Actividad 4 (Soluciones)
October 5, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Actividad 4 (Soluciones)...
Description
Ifcultfh hm Ekgmkemràf. ^radfdelehfh y Mstfhàstecf.
Fctevehfh 8. ^radfdelehfh. Cakcmptas dæsecas. (Saluceakms) 6. ]k hmtmr`ekfha zfpfta sm ifdrecf mk = mstelas heimrmktms y mk cuftra calarms hestektas pfrf cfhf uka. Se lf zfpftmràf hmsmf `astrfr f su clemktmlf pfrms hm zfpftas mk tahas las mstelas y calarms, ±Cuæktas pfrms heimrmktms hmdmræk calacfr mk ml fpfrfhar1
Saluceók: Sm temkmk = mstelas hm zfpftas y cfhf uka temkm 8 apceakms hm calarms, mktakcms par ml prekcepea hm lf `ulteplecfceók ml tatfl hm mstelas heimrmktms ms =x804>. Msta tf`deåk la pahm`as bfcmr cak uk hefgrf`f hm ærdal .
4. ]k mxpmre`mkta caksestm mk lfkzfr uk hfha y hmspuås smlmcceakfr flmftaref`mktm ukf lmtrf hml flifdmta ekglås, ±cuæktas puktas bfdræ mk ml mspfcea `umstrfl1
Saluceók: Xmkm`as qum uk hfha temkm 9 cfrfs, ms hmcer 9 kú`mras ca`a apceakms f ca`dekfr cak 49 lmtrfs ( ta`fkha mk cumktf ml flifdmta ekglms), par ml prekcepea hm lf `ulteplecfceók ml tatfl hm puktas mk ml mspfcea `umstrfl smræk 9x4906=9. {(6,f), (6,d), ,(6,z), (4,f),(4,d), ,(9,z)} …
…
3. Kumvm pmrsakfs sflmk hm vefjm pfrf msquefr mk 3 vmbàculas cuyfs cfpfcehfhms sak hm 4,8 y = pfsfjmras, rmspmctevf`mktm. ±Mk cuæktfs iar`fs ms pasedlm trfkspartfr f lfs 5 pmrsakfs bfstf ml fldmrgum cak tahas las vmbàculas1 Saluceók: Fquà ms e`partfktm plfktmfr se ml arhmk mk ml qum sm fca`ahfk f lfs pmrsakfs mk las futas e`partf a ka.
F) Ka E`partf Mk mstm pradlm`f ka e`partf ml arhmk, ms hmcer, se kumstrfs pmrsakfs sm llf`fk: @frefka, @fghflmka, Xmrmsa, @frea, Cf`ela, Tadmrtf, Tf`erf, ^mhrf y Xmaielf. Mktakcms qum ^mhrf y Xmrmsa vfyfk mk ml pre`mr futa ms m s egufl f qum Xmrmsa y ^mhrf vfyfk mk ml pre`mr futa. Bfy qum katfr qum tmkm`as has lugfrms vfcàas, msta e`plecf qum tmkm`as 9 pasedlms iar`fs hm rmpfrter mstas:
L@F. Dmrmkecm @mhekf @frtàkmz.
Ifcultfh hm Ekgmkemràf. ^radfdelehfh y Mstfhàstecf.
4->->? 6-6->? 6->-6? >-4->? >-6-6? >->-4 Ms hmcer, mk qum futas bfdræ lugfrms vfcàas, sek m`dfrga, qum bfyf has lugfrms vfcàas mk ml pre`mr futa ms mquevflmktm f qum ka sm usfræ par la qum hmdm smr hmscfrtfha y kumstrfs úkecfs apceakms sak: 6-6->? 6->-6? >-4->? >-6-6? >->-4 Hmspuås se`plm`mktm bfy qum mkcaktrfr lf iar`f hm fca`ahfr f lfs pmrsakfs pfrf cfhf ca`dekfceók hm fsemktas vfcàas y usfr ml prekcepea hm lf su`f. ^ar mjm`pla pfrf ml 6-6->, segkeiecf qum hmdm`as fca`ahfr mk ml pre`mr futa f ukf pmrsakf, mk ml smgukha 3 y mk ml tmrcmra =. ^frf mscagmr f lf pmrsakf qum eræ salf mk ml pre`mr futa sm temkmk 5 apceakms (@frefka, @fghflmka, Xmrmsa, @frea, Cf`ela, Tadmrtf, Tf`erf, ^mhrf y Xmaielf. Mktakcms qum ^mhrf y Xmrmsa), sek m`dfrga pfrf fca`ahfr trms pmrsakfs mk ml smgukha futa sala pumhmk smr mscagehfs hm 2 pasedlms pums ukf yf bf seha fca`ahfhf? y iekfl`mktm pfrf ml últe`a futa hmdm`as fca`ahfr ml rmsta hm lfs pmrsakfs (= mk mstm cfsa) mk = lugfrms. @ftm`m`ætecf`mktm msta pumhm vmrsm ca`a ca`dekfceakms hm lf seguemktm `fkmrf: 6-6-> 6->-6 >-4-> >-6-6 >->-4
56 × 23 × == 56 × 28 × 88 54 × 74 × == 54 × 73 × 88 54 × 78 × 33
Fca`ahas tatflms
=>8 93> 7=9 649> 649> 886>
D) E`partf Mk mstm pradlm`f ml arhmk e`partf, quezæ parqum Xmrmsa ahef er mk `mhea a Xmaielf fcasf f ^mhrf. ^ar la qum hmdm`as caksehmrfr qum se E`partf. La qum ka e`partf ms las lugfrms vfcàas, ms hmcer, se ml pre`mr fsemkta hml pre`mr futa y ml tmrcmra hml smgukha mstæk vfcàas, ms la `es`a qum ml tmrcmr fsemkta hml smgukha futa y ml pre`mr fsemkta hml pre`mr futa mståk vfcàas. ^ar la cufl, ±hm cuæktfs `fkmrfs pahm`as fsegkfr las lugfrms vfcàas1 664 0 ==
Lumga, rmstf fca`ahfr f lfs pmrsakfs, ca`a ml arhmk ar hmk hm lfs pmrsakfs se e`partf mktakcms, lf iar`f hm fca`ahfrlas ms 5! 0 39422>
Iekfl`mktm par ml prekcepea hm lf `ulteplecfceók 0 == × 39422 39422>> >> 0 655=28>>
L@F. Dmrmkecm @mhekf @frtàkmz.
Ifcultfh hm Ekgmkemràf. ^radfdelehfh y Mstfhàstecf.
8. ]kf `mzclf hm hulcms caktemkm 9 `mktfs, 8 cbeclasas y 3 cbacalftms. Se ukf pmrsakf rmflezf ukf smlmcceók fl fzfr hm uka hm mllas, mkcuåktrmsm lf pradfdelehfh hm adtmkmr f) ukf `mktf, d) uk cbeclasa a uk cbacalftm.
Saluceók: f) Hfha qum bfy 9 hm `mktf hm uk tatfl hm 63 hulcms mktakcms lf pradfdelehfh hm adtmkmr uka hm `mktf ms 9/630>.89. d) Hfha qum 7 hm las hulcms sak cbeclasas a hm cbacalftm mktakcms lf pradfdelehfh hm tmkmr uk hulcm cak mstas sfdarms ms 7/630>.=8. =. Mk ukf `fka hm paqumr caksestmktm hm = cfrtfs, mkcumktrm lf pradfdelehfh hm tmkmr 4 fsms y 3 jatfs.
Saluceók: Ml kú`mra hm iar`fs hm adtmkmr 4 fsms hm 8 ms:
8 C 4
8 8! 9 4 4 ! ( 8 4 )!
U ml kú`mra hm iar`fs hm adtmkmr 3 jatfs ms 8 C 3
8 8! 8 3 3 ! ( 8 3 )!
^ar la tfkta ml kú`mra hm `fkas cak 4 fsms y 3 jatfs ms 9x8048. Lumga ml kú`mra hm `fkas cak = cfrtfs ms
=4 C =
=4 =4! 4,=52,59> = = ! ( =4 = )!
^ar la tfkta lf pradfdelehfh hm tmkmr ukf `fka hm = cfrtfs cak 4 fsms y 3 jatfs ms: m s:
48/4,=52,59> 0>.5x6>-=. 9. Se cfhf frtàcula caheiecfha mk uk cftælaga m`pemzf m` pemzf cak 3 lmtrfs hestektfs y caktekúf ca ktekúf cak 8 hàgetas hestektas hml cmra, mkcumktrm lf pradfdelehfh hm smlmcceakfr flmftaref`mktm uka hm las qum m`pemzf cak lf lmtrf lmtr f f y temkm uk pfr ca`a últe`a hegeta.
Saluceók: Ca`a sm trftf hm uk cóhega, có hega, ml arhmk hm las mlm`mktas ms e`partfktm. Sfdm`as qum m mll cóhega cakstf hm 7 mlm`mktas, ml pre`mr mlm`mkta temkm 49 apceakms f mlmger hm lfs 49 lmtrfs hml fdmcmhfrea, ml smgukha mlm`mkta yf sala temkm 4= apceakms, pums ka hmdm`as rmpmter lmtrf, hm mstf `fkmrf ml tmrcmr mlm`mkta temkm 48 apceakms. Ml cufrta mlm`mkta carrmspakhm f uk kú`mra hestekta hml cmra par la qum sak 5 apceakms, ml quekta, smxta y såpte`a tf`deåk sak uk kú`mra y ca`a mstas se sm
L@F. Dmrmkecm @mhekf @frtàkmz.
Ifcultfh hm Ekgmkemràf. ^radfdelehfh y Mstfhàstecf.
pumhmk rmpmter tmkm`as 5 apceakms pfrf cfhf uka. Mktakcms par ml prekcepea hm lf `ulteplecfceók ml tatfl hm cóhegas qum sm pumhmk iar`fr cak mstfs cfrfctmràstecfs ms: 49x4=x48x5x5x5x506>4,3=6,9>> Lumga ml cóhega hm kumstra ektmrås ms qum ml pre`mr mlm`mkta smf ukf f la qum kas hmjf sala ukf “
‐
apceók, ml smgukha mlm`mkta fbarf temkm 4= lmtrfs f mscagmr, y ml tmrcmra 48. Ml cufrta, quekta y smxta mlm`mktas par smr kú`mras temkmk 5 apceakms cfhf uka, lumga ml såpte`a temkm qum smr uk ku`mra pfr par la qum lfs apceakms pasedlms sak {4, {4 , 8, 9, 2}, ms hmcer 8 mlm`mktas. Kumvf`mktm par ml prekcepea hm lf `ulteplecfceók ml kú`mra hm cóhegas qum m`pemzf mk f y tmr`ekf mk pfr ms:
6x4=x48x5x5x5x806,785,9>>. ^ar la tfkta lf pradfdelehfh hm smlmcceakfr uk frtàcula cak uk cóhega qum m`pemzf mk f y tmr`ekf “
‐
mk pfr ms 67859>>/6>43=69>>0>.>67.
7. Mk ukf mscumlf prmpfrftaref sm grfhúfk 6>> mstuhefktms, =8 mstuhefrak `ftm`ætecfs, 95 bestaref y 3= f`dfs `ftmrefs. Se sm smlmcceakf flmftaref`mktm uka hm mstas mstuhefktms, mkcumktrm lf pradfdelehfh hm qum f) Sm bfyf hmhecfha f `ftm`ætecfs a bestaref, d) ka sm bfyf hmhecfha f kekgukf hm lfs has, c) bfyf mstuhefha bestaref pmra ka `ftm`ætecfs. Saluceók: ^re`mra hmdm`as sfdmr cuæktas mstuhefrak sala `ftm`ætecfs, cufktas sóla bestaref y cufktas kekgukf. ^frf msta sfdm`as qum lf ektmrsmcceók hm bestaref y `ftm`ætecfs ms 3=, y hm `ftm`ætecfs 95, par la tfkta las qum sóla mstuhefrak `ftm`ætecfs smrefk 95-3=0 38, y las qum sóla mstuhefrak bestaref smrefk =8-3=065. Fsà pums las qum ka mstuhefrak kekgukf hm mstfs hesceplekfs smrefk:
6>>-3=-65-38064. f) Las qum sm hmhecfrak f `ftm`ætecfs a bestaref smrefk 3=+65+38022 y lf pradfdelehfh hm smlmcceakfr f uka hm mllas hm las 6>> 6> > mstuhefktms smràf 22/6>>0>.22.
d) Las qum sóla mstuhefrak bestaref sak 65, mktakcms lf pradfdelehfh hm smlmcceakfr f uka hm mllas hm las 6>> mstuhefktms smref hm 65/6>>0>.65.
L@F. Dmrmkecm @mhekf @frtàkmz.
View more...
Comments