Additional Mathematics - O Levels Cheat Sheet

March 26, 2017 | Author: Hassan Nadeem | Category: N/A
Share Embed Donate


Short Description

Download Additional Mathematics - O Levels Cheat Sheet...

Description

New Additional Mathematics: Cheat Sheet

0

www.o-alevel.com

New Additional Mathematics: Cheat Sheet For O Levels

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

1

1. Sets A null or empty set is donated by { } or πœ™. P = Q if they have the same elements. P βŠ‡ Q, Q is subset of P. P βŠ† Q, P is subset of R. P βŠƒ Q, Q is proper subset of P. P βŠ‚ Q, P is proper subset of Q. P β‹‚ Q, Intersection of P and Q. P ⋃ Q, union of P and Q. P’ compliment of P i.e. ∈-P

2. Simultaneous Equations βˆ’π‘ Β± βˆšπ‘ 2 βˆ’ 4π‘Žπ‘ π‘₯= 2π‘Ž

3. Logarithms and Indices Indices 1. π‘Ž0 = 1 1

2. π‘Ž βˆ’π‘ = 1 𝑝

π‘Žπ‘

𝑝

3. π‘Ž = βˆšπ‘Ž 𝑝 π‘ž

π‘ž

4. π‘Ž = ( βˆšπ‘Ž )

𝑝

5. π‘Žπ‘š Γ— π‘Žπ‘› = π‘Žπ‘š+𝑛 6.

π‘Žπ‘š π‘Žπ‘›

= π‘Žπ‘šβˆ’π‘›

7. (π‘Žπ‘š )𝑛 = π‘Žπ‘šπ‘› 8. π‘Žπ‘› Γ— 𝑏 𝑛 = (π‘Žπ‘)𝑛 9.

π‘Žπ‘› 𝑏𝑛

π‘Ž 𝑛

=( )

www.o-alevel.com

𝑏

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

2

Logarithms 1. π‘Ž π‘₯ = 𝑦 ≫ π‘₯ = π‘™π‘œπ‘”π‘Ž 𝑦 2. π‘™π‘œπ‘”π‘Ž 1 = 0 3. π‘™π‘œπ‘”π‘Ž π‘Ž = 1 4. π‘™π‘œπ‘”π‘Ž π‘₯𝑦 = π‘™π‘œπ‘”π‘Ž π‘₯ + π‘™π‘œπ‘”π‘Ž 𝑦 5. π‘™π‘œπ‘”π‘Ž

π‘₯

𝑦

= π‘™π‘œπ‘”π‘Ž π‘₯ βˆ’ π‘™π‘œπ‘”π‘Ž 𝑦

6. π‘™π‘œπ‘”π‘Ž 𝑏 = 7. π‘™π‘œπ‘”π‘Ž 𝑏 =

π‘™π‘œπ‘”π‘ 𝑏 π‘™π‘œπ‘”π‘ π‘Ž 1 π‘™π‘œπ‘”π‘ π‘Ž

𝑦

8. π‘™π‘œπ‘”π‘Ž π‘₯ = π‘¦π‘™π‘œπ‘”π‘Ž π‘₯ 9. π‘™π‘œπ‘”π‘Žπ‘ π‘₯ = π‘™π‘œπ‘”π‘Ž π‘₯

1 𝑏

10. log 𝑏 π‘₯ = log 𝑏 𝑐log 𝑐 π‘₯ =

log𝑐 π‘₯ log𝑐 𝑏

4. Quadratic Expressions and Equations 1. Sketching Graph y-intercept Put x=0

x-intercept Put y=0

Turning point Method 1 x-coordinate: π‘₯ = y-coordinate: 𝑦 =

βˆ’π‘ 2π‘Ž 4π‘Žπ‘βˆ’π‘2 4π‘Ž

Method 2 Express 𝑦 = π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 as 𝑦 = π‘Ž(π‘₯ βˆ’ β„Ž)2 + π‘˜ by completing www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

3

the square. The turning point is(β„Ž, π‘˜ ).

2. Types of roots of π’‚π’™πŸ + 𝒃𝒙 + 𝒄 = 𝟎 𝑏 2 βˆ’ 4π‘Žπ‘ β‰₯ 0 : real roots 𝑏 2 βˆ’ 4π‘Žπ‘ < 0 : no real roots 𝑏 2 βˆ’ 4π‘Žπ‘ > 0 : distinct real roots 𝑏 2 βˆ’ 4π‘Žπ‘ = 0 : equal, coincident or repeated real roots

5. Remainder Factor Theorems Polynomials 1. ax 2 + bx + c is a polynomial of degree 2. 2. ax 3 + bx + c is a polynomial of degree 3.

Identities 𝑃(π‘₯) ≑ 𝑄(π‘₯) ⟺ 𝑃(π‘₯) = 𝑄(π‘₯) For all values of x To find unknowns either substitute values of x, or equate coefficients of like powers of x.

Remainder theorem If a polynomial f(x) is defined by (x-a), the remainder is R =f(a)

Factor Theorem (x-a) is a factor of f(x) then f(a) = 0

Solution of cubic Equation I.

Obtain one factor (x-a) by trail and error method.

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

II. III.

4

Divide the cubic equation with a, by synthetic division to find the quadratic equation. Solve the quadratic equation to find remaining two factors of cubic equation.

For example: I. II.

III. IV. V.

The equation π‘₯ 3 + 2π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6 = 0 has (x-2) as one factor, found by trail and error method. Synthetic division will be done as follows:

The quadratics equation obtained is π‘₯ 2 + 4π‘₯ + 3 = 0. Equation is solved by quadratic formula, X=-1 and X=-3. Answer would be (x-2)(x+1)(x+3).

6. Matrices 1. Order of a matrix Order if matrix is stated as its number of rows x number of columns. For example, the matrix (5

6

2) has order 1 x 3.

2. Equality Two matrices are equal if they are of the same order and if their corresponding elements are equal.

3. Addition To add two matrices, we add their corresponding elements. For example, (

www.o-alevel.com

6 3

βˆ’2 βˆ’4 )+( 5 4

2 2 )=( 1 7

0 ). 6

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

5

4. Subtraction To subtract two matrices, we subtract their corresponding elements. For example: (

6 9

3 14

5 2 )βˆ’( βˆ’5 βˆ’4

7 20

4 5 )=( 12 1

βˆ’4 βˆ’6

0 ). βˆ’6

5. Scalar multiplication To multiply a matrix by k, we multiply each element by k. For example, π‘˜ (

2 3

4 2π‘˜ )=( βˆ’1 3π‘˜

2 6 4π‘˜ ) or 3 ( ) = ( ). 4 12 βˆ’π‘˜

6. Matrix multiplication To multiply two matrices, column of the first matrix must be equal to the row of the second matrix. The product will have order row of first matrix X column of second matrix. π‘Ž 𝑏 𝑐 𝑑 2 4 3 2 1 4 For example: (1 3 ) ( ) = (𝑒 𝑓 𝑔 β„Ž ) 1 5 2 7 𝑖 𝑗 π‘˜ 𝑙 2 βˆ’1 To get the first row of product do following: a = (2 x 3) + (4 X 1) = 10 (1st row of first, 1st column of second) b = (2 x 2) + (4 x 5) = 24 (1st row of first, 2st column of second) c = (2 x 1) + (4 x 2) = 10 (1st row of first, 3st column of second) d = (2 x 4) + (4 x 7) = 36 (1st row of first, 4st column of second) e = (1 x 3) + (3 x 1) = 6 (2st row of first, 1st column of second) f = (1 x 2) + (3 x 5) = 17 (2st row of first, 2st column of second) g = (1 x 1) + (3 x 2) = 7 (2st row of first, 3st column of second) h = (1 x 4) + (3 x 7) = 25 (2st row of first, 4st column of second) i = (2 x 3) + (-1 x 1) = 5 (3st row of first, 1st column of second) j = (2 x 2) + (-1 x 5) = -1 (3st row of first, 2st column of second) k = (2 x 1) + (-1 x 2) = 0 (3st row of first, 3st column of second) l = (2 x 4) + (-1 x 7) = 1 (3st row of first, 4st column of second)

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

6

7. 2 x2 Matrices 1 0 a. The matrix ( ) is called identity matrix. When it is multiplied with 0 1 any matrix X the answer will be X. π‘Ž 𝑏 π‘Ž 𝑏 b. Determinant of matrix ( | = π‘Žπ‘‘ βˆ’ 𝑏𝑐 ) will be = | 𝑐 𝑑 𝑐 𝑑 π‘Ž 𝑏 𝑑 βˆ’π‘ c. Adjoint of matrix ( ) will be = ( ) 𝑐 𝑑 βˆ’π‘ π‘Ž π‘Ž 𝑏 d. Inverse of non-singular matrix (determinant is β‰  0) ( ) will be : 𝑐 𝑑 π‘Žπ‘‘π‘—π‘œπ‘–π‘›π‘‘ 1 𝑑 βˆ’π‘ = ( ) π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘›π‘‘ π‘Žπ‘‘ βˆ’ 𝑏𝑐 βˆ’π‘ π‘Ž

8. Solving simultaneous linear equations by a matrix method π‘Žπ‘₯ + 𝑏𝑦 = β„Ž π‘Ž 𝑏 π‘₯ β„Ž ≫≫ ( ) (𝑦 ) = ( ) 𝑐π‘₯ + 𝑑𝑦 = π‘˜ 𝑐 𝑑 π‘˜ βˆ’1 π‘₯ π‘Ž 𝑏 β„Ž (𝑦) = ( ) Γ—( ) 𝑐 𝑑 π‘˜

7. Coordinate Geometry Formulas π·π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝐴𝐡 = √(π‘₯2 βˆ’ π‘₯1 )2 + (𝑦2 βˆ’ 𝑦1 )2 π‘€π‘–π‘‘π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ 𝐴𝐡 = (

π‘₯1 + π‘₯2 𝑦1 + 𝑦2 , ) 2 2

Parallelogram If ABCD is a parallelogram then diagonals AC and BD have a common midpoint. Equation of Straight line To find the equation of a line of best fit, you need the gradient(m) of the line, and the y-intercept(c) of the line. The gradient can be found by taking any two points on the line and using the following formula: π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ = π‘š =

www.o-alevel.com

𝑦2 βˆ’ 𝑦1 π‘₯2 βˆ’ π‘₯1

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

7

The y-intercept is the y-coordinate of the point at which the line crosses the y-axis (it may need to be extended). This will give the following equation: 𝑦 = π‘šπ‘₯ + 𝑐 Where y and x are the variables, m is the gradient and c is the y-intercept. Equation of parallel lines Parallel line have equal gradient. If lines 𝑦 = π‘š1 𝑐1 and 𝑦 = π‘š2 𝑐2 are parallel then π‘š1 = π‘š2 Equations of perpendicular line If lines 𝑦 = π‘š1 𝑐1 and 𝑦 = π‘š2 𝑐2 are perpendicular then π‘š1 = βˆ’ βˆ’

1 π‘š1

1 π‘š2

and π‘š2 =

.

Perpendicular bisector The line that passes through the midpoint of A and B, and perpendicular bisector of AB. For any point P on the line, PA = PB

Points of Intersection The coordinates of point of intersection of a line and a non-parallel line or a curve can be obtained by solving their equations simultaneously.

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

8

8. Linear Law To apply the linear law for a non-linear equation in variables x and y, express the equation in the form π‘Œ = π‘šπ‘‹ + 𝑐 Where X and Y are expressions in x and/or y.

9. Functions Page 196 of Book

10. Trigonometric Functions πœƒπ‘–π‘  + 𝑣𝑒 90

Sin 2

All 1

180

0,360

Tan 3

Cos 4 270 πœƒπ‘–π‘  βˆ’ 𝑣𝑒

πœƒ is always acute.

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

9

Basics sin πœƒ = cos πœƒ = tan πœƒ = tan πœƒ =

π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ π‘π‘Žπ‘ π‘’ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘Žπ‘ π‘’ sin πœƒ cos πœƒ 1

cosec πœƒ = sec πœƒ = cot πœƒ =

sin πœƒ 1

cos πœƒ 1 tan πœƒ

Rule 1 sin(90 βˆ’ πœƒ) = cos πœƒ cos(90 βˆ’ πœƒ) = sin πœƒ tan(90 βˆ’ πœƒ) =

1 tan πœƒ

= cot ΞΈ

Rule 2 sin(180 βˆ’ πœƒ) = + sin πœƒ cos(180 βˆ’ πœƒ) = βˆ’cos πœƒ tan(180 βˆ’ πœƒ) = βˆ’tan πœƒ

Rule 3 sin(180 + πœƒ) = βˆ’sin πœƒ cos(180 + πœƒ) = βˆ’cos πœƒ tan(180 + πœƒ) = +tan πœƒ

Rule 4 sin(360 βˆ’ πœƒ) = βˆ’ sin πœƒ cos(360 βˆ’ πœƒ) = +cos πœƒ tan(360 βˆ’ πœƒ) = βˆ’tan πœƒ

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

10

Rule 5 sin(βˆ’ πœƒ) = βˆ’sin πœƒ cos(βˆ’πœƒ) = +cos πœƒ tan(βˆ’πœƒ) = βˆ’tan πœƒ

Trigonometric Ratios of Some Special Angles cos 45 = sin 45 =

1 √2 1

√2 tan 45 = 1

cos 60 = sin 60 =

1 2

√3 2

tan 60 = √3

√3 2 1 sin 30 = 2 1 tan 30 √3

cos 30 =

11. Simple Trigonometric Identities Trigonometric Identities sin2 πœƒ + cos 2 πœƒ = 1 1 + tan2 πœƒ = sec 2 πœƒ 1 + cot 2 πœƒ = cosec 2 πœƒ

12. Circular Measure Relation between Radian and Degree πœ‹ 2

π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 90Β°

3πœ‹ 2

π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 270Β°

www.o-alevel.com

πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 180Β° 2πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 360Β°

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

11

𝑠 = π‘Ÿπ›³ where s is arc length, r is radius and Ο΄ is angle of sector is radians 1

1

2

2

𝐴 = π‘Ÿπ‘  = π‘Ÿ 2 𝛳

where A is Area of sector π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’

13. Permutation and Combination 𝑛! = 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2) Γ— … Γ— 3 Γ— 2 Γ— 1 0! = 1 𝑛! = 𝑛(𝑛 βˆ’ 1)!

π‘›π‘ƒπ‘Ÿ = π‘›πΆπ‘Ÿ =

𝑛! (𝑛 βˆ’ π‘Ÿ)!

𝑛! (𝑛 βˆ’ π‘Ÿ)! π‘Ÿ!

14. Binomial Theorem (π‘Ž + 𝑏)𝑛 = π‘Žπ‘› + 𝐢1𝑛 π‘Žπ‘›βˆ’1 𝑏 + 𝐢2𝑛 π‘Žπ‘›βˆ’2 𝑏 2 + 𝐢3𝑛 π‘Žπ‘›βˆ’3 𝑏3 + β‹― + 𝑏 𝑛 π‘‡π‘Ÿ+1 = π‘›πΆπ‘Ÿ π‘Žπ‘›βˆ’π‘Ÿ 𝑏 π‘Ÿ

15. Differentiation 𝑑 𝑛 (π‘₯ ) = 𝑛π‘₯ π‘›βˆ’1 𝑑π‘₯ 𝑑 (π‘Žπ‘₯ π‘š + 𝑏π‘₯ 𝑛 ) = π‘Žπ‘šπ‘₯ π‘šβˆ’1 + 𝑏𝑛π‘₯ π‘›βˆ’1 𝑑π‘₯ 𝑑 𝑛 𝑑𝑒 (𝑒 ) = π‘›π‘’π‘›βˆ’1 𝑑π‘₯ 𝑑π‘₯

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

12

𝑑 𝑑𝑣 𝑑𝑒 (𝑒𝑣) = 𝑒 +𝑣 𝑑π‘₯ 𝑑𝑐 𝑑π‘₯ 𝑑𝑒 𝑑𝑣 𝑣 βˆ’π‘’ 𝑑 𝑒 𝑑π‘₯ 𝑑π‘₯ ( )= 2 𝑑π‘₯ 𝑣 𝑣 Where β€˜v’ and β€˜u’ are two functions Gradient of a curve at any point P(x,y) is

𝑑𝑦 𝑑π‘₯

at x

16. Rate of Change The rate of change of a variable x with respect to time is

𝑑π‘₯ 𝑑𝑑

𝑑𝑦 𝑑𝑦 𝑑π‘₯ = Γ— 𝑑𝑑 𝑑π‘₯ 𝑑𝑑 𝛿𝑦 𝑑𝑦 β‰ˆ 𝛿π‘₯ 𝑑π‘₯ π‘ƒπ‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘Žπ‘”π‘’ π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘₯ =

𝛿π‘₯ Γ— 100% π‘₯

𝑓(π‘₯ + 𝛿π‘₯) = 𝑦 + 𝛿𝑦 β‰ˆ 𝑦 +

𝑑𝑦 𝛿π‘₯ 𝑑π‘₯

17. Higher Derivative 𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯

= 0 when x =a then point (a, f(a)) is a stationary point. = 0 and

𝑑2 𝑦 𝑑π‘₯ 2

β‰  0 when x =a then point (a, f(a)) is a turning point.

For a turning point T

I.

If

II.

If

𝑑2 𝑦 𝑑π‘₯ 2 𝑑2 𝑦 𝑑π‘₯ 2

www.o-alevel.com

> 0, then T is a minimum point. < 0, then T is a maximum point. www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

13

18. Derivative of Trigonometric Functions 𝑑 (sin π‘₯) = cos π‘₯ 𝑑π‘₯ 𝑑 (cos π‘₯) = βˆ’ sin π‘₯ 𝑑π‘₯ 𝑑 (tan π‘₯) = sec 2 π‘₯ 𝑑π‘₯

𝑑 (sinn π‘₯) = 𝑛 sinnβˆ’1 π‘₯ cos π‘₯ 𝑑π‘₯ 𝑑 (cosn π‘₯) = βˆ’π‘› cos nβˆ’1 π‘₯ sin π‘₯ 𝑑π‘₯ 𝑑 (tann π‘₯) = 𝑛 tannβˆ’1 π‘₯ sec 2 π‘₯ 𝑑π‘₯

19. Exponential and Logarithmic Functions 𝑑 𝑒 𝑑𝑒 (𝑒 ) = 𝑒 𝑒 𝑑π‘₯ 𝑑π‘₯ 𝑑 π‘Žπ‘₯+𝑏 (𝑒 ) = π‘Žπ‘’ π‘Žπ‘₯+𝑏 𝑑π‘₯ A curve defined by y=ln(ax+b) has a domain ax+b>0 and the curve cuts the x-axis at the point where ax+b=1 𝑑 1 (𝑙𝑛 π‘₯) = 𝑑π‘₯ π‘₯ 𝑑 1 𝑑𝑒 (ln 𝑒) = 𝑑π‘₯ 𝑒 𝑑π‘₯ www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

14

𝑑 π‘Ž [𝑙𝑛(π‘Žπ‘₯ + 𝑏)] = 𝑑π‘₯ π‘Žπ‘₯ + 𝑏

20. Integration 𝑑𝑦 = π‘₯ ⟺ 𝑦 = ∫ π‘₯ 𝑑π‘₯ 𝑑π‘₯ 𝑑 1 2 1 ( π‘₯ + 𝑐) = π‘₯ ⟺ ∫ π‘₯ 𝑑π‘₯ = π‘₯ 2 + 𝑐 𝑑π‘₯ 2 2 π‘Žπ‘₯ 𝑛+1 ∫ π‘Žπ‘₯ 𝑑π‘₯ = +𝑐 𝑛+1 𝑛

𝑛

∫(π‘Žπ‘₯ + π‘Žπ‘

π‘š )𝑑π‘₯

π‘Žπ‘₯ 𝑛+1 𝑏π‘₯ π‘š+1 = + +𝑐 𝑛+1 π‘š+1

(π‘Žπ‘₯ + 𝑏)𝑛+1 ∫(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ = +𝑐 π‘Ž(𝑛 + 1) 𝑛

𝑏 𝑑 [𝐹(π‘₯)] = 𝑓(π‘₯) ⟺ ∫ 𝑓(π‘₯) 𝑑π‘₯ = 𝐹(𝑏) βˆ’ 𝐹(π‘Ž) 𝑑π‘₯ π‘Ž 𝑏

𝑐

𝑐

∫ 𝑓(π‘₯) 𝑑π‘₯ + ∫ 𝑓(π‘₯) 𝑑π‘₯ = ∫ 𝑓(π‘₯) 𝑑π‘₯ π‘Ž

𝑏 𝑏

π‘Ž π‘Ž

∫ 𝑓(π‘₯) 𝑑π‘₯ = βˆ’ ∫ 𝑓(π‘₯) 𝑑π‘₯ π‘Ž

𝑏 π‘Ž

∫ 𝑓(π‘₯) 𝑑π‘₯ = 0 π‘Ž

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

15

𝑑 (sin π‘₯) = cos π‘₯ ⟺ ∫ cos π‘₯ 𝑑π‘₯ = sin π‘₯ + 𝑐 𝑑π‘₯ 𝑑 (βˆ’cos π‘₯) = sin π‘₯ ⟺ ∫ sin π‘₯ 𝑑π‘₯ = βˆ’ cos π‘₯ + 𝑐 𝑑π‘₯ 𝑑 (tan π‘₯) = sec 2 π‘₯ ⟺ ∫ 𝑠𝑒𝑐 2 π‘₯ 𝑑π‘₯ = π‘‘π‘Žπ‘› π‘₯ + 𝑐 𝑑π‘₯

𝑑 1 1 [ sin(π‘Žπ‘₯ + 𝑏)] = cos(π‘Žπ‘₯ + 𝑏) ⟺ ∫ cos(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ = sin(π‘Žπ‘₯ + 𝑏) + 𝑐 𝑑π‘₯ π‘Ž π‘Ž 𝑑 1 1 [βˆ’ cos(π‘Žπ‘₯ + 𝑏)] = sin(π‘Žπ‘₯ + 𝑏) ⟺ ∫ sin(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ = βˆ’ cos(π‘Žπ‘₯ + 𝑏) + 𝑐 𝑑π‘₯ π‘Ž π‘Ž 𝑑 1 1 [ tan(π‘Žπ‘₯ + 𝑏)] = sec 2 (π‘Žπ‘₯ + 𝑏) ⟺ ∫ 𝑠𝑒𝑐 2 (π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ = π‘‘π‘Žπ‘› (π‘Žπ‘₯ + 𝑏) + 𝑐 𝑑π‘₯ π‘Ž π‘Ž

𝑑 π‘₯ (𝑒 ) = 𝑒 π‘₯ ⟺ ∫ 𝑒 π‘₯ 𝑑π‘₯ = 𝑒 π‘₯ + 𝑐 𝑑π‘₯ 𝑑 (βˆ’π‘’ βˆ’π‘₯ ) = 𝑒 βˆ’π‘₯ ⟺ ∫ 𝑒 βˆ’π‘₯ 𝑑π‘₯ = βˆ’π‘’ βˆ’π‘₯ + 𝑐 𝑑π‘₯

21. Applications of Integration For a region R above the x-axis, enclosed by the curve y=f(x), the x-axis and the lines x=a and x=b, the area R is: 𝑏

𝐴 = ∫ 𝑓(π‘₯) 𝑑π‘₯ π‘Ž

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

16

For a region R below the x-axis, enclosed by the curve y=f(x), the x-axis and the lines x=a and x=b, the area R is: 𝑏

𝐴 = ∫ βˆ’π‘“(π‘₯) 𝑑π‘₯ π‘Ž

For a region R enclosed by the curves y=f(x) and y=g(x) and the lines x=a and x=b, the area R is: 𝑏

𝐴 = ∫ [𝑓(π‘₯) βˆ’ 𝑔(π‘₯) ]𝑑π‘₯ π‘Ž

22. Kinematics 𝑣=

𝑑𝑠 𝑑𝑑

π‘Ž=

𝑑𝑣 𝑑𝑑

𝑠 = ∫ 𝑣 𝑑𝑑 𝑣 = ∫ π‘Ž 𝑑𝑑 π΄π‘£π‘’π‘Ÿπ‘”π‘’ 𝑠𝑝𝑒𝑒𝑑 =

π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘‘π‘Ÿπ‘Žπ‘£π‘’π‘™π‘™π‘’π‘‘ π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘šπ‘’ π‘‘π‘Žπ‘˜π‘’π‘›

𝑣 = 𝑒 + π‘Žπ‘‘

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

New Additional Mathematics: Cheat Sheet

17

1 𝑠 = 𝑒𝑑 + π‘Žπ‘‘ 2 2 1 𝑠 = (𝑒 + 𝑣)𝑑 2 𝑣 2 = 𝑒2 + 2π‘Žπ‘ 

23. Vectors π‘₯ βƒ—βƒ—βƒ—βƒ—βƒ— = ( ) then |𝑂𝑃 βƒ—βƒ—βƒ—βƒ—βƒ— | = √π‘₯ 2 + 𝑦 2 If 𝑂𝑃 𝑦 𝒃 = π‘˜π’‚ and k > 0 a and b are in the same direction 𝒃 = π‘˜π’‚ and k < 0 a and b are opposite in direction Vectors expressed in terms of two parallel vectors a and b: 𝑝𝒂 + π‘žπ’ƒ = π‘Ÿπ’‚ + 𝑠𝒃 ⟺ p = r and q = s If A, B and C are collinear points ⟺ AB=kBC If P has coordinates (x, y) in a Cartesian plane, then the position vector of P is βƒ—βƒ—βƒ—βƒ—βƒ— = π‘₯π’Š + 𝑦𝒋 𝑂𝑃 where i and j are unit vectors in the positive direction along the x-axis and the y-axis respectively. βƒ—βƒ—βƒ—βƒ—βƒ— is Unit vector is the direction of 𝑂𝑃 1 1 π‘₯ (π‘₯π’Š + 𝑦𝒋) π‘œπ‘Ÿ (𝑦) √π‘₯ 2 + 𝑦 2 √π‘₯ 2 + 𝑦 2

24. Relative velocity

www.o-alevel.com

www.HassanNadeem.com blog.HassanNadeem.com

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF