Actividad 1 - Calculo Integral - Luis Felipe Cobo Canal - 2
September 14, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Actividad 1 - Calculo Integral - Luis Felipe Cobo Canal - 2...
Description
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU
GKGVEBEBJU
=.
Mprjxbimebõo Mprjxbimebõo Ouiârbe Ouiârbem; m; gh ejstj imrabomh ng hm biprgsbõo ng uo emrtgh, ne 6 5 x eumonj sg biprbigo emrtghgs, gs nx 9∛ x + = + 7 ∛ x Pmrm emheuhmr gh muigotj ngh ejstj gotrg prjnuebr =0 emrtghgs y 60 emrtghgs, sg ngfg emheuhmr hm sbaubgotg botgarmh; 60
∣ ∛ x x += +7 ∛ xx nx 5
M9
=0
Emheuhg hms suims supgrbjrgs W y hms suims bolgrbjrgs H, tjimonj uom pmrtbebõo ng = uobnmn y prjignbg mifms suims pmrm nmr rgspugstm mh gkgrebebj. ( Mspgetj ( Mspgetj m gvmhumr; #= mprjxbimebõo ng botgarmhgs.) UJHWEBJO; 60
∣ ∛ x x += +7 ∛ xx nx 5
M9
=0
=- Mphbemijs Mphbemijs hms prjpbgnmngs prjpbgnmngs ng ng hms botgarmhgs botgarmhgs jftgogijs; jftgogijs; 60
60
∣ ∛ x x += nx+∣ 7 ∛ xx nx 5
M9
=0
=0
6- Umemijs Umemijs hms hms ejostmo ejostmotgs tgs y rggser rggserbfbij bfbijs; s; 60
60
∣
M9 ( x + = ) =0
5- Uust Uustbt btub ubij ijs s x + =9 y M 9F + L Ejo;
=/ 6
∣
=
nx + 7 x 5 nx =0
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU 60
60
∣
F9 y
= /6
nx
∣
= /5
L 97 x
y
nx
=0
=0
>- ^jimonj ^jimonj ejij fmsg fmsg hm Geu. Geu. 5 ng hm hm auém ng ng gstunbj gstunbj ng hjs ejoegptjs ejoegptjs físbejs, rgmhbzmijs hm botgarmebõo ng F; 60
∣
F9 y
= /6
nx
=0
F9
y = 6
= += 6
+ E = +=
7- Ug rgmhbzmo rgmhbzmo hms jpgrmebjogs jpgrmebjogs ogegsmrbms ogegsmrbms pmrm pmrm sbiphblbemr sbiphblbemr hm gxprgsbõo gxprgsbõo;;
F9
y
5 6
5
+ E =
6
y
5 6
=
F9
5
+ E =
6
x
=
L 97
+ E 6
+ E 6
> 5
L 97
L 9
()
( )+ 5 x
> /5
>
E 6
=7 5
> x + E 6 ∛ x
5
4- Wom vgz vgz goejotrm goejotrmnms nms hms prbib prbibtbvm tbvms s tgogijs tgogijs qug; qug; M 9F + L M 9
6
=7 5 > 5 x + E 6 x + = ) + E =+ ∛ x ( x ∛ 5 5 6
2- Msui Msuibg bgon onj j qug; qug; E 6+ E =9E M 9
6
=7 5 > 5 x + E ( x x + = ) + ∛ x ∛ 5 5 6
=0- Prjegngijs m emheuhmr hms suims ng meugrnj m hj nglbobnj go gh goemfgzmnj ngh gkgrebebj;
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU o9=0
H M 9
p ∌ xb ∝ 9 b
W M 9º
=0 =07,= =
pb
== ==2,> 7 ==2,> 7
qb
M 9
6
=6 =5>,6 1 =5>,6 1
q ∌ xb º ∝ 9 b
b =
b =
x
o9 =0
=5 =>2,7 7 =>2,7 7
=> =,4 5
=4 656,= = 656,= =
=2 6>2,1 7 6>2,1 7
60
6 5 x + = ) + ∛ x x + E ( x ∛ 5 5 6
Ejo ∌ xb 9 = H M9º
o9=0
∝ p ∌ xb9=1>2,- Ejo fmsg go hjs motgrbjrgs vmhjrgs emheuhmijs ∌ x b ∌ x =9 x =∖ x 09∖0,7∖(∖6 ) 9∖0,7 + 69 =,7 ∌ x 69 x 6∖ x =90 ∖(∖0.7 )90 + 0,7 90,7 ∌ x 59 x 5∖ x 69= ∖09 =
7- Pjstgrbjrigotg rggiphmzmijs hjs vmhjrgs gsejabnjs pmrm x go l ( x ) l ( (∖= ) 9
( ∖= ) 5
+ ( ∖ = )9
l ( ( 0,7 )9
(∖0,6 )5 5
( 0,7 )5 5
∖= 9
∖=∖5 ∖ > 9 9∖=,55 5
5
5
l ( (∖ 0,6 )9
∖=
5
+ (∖0,6 ) 9∖0,606<
+ 0,7 90,7>=<
Ug tjimo hjs vmhjrgs go pjsbtbvj
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU
5
=
> 5
Ejo E 9E =+ E 6 7 >
2
> 5
|
∑ x ∖ x + E = >
6
0
+ E
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU
Gotjoegs tgogijs;
( ∑( ) ∖ ( ) )∖( ∑( ) ∖ ( ) ) 7
=
>
7 >
∖
2 =0
>
2 6
9
>
=
5
7
>
=0∖ 5< 4
0
>
2 6
>
0
5
9∖5.67
5
f)
∣ ( x x + x= ) ( x x ∖5 x ) nx 6
=
UJHWEBJO; Prjegngijs m mphbemr hms prjpbgnmngs ng hms botgarmhgs msé;
5
∣ ( x x + x= ) ( x x ∖5 x ) nx 6
=
( x + x∖ )( x ∖5 x ) =
6
Mphbemijs Mphbemij s hm hgy nbstrbfutbv nbstrbfutbvm m ng hm iuhtbphbeme iuhtbphbemebõo bõo 5
∣ x ∖5 x + x ∖5 nx 5
6
=
Mphbemijs Mphbemij s hms prjpbgnmng prjpbgnmngs s ng hms botgarmhgs botgarmhgs
∣ x =
5
5
5
5
∣
6
5
∣
∣
=
=
nx ∖ 5 x nx + x nx ∖ 5 nx =
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU x
>
>
+ E =∖
(
5
x
)
5
5
+ E 6 +
x
6
+ E 5∖( 5 x + E > )
6
^jimonj qug E 9E =∖E 6 + E 5∖E > x
>
>
S
( 5 )> >
5
=
|
=
∖ x5 + x 6∖5 x + E 5 6
=
YS
6
∖( 5 ) + ( 5 ) ∖ 5 ( 5 ) ∖ 6
4= >
(= )> >
=
∖ ( = )5+ ( = )6∖ 5 ( = ) 6
2
=
=
6
>
6
∖61 + ∖2 ∖ + =∖ + 594
π
e)
∣ >sbo ( x6 )∖5ejs ( 6 x ) nx 0
UJHWEBJO; Prjegngijs m mphbemr hms prjpbgnmngs ng hms botgarmhgs msé; π
∣
M 9 >sbo 0
π
( )∖∣ x
6
5ejs ( 6 x ) nx
0
Ub nglbobijs qug; M 9F ∖ D , ejo π
π
0
0
∣ >sbo ( x6 ) nx D 9∣ 5ejs ( 6 x ) nx
F9
Bobebmijs fusemonj hm prbibtbvm ng; F π
F9 >
∣ sbo ( x6 ) nx 0
=
=
6
6
Uustbtuygonj; u 9 T u 9 x ngrbvmijs π
F9 >
∣ sbo ununu 9 =6 nx 0
Y
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU π
F 94
∣ sbo u nu 6 nu 9nx 0
π F94 (∖ ejs u + e ) 0
( ( )+ )| 9∖ ( )+ | 9∖ ( ( )∖ ( ))
F94 ∖ejs
F
F
|
4ejs
4 ejs
x
E π
6
0
x
E π
6
0
π
ejs 0
6
F9∖4 ( 0∖= ) F9 4
π
∣
D 9 5ejs ( 6 T ) ) nx 0
π
D 95
∣ ejs u nu6 0
D 9
5 6
π
∣ ejs u nu 0
5
|
D 9 sbo u + E π 6
5
0
|
D 9 sbo ( 6 T ) + E π 6
5
0
D 9 − ( sbo ( 6 π )∖sbo ( 0 ) ) 6
5
D 9 − ( 0 ∖0 ) 6
D 9 0
W 96 T ngrbvmijs nu 96 nx
nu 6
9nx
Luonmigotjs ng Eíheuhj Botgarmh - Ejoegptjs Físbejs ng Botgarmebõo Hubs Lghbpg Ejfj Emomh Eõnbaj; =.==7.011.520 ^ÂEOBEM PVJLGUBJOMH GO JPGVMEBÕO NG G]WBPJU BONWU^VBMHGU R ME^B\BNMNGU IBOGVMU
R nmnj qug M 9F ∖ D M 94∖ 0 4
M 9
View more...
Comments