (x-1) ( 1+x )

b.

3

f(x)= (1-x) ( x +2)

[-20x4+8x]

c.

f(x)= (2-x) ( x3+3)

du dv 1;  3x 2 dx dx d (uv) dx dv du =u v dx dx

f ' ( x) 

=

(x+1)(3x2)+(x3+1)(1)

=

3x3+3x2 +x3+1

= 4x3+3x2+1

[4 x3-3x2+1]

4

x +1) 2 x u=x+1 , v = +1 2 du dv 1 1  dx dx 2

y= (x+1) (

a.

y= (x-1) (

b.

x +1) 3

dy d  (uv) dx dx dv du =u v dx dx =

(x+1)(

1 )+ 2

x  1 )(1) 2 1 1 1 = x   x 1 2 2 2 (

=

x 1

[-4x3+3x2-2 ]

1 2

131

y= (2x+1) (

x +1) 2

[-4x3+6x2-3]

c.

y= (3-2x) ( 2-

x ) 2

[ 2x  2 1 ]

[2x 2] 3

5

x +1) 2 x u=x2+1 , v = +1 2 du dv 1  2x  dx dx 2 dy d  (uv) dx dx dv du =u v dx dx

y= (x2+1) (

=

(x2+1)( (

=

a.

3

y= (x4+1) (

[ 2x  5 1 ]

2

b.

x +1) 3

y= (2+x2) (

x -1) 4

2

c.

y= (3-x3) (

x +1) 3

1 )+ 2

x  1 )(2x) 2

1 2 x + 2

1  x 2  2x 2 =

3 2 1 x  2x  2 2

[ 5 x 4  4x 3  1 ] 3

3

132

[

3 2 1 x  2x  ] 4 2

[ - 4 x 3  3x 2  1 ] 3

Topic : DIFFERENTIATION Unit D : To determine the first derivative of a quotient of two polynomials using formula. Example : y 

ux dy 1 dx

x x 1

1. y 

5x 2x  3

v  x 1 dv 1 dx

du dv v u dy  dx 2 dx dx v  x  11  x1  x  12 x 1 x  x  12 1  x  12

15 (2x+3)2

2.

y =

3x 4x  5

3. y =

133

6x 2x  7

15 (4x+5)2

4. y =

5x  4 3x  2

42 - (2x-7) 2

5. y =

1  4x 1 x

5 - (1+x) 2

22 - (3x-2) 2

6.

y

1 x 1 2x

7. y =

134

x2 x3

1 (1-2x)2

8. y =

3x 2 1  5x

x x-3

9. y =

4x3 x 2  10

6x-15x 2 (1-5x)2

5x 2 - 3x 10. y = 8 + x3

4x 4 +120x 2 (x 2 +10)2

x2  1 11. y = 5x 3  4

135

-5x 4 +6x 3 +80x-24 (8+x 3 )2

-5x 4 +15x 2 -8x (5x3 -4)2

Topic : DIFFERENTIATION Unit E : Determine the first derivative of composite function using chain rule. Example Exercise 2 1. a. b. c. y  ( x  3) 4 y  ( x  2) y  ( x  2) 5

y  ( x  8) 3

dy  2( x  2 ) 1  1 dx  2( x  2)

2.

y  (3x  2) 2 dy  2  (3 x  2)1  3 dx  6(3 x  2)

3.

y  3( x  2) dy  3  2( x  2) 1  1 dx  6( x  2)

a.

y  (2 x  3) 4

b.

y  (4 x  2) 5

[8(2x+3)3] 2

a.

y  5( x  2)

y  3(4 x  2)

y

2 ( x  2) 2

a.

y

b.

5 ( x  2) 4

y  (5 x  8) 3

5

[15(5x+8)2]

c.

y  2(2 x  8) 3

[60(4x+2)4]

[20(x+2)3]

4.

c.

[20(4x+2)4]

b.

4

[3(x+8)2]

[5(x+2)4]

[4(x+3)3]

y

3 ( x  2) 5

[12(2x+8)3]

c.

y

2 ( x  8) 3

y  2( x  2) 2 dy  2  2( x  2) 3  1 dx  4( x  2) 3 4  ( x  2) 3 20 [- (x+2) 5]

136

15 [- (x+2) 6]

6 [- (x+8) 4]

5.

a. 2 2 5( x  2) 2 y  ( x  2) 2 5 2 y   2( x  2) 3  1 5

y

y

y

b.

3 4( x  5) 3

y

4 5(2 x  3) 6

c.

y

5 2(3 x  4) 4

4 5( x  2) 3

[-

9 4(x+5)4

24 [- 5(2x-3) 7 ]

]

10 [ (3x-4) 5]

Topic : DIFFERENTIATION Unit F : Determine the Gradient of a Tangent and a Normal at a point on a Curve. Example 1 : Find the gradient of the tangent to the curve y  2 x 3  3x 2  7 x  5 at the point (-2,5) Solution:

y  2 x 3  3x 2  7 x  5 dy  6x 2  6x  7 dx

Example: Given f ( x)  x(2 x  3) and the gradient

of tangent at point P on the curve y = f(x) is 29, find the coordinates of the point P. Solution:

y  f (x) y = 2x2 – 3x since f(x) = x(2x-3)

dy  4x  3 dx dy At point P,  29 dx

At point (-2,5), x=-2 Hence, the gradient of tangent at the point (-2,5)

dy when x  2 dx  6 x 2  6 x  7 when x  2

mT 

4x – 3 = 29 x=8 y = 104

 6( 2) 2  6( 2)  7 5

The coordinates of P is (8 , 104)

(2) Find the gradient of the tangent to the curve (1) Given that the equation of a parabola is 2 y  x  2x  3 at the point (3,6). y  1  4 x  2 x , find the gradient of the tangent to the curve at the point (-1,-3)

137

mT  8 (3) Given that the gradient of the tangent at point P on 2 the curve y  2 x  5 is – 4, find the coordinates the point P.

mT  7

(4) Given f ( x)  x 

4 and the gradient of tangent x2

is 28. Find the value of x.

x

P(2 , 1)

Topic : DIFFERENTIATION Unit G : Determine the Equation of a Tangent and a normal at a Point on a Curve. Example 1 : Example 2 : Find the equation of the tangent at the point (2,7) Find the equation of the normal at the point x = 1 2 on the curve y  3x  5 on the curve y  4  2 x  3x 2 Solution: Solution: 2 y  4  2 x  3x 2 y  3x  5 dy dy  2  6 x  6x dx dx dy dy when x  1,  2  6(1)  4 when x  2,  6(2)  12 dx dx Gradient of normal, m N  

Gradient of tangent, m T =12 Equation of tangent is

when x = 1 , y = 4 – 2(1) + 3(1)2 = 5 Equation of normal is

y  y1  mT x  x1  y  7  12x  2

y  y1  m N x  x1 

1 x  1 4 4 y  20  1( x  1) x  4 y - 21  0 y 5  

y  7  12 x  24 y  12x  17  0 (1) Find the equation of the tangent at the point (1,9) 2 on the curve y  2 x  5

1 4

(2) Find the equation of the tangent to the curve y  2 x  1x  1 at the point where its x-coordinate is -1.

138

2 3

y  12x  21 (3) Find the equation of the normal to the curve y  2 x 2  3 x  2 at the point where its x-coordinate is 2.

y  3x  3

(4) Find the gradient of the curve y 

4 at the 2x  3

point (-2,-4) and hence determine the equation of the normal passing through that point.

mT  8 ; x  8 y  30  0

x  5 y  22  0

Topic : DIFFERENTIATION Unit H : Problem of Second Derivatives Example :

y  f (x) Differentiate the first time

dy  f ' ( x) dx

First derivative



f ( x)  3  2 x 2

Second derivative



5





5

  4 x   -20x3 - 2x 

f ' ( x)  5 3  2 x 2

Differentiate the second time

d2y  f ' ' ( x) dx 2



Given that f ( x)  3  2 x 2 , find f ”(x) . Hence, determine the value of f ”(1) Solution:

4

2 4





3

f " ( x)  (3  2 x 2 ) 4 [20]  (20 x)[4 3  2 x 2 (4 x)]   20(3  2 x 2 ) 4  320x 2 (3  2 x 2 ) 3

  20(3 - 2x ) 18x 

3

 20 3 - 2x 2 16 x 2  (3  2 x 2 ) 2 3

2





3

 60(3 - 2x ) (6x - 1) 2 3

(1) Given that y  2 x 3  4 x 2  6 x  3 , find

2

f " (1)  60(1)(5)  300 (2) Given that f ( x)  2 x 2 40  3 x  , find f”(x).

d2y dx 2

139

12x + 8



(3) Given that f ( x)  (4 x  1) , find f ”(0) 5



160 – 36x

2

(4) Given that s  3 t 2  1 ,calculate the value of 2

d s 1 when t = . 2 2 dt

–3

–320

Topic : DIFFERENTIATION Unit I : Determine the Types of Turning Points Example : Find the turning points of the curve y  2 x 3  12 x 2  18 x  3 and determine whether each of them is a maximum or a minimum point. Solution:

(Minimum and Maximum Points) (1) Find the coordinates of two turning points on the curve y  x x 2  3



y  2 x 3  12 x  18x  3 2

dy  dx dy 0 dx 6 x 2  24 x  18  0

At turning points,

x 2  4x  3  0 x  1x  3  0 x  1 or x  3 Substitute the values of x into

140



(1 , –2) and (–1 , 2)

y  2 x 3  12 x 2  18 x  3 When x = 1 , y  2(1) 3  12 (1) 2  18 (1)  3  11 When x = 3 , y  2(3) 3  12 (3) 2  18 (1)  3  33 Thus the coordinates of the turning points are and 2

d y  12 x  24 dx 2 d2y When x = 1 , dx 2  12(1)  24  12  0 ,

Thus (1 , 11) is the d2y  12 (3)  24  12  0 dx 2 Thus , (3 , –33) is the

point

When x=3,

point (2) Determine the coordinates of the minimum point of y  x 2  4x  4 .

(2 , 0)

(3) Given y 

2 3 x  2 x 2  5 is an equation of a 3

curve, find the coordinates of the turning points of the curve and determine whether each of the turning point is a maximum or minimum point.

min. point = (0 , –5) ; max. point = (2 , 

141

23 3

)

Topic : DIFFERENTIATION Unit J : Problems of Rates of Change

If y = f (x) and x = g(t), then using the chain rule dy dy dx dy is the rate of change of   , where dt dx dt dt dx y and is the rate of change of x. dt

Task 1 : Answer all the questions below. (1) Given that y  3x 2  2 x and x is increasing at a constant rate of 2 unit per second, find the rate of change of y when x = 4 unit.

(2) Given that y  4 x 2  x and x is increasing at a constant rate of 4 unit per second, find the rate of change of y when x = 0.5 unit.

dx 2 dt y  3x 2  2 x dy  6x  2 dx When x  4 dy  6( 4)  2 dx  22 dy dy dx   dt dx dt  ( 22)(2)  44 unit s 1 12 unit s –1

(3) Given that v  9 x 

1 and x is increasing at a x

(4) SPM 2004 (Paper 1 – Question 21) [3 marks] Two variables, x and y, are related by the equation

2 y  3x  . Given that y increases at a constant x

constant rate of 3 unit per second, find the rate of change of v when x = 1 unit.

rate of 4 unit per second, find the rate of change of x when x =2.

142

30 unit s

8 5

–1

Task 2 : Answer all the questions below. (1) The area of a circle of radius r cm increases at a constant rate of 10 cm2 per second. Find the rate of change of r when r = 2 cm. ( Use п = 3.142 )

unit s –1

(2) The area of a circle of radius r cm increases at a constant rate of 16 cm2 per second. Find the rate of change of r when r = 3 cm. ( Use п = 3.142 )

Answer :

dA  10 dt A   r2 dA  2 r dr When r  2 cm dA  2 (2) dr  4 dA dA dr   dt dr dt dr 10  4  dt dr  0.7957 cm s 1 dt 0.8487 cm s –1

(3) The volume of a sphere of radius r cm increases at a constant rate of 20 cm3 per second. Find the rate of change of r when r = 1 cm. ( Use п = 3.142 )

(4) The volume of water , V cm³, in a container is given by V 

1 3 h  8h, where h cm is the height of the 3

water in the container. Water is poured into the container at the rate of 10 cm3 s -1. Find the rate of change of the height of water, in cm 3 s -1 , at the instant when its height is 2 cm. [3 marks]

143

1.591 cm s

5 6

–1

Task 3 : Answer all the questions below. Example :

cm s –1

(1) A spherical air bubble is formed at the base of a pond. When the bubble moves to the surface of the water, it expands. If the radius of the bubble is expanding at the rate of 0.05 cm s 1 , find the rate at which the volume of the bubble is increasing when its radius is 2 cm.

h cm

The above figure shows a cube of volume 729 cm³. If the water level in the cube, h cm, is increasing at the rate of 0.8 cm s 1 , find the rate of increase of the volume of water. Solution : Let each side of the cube be x cm. Volume of the cube = 729 cm³ x³ = 729 x = 9

h cm 9 cm 9 cm 0.8 cm3 s –1

9 cm

Chain rule dh =rate of increase of dt the water level 144 V = 9 x 9 x h = 81h

dV =81 dh

= 0.8 cm s

1

(2) If the radius of a circle is decreasing at the rate

of 0.2 cm s 1 , find the rate of decrease of the area of the circle when its radius is 3 cm.

Rate of change of the volume of water, dV dV dh   dt dh dt

 81  0.8

 64.8 cm 3 s 1 Hence, the rate of increase of the volume of water is 64.8 cm³ s 1 .

1.2 cm2 s –1 (3) The radius of a spherical balloon increases at the rate of 0.5 cm s –1. Find the rate of change in the volume when the radius is 15 cm.

(4) The edge of a cube is decreasing at the rate of 3 cm s –1. Find the rate of change in the volume when the volume is 64 cm3.

450 cm3 s –1

145

–144 cm3 s –1

(5) Diagram 1 shows a conical container with a diameter of 60 cm and height of 40 cm. Water is poured into the container at a constant rate of 1 000 cm3 s -1 .

(6) Oil is poured into an inverted right circular cone of base radius 6 cm and height 18 cm at the rate of 2 cm3 s -1 . Find the rate of increase of the height of water level when the water level is 6 cm high. ( Use п = 3.142 )

60 cm

40 cm Water

Diagram 1 Calculate the rate of change of the radius of the water level at the instant when the radius of the water is 6 cm. (Use π = 3.142; volume of cone 

1 2 r h ) 3

6.631cm3 s –1

0.1591 cm s –1

Topic : DIFFERENTIATION Unit K : Problems of Small Changes and Approximations Small Changes

y dy  x dx

 y 

Approximate Value

dy  x dx

y new  y original  y

where y  small change in y x  small change in x

 y original 

Task 1 : Answer all the questions below.

146

dy  x dx

(1) Given that y  x 2  4 x , find the small change in y when x increases from 2 to 2.01.

(2) Given that y  x 2  3 x , find the small change in y when x increases from 6 to 6.01.

y  x 2  4x dy  2x  4 dx x  2  2.01

x  2.01  2  0.01 dy  2(2)  4 when x  2 dx 8 dy  x dx y  (8)(0.01)

y 

y  0.08 0.15

(3) Given that y  2 x  x , find the small change in y when x decreases from 8 to 7.98. 2

(4) Given that y  4 x , find

dy . dx

Hence, find the small change in y when x increases from 4 to 4.02.

–0.62

Task 2 : Answer all the questions below.

147

dy dx



2 x

; y  0.02

(1) Given the area of a rectangle , A  3x 2  2 x , where x is the width, find the small change in the area when the width decreases from 3 cm to 2.98 cm. Answer :

(2) A cuboid with square base has a total surface area, A  3x 2  4 x , where x is the length of the side of the base. Find the small change in the total surface area when the length of the side of the base decreases from 5 cm to 4.99 cm.

A  3x 2  2 x dA  6x  2 dx x  3  2.98

x  3  2.98  0.02 dA  6(3)  2 when x  3 dx  20 dA  x dx A  (20)(0.02)

A 

A  0.4 cm2 s 1

–0.26 cm2

(3) The volume, V cm3 , of a cuboid with rectangular base is given by V  x 3  2 x 2  3x , where x cm is the width of the base. Find the small change in the volume when the width increases from 4 cm to 4.05 cm.

(4) In a pendulum of length x meters, the period T seconds is given as T  2

x dT . Find . 10 dx

Hence, find the small change in T when x increases from 2.5 m to 2.6 m.

148

1.75 cm3

Task 3 : Answer all the questions below. Example :

dT dx



 10 x

 ; T  50 second

(1) A cube has side of 6 cm. If each of the side of

The height of a cylinder is three times its radius. Calculate the approximate increase in the total surface area of the cylinder if its radius increases from 7 cm to 7.05 cm.

the cube decreases by 0.1 cm, find the approximate decrease in the total surface area of the cube.

Solution :

Let the total surface area of the cylinder be A cm². A = Sum of areas of the top and bottom circular surface + Area of the curved surface.

7.2 cm2

149

A  2r 2  2rh  2r  2r 3r  2

 8r 2

(2) The volume of a sphere increases from

288  cm3 to 290  cm3 . Calculate the approximate increase in its radius.

It is given that h=3r

Approximate change in the total surface area is A A dA A  8 r 2  r dr dA  16r dA dr A    r dr New r (7.05)  16  r  7.05  7 

 16 7   0.05  5.6 cm2

Minus old r(7)

Substitute r with the old value of r, i.e. 7

Hence, the approximate increase in the total surface area of the cylinder is 5.6π cm² .

1 72

Task 4 : Answer all the questions below.

150

cm

(1) Given that y 

dy 4 , calculate the value of if 5 dx x

27 dy , find the value of when x = 3. 3 dx x 27 Hence, estimate the value of . 3.033

(2) Given y 

x = 2. Hence, estimate the values of 4 4 (a ) (b) 5 2.03 1.98 5 Solution : y

4  4 x 5 x5

dy 20  20 x 6   6 dx x dy 20 5 When x  2,  6  dx 16 x

(a)

y new  y original  y  y original 

dy  x dx dy dx

151

 1

; 0.97

4 4 4  5  y , where y  5 and x  2  2.03 5 2.03 2 2 dy 4  5   x dx 2 4  5  5    2.03  2 2  16  4 3   32 320  0.116525

(3) Given y 

32 dy , find . 4 dx x

Hence, estimate the value of

32 . 1.99 4

(b) y new  y original  y y new  y original 

dy  x dx

4 4  5  5    1.98  2  5 1.98 2  16  

4 1  32 160

 0.13125

Task 5 : Answer all the questions below. 20 (1) Given that y  , find the approximate 2 x change in x when y increases from 40 to 40.5.

dy dx

  128 x5

; 2.04

(2) SPM 2003 (Paper 1 – Question 16) Given that y  x 2  5 x, use differentiation to find the small change in y when x increases from 3 to 3.01. [3 marks]

152

1 160

(3) Given v 

4  r 3 , use the differentiation method 3

0.11

(4) Given that y 

to find the small change in v when r increases from 3 to 3.01.

5 dy when , find the value of 3 dx x

x = 4. Hence, estimate the value of (a)

5

4.02 

3

dy dx

0.27

(b)

15   256

dy  0 will minimize y if the value of dx dy x = β that satisfies  0 will maximize y if the value of dx Task 1 : Answer all questions below.

153

3.99 3

; (a) 0.07930 ; (b) 0.07871

Topic : DIFFERENTIATION Unit L : Problems of Maximum and Minimum Values of a Function.

x = α that satisfies

5

d2y  0 at x = α dx 2 d2y  0 at x = β dx 2

(1) Given L  x 2 (25  2 x) , find the value of x for which L is maximum. Hence, determine the maximum value of L.

Example 1 : Given L  x 2 (40  5 x) , find the value of x for which L is maximum. Hence, determine the maximum value of L. Solution: L  x 2 ( 40  5 x ) L  40 x 2  5 x 3 dL  80 x  15 x 2 dx d 2L  80  30 x dx 2 dL when 0 dx 80 x  15 x 2  0 x(80  15 x )  0 Knowing x  0, 80  15 x  0 16 x 3 2 d L  16   80  30   80 2 dx  3  d 2L  80  0 dx 2 16 x will max imise L 3  16    16     40  5   3    3  10240  27 2

Lm ax

x

25 3

, Lm ax  15625 27

(2) Given y  36 x  4 x 2  7 , find the value of x for which y is maximum. Hence, determine the maximum value of y.

x  92 , y m ax  88 Task 2 : Answer all questions below.

154

Example 2 :

16 Given L  3 ( x 2  ) , find the value of x for x

(1) Given L  4 ( x 2 

128 ) , find the value of x for x

which L is minimum. Hence, determine the minimum value of L.

which L is minimum. Hence, determine the minimum value of L. Solution: 16 ) x L  3x 2  48 x 1 dL  6x  48x  2 dx d 2L  6  96x 3 dx 2 dL when 0 dx 6x  48x  2  0 L  3 ( x 2 

6x  48x  2 48 x2 Knowing x  0, x 3  8 x2

6x 

d 2L  6  96 ( 2) 3 2 dx d 2L  18  0 dx 2 x  2 will min imise L  2  16  Lm in  3 2      2    36

x  4 , Lmin  192 

(2) Given y 

1 (3x 2  8 x  2) , find the value of x 2

for which y is minimum. Hence, determine the minimum value of y.

(3) SPM 2003(Paper 1, No 15) Given that y=14x(5 – x), calculate (a) the value of x when y is a maximum (b) the maximum value of y [3 marks]

155

x  43 , y m in   53

(a) 2.5 ; (b) 87.5

Task 3 : Answer all the questions below. (1) The diagram below shows the skeleton of a wire Box with a rectangular base of x by 3x and the heigh of h. h x 3x Given the total length of the wire is 348 cm, (a) express h in terms of x, (b) show that the volume of the box, V cm3 , is given by V = 3x2 (87 – 4x), (c) find the stationary value of V, stating whether it is maximum or minimum value.

(a) h = 87 – 4x (b) – (c) Vm ax = 18291.75 cm3 (2) The diagram below shows a solid cylinder with circular cross-section of radius r and the height of h. r h

Given the total surface area of the cylinder is 300 cm2 , (a) express h in terms of r, (b) show that the volume of the cylinder, V cm3 , is given by V = 150 r – п r 3 , (c) determine the maximum volume of the cylinder when r varies. 150r 2 (b) – (c) r

100 50  or  399 (3) A length of wire 160 m is bent to form a sector OPQ, of a circle of centre O and radius r as shown in the diagram below. (a) h =

r θ

156

(a) Show that (i)  

160 2 r

(ii) the area, A, of the sector is given by A = 80r – r 2 (b) Find the value of θ and r when the area is a maximum. (c) Determine the maximum area.

(b) r = 40 m , θ = 2 rad (c) Am ax  1600

157

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF