Add. Maths Paper 1 SBP Form 4 Akhir 06
Short Description
Add. Maths Paper 1 SBP Form 4 Akhir 06...
Description
SULIT
3472/1
3472/1 Form Four Additional Mathematics Mathematics Paper 1 Oct 2006 2 hours
Name : ………………..…………… Form : ………………………..……
SEKTOR SEKOLAH BERASRAMA PENUH KEMENTERIAN PELAJARAN MALAYSIA
PEPERIKSAAN AKHIR TAHUN TINGKATAN 4 2006 ADDITIONAL MATHEMATICS Form Four Paper 1 2 hours
DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED INSTRUCTED TO DO SO
1
Write your name and class clearly in the space provided on this page.
For examiner’s use only
1
Total Marks 2
2
3
3
4
4
2
5
3
6
3
7
3
8
4
9
3
10
3
Question
2
Read the information on page 2 carefully.
11
4
3
This question paper paper must be handed in at the end of the examination examination.
12
4
13
3
14
4
15
3
16
3
17
3
18
3
19
4
20
3
21
4
22
3
23
3
24
3
25
3 TOTAL
This question paper consists of 13 printed pages
Marks Obtained
SULIT
2
3472/1
INFORMATION FOR CANDIDATES 1.
This question paper consists of 25 questions.
2.
Answer all questions in this question paper.
3.
Give only one answer/solution to each question.
4.
Show your working. working. It may help you to get marks.
5.
The diagrams diagrams in the questions questions provided are not drawn to scale unless stated.
6.
The marks allocated allocated for each question question are shown in brackets. brackets.
7.
A list of formulae is provided on pages 2 to 3.
9.
You may use a non-programmable scientific calculator.
The following formulae may be helpful in answering the questions. The symbols given are the ones commonly used.
ALGEBRA
b b 2 4ac
1
x
2
am
x
3
am
an = a m – n
4
( a m )n = a
5
log a mn log a m log a n
6
log a
7
log a mn = n log a m
2a an = a
mn
m+n
8
m n
log a m log a n
log a b
log c b log c a
SULIT
3
3472/1
GEOMETRY
1
Dist Distan ancce =
x1 x 2 y1 y 2 2
2
3
A point point divi dividin ding g a seg segme ment nt of a line line
nx1 mx2
x , y
m n
2 Mid Mid point point
x1 x 2 y1 y 2 , 2 2
x, y
ny1 my 2
,
m n
4 Area Area of of a triangl trianglee =
1 2
x1 y 2 x 2 y 3 x3 y1 x 2 y1 x3 y 2 x1 y 3
STATISTICS
1
x
2
x
x
f x x fx 2 x 2 4. f f 2
fx f x x
2
3
N
x 2 N
x 2
1 N F 2 C 5. m L f m
TRIGONOMETRY
1
2
Arc Arc leng length th,, s =r
Area Area of a sect sector or,, A
1 2
r 2
CALCULUS
1
3
y = uv ,
dy dx
dy du
dy dx
u
du dx
dv dx
v
du dx
2
y
u v
,
dy dx
v
du dx
u v
2
dv dx
SULIT
4
For examiner’s use only
3472/1
Answer all questions.
1
Diagram Diagram 1 represents represents the relation relation between set R and set S . S 10 8 6 4 2 1
2
R
3
DIAGRA DIAGRAM M 1 State ( a)
the range,
(b) (b)
the the type type of rela relati tion on.. [2 marks] marks]
1
Answer : Answer : (a) …………………….. …………………….. 2
(b) ……………………...
2
Diagram Diagram 2 illustrates illustrates the mapping mapping of the function function f and g – 1 . y f (x) (x)
2
z g – (y)
3
5 DIAGRAM 2 Given that f 1 ( x) 2 x k , find (a) (a) the the valu valuee of k of k , (b) (b) the the imag imagee of f 1 g ( 3) .
[3 marks] marks] 2
Answer : Answer : (a) …………………….. …………………….. 3
(b) ……………………...
SULIT
3
5
3472/1
Given the function f ( x) 1 3x and the composite composite function function fg ( x) 4 3 x 2 , find find
For examiner’s use only
(a) g ( x ) , (b) the value of x when f 1 ( x ) 5 . [4 marks] marks]
Answer : Answer : (a) ...…………………… ...……………………….... …...... ..
3
(b)...............................................
4
Express the quadratic equation
x 3 6
x 2 x 4
4
in general form. [2 marks] marks]
4
Answer : Answer : ......... .........……………… ………………… …
5
2
One of the roots of the quadratic equation 2 x 2 nx 24 0 is three times the value of the other other root. Find Find the value value of n , if n > 0 . [3 marks] marks]
5
Answer : Answer : ………… ……………… ………… …….. ..
3
For SULIT examiner’s use only
6
6
3472/1
The quadratic equation x 2 px q 0 has roots 3 and
1 2
where p and q are
constants constants . Find the value of p and q. [3 marks] marks]
Answer : Answer : p = ……........................
6
q =....……………….... 3
7
Find the range of values of x if y x 2 4 and 2 y x 11 . [3 marks] marks]
7
Answer : Answer :
3
8
………… ……………… ………… ………. …... ..
Diagram 3 shows the graph for the function f ( x ) p ( x q ) 2 r , where p, q and r f ( x) x) are constants. f ( x ) p ( x q) 2 r
4 2 0
1
x
5 DIAGRAM 3
Find the values of (a) q and r , (b) p
[4 marks] marks]
8
Answer : Answer : (a) 4
q = …….. r = r = ...........
(b) p =....………………..
SULIT
9
7
3472/1
For examiner’s use only
Diag Diagra ram m 4 show showss the the grap graph h of the the func functio tion n f ( x ) 4 x 2 ( 4k 12) x 15 5 k in relation relation to the x –axis . Find the range of values of k . [3 marks] marks] x
x DIAGRAM 4
9
Answer : Answer : k =……..……...………..... k =……..……...……….....
10
Solve the equation
x 1
125
5 x
3
3
25
. [3 marks] marks]
10
Answer : Answer : ……………...……….....
11
3
Given log 5 2 m and log 5 7 p , express log 5 3.43 in terms of m of m and p. [4 marks] marks]
11
Answer : Answer : …...…………..… …...…………..………... ……... 4
For examiner’s use only
SULIT 12
8
3472/1
Solve the equation log 2 ( x 2) 1 2 log 4 ( 4 x) [4 marks] marks]
12
Answer : Answer : ……………...………..... 4
13
Given points P (5, (5, 6), Q(10, 3), R(7, n) and S (6, 1 ) are the verti vertices ces of a kite. kite. Find Find the value of n of n. [3 marks] marks]
13
Answer : Answer : n =…………...……….....
3
14
Diagram 5 shows points A, B and C on a Cartesi Cartesian an plane. plane. Given Given that point point A lies on the y-axis and the area of the triangle formed by the three points is 10 unit 2. y A k
B (4, 1) x
O
C (2, C (2, 3) DIAGRAM 5 Calculate Calculate the value of k of k .
[4 marks] marks]
14
Answer : Answer : k = k = ………..……….......... 4
SULIT
15
9
3472/1
Find the equation of the locus of the moving moving point M such that its distances from the
For examiner’s use only
points A (2 , 3) and and B (5 , 2) 2) are in in the the ratio ratio of of 1 : 2 . [3 marks] marks]
15
Answer : Answer : ........................................... ...........................................
16
3
A set of five numbers has a mean of 9. When q is added to the data the new mean is 10. Find the value value of q of q. [3 marks] marks]
16
Answer : Answer : q =...................................... 3
17
Table 1 shows the frequency frequency distribution distribution of the masses of 40 students. students. Mass (kg) Frequency
46-50 7
51-55
56-60
10
12
61-65
66-70
8
3
TABLE 1
Without drawing an ogive, find the median.
[3 marks] marks]
17
Answer : Answer : …...…………..… …...…………..……..…. …..…... .. 3
For SULIT examiner’s use only
18
10
3472/1
For a set of four numbers, it is given that the sum of all the numbers, x , is 28 and
the standar standard d devia deviation tion is 2 3 . Find Find the value value of x 2 . [3 marks] marks]
18
Answer : Answer : …...…………..… …...…………..……..…. …..…... .. 3
19
In Diagram 6 , PQR is a semicircle with centre O.
Q 4 cm P
O
R
DIAGRAM 6 Given that the radius is 5 cm, find the length of the arc PQ. PQ. (Use = 3.142) [4 marks] marks]
19 4
Answer : Answer : …...…………..… …...…………..……..…. …..…... ..
SULIT
20
11
3472/1 For examiner’s use only
Diagram Diagram 7 shows shows sector OAB with centre O and and radi radius us of 5 p. p. A
0.5 rad O
C
B
DIAGRAM 7 Point C is on OB such that OC : CB = 3 : 2. Given that the perimeter of the shaded region is 34 cm, calculate the value of p. (Use = 3.142) [3 marks] marks]
20
Answer : Answer : …...…………..… …...…………..……..…. …..…... .. 3
21
Diagram Diagram 8 shows shows sector OPQ sector OPQ with centre O. O
20 cm
P
50
Q
DIAGRAM 8 Given that the radius is 20 cm and OPQ 50 . Find the area of the shaded region. (use 3.142) [4 marks] marks] 21
Answer : Answer : …...…………..… …...…………..……..…. …..…... ..
4
For examiner’s use only
SULIT
22
12
Determine Determine the value of
lim n 1
n 2 n2 n 1
3472/1
.
[3 marks] marks]
22
Answer : Answer : …...…………..… …...…………..……..…. …..…... .. 3
23
Given that f ( x)
2 x 2 1 3 x 4
, find f ' ( 1) . [3 marks] marks]
23
Answer : Answer : …...…………..… …...…………..……..…. …..…... .. 3
24
Find Find the equatio equation n of the tangent tangent to the curve curve y = 3x 2 – 2x + 1 that passes through point (1, 2) . [3 marks] marks]
24 3
Answer : Answer : …...…………..… …...…………..……..…. …..…... ..
SULIT
25
13
3472/1
Given that y (3x 2) 4 , and x decreases at the the rate of 4 unit per second, second, find the the rate at which y changes when x =
1 3
For examiner’s use only
.
[3 marks] marks]
Answer : Answer : …...…………..… …...…………..……..…. …..…... ..
25 END OF THE QUESTION PAPER 3
SULIT 3472/1 Additional Mathematics Paper 1 October 2006
SEKOLAH BERASRAMA PENUH KEMENTERIAN PELAJARAN MALAYSIA
PEPERIKSAAN PEPERIKSAAN AKHIR TAHUN TINGKATAN 4 2006
ADDITIONAL MATHEMATICS
Paper 1 MARKING SCHEME
This marking scheme consists of 7 printed pages
3472/1
© 2006 Copyright SBP Sector, Ministry of Education, Malaysia
SULIT
Sub Marks
Full Marks
(a) { 2, 4, 6, 10 }
1
2
(b) many to many many
1
( a) k = 1
2
Number 1
2
Solution and marking scheme sch eme
2(2) + k = 5
B1
(b) 5
3
3
1
2
(a) g(x) = x + 1
3
( 4 3 x 2 ) 1
4
B2
3
f
–1
(x) =
x 1
B1
3
(b) x = 16
4
1
2
x – 8x + 6 = 0
2
(x-3)(2x -4) = 6x
5
2
B1
n = 16
3
SOR = 4 =
n
SOR = 4 =
n
2
2
and
POR = 3 2 12
B2
or
POR = 3 2 12
B1
2
3
Sub Marks
Full Marks
3
1
3
2 5
2
Number 6
Solution and marking scheme sch eme
q= p =
2
SOR = 3
7
x 1 , x
1
POR = 3
or
2
1
B1
2
3
3
2
(2 x 3)( x 1) 0
B2
2(x + 4) x + 11
B1
2
8
( a) q = - 3
1
r= 2 (b) p =
1 2
2 2
2
4 = p(5 – 3) + 2
or
-2 < k < 3
B1
3
(k + 2)(k – 3) < 0 2
B1
x = 1
3
2 + (3x (3x – 3) =
3 B2
2
x 3
5 3( x 1)
5 5
2 2
3
B2
(12 – 4k) – 4(4)(15 – 5k) < 0
10
4
1
4 = p(1 – 3) + 2
9
3
or
5
3( x 1)
x 3
(5 ) 5 2
3
2
B1
3
Number 11
Solution and marking scheme sch eme 3 p – 2 – 2m
4
log 5 343 – log 5 100
B2
x =
log 2
B1
343 100
4
10
4 x
2 x 2 4 x
B3
B2
= 1
log 2 (4 ) log 2 4
B1
n = -2
3
3 1 n 6 1 10 6 7 5 3 1 10 6
m QS =
or
n6 7 5
m PR =
B1
4
14 + 2k = - 20
and
14 + 2k = 20
B3
14 + 2k = - 20
or
14 + 2k = 20
B2
2
3
B2
k=3
1
4
3
log 2 ( x – 2 ) = 1 + 2
14
4
B3
x 2
13
Full Marks
3 log 5 7 - 2 log 5 5 – 2log 5 2
log 5
12
Sub Marks
14 2k 10
B1
4
4
Number 15
Solution and marking scheme sch eme 2
2
3x + 3y – 6x + 28y + 23 23 = 0 2
( x 2) 2 ( y 3)2 ( x 2) 2 ( y 3) 2
16
( x 5) 2 ( y 2) 2 ( x 5)2 ( y 2) 2
or
q = 15 45 q 6
B1
3
B1
3
(7) 2 2 3
3
B2
B1
= 7 S PQ = 11.71 cm
4
S PQ = 5 ( 2.3 2.342 42 )
B3
POQ 3.142 0.8 2.342 rad
B2
QOR
3
B2
19
B2
3
x 2 244
4
3
B1
Median = 56.75
x 2
3
B2
10
1 (40) 17 2 (40 55.5 5 12 L = 55.5
18
Full Marks
3
x 45
17
Sub Marks
4 5
B1
radian
5
4
Number 20
21
Solution and marking scheme sch eme p = 4
3
3
B2
S AB = 5p (0.5) (0.5)
B1
82.24
to
1
3.142
180
3.142
20 2 80 2
1
2
82.33 cm
20 2 80 2
180
3.142
20 2 80 2
180
4
-
1 2
80 20 2 sin 80
1
and
2 1
or
2
3
80 20 2 sin 80
80 20 2 sin 80
4
B3
B2
B1
3
lim ( n 2 )
3
B2
n 1
n 2 n 1 23
Full Marks
2.5p 2.5p + 2p 2p + 4p = 34
1
22
Sub Marks
B1
7
3
4 1 3 1 4 3 2 1 2 1 [ 3 1 4 ] 2
B2
4 x 3 x 4 3 2 x 2 1 [ 3 x 4 ] 2
B1
6
3
Number 24
Solution and marking scheme sch eme y = 4x – 2 2 = 4 (1) + c dy dx
25
dy dt
= 6x – 2
y 2
or
or
x 1 dy dx
Sub Marks
Full Marks
3
3
B2
4
B1
4
3
48
1 12 3 2 3 4 dt 3
B2
dy
B1
dy
dx
3
= 4 (3x (3x – 2) (3)
7
3
View more...
Comments