Accesorios del Sistema de Refrigeración

April 8, 2019 | Author: Tonpitonpi Ton Pi | Category: Refrigeration, Viscosity, Solubility, Friction, Lubricant
Share Embed Donate


Short Description

Accesorios del Sistema de Refrigeración...

Description

Función e Importancia de los A ccesorios del Sistema de Refrigera Refrigeración ción Sabemos que el ciclo de refrigeración está integrado por componentes, accesorios y controles. Esto es una forma de diferenciar solo para una mejor comprensión de su operación. Lo importante, es que el sistema de refrigeración pueda funcionar eficientemente, con el menor costo de operación y con la seguridad de que el compresor no va a sufrir daños. También se sabe que los componentes del sistema son aquellos, indispensables, para que el sistema de refrigeración funcione, tales son: El evaporador, el condensador, el compresor, y el regulador de flujo que bien puede ser un tubo capilar o una válvula de expansión; con estos cuatro componentes integrados por la tubería, y con refrigerante, el sistema funciona y enfría. Un ejemplo típico es el refrigerador doméstico simple simple que no tiene más allá de su compresorcito hermético, un evaporador estático de placa doblada, el condensador estático atrás del refrigerador y el tubo capilar; lo único que lleva sujeto a desgaste y movimiento, es el compresor, y un termostato que lo acciona y que está fuera del sistema de refrigeración. Los accesorios como su nombre lo indica, son dispositivos secundarios que servirán para proteger, controlar, supervisar, o mejorar algo en el sistema y se utilizarán sólo aquellos que sean necesarios. Cabe recordar que el sistema más eficiente será el que tenga menor cantidad de accesorios, conexiones y longitud de tubería, además de que estas sean de diámetro adecuados. No es el propósito de este artículo explicar el funcionamiento del ciclo de refrigeración, sino explicar la función e importancia de cada uno de los accesorios en el sistema.

Tomando como referencia la figura del ciclo de refrigeración, se observan los accesorios más conocidos, de los cuales no necesariamente debe llevarlos todos sino que llevará los que se requieran únicamente. La razón de mostrarlos todos, es para identificar su localización localización en el sistema.

Para más información visite: visite: www.EmersonClimate.com/espanol

 A continuación se mencionan algunos de los accesorios más típicos del sistema de refrigeración y su función, a partir del compresor y en el orden del sentido del flujo. Mofle de Descarga. Función: minimizar Función:  minimizar las pulsaciones del flujo ocasionada por el compresor reciprocante, así como la vibración y ruido para evitar que de rompan soldaduras en las uniones de tubería y se lleguen a dañar algunas partes; también sirve para minimizar el nivel de ruido. Localización:  en la tubería de descarga inmediato al compresor.  Apli  Ap li cació cac ió n pr in ci pal: pal :   para los compresores reciprocantes semi-herméticos. Los compresores herméticos tienen su mofle internamente. Separador Separador de Aceite. Función: Separar Función:  Separar el aceite que sale del compresor hacia el sistema conjuntamente con el gas refrigerante y devolverlo al cárter, particularmente en aquellos casos en que hay la posibilidad de un retorno deficiente de aceite al compresor. La forma primaria y natural como debe ser resuelto el retorno de aceite al compresor, es por el adecuado dimensionamiento y diseño de las tuberías de refrigeración, especialmente la de succión.  Apli  Ap li cacio cac io nes: nes : Para sistemas de baja baja temperatura, para sistemas sistemas de temperatura media en que la unidad condensadora esté por arriba del nivel del evaporador y para aquellos sistemas con tuberías muy largas entre la UC y la UE, o de multi-circuitos como es el caso de supermercados. Para sistemas de aire acondicionado acondicionado por lo general no es necesario, salvo alguna excepción. Localización: En la tubería de descarga, descarga, inmediato a la salida salida del compresor. Filtro Deshidr atador de Línea de Aceite. Función: Proporcionar filtración filtración y secado del aceite. aceite. En el Aceite Aceite es donde mayormente mayormente se acumula la contaminación. Es un excelente auxiliar para la descontaminación y protección de los sistemas de refrigeración.  Apli  Ap li cació cac ió n: Sistemas de refrigeración en paralelo paralelo (racks), aunque en realidad es un accesorio que debieran llevar todos los sistemas de refrigeración con compresores herméticos y semi-herméticos que dispongan de una línea de retorno de aceite al compresor. Localización: En la línea de retorno de aceite aceite entre el separador separador y el compresor. Válvula de Retención Retención (o check). Función: Permite el flujo solo en un sentido, indicado por la flecha impresa impresa en la válvula.  Apli  Ap li cació cac ió n: Depende de cada necesidad. En el el caso de la figura, figura, servirá para que que cuando la unidad unidad condensadora esté parada, en un bajo ambiente exterior, el refrigerante que se condensa solo vaya hacia el tanque recibidor y no hacia el separador ya que si tal fuera el caso, habría líquido en el fondo del separador de aceite y al abrir la valvulita flotadora regresaría líquido al cárter en vez de aceite. Localización:  en cualquier parte que se pueda requerir. Válvulas de servicio angulares. Función: Cortar o permitir el flujo para para dar servicio al sistema sistema de refrigeración.  Apli  Ap li cació cac ió n: Donde sean requeridas. Localización: Mayormente en la entrada entrada y salida del del tanque recibidor. recibidor. Podrían ir también también directo a las tuberías de líquido. Filtro deshidratador de la línea de líquido. Función: Retener la contaminación existente existente en el sistema de refrigeración. La contaminación es altamente altamente dañina y casi siempre concluye en daños al compresor, además de dañar o afectar el funcionamiento de otras partes del sistema como la VTE. Los contaminantes más agresivos que se retienen son: humedad, ácidos, suciedad, lodos, barnices, rebabas; hay otros contaminantes como ceras que causan obstrucción. La mayor parte de los contaminantes causan acidez en el refrigerante y esta a su vez es la mayor causa de la quemadura del compresor. Actualmente, con el uso de los refrigerantes HFC y los aceites POE que son altamente higroscópicos, se requieren filtros deshidratadotes de muy alta capacidad de Humedad, ácidos y contaminación sólida.

Para más información visite: visite: www.EmersonClimate.com/espanol

 Apli  Ap li cació cac ió n: Para la línea de líquido. Es importante mencionar mencionar que como los contaminantes son diferentes diferentes y causan problemas en diferentes componentes, hay que saber reconocer qué tipo de filtro deshidratador utilizar para cada necesidad y en que lugar corresponde instalarlo. No es adecuado utilizar un solo deshidratador para todo. Localización: En la línea de líquido a la salida del tanque recibidor, o del condensador condensador cuando no hay recibidor. Indicador de líquido y humedad (o mirilla, o visor). Función: Es la ventana al al interior del sistema para reconocer reconocer si las condiciones condiciones del refrigerante refrigerante son adecuadas para la operación del sistema; por una parte nos muestra si el refrigerante está totalmente líquido antes de entrar a la válvula de expansión (requerimiento indispensable), y si está libre de humedad, La humedad crea obstrucciones en la VTE y produce acidez en el refrigerante. No debe haber burbujas en el visor.  Apli  Ap li cació cac ió n: En todo sistema de refrigeración. Por economía economía no se acostumbra acostumbra en sistemas pequeños pequeños (fraccionarios). Localización: En la línea de líquido. Válvula manual tipo diafr agma. Función: Cortar o permitir el flujo manualmente. manualmente. Por su diseño ofrece alguna caída caída de presión. presión.  Apli  Ap li cació cac ió n: En cualquier cualquier sistema de refrigeración. refrigeración. Localización: En cualquier parte del sistema sistema donde se requiera. Mayormente Mayormente se usa en la línea de líquido después del deshidratador y el indicador de líquido. Válvula solenoide. Función: Cortar o permitir el flujo eléctricamente, eléctricamente, lo que permite el el control automático remoto del del flujo de refrigerante.  Apli  Ap li cació cac ió n: Fundamentalmente Fundamentalmente en la línea de líquido, tanto tanto para control de operación, como como para protección contra golpes de líquido, También el la línea de gas caliente para deshielo del evaporador, o para control de capacidad, y en la línea de succión para servicio y/o control en sistemas de refrigeración en paralelo. La forma de selección para la aplicaciones aplicaciones de gas es diferente. Localización:  En cualquier lugar del sistema de r efrigeración donde se requiera. Nota: Al Nota: Al igual que es importante la adecuada selección de cualquiera de los accesorios, en el caso de las válvulas solenoide es muy importante, ya que si la válvula es muy chica para la capacidad requerida, ocasionará una gran caída de presión y por lo tanto pérdida de capacidad del sistema, y si se selecciona muy grande, podría no operar ya que estas requieren una mínima caída de presión de operación para poder permanecer abiertas; muchas válvulas son devueltas por garantía porque al parecer no funcionan y resulta que están buenas, sólo que fueron mal seleccionadas. También es importante insistir que las válvulas solenoide deben ser seleccionadas por su capacidad en toneladas y el tipo de refrigerante antes que por el diámetro de la conexión; de otra manera, pudiera ser que la válvula resultara muy chica e hiciera que el sistema pierda capacidad. Válvula de bol a. Función: También es una válvula válvula manual de paso, paso, pero “sin caída de presión”; presión”; algunas personas personas la  justifican por ser una válvula de cierre rápido pero este es un beneficio secundario. Al no tener caída de presión, no se afecta negativamente la eficiencia ni el costo de operación del sistema.  Apli  Ap li cació cac ió n: En cualquier sistema sistema de refrigeración donde se requiera requiera cuidar al máximo la eficiencia eficiencia y el costo de operación del sistema. Muchas personas creen que por su precio esta válvula es más cara, pero pierden de vista el gran ahorro en el costo de operación y la alta eficiencia del sistema, que es para siempre. Localización: En cualquier parte del del sistema donde sea requerido. requerido. Válvula reguladora de presión de evaporación Función: Regula la presión de evaporación evaporación y por lo tanto la temperatura de evaporación, evaporación, lo que permite lograr la aplicación deseada de enfriamiento en un sistema de refrigeración con evaporadotes múltiples que deben funcionar a diferentes temperaturas, o para sistemas en paralelo.

Para más información visite: visite: www.EmersonClimate.com/espanol

 Apli cació n: Mayormente para los sistemas de refrigeración en paralelo, ejemplo: supermercados o sistemas de refrigeración industrial. Localización: En la salida de cada evaporador en la línea de succión. Filtro deshidratador de succión. Función: Protege al compresor. Retiene la contaminación existente en el sistema, antes del compresor para protegerlo. La contaminación es altamente dañina y casi siempre concluye en daños al compresor, especialmente la acidez y suciedad. La mayor parte de los contaminantes causan acidez en el refrigerante y esta a su vez es la mayor causa de la quemadura del compresor.  Apli cació n: Para línea de succión. Es importante mencionar que por norma todo compresor de tipo hermético y semi-hermético debe llevar un filtro deshidratador de succión, es como su seguro de vida y por lo tanto ahorra mucho dinero. Desafortunadamente, por razón cultural de una economía mal entendida y de una baja preparación técnica, en la mayoría de los países de Latinoamérica, el filtro de succión no es valorado y menos instalado, se ve muy caro, pero en el fondo habría que preguntarse que es más caro ¿El deshidratador de succión o el compresor?, ¿El deshidratador de succión o el tiempo de paro de un proceso industrial que depende de la refrigeración?. Localización: En la línea de succión antes del compresor. Observaciones:  Los deshidratadores de succión están dotados de puertos de prueba de presión a la entrada y salida para verificar el comportamiento de la caída de presión a través de este, tanto en el momento de su instalación, como cuando ya ha reteniendo los contaminantes; esto es con el fin de que el incremento de la caída de presión no sobrepase ciertos límites, ya que de igual manera, al incrementarse la caída de presión, caerá la capacidad del sistema, se incrementará el consumo de energía y habrá daños al compresor. Al seleccionar un deshidratador chico, se corre el riesgo de caídas de presión peligrosas desde origen. Por otra parte, se recomienda que el deshidratador de succión sea instalado en forma vertical con el flujo descendente, o al menos inclinado.  Acum ul ador d e Succ ió n. Función: Protege al compresor contra regresos eventuales de refrigerante líquido.  Apli cació n: Todo sistemas de baja temperatura, particularmente aquellos con sistema de deshielo por gas caliente. Todo sistema sujeto a posibles regresos de líquido al compresor, por ejemplo, cuando están sujetos a variaciones de carga térmica. Localización: En la línea de succión, antes del compresor. Válvula Regulador a de Presión d e Cárter (o de su cción ). Función:  Protege al compresor contra sobrecargas ocasionadas por alto flujo másico por arriba de la capacidad del compresor. Regula la presión de entrada para protegerlo contra sobrecargas durante el arranque inicial o después de un deshielo. También cuando la capacidad del motor del compresor es limitada.  Apli cació n: Sistemas de refrigeración donde la presión de succión llegue a ser eventualmente muy alta. Una vez que se van normalizando las presiones de trabajo, la válvula va quedando abierta nuevamente. Localización: En la línea de succión justo antes de la entrada del compresor. Es importante recalcar sobre la adecuada selección de cada uno de los componentes y accesorios del sistema, primero para que el sistema quede debidamente balanceado, y segundo para obtener la máxima capacidad, el menor costo de operación y la seguridad de que el equipo queda protegido contra daños. Cuando los componentes y accesorios no se seleccionan adecuadamente, se correo el riesgo de que haya caídas de presión importantes que impactarán necesariamente en pérdida de capacidad, alto costo de operación y daños al compresor y la VTE. Por Fernando Parra 21 de febrero de 2005.

Para más información visite: www.EmersonClimate.com/espanol

 Algunas Consideraciones Técnicas de los Aceites Lubricantes en los Sistemas de  Aire Acondicionado y Refrigeración. El objetivo de este artículo es mostrar algunos aspectos técnicos principales de los de los aceites lubricantes requeridos para los sistemas de Aire Acondicionado y Refrigeración. La función principal del aceite, es la de lubricar dos superficies que están en movimiento, una con relación a la otra, reduciendo la fricción entre ellas, para evitar su desgaste. Esto se logra interponiendo una película lubricante de aceite entre las superficies en movimiento, evitando el contacto de sólido con sólido, disminuyendo así el coeficiente de fricción entre las dos superficies en rozamiento. Aún cuando las dos superficies en rozamiento parecen a simple vista totalmente lizas y suaves, su examen minucioso al microscopio revela asperezas con picos y valles. Se deberá añadir el suficiente lubricante que forme una capa que pueda cubrir esas asperezas, en tal forma que las dos superficies en movimiento se desplacen flotando en el lubricante.

 ACEITE

COJINETE

SUPERFICIE o FL ECHA RO TATIVA Flujo del  Ac eite

O

O

O

N

 A

R

N

B

N

C

 A.- Las dos Superficies metálicas en contacto sin movimiento, la Flecha Rodante en reposo y el Cojinete, la Carga Normal (N) de la Flecha Rodante, igual a la Reacción (R) del Cojinete B.- Cuando la Flecha con su carga empieza a girar en sentido de las manecillas del reloj, existe un rozamiento metálico , y la flecha tiende a rodar hacia arriba C.- Debido a que el aceite se adhiere a las dos superficies, la rotación arrastra al aceite entre ellas, haciendo que la flecha y el cojinete se separen, la flecha en rotación actúa como bomba de aceite, causando una muy alta presión en el área que soporta la carga, creando una película de aceite ocasionando la completa separación entre la flecha y el cojinete, haciendo que la flecha flote en el aceite,. Esta alta presión mueve la flecha hacia la izquierda tomando una posición excéntrica

Fig. 1 Mecanismo d e Lubricación de dos Superficies en Rozamiento co n su Holgura llena de Aceite

Para más información visite: www.EmersonClimate.com/espanol

De l Fig. La velocidad del aceite que se adhiere a la flecha en rotación, es igual a la velocidad periférica de esta. Y la velocidad del aceite en la superficie del cojinete es cero. Este gradiente o variación de velocidad es el que nos crea la fuerza de viscosidad, por lo tanto entre mayor sea la velocidad de rotación, mayor es la cantidad de aceite que penetra en la sección convergente, también será mayor el espesor de la película de aceite (esto es debido a la acción de bombeo de la flecha rotatoria) Una vez que se obtiene una película de lubricación, la fuerza de fricción entre las dos superficies, es la fuerza necesaria para cortar el lubricante, y es independiente de la naturaleza de las dos superficies. La Viscosidad se define como la resistencia de un fluido a fluir La fórmula matemática que nos relaciona la fuerza de Viscosidad con el coeficiente de Viscosidad es: F Fuerza de Viscosidad Dinámica µ Coeficiente Dinámico de Viscosidad A Área de apoyo de las superficies F = µ A v/l V Velocidad Relativa entre las dos superficies l Separación entre las dos superficies En esta fórmula es necearlo usar un sistema consistente de unidades

Al escoger un lubricante el Coeficiente de Viscosidad es quizás el factor más importante a considerar. El valor de la Viscosidad Dinámica dividido entre la Densidad del lubricante es igual a la Viscosidad Cinemática. La Viscosidad Cinemática en el sistema internacional de unidades m.k.s. se expresa en m2 / s, pero dado que es una unidad muy grande, se utiliza el mm 2/s que es igual a 1 cSt (centiStokes) La viscosidad Dinámica µ  en el sistema c.g.s. se expresa en Poises, sin embargo la unidad común hoy día es Segundos Universal Saybolt, abreviado SSU ó SUS. que es el tiempo requerido en segundos para que 60 cm 3 de aceite o lubricante fluyan a través del viscosímetro Saybolt universal. El estándar ASTM I) 2161 contiene tablas de conversión de SSU a viscosidad cinemática. . Una situación importante es que entre las dos superficies friccionantes (la flecha rotatoria y el cojinete, debe existir una alimentación constante de aceite, y para esto la utilización de una bomba o elemento alimentador de aceite con la presión suficiente que asegure el volumen o Gasto de aceite requerido. Cuando un compresor es nuevo, pueden existir asperezas en las superficies rozantes, que prácticamente tengan una dimensión igual al espesor de la película de lubricación, por lo

Para más información visite: www.EmersonClimate.com/espanol

tanto se puede esperar ocasionalmente en esos picos o valles, el contacto de metal con metal. Es por eso necesario un periodo de asentamiento de algunas horas al iniciar. la operación de un compresor. Existen varias pruebas desarrolladas en laboratorios para evaluar el lubricante, para determinar el espesor adecuado de la película de lubricación, así mismo para poder determinar su resistencia y la habilidad de soportar y llevar las cargas mecánicas en términos de la lubricidad del lubricante, es necesario considerar, el coeficiente de viscosidad, la velocidad relativa de las dos superficies, la carga mecánica normal, los acabados superficiales o rugosidad de las superficies rozantes, y las características técnicas de los materiales de las superficies rozantes, tales como babbit, hierro de fundición, bronces, polvo de metal cobre etc. sinterizado, materiales porosos impregnados de lubricante, bronce impregnado con teflón (DU Bearing) usado en los bujes de los compresores Copeland). Algunos aspectos de la lubricación en los compresores no se pueden duplicar en el laboratorio. Por ejemplo el retorno de refrigerante líquido al compresor, que causa la dilución del aceite, y también el lavado de los cojinetes, bujes, chumaceras, etc. y así la disminución del espesor de la película de lubricación y causando el rozamiento de metal con metal, ocasionando la falla mecánica. Los compresores de refrigeración se pueden clasificar, en: De Desplazamiento Continuo Dinámico, tales como el Tipo Centrífugo en el que las aspas del rotar le transfieren su energía y su cantidad de movimiento al gas refrigerante, transformándose en presión útil. En este tipo de compresor sus partes de compresión no requieren lubricación, sus chumaceras de su flecha, sus sellos, y coples, requieren lubricación. Este tipo de compresor no pasa aceite al sistema De Desplazamiento Positivo Dinámico tales como el Reciprocante, el Rotativo, el Scroll, etc. en estos la presión se eleva y el volumen del gas dentro de un pequeño espació se reduce. Como irremediablemente este tipo de compresor pasa un poco de aceite al sistema de refrigeración el que es arrastrado por el refrigerante hacia el condensador y al evaporador. En el evaporador debe haber suficiente fluidez y miscibilidad a bajas temperaturas, por lo que es necesario considerar estas características para asegurar su retorno al compresor y una buena conducción térmica. (La fluidez es lo opuesto a viscosidad) En los sistemas de refrigeración los lubricantes además de lubricar, tienen otras funciones importantes, entre estas están: La del aceite de sellar el gas entre la succión y la descarga. Actuar como enfriador de las chumaceras, bujes etc., para transferir ese calor generado al cárter del compresor y así al exterior. El aceite también sirve como atenuador del ruido que se genera por las partes mecánicas en movimiento. Por lo general entre mayor sea la viscosidad, mayor es el sellado y la reducción del ruido, pero una menor viscosidad nos ayuda a un mejor enfriamiento del compresor. Bajo el entendimiento que cuando se construye originalmente un sistema cerrado de refrigeración, su lubricante debe de considerarse ser para toda la vida del compresor, por

Para más información visite: www.EmersonClimate.com/espanol

lo que se requiere que tenga estabilidad ante la presencia de refrigerantes, de los metales, del aislamiento de los motores eléctricos, e inclusive de algunos contaminantes. El lubricante ideal no existe, sus características y especificaciones son un balance de requerimientos. NOTA: Dado que con cierta frecuencia en nuevas instalaciones de sistemas de refrigeración se dejan impurezas, humedad, fundentes, suciedad, etc., y además los compresores se operan fuera de sus especificaciones de su fabricante, el aceite se deteriora con cambios físicos y químicos, por lo que será necesario cambiar el aceite tantas veces este esté alterado de sus características y especificaciones originales. Para ayudar a solucionar este problema y preservar el aceite, se deberá usar los filtros secadores de succión y de la línea de líquido. Adicional a la Viscosidad que ya ha sido mencionada, el aceite debe de tener características adicionales, entre otras su contenido de humedad que se puede determinar mediante la medición de su resistencia dieléctrica (25000.0 Volts mínimo), a un menor valor de resistencia dieléctrica, mayor contenido de humedad. Otro valor es la Temperatura de Floculación (Floc Temp.). Este valor se determina mezclando un 10 % de refrigerante con 90 % de aceite en un tubo de ensayo de vidrio sellado. Se baja su temperatura hasta que aparezcan grumos o ceras y estas se precipiten. El valor de temperatura mayor es la temperatura de Floculación. Este valor es importante ya que si su valor es alto, a bajas temperaturas de evaporación estos grumos o ceras pueden depositarse en el evaporador restándole eficiencia, y la posible retención del aceite, evitando que retorne al compresor, o bloqueo de la válvula de expansión, o taparse los tubos capilares. Puesto que un lubricante se entiende tendrá que fluir a bajas temperaturas de evaporación, y puesto que la viscosidad del aceite cambia con la temperatura, los aceites a bajas temperatura su viscosidad aumenta y no fluyen, llegando prácticamente a solidificarse. Se define entones el Punto de Fluidez la temperatura en que el aceite empieza a fluir a muy baja temperatura (según el método de prueba ASTM D-97) , Índice de Viscosidad La viscosidad de un aceite lubricante disminuye al aumentar su temperatura, y aumenta al disminuir su temperatura, la relación de la variación de viscosidad con la temperatura nos proporciona el Índice de Viscosidad (procedimiento de acuerdo a ASTM D 2270). Un lubricante con alto índice de viscosidad, muestra un menor cambio en viscosidad dentro de un rango de temperatura dado, y viceversa. Solubilidad y Miscibilidad. El término solubilidad describe que bajo condiciones determinadas, la cantidad específica de una sustancia se disuelve en otra cantidad específica de otra sustancia. Por ejemplo cantidad “X” de sal o cloruro de sodio es soluble en cantidad “Y” de agua a cierta temperatura. Dos términos se usan para describir la solubilidad: miscible e inmiscible. Los líquidos que se pueden mezclar para formar una solución son miscibles. Los que no forman soluciones o que son insolubles entre si, son inmiscibles. Con frecuencia estos términos se valoran en forma relativa diciendo, es muy miscible, moderadamente miscible, ó inmiscibles. La realidad que la miscibilidad de dos sustancias depende de su presión, su temperatura, y proporción (volúmenes) de las dos sustancias.

Para más información visite: www.EmersonClimate.com/espanol

Refrigerantes-Aceites completamente miscibles, cuando son completamente solubles en cualquier proporción a cualquier temperatura encontrada dentro de un sistema de refrigeración ó aire acondicionado. Arriba de la curva de temperatura critica de la solución. el R-12 y el aceite mineral son completamente Miscible en todo el rango de temperaturas y proporciones. Fig. 2,3,4,5. Refringentes - Aceites parcialmente miscibles cuando son mutuamente solubles en un grado limitado Debajo de la curva critica de temperatura de la solución Ver fig. 2 Refrigerantes – Aceites completamente inmiscibles las componentes que no se pueden  juntar El agua con el aceite son inmiscibles en todas proporciones, El Amoniaco y lubricantes. Miscibi lidad del R-404A con PoliOl Ester EAL22CC Miscibi lidad del R-502 con Aceite Mineral Nafténico

Miscibil idad del R134a con PoliOl Ester EAL22CC

100

Temp. Crítica R-502

80 80

Temp. Critica R-404A

60 60

   C    ° 40   n   e   a   r 20   u    t   a   r   e   p 0   m   e    T

   C    ° 40   n   e   a   r   u 20    t   a   r   e   p   m 0   e    T

Miscible

Curva de Temperatura Solución Critica

-20

El R-502 es prácticamente inmiscible en todo el rango de temp. de evaporación

-20

Parcialmente Miscible

-40

La combinación R-404A con el POE es Miscible en prácticamente todo el rango Temp. de evaporación r equerida.

-40

-60 -60

0

20

40

60

80

100

0

Por ciento de Aceite por Peso, en el Refrigerante

40

60

80

100

Por ciento de Aceite por Peso, en el Refrigerante

Miscibilidad del R-22 con Aceite Mineral Nafténico

Miscibilidad del R-407C con PoliOl Est er EAL22CC

Miscibilidad del R-12 con Aceite Mineral Nafténico 80

100

   C    °   n   e   a   r   u    t   a   r   e   p   m   e    T

20

60

Temp Crítica R-407C

80 60 40

Miscible

20

Curva de Temperatura Solución Critica

0 -20

40

Miscible 20

En Solución 0

Curva de Temperatura Solución Critica

-20

Separación -40

Parcialmente Miscible

-60

Parcialmente Miscible

-40

   C    °   n   e   a   r   u    t   a   r   e   p   m   e    T

0

20

40

60

80

100

Por ciento de Aceite por Peso, en el Refrigerante

-60 0

20

40

60

80

100

Por ciento de Aceite por Peso, en el Refrigerante

Fig. 2 NOTA: USAR SIEMPRE LA COMBINACION REFRIGERANTE- ACEITE ESPECIFICADO POR EL FABRICANTE DEL COMPRESORES

Para más información visite: www.EmersonClimate.com/espanol

En este artículo no se tratará las fórmulas químicas de los aceites lubricantes ni de su composición, sin embargo desde un punto de vista general se pueden clasificar principalmente como sigue: 1.- Aceites lubricantes del tipo mineral 2.- Aceites Sintéticos. 1 Existen numerosos compuestos de los aceites del tipo Mineral, los cuales pueden ser agrupados como sigue: los Parafínicos, y los Nafténicos (CicloParafínicos), Los Parafínicos consisten en cadena rectas de hidrocarburos saturados como el Pentano N, el Isopentano etc. Los Nafténicos son estructuras en anillos también saturados. Ambos pueden ser combinados y formar otras estructuras, como ejemplo el ciclo pentano Los Aromáticos hidrocarburos no saturados, de dos o más anillos con dobles ligaduras alternas como el Benceno. Los No Hidrocarburos que contienen otros átomos, como azufre, oxigeno etc. La clasificación común de los aceites como Parafínicos y Nafténicos se refiere a la cantidad moléculas del tipo parafínico o nafténico en el aceite refinado. Los Crudos Parafínicos contienen una mayor proporción de cera parafínica, de este modo tienen un mayor índice de viscosidad y punto de fluidez que los crudos Nafténicos 2.-  Aceites Sintéticos: La miscibilidad limitada de los aceites Minerales con los refrigerantes Hidro Cloro Fluoro Carbono HCFC (R-22, R-401A, R-401B R-402A R-402B, R-409A, R-408A etc.)... Y la total inmiscibilidad de los aceites Minerales con los nuevos refrigerantes libres de cloro Hidro Fluoro Carbono HFC (R-134a, R-407A, R-407B, R-507, R404A, R-407C, R-410A, R410B, etc.). Ha conducido al desarrollo de lubricantes el tipo Sintético Hoy día existen los Alkilbenceno adecuados para los HCFC, y los PoliOl Esters para los HFC: La utilización de los aceites puede resumirse: REFRIGERANTES: Para los HCFC (R-22, R-401A, R-401B R-402A R-402B, R-409A, R-408A etc.) 1.-) (AB) Alkilbenceno 2.-) (AB) Alkilbenceno (50+%) + (MO) Aceite Mineral 3.-) (POE) PoliOlester (50+%) + (MO) Aceite Mineral 4.-) (POE) PoliOlester Para los HFC (R-134a, R-407A, R-407B, R-507, R404A, R-407C, R-410A, R410B, etc.) 1.-) Solo POE PoliOlester  ACEITES: (Aprobados por Copeland Corporation)  AB = Alkilbenceno: Zerol 200 TD, Soltex AB200A, Suniso AKB200A; Reniso SP46 POE= PoliOl ester : Copeland Ultra 22 CC, Copeland Ultra 32 CC, Mobil EAL MR Artic 22 CC, Uniqema Emkarate RL32CF y el RL32-3MAF

Para más información visite: www.EmersonClimate.com/espanol

SOLUCION; ACEITE – REFRIGERANTE Si nosotros tuviésemos un sistema de refrigeración para congelación de baja temperatura de evaporación, con refrigerante R-404A, o R-134a, ya sea con un compresor Scroll ó un Hermético. Si inicialmente cargamos el compresor con aceite mineral o alkilbenceno, y lo mantenemos operando un periodo de tiempo, notaremos que el aceite no retorna al compresor, y eventualmente este se quedará sin aceite. Ahora bien, si en lugar del aceite mineral o el alkilbenceno se usa aceite Poliolester entonces el aceite si fluirá de retorno al compresor. La diferencia es que el Aceite Mineral y el Alkilbenceno son completamente inmiscibles con el R-404A, o R-134a. En cambio el Poliolester si es miscible con los refrigerantes R-404A,y R-134a, y es arrastrado en solución con el refrigerante, y retornando al compresor. Debido a la solubilidad de los refrigerantes con los aceites (en mayor o menor grado). El refrigerante algunos refrigerantes como R-22 y el R-502 muestran una limitada o baja solubilidad con algunos aceites en bajas temperaturas de evaporación, en las que se presenta una separación del aceite y el refrigerante, por otro lado muestran una alta solubilidad en altas temperaturas de evaporación. Si solamente se consideran tal como son las propiedades de un aceite lubricante, se tendría un error, ya que el lubricante – refrigerante dentro del sistema en la realidad se comporta muy diferente. Por ejemplo en el carter de un compresor, el refrigerante y el aceite se consideran que están en equilibrio. Si suponemos un aceite nafténico de 32 cSt (150 SSU a 37,7°C (100 °F), cuando el compresor está parado a 25 °C, el mismo aceite tendrá una viscosidad de 67 cSt (300 SSU). Durante operación es usual que la temperatura se eleve a 55 °C, y ahora la viscosidad del lubricante puro será de 17.0 cSt (85 SSU). Si el sistema está operando con refrigerante R-22 y la presión en el cárter es 95.0 psig, se tendrá una mezcla Aceite - Refrigerante que nos conduzca a una viscosidad aproximada de 16.0 cSt (80 SSU) en vez de 67.0 cSt (300 SSU), y decrecerá a 9.7 cSt (58 SSU) cuando el compresor operé a 55 °C. Con este ejemplo se observa la variación en viscosidad del aceite en el compresor el cual opera con viscosidad muy diferente a la que se piensa. Considerando que miscibilidad es un fenómeno de equilibrio entre dos líquidos, lo que sucede en el cárter del compresor cuando se encuentra parado y la temperatura ambiente es un poco baja, existe la situación de que se forme la separación del refrigerante y el aceite o se formen dos fases. La capa líquida de refrigerante rica en aceite más densa en el fondo del cárter, donde se encuentra la succión de la bomba de aceite. Este refrigerante rico en aceite con baja viscosidad es la que lubrica al compresor durante su arranque En el evaporador que es el lugar mas frío del sistema, es el lugar donde también ocurre la inmiscibilad o separación de fases (ver las curvas de la Fig. 2). Si la temperatura es menor que la correspondiente a la solución critica, la separación de la mezcla ocurrirá en algún lugar del evaporador. El refrigerante que entra al evaporador esta en estado líquido con una pequeña fracción de lubricante. En tanto el refrigerante se vaporiza, la

Para más información visite: www.EmersonClimate.com/espanol

concentración del aceite lubricante se eleva en líquido remanente, aumentando la presión de evaporación del refrigerante, hasta que la separación de las fases ocurra. El lubricante entonces queda atrapado, causando un evaporador tapado con aceite, además reduciéndose la transferencia de calor debido al aislamiento térmico de la capa de aceite dentro de los tubos. Con el refrigerante R-404A, su curva de solución crítica está a una temperatura baja, y por lo tanto este fenómeno de separación prácticamente no ocurre. En cambio con R-22 la separación del refrigerante y el aceite en el carter del compresor puede ocurrir debajo de -10 °C, (dependiendo la concentración de la solución). En un ambiente de menos de -10 °C un compresor parado por un tiempo, Es seguro que exista R-22 líquido en el fondo del cárter. #

#

#

#

#

#

#

Ing. Javier Ortega C 8 de Octubre de 2005

Para más información visite: www.EmersonClimate.com/espanol

REEMPLAZO DE UN COMPRESOR EN EL CAMPO General. Seguridad ante todo.Siga las recomendaciones listadas a continuación al prestar servicio a una unidad en el campo: 1. 2. 3. 4. 5. 6. 7.

Corte la alimentación de energía al equipo. Use anteojos de seguridad, el sistema contiene gas refrigerante y aceite a alta presión. Saque el refrigerante de la unidad tanto por el lado de alta como por el lado de baja. Corte la tubería mediante una herramienta de corte. No utilice un soplete para este fin. Antes de poner en marcha nuevamente la unidad, verifique que haya una conexión a tierra efectiva. Coloque la tapa de la caja de conexiones del compresor antes de energizar al equipo. El no seguir estas recomendaciones puede causar accidentes que provoquen heridas serias e incluso la muerte.

Corrija las causas de falla del compresor anterio r.-

Prueba de Acid ez y Limp ieza del sistema.-

 Asegúrese de haber identificado la causa de la falla del compresor anterior y de tomar las acciones correctivas correspondientes.

Si se sospecha la existencia de contaminación por acidez, especialmente si el motor del compresor anterior se quemó, debe llevarse a cabo una prueba de acidez al aceite residual del sistema. Utilice un kit de acidez Emerson “AA Kit Universal de acidez” o equivalente, para obtener un resultado confiable.

Procedimiento correcto para retirar un compresor dañado de un s istema.Recuperar el refrigerante tanto del lado de alta como del lado de baja del sistema. Utilice un equipo adecuado y siga el procedimiento correcto para recuperar todo el refrigerante del sistema. No corte la tubería hasta que todo el refrigerante haya sido removido del sistema. Utilice una herramienta de corte, no utilice un soplete. El compresor retirado, debe ser adecuadamente sellado para evitar derrames de aceite durante su transporte. Si el compresor dañado va a ser remitido a un taller autorizado Copeland para su inspección, suelde en ambas conexiones del compresor unos tubos cortos de cobre de forma que sobresalgan aproximadamente 5 cm (2”) del accesorio de conexión del compresor, aplaste el extremo y selle con soldadura (ver ilustración).

En el caso de un motor quemado y/o acidez en el sistema, la mayor parte del aceite contaminado será retirado junto con el compresor dañado. El resto del aceite y el sistema, deben ser limpiados mediante el uso de filtros deshidratadores adecuados instalados en las líneas de succión y de líquido. Se recomienda la utilización de filtros deshidratadores especiales que tengan una composición de alúmina, tamiz molecular y carbón activado, como el BOK para línea de líquido, el ASK para línea de succión de Emerson, o equivalentes, del tamaño inmediato superior a la capacidad correspondiente, para mayor  captación de contaminantes y caída de presión controlada. En caso de piedras reemplazables, se recomienda el TD-48C (o W48) de Emerson o equivalente. Se recomienda reemplazar estos filtros después de 72 horas de operación del nuevo compresor. Si el nivel de acidez y suciedad siguieran siendo altos, repita con el mismo tipo de filtros, pero, si el nivel de suciedad y acidez se vieron significativamente reducidos, debe instalar los filtros deshidratadores definitivos: EK para líquido y SFD para succión de Emerson, o equivalentes, ahora los del tamaño correspondiente a la capacidad del sistema. Si son del tipo piedras reemplazables, usar el bloque H-48 para R-22, o el UK48 para sistemas con aceite POE y refrigerantes HFC. Si el nivel de contaminación inicial de la quemadura hubiese sido muy severo, habrá que hacer los cambios de deshidratadores con carbón activado: el primero a las 24 horas de funcionamiento del compresor, el siguiente 48 horas después, y hacer nuevamente pruebas de acidez en el aceite para saber si ya se pueden volver a instalar los deshidratadores EK para líquido y SFD para succión; estos, tienen la capacidad para aceite POE, adicionalmente, el EK es de supe-alta fil tración con baja caída de

Para más información visite: www.EmersonClimate.com/espanol

presión. Es conveniente asegurarse dos semanas después, de que el sistema haya sido totalmente des-contaminado.

(Tabla.2)

Para mayor información, refiérase a los boletines de I ngeniería de  Aplicación: AE24-1105 Principios para la Limpieza de Sistemas de Refrigeración, y AE11-1297 Filtros Secadores. Remplazando un Scroll por un Scroll.Guía para ajustar el ni vel de aceite en el nuevo compr esor. Compresores que no tienen la conexión de ecualización del nivel de aceite. 1. 2.

3.

4.

Antes de instalar el nuevo compresor, mida el nivel de aceite que quedó en el compresor dañado. Calcule la diferencia entre la carga original de fábrica que figura en la etiqueta de identificación y el aceite restante en el compresor dañado. Lo más probable es que esta será la cantidad de aceite remanente en el sistema. Al arrancar el compresor esté pendiente para remover el aceite sobrante por medio de la válvula de acceso schrader en la parte baja del casco del compresor, o en compresores Summit de 7 a 12 HP, por el puerto de servicio que se recomendó instalar en la parte baja de la conexión de succión. Primera purga a los 15 minutos del arranque y 2ª, a los siguientes 15. Asegure también el adecuado retorno de aceite al compresor.

Procedimiento recomendado.1.

Compresores con conexión de ecualización del nivel de aceite. 1.

2.

Dado que puede derramarse aceite desde la conexión de succión ubicada en la parte baja del casco, el tapón de la conexión de succión debe ser dejado en su lugar hasta que el nuevo compresor quede fijado a su unidad. En lo posible, el compresor debe mantenerse en posición vertical durante su manipuleo. El compresor puede inclinarse, pero no debe acostarse. El tapón de la conexión de descarga debe ser retirado antes de retirar el tapón de l a conexión de succión para permitir que pueda escapar la presión del aire seco que se encuentra dentro del compresor. Retirar los tapones en esta secuencia evita que la niebla de aceite que se produce al despresurizar, forme una película sobre la pared interna del tubo de succión, lo que dificultaría la soldadura. El tubo de succión de acero cobrizado debe limpiarse antes de la soldadura.

2.

3.

4.

5.

Reemplazo de un compresor BR ó QR por un Scroll Summit de 7 a 12 HP. Seleccione el compresor adecuado de acuerdo a las tablas que se encuentran a continuación:

6.

Corte las conexiones del compresor dañado y proceda a retirarlo. Instale el nuevo Summit en su posición. Las dimensiones externas así como los orificios de montaje serán diferentes, utilice el mismo compresor para definir la ubicación de los mismos o refiérase a la fig.2. Si desea, también hay disponible una base adaptadora P/N 922-0001-00 El compresor Scroll de Copeland puede inclinarse, pero no debe acostarse. Tenga cuidado durante su manipuleo. Debe quitarse primero el tapón de la conexión de descarga. No quitar el tapón de la conexión de succión hasta que el compresor esté instalado en posición. Para darle suficiente flexibilidad a las líneas para absorber los esfuerzos torsionales en arranques y paradas, recomendamos que la línea de succión corra un mínimo de 30 cm paralela al eje vertical del compresor, y que la línea de descarga lo haga por un mínimo de 40 cm. Vea el ejemplo de la fig.3. En compresores que no tengan la conexión de ecualización del nivel de aceite, recomendamos instalar una válvula de acceso tipo Schrader en la parte inferior de la conexión de succión, para drenar un posible exceso de aceite del sistema durante la operación de puesta en marcha. Siga el procedimiento de soldadura indicado.

Selección comparativa de modelos para aplicación en aire acondicionado. (Tabla.1) Selección comparativa refrigeración.

de

modelos

para

aplicación

en

Para más información visite: www.EmersonClimate.com/espanol

unión. El tiempo utilizado para calentar la Zona 3 debe ser mínimo. Como con cualquier unión de soldadura, el calentamiento excesivo puede resultar perjudicial al resultado final. Componentes eléctricos Verifique el estado de los contactos del contactor, no intente limarlos ni lijarlos, en caso de duda reemplace el contactor. Verifique que la corriente a rotor bloqueado que soporta el contactor (si no está indicada, considere 5 veces la corriente máxima en categoría AC3) sea mayor o igual a la corriente a rotor bloqueado (LRA) del compresor, que se encuentra indicada en la etiqueta de identificación del m ismo. Se requiere un calefactor de cárter, instalado por debajo de la conexión de succión, que debe permanecer energizado cada vez que el compresor esté parado, en todas las aplicaciones donde la carga de refrigerante del sistema exceda los 7 Kg. (16 Lbs). Puesta en marcha del nuevo co mpresor

Procedimiento d e Soldadura.Las conexiones de acero revestido en cobre (cobreado) de los compresores Copeland Scroll puede ser soldadas de la misma manera que cualquier tubo de cobre. Se recomienda un material de aporte de cobre-fóforo, preferiblemente con un contenido de plata del 5%. Refiérase a la figura 6 para seguir el procedimiento de soldadura descrito a continuación: 1.

2.

3.

4.

5.

Asegúrese que el interior del accesorio de conexión del compresor y el exterior del tubo a conectar estén limpios y libres de aceite antes del ensamblaje. De hallarse una película de aceite sobre la pared interna de la conexión, limpie con un solvente adecuado. Antes de proceder a soldar la tubería, conviene eliminar el aire que se encuentra dentro de la unidad, purgando el sistema con un gas inerte como el nitrógeno para evitar la formación de escoria. Utilice un soplete de dos puntas para aplicar calor en la Zona 1. Mientras el tubo alcanza la temperatura de soldado, mueva la llama del soplete a la Zona 2. Caliente la Zona 2 hasta que se consiga la temperatura de soldado, moviendo el soplete a lo largo y alrededor de tubo según sea necesario para calentar el tubo de forma pareja. Agregue el material de aporte a la unión mientras mueve el soplete alrededor de la misma para que el material de aporte se distribuya en forma pareja alrededor de toda la circunferencia. Luego de que el material se haya distribuido alrededor de la unión, mueva el soplete para calentar la Zona 3. Esto arrastrará al material de aporte dentro de la

Proceda a una cuidadosa búsqueda y reparación de fugas. Una vez verificado que el sistema es hermético, proceda a la evacuación del mismo hasta lograr una presión absoluta de 500 micrones de mercurio, o al menos, mediante el procedimiento de triple vacío. Es una buena práctica cargar la mayor parte del refrigerante como líquido por el lado de alta de la unidad y luego completar la carga con vapor por el lado de baja. Mantenga la presión de succión por encima de las 25 PSIG cuando se utilice R-22 ó R-407C, y por encima de las 50 PSIG en sistemas con R-410A. No es aceptable para ningún compresor, que se vierta refrigerante líquido de un cilindro o garrafa, directamente al cárter del compresor. No ponga en marcha el compresor mientras el sistema esté en vacío, inclusive si sospecha que no hay suficiente refrigerante en el lado de succión, puede quemarse el motor o producirse un arco interno que funda sus conexiones eléctricas o ambas co sas a la vez. Asegúrese de completar la carga de refrigerante lo más rápido posible por la succión. Es posible suministrar líquido por la succión de manera regulada solo con el compresor funcionando y solo para completar la carga. Válido para compresor Scroll Summit de 7 a 12 HP. Una vez que el sistema esté en marcha, haga funcionar el compresor por un espacio de 15 minutos. Detenga la unidad. Por medio de una manguera acoplada a la conexión de ecualización de aceite, o a la conexión instalada para tal fin en la parte inferior de la conexión de succión, purgue el excedente de aceite hasta que por la conexión salga solo gas, o que el nivel de aceite cubra entre 1/3 y ½ del visor . Repita estos últimos dos pasos de ser necesario. Dirección de rotación de los compresores trifásicos. Los compresores Scroll solo pueden bombear en un sentido de rotación determinado. Debe verificarse el sentido de giro correcto del compresor. Síntomas de la rotación invertida: El compresor es notablemente más ruidoso. − El compresor no comprime, por lo tanto las presiones de − succión y descarga no variarán significativamente.

Para más información visite: www.EmersonClimate.com/espanol



El consumo de corriente será muy inferior al esperado (60% aprox.).



El protector térmico interno se disparará después de algunos minutos de marcha.

La rotación invertida por cortos períodos, no dañará a un compresor Scroll de Copeland.

¡Cuidado! ......¡Atención! Para compresores comerciales Scroll ZR*KC y ZB*KC de 7 a 12 HP. Emerson Climate Technologies implementó una mejora denominada “ASTP” Protección de Temperatura Scroll  Avanzada, que consiste en un dispositivo bimetálico interno, en el compresor, que se activa por alta temperatura de descarga para protección contra recalentamiento. Si después de la instalación y arranque, el compresor deja de comprimir y/o posteriormente se para, lo más probable es no tenga daño, solo se protegió por alta temperatura de descarga debida a una falla ajena al compresor que hay que corregir antes de volver a poner en marcha. El restablecimiento del compresor, puede llegar a tardar hasta dos horas dependiendo de cuanto permaneció funcionando con la falla antes de parar. La Protección ASPT funciona descargando el scroll cuando la temperatura interna llega a alrededor de 300°F (135°C). A esta temperatura, el disco bimetálico se abre y hace que los elementos del scroll se separen, interrumpiendo la compresión. Las presiones de succión y de descarga se equilibran mientras que el motor continúa funcionando. Para restablecer, hay que parar el compresor y dejarlo enfriar, tarda. Si no es parado, el motor continuará en marcha hasta que se dispare el protector térmico del motor unos 90 minutos después.

Para más información visite: www.EmersonClimate.com/espanol

CAPACITORES

EN MOTORES ELÉCTRICOS MONOFÁSICOS Dos conductores cargados eléctricamente separados por un aislador se dice que forman un capacitor. Estas cargas de origen eléctrico son de igual magnitud pero de signos opuestos. Se forma un campo eléctrico “E” entre los dos conductores que es proporcional a la magnitud de la carga, y por lo tanto la diferencia de potencial (o voltaje) ente los dos conductores es también proporcional a esa carga (Q). Diferencia de Potencial ó Voltaje - Volts  Aislante de ε Permitividad Y con Resistencia Dieléctrica

+ + Carga Eléctrica + Q + + + Placa + Metálica + La Energía de Julios de un + Capacitor Cargado está dada por la relación + + W = CV2 / 2 +

∆V

 _   _  + +  _  +  _  +  _  +  _  +  _  +  _  +  _  +  _  +  _  +

 _   _   _   _   _   _   _   _   _   _   _ 

Líneas de Campo Eléctrico E Carga Eléctrica - Q (Coulombios)

Placa Metálica De Área

 A (M2)

La Capacitancia C en Faradios esta dada Por la relación

C = ε A/d

Separación de las Placas d (M)

d Fig # 1 Capacitor d e Placas Paralelas

El capacitor más común consiste en dos placas paralelas separadas una distancia muy pequeña comparada con sus dimensiones lineales, ver Fig. #1. en los diagramas se representa Se define como su Capacitancia “C” en Faradios (en honor a Michael Faraday), a la relación de la carga eléctrica de las placas en Coulombios a su diferencia de Potencial (voltios). C = Q/V, y se demuestra también que (en el sistema MKSC) 2  -1  -2 ε Permitividad Eléctrica C N m C = ε A/d, en donde ó capacidad específica de inducción  A Área de las placas paralelas m2 d Separación de las placas paralelas (Nota: el Faradio es una unidad sumamente grande por lo que se utiliza el microfaradio µF ) También se demuestra que la energía (en Julios) de un capacitor está dada por la relación: W = CV2/2 Los capacitores tienen muchas diversas aplicaciones en circuitos eléctricos, en el campo de la refrigeración y del aire acondicionado, en los motores de compresores, ventiladores, etc. En los motores monofásicos para mejorar su arranque, eficiencia, ruido y factor de potencia, en los trifásicos mejorando, su eficiencia y factor de potencia, reflejándose en una reducción del consumo y costo eléctrico importantes. En este artículo revisaremos en principio la aplicación de los capacitores en los motores monofásicos para los compresores de refrigeración y aire acondicionado

Para más información visite : www.EmersonClimate.com/espanol

CAPACITORES PARA EL ARRANQUE DEL MOTOR MONOFÁSICO .

Llamados simplemente “Capacitores de Arranque”, se usa para mejorar el arranque de los motores monofásicos. El motor monofásico de inducción por su naturaleza solo tiene una fase y un devanado para su operación, este produce un campo magnético del tipo oscilatorio que no hace posible su inducción al rotor en una forma rotatoria, por lo que no puede hacerlo girar. Por lo tanto es necesario crear un medio auxiliar para iniciar el movimiento del rotor esto se logra con un devanado auxiliar de arranque Este devanado se caracteriza por tener su alambre magneto una alta resistencia eléctrica y es de diámetro delgado y de muchas vueltas, comparado con el devanado de marcha u operación que es de baja resistencia, y de menor número de vueltas, logrando con esto un desfasamiento eléctrico y fí sico, ya que las impedancias de los dos devanados es diferente. Estos dos campos magnéticos desfasados son de origen oscilatorio, que sumados eléctricamente causan un campo de naturaleza rotatorio, que hacen mover el rotor. El Capacitor de Arranque crea un desfasamiento aún mayor que causa que las características de arranque (el par) se mejoren notablemente. Los motores aplicados a compresores para refrigeración (en los que su relación de compresión es alta) debido al alto par, siempre es requerido el capacitor de arranque. Para ventiladores (de bajo par de arranque), y en compresores para aire acondicionado, en que la relación de compresión es baja, por lo general el capacitor de arranque no es requerido (motor con capacitor de marcha permanente, “Permanente Split Capacitor Motor). En motores de alta eficiencia es necesario desconectar el devanado de arranque y el capacitor de arranque una vez que el motor alcance su velocidad, ya que mantenerlos operando nos causaría perdidas. Su utilización es de forma intermitente, el devanado de arranque y el capacitor se desconectan mediante un Relé de potencial o de corriente, a medida que el rotor aumenta su velocidad crea su propia reacción magnética de armadura, induciendo en el devanado de arranque y de marcha, el voltaje de corte requerido para el Relé de potencial actúe para desconectar el devanado y el capacitor de arranque. La carga eléctrica almacenada en el capacitor se descarga a través de los contactos del Relé ocasionado que estos se flameen y se dañen. Para evitar estas situaciones se conecta en paralelo en las terminales del capacitor de arranque una resistencia de 15000 a 18000 Ohms, para que el capacitor se descargue a través de este, y evitar el daño a los contactos del Relé..

Capacitor de Marcha Relé de Potencial Capacitor de Arranque

S

C Devanado De Arranque

Devanado Principal

R

Línea L! Fig 2

L2

Diagrama Eléctrico de un Motor de Compresor  Con Capacitor de Arranque y Capacitor de Marc ha

(CSCR Capacitor Start – Capacitor Run)

Para más información visite : www.EmersonClimate.com/espanol

Una vez desconectados el Capacitor de Marcha y el devanado de arranque, el rotor del motor continua operando, ya que el mismo crea un campo magnético en cuadratura con el campo del devanado principal, que combinados permiten al motor su operación normal. El capacitor de marcha por lo general es del tipo electrolítico, para obtener una alta capacitancia requerida. CAPACITORES DE MARCHA

El capacitor de marcha es usado en los motores para mejorar su eficiencia, disminuir la corriente de operación, disminuir el ruido y mejorar el factor de potencia.

IT

V

IL

IC

RL

RC

L

C

Lugar Geométrico de

IC

   R  C    I  C

la Corriente IC a través del Capacitor, variando la Capacitancia C

I   

C     X    C   

Lugar Geométrico de la Corriente Total IT

IT

Imin

IC

V

L

I     

L    

V/RC

IMin Es la Corriente Mínima total con el Capacitor de marcha adecuado, prácticamente con el Factor de Potencia Unitario.

En la selección del Capacitor de Marcha, se busca que funcione con la corriente mínima Cuando RC es Cero o muy pequeña, la corriente mínima ocurre a Factor de Potencia unitario, (que es la situación de Resonancia)

Fig # 3 Lugar Geométrico de la Variación de la Corriente Result ante IT cuando se varía la Capacitanci a del Capaci tor de Marcha

El capacitor de marcha a diferencia del de arranque que opera en forma intermitente, es que este opera todo el tiempo. La Capacitancia debe determinada para cada motor y aplicación y obtener el consumo mínimo posible de corriente (amperes). Los diagrama de la Fig. 3 y 4 nos muestran la variación de corriente eléctrica total del motor en operación V/S la Capacitancia. La fig 3 es un diagrama vectorial los círculos son los lugares geométricos de la corriente a través del capacitor y la corriente total del motor. Como se puede observar se tiene una gran variación en el consumo de corriente simplemente variando la capacitancia. Si en un motor en determinada condición se especifica una capacitor de marcha con una capacitancia de 40 microfaradios tomará 4.0 amperios Fig. 4, si alguien cambia el capacitor de marcha por uno de 30.0 microfaradios, el compresor consumirá 6.2 amperios, el motor se calentará y se quemará, y además el consumo eléctrico se aumentará  Analizando un poco mas la figura 3, se observa que la mínima corriente corresponde a la corriente con un factor de potencia igual a la unidad, esto sucede solamente cuando al resistencia eléctrica del capacitor es cero que es prácticamente todos los casos. Es importante no alterar el valor de la capacitancia especificada de los capacitores, y muy en particular del capacitor de marcha, ya que colocar un capacitor con un valor de capacitancia arriba o por debajo de la

Para más información visite : www.EmersonClimate.com/espanol

14

   S    E    R    E 12    P    M    A    L 10    A    T    O 8    T    E    T    N 6    E    I    R    R 4    O    C

FACTOR DE POTENCIA = 1

2 0 20

25

30

35

40

45

50

55

60

65

CAPACITANCIA EN MICROFARADIOS

Fig. 4 CAPACITOR DE MARCHA

especificada, ya que ambos casos causan una elevación en el consumo de corriente y con seguridad causará una quemadura en el motor, ver Fig. 4. En relación al Voltaje (Volts) especificado en los capacitores, normalmente difiere por mucho del voltaje de la línea de alimentación. Como ejemplo supongamos que la alimentación al motor es 220 V, y un capacitor pudiese ser 420 Volts. Lo que sucede es que el rotor del motor al girar, induce en los devanados de marcha la Fuerza Contra Electromotriz que se opone al voltaje principal controlando la corriente y voltaje de operación (Voltaje de Operación = Voltaje de alimentación – Fuerza Contra Electromotriz). Induce un voltaje muy alto en el devanado de arranque, proporcional al número de vueltas del alambre magneto (que como indicamos anteriormente son muchas), y que en este caso en particular sería aproximadamente del orden de 400 Volts, Es esta razón por la cual los capacitores se especifican a un voltaje superior, y que es igual a la suma eléctrica de los voltajes inducidos en los devanados de arranque y de marcha. Usar un capacitor con el voltaje menor al especificado, ocurren dos situaciones:  A.- La de exponer el material del dieléctrico del capacitor a un campo eléctrico que no puede soportar, muy fuerte, sobrepasando su resistencia dieléctrica ocasionando un corto circuito dañándolo permanentemente, con el riesgo de dañar t ambién el motor del compresor. B.- En la fórmula de la energía de un capacitor W = CV 2  / 2, esta energía va y viene en el capacitor (proporcional al voltaje al cuadrado), a factor de potencia unitario (las corrientes reactivas del capacitor y en los devanados son iguales), esta energía se intercambia en el devanado de marcha del motor y viceversa. Al reducir el voltaje especificado se sobrecarga de energía el capacitor, ocasionando que se dañe o se queme. Un capacitor con el voltaje más alto que el especificado solo requeriría un dieléctrico de mayor capacidad específica de inducción ( ε), que sería mucho más costoso La capacitancia (Microfaradios) no se afecta al variar el voltaje, la rige la fórmula. C = ε  A/d que es función del material del dieléctrico y dimensiones del capacitor. Por Ing. Javier Ortega C 28 de Abril de 2005

Para más información visite : www.EmersonClimate.com/espanol

Más Al lá de las Fallas del Compresor Se han escrito muchos artículos sobre las causas principales de las fallas mecánicas relacionadas a los compresores de refrigeración. Desarmando un compresor y analizando sus partes, un técnico puede típicamente determinar la falla dentro de cinco categorías: 1. Retorno de l íquido – El r efrigerante líquido vuelve al compresor mientras éste está en funcionamiento. 2. Arranque Inundado – El co mpresor arranca con líquido en el c asco o en el cárter. 3. Recalentamiento – La temperatura de la línea de descarg a tomada so bre la tub ería a 6 pulg adas (15 cm.) de la válvula de servic io de descarg a excede los 225°F (107°C) 4. Golpe de líquido – Compresión de líquid o. 5. Pérdida de la Lub ricación – L a cantidad de aceite que sale del com presor es mayor que la cantidad de aceite que retorna al compr esor. Saber en cuál de estas categorías entra un compresor con fallas puede ayudar a l os técnicos a resolver el problema antes de instalar otro compresor. Este conocimiento de fallas resulta crucial para detener la cadena de posibles fallas repetitivas. Los fabricantes de compresores usan este mismo sistema cuando reciben del campo compresores con “fallas en garantía”. Ellos entonces desarman el compresor e identifican el tipo de falla para asegurar el adecuado recambio cubierto por la garantía. Por otra parte, una gran cantidad de compresores devueltos en período de garantía no entran en una de estas categorías. Estos entran en la categoría más temida por l os fabricantes: “No se encontró ningún defecto”. Esta categoría, “No se encontró ningún defecto”, es una situación en donde pierde tanto el fabricante como el contratista. Definir algo como “No se encontró ningún defecto”, es tan simple como leer el título, pero entender que está sucediendo es un poco más complejo. Escenario: Llega una llamada solicitando servicio porque “el equipo no enfría”. El técnico viaja al sitio y encuentra un compresor que no funciona. Controla el voltaje en los terminales del compresor y encuentra un voltaje correcto. El técnico de servicio apaga el suministro de energía principal, vuelve a controlar los terminales del compresor con su multímetro y no encuentra voltaje p resente. A continuación desconecta los cables de fuerza motriz y controla la resistencia de los bobinados. La lectura del multímetro indica infinito o circuito abierto. Un técnico con poca experiencia en la industria puede diagnosticar este caso como un bobinado abierto quemado. Un veterano de la industria puede ver esto como un protector abierto.

Para más información visite: www.EmersonClimate.com/espanol

Dos puntos de vista que l levan a dos resultados diferentes: retirar el compresor o no retirarlo. Sólo con el tiempo se podrá saber si se trataba de un disparo del protector del compresor o de un bobinado abierto. Si se trata de un protector abierto, retirar el compresor implicará enviar al fabricante u n compresor que eventualmente será desarmado y diagnosticado como “No se encontró ningún defecto”. Los compresores en los que “No se encontró ningún defecto”, son simplemente aquellos que el fabricante diagnostica y no encuentra ninguna evidencia de por qué el compresor fue retirado del sistema. Entender cómo funcionan los protectores del compresor puede reducir en gran manera la posibil idad de un diagnóstico equivocado de un disparo del protector en comparación con una falla del motor del compresor. Existen, en general, dos tipos diferentes de protecciones del motor: Corte de Línea y Servicio Piloto. Protección de Corte de Línea: Esto es precisamente lo que indica: corta el voltaje de línea abriendo un contacto térmico ubicado en el centro de la estrella.

Protector

Protector en el centro de estrella

Centro de Estrella

Figure A.

Figure B.

El diagnóstico de fallas de la protección del tipo de “ corte de línea” requiere que se corte el suministro de energía y mediante un multímetro se mida la resistencia entre los bornes de con exión del motor . En el caso de un co mpresor trifásico, si las tres patas están abiertas entre sí y ninguna de ellas tiene contin uidad a tierra, entonces el técnico p odrá supo ner correctamente que el centro d e la conexión en estrella está abierto. El dis positivo de protección se ha disparado. Es de notar en la Figura B que la so brecarga es efectivamente externa y que el “ Fusite” naranja de tres terminales efectivamente conecta los tres bobin ados, completando el circuito del moto r. Los bornes de conexión marcadas 1.1, 1.2 y 1.3 son lo s terminales pr incipales de su ministro de energía (terminales del mot or). Si se desease un diagnóstico más profundo, cada cable del protector puede ser retirado del “Fusite” Naranja. Desconectar los tres cables permitirá individualizar a l protector y al motor para realizar más pruebas. Con el protector desconectado, los bobinados del compresor pueden ser revisados individualmente. Usando un multímetro, coloque una punta de prueba en un terminal del motor, y la otra guía en un terminal “Fusite”. Uno de los terminales principales debería dar una lectura en “Ohmios” (continuidad) con uno de los terminales “Fusite”.

Para más información visite: www.EmersonClimate.com/espanol

Cambiando la posición de la punta de prueba del multímetro a a un segundo terminal del motor y a otro terminal “Fusite” debería dar una lectura en “Ohmios” en el multímetro. Controle el tercer terminal y el Fusite de la misma manera. En el caso de un compresor trifásico, las tres lecturas en “Ohmios”, no deberían diferir en más de un 7% con los valores dados por fábrica. En los c ompresores mon ofásicos (Figura C), la protección térmica abrirá la conexión com ún o de línea.

Terminal Comun

Conexión del cable Comun

Protector

Figure C.

Si entre el terminal de arranque y el de línea, el multímetro indica abierto, y entre los terminaes de marcha y línea también, pero hay continuidad entre los terminales de arranque y marcha, estamos frente a un caso donde se puede suponer que el protector se ha disparado. Esto puede verificarse midiendo directamente entre los terminales del protector cuando este sea accesible.

Servicio Piloto: Típicamente abre el circuito de comando desconectando la bobina del contactor. Protector

Circuito de Carga Pilotado

Caja de Terminales

Térmico Interno

Figura D.

Protecció d e SobreCarga

Figura E.

Para más información visite: www.EmersonClimate.com/espanol

Para un circuito de comando monofásico se puede también utilizar un multímetro para detectar fallas en un dispositivo de protección del tipo de servicio piloto. La Figura D representa un circuito de servicio piloto. Note que el circuito de comando de bajo voltaje está representado en color celeste. Verifique que los fusibles de vidrio de la línea de alimentación del circuito de comando estén en buenas condiciones. Verifique el voltaje de los dos terminales del circuito de comando (Puntos Verdes) con respecto al terminal de tierra. Si ambos terminales del circuito de comando no presentan ningún voltaje, revise los otros controles del lazo de seguridad en el circuito de comando del sistema. Si algún otro control de seguridad estuviese abierto dentro del circuito d e comando, el voltaje caería. Revise todos los otros controles de seguridad buscando condiciones de disparo. Si sólo una de esas conexiones (Puntos Verdes) del circuito de comando muestra voltaje, entonces el termostato interno, el fusible de vidrio de la línea de alimentación o, al menos uno de los sensores del protector están abiertos.  Ahora revise el voltaje entre los terminales del termostato interno (Puntos Amarillos) y tierra. Si el medidor indica voltaje con respecto a tierra en ambos terminales del sensor, entonces el termostato está cerrado. Si el voltaje con respecto a tierra solo se encuentra presente en uno de esos terminales, entonces el termostato está abierto. La misma secuencia puede aplicarse a cada uno de los terminales del protector. Los Puntos Azules indican a los terminales de conexión de fuerza del motor.

Sensores

 Algunos circuitos de Servicio Piloto tienen un módulo electrónico de control (Figura F.) Existen típicamente tres juegos de conexiones en este tipo de circuito. Una es la conexión al circuito de comando o lazo de seguridad del sistema (M1, M2), la segunda es a los sensores del protector del motor (Sensores) y la tercera es la conexión de ali mentación de energía del módulo (T1, T2).

Figura F. En la detección de fallas en este tipo de dispositivos, en primer lugar revise si se encuentra energía en los terminales de alimentación del módulo (terminales T1, T2). Tenga en cuenta que se requiere energía y que ésta debe llegar a los terminales del módulo por más de dos minutos para que este pueda operar. El puenteo de cualquier control de seguridad es muy peligroso, por favor tome las medidas necesarias para tener una seguridad adecuada. Desconecte la alimentación de fuerza motriz a la máquina. Luego de verificar la presencia de energía en el módulo, haga un puente entre M1 y M2. Ahora trate de arrancar nuevamente el compresor. Si el compresor no arranca con el módulo puenteado, el problema no está ni en el módulo ni en los sensores. Observe los otros controles de seguridad del circuito de comando. Si el compresor arranca con el puente del módulo en su lugar, se ha identificado el problema y éste puede estar en el módulo o en los sensores. Probar un módulo en el campo puede resultar difícil, aunque se puede revisar perfectamente la precisión de los sensores.

Para más información visite: www.EmersonClimate.com/espanol

Luego de desconectar todo suministro de energía a la unidad, retire los conductores de conexión de los sensores y verifique si la resistencia de los mismos cumple con las especificaciones dadas por el fabricante del compresor. Los sensores de protección están instalados de fábrica dentro del bobinados del motor y no pueden ser recambiados. Si los valores de resistencia de los sensores corresponden a los valores indicados a la temperatura del motor, entonces puede suponerse que el módulo es el problema y el recambio del módulo es lo adecuado. Los sensores térmicos de un sistema de protección de corte de línea pueden ser internos o externos. Un circuito de servicio piloto depende solamente de que se abra el contactor, una vez que se haya cortado el voltaje de comando a la bobina del contactor. Si el contactor sigue conectado por cualquier motivo, el dispositivo de protección no puede cumplir con su función y se producirá una falla en el motor del compresor.  Al margen del tipo de circuito de protección que tenga su compresor, el tiempo en que el compresor quede apagado, permitirá que el dispositivo de protección activado térmicamente se reajuste (reset) y que el compresor vuelva a arrancar. Tenga en cuenta que el dispositivo de protección de sobrecarga es para proteger al motor del compresor y no para ser usado como un termostato u otro dispositivo de control del sistema.

Para más información visite: www.EmersonClimate.com/espanol

MOTORES ELÉCTRICOS EN AIRE ACONDICIONADO Y REFRIGERACIÓN y CALEFACCIÓN Cuando hablamos de un sistema de aire acondicionado ó refrigeración, por lo general se tiende a darle importancia a la capacidad de refrigeración (ton, Btu/h, Kcal./h, Watts, etc), así como a las características técnicas del condensador, del evaporador, Válvula de de Expansión, Tuberías, etc. Es importante considerar la otra parte del sistema de enfriamiento, que es la parte eléctrica, que es con la que alimentaremos de energía al sistema para poderlo operar, es la que nos va a costar, y que se debe tener en suficiente cantidad y condiciones para satisfacer la demanda de energía requerida por el sistema de enfriamiento. La parte eléctrica se puede dividir, el sistema Eléctrico de Poder, el sistema Eléctrico de Control, el Sistema Eléctrico de Protección. Entre los sistemas de refrigeración, el método más común es el sistema de Compresión de Vapor, sus elementos necesarios para tomar o manejar el calor son simples, y se pueden representar básicamente en el diagrama de flujo de energía de la Fig. 1.

Motor del Compresor 

Evaporador Qc = Energía de Entrada ó Calor del Evaporador

Condensador  Q H = Energía de Salida ó Calor de rechazo al W = Energía dada al Sistema de Refrigeración, en este Medio Ambiente caso Energía Eléctrica al Motor  Q H  = QC  + W 

Fig 1 Diagrama de Flujo de Energías en un Sistema de Refrigeración

Desde el punto de vista económico, el mejor sistema de refrigeración es aquel que remueve la mayor cantidad de calor QC  del refrigerador, con la mínima cantidad de trabajo mecánico ó energía del compresor W Se define como Coeficiente de Funcionamiento (en Inglés, Coefficient of Performance COP), de un Moto-Compresor en un sistema de refrigeración, a la relación QC / W ( dadas QC y W en las mismas unidades de energía, Btu, Kcal., Watt-hora, Joules), por lo tanto las unidades del COP son por unidad (p/u). COP = Refrigeración (Watts) / Potencia de Entrada (Watts)

(p/u)

Para más información visite: www.EmersonClimate.com/espanol

Si este valor es mayor, el sistema es más eficiente, y su costo de operación es menor. Como la Potencia es igual a la relación de la Energía sobre el tiempo, en las relaciones anteriores se puede tomar la Potencia (Btu/h, Kcal./h, ó Watts). Cuando la Potencia de enfriamiento esta dada en el sistema Británico de unidades. Su unidad es el Btu/h, y cuando la Potencia de entrada al motor está dada en Watts. Entonces se define la Relación de eficiencias de Energías EER, como:

EER  = Refrigeración (en Btu/h) / Potencia Eléctrica de entrada al Moto-Compresor (en Watts). Las unidades del valor del EER son Btu/h-W, y nos indica, el enfriamiento del evaporador en Btu/h, por cada Watt de consumo eléctrico del Moto-Compresor. El valor del COP ó EER no es un valor constante, depende de las condiciones temperatura presión de la succión y descarga del compresor, así como de su eficiencia (sus Pérdidas) mecánica y eléctrica, su Factor de Potencia. Es muy importante cuando se comparen técnicamente dos Moto-Compresores, las condiciones de presión y temperatura de succión y de descarga sean exactamente las mismas En aplicaciones de Aire Acondicionado o alta temp. de evaporación, valores del orden de 9 Btu/h-W o mayores son comunes. Para media temperatura de evaporación son del orden de 6 Btu/h-W. Y para baja temperatura de evaporación son del orden de 3. . Entre mayor sea el valor del EER en un MotoCompresor, evidentemente es más eficiente, y cuesta menos su operación.

POTENCIA DE UN MOTOR ELÉCTRICO. Se acostumbra comúnmente decir erróneamente “Caballo de Fuerza”, y debe decirse “Caballo de Potencia” y se abrevia HP (Horse-Power). Los motores eléctricos y mecánicos se especifican de acuerdo a sus Caballos de Potencia (HP). Un HP es igual a 745.7 Watts. Cuando una máquina motriz se dice que es de una potencia de “X” HP, nos referimos a que en su flecha con ciertas condiciones es capaz de entregar esa potencia, o sea su potencia de salida es de “X” HP. La unidad de Potencia en Watts (ó en Kwatt = 1000 Watts), es usada por lo general para indicar la potencia de entrada   al motor. En los motores abiertos o con flecha visible de uso general, su potencia mecánica que entrega en la flecha (HP) se puede medir con perfecta exactitud, deben ser un valor preciso de la potencia entregada en la flecha, así mismo su potencia eléctrica de entrada en Watts. El fabricante de este tipo de motores abiertos puede y debe garantizar la Potencia mecánica en HP, que su motor es capaz de entregar continuamente en ciertas condiciones.(Voltaje, frecuencia, Par, RPM, Temp. ambiente, etc.) La diferencia de la Potencia de Entrada menos la Potencia de Salida, son la suma de las Pérdidas Eléctricas y Mecánicas del Motor. Los motores de alta eficiencia, son los que tienen bajas perdidas eléctricas y mecánicas. En los motores usados en los compresores Herméticos y Semiherméticos la determinación de la potencia mecánica en la flecha en HP a la entrada del compresor es imposible, o en otras palabras la potencia que demanda el compresor no se puede medir. La forma en la que la potencia en HP Caballos de Potencia se calcularía, sería mediante la estimación de las pérdidas eléctricas y mecánicas, restándolas a la potencia de entrada, y así llegar al valor de los HP del Moto-Compresor, por lo tanto HP en los MotoCompresores Herméticos y Semiherméticos es un valor poco preciso, solamente nos da una idea del tamaño estimado del motor Sin embargo existen normas para asignar los HP, Tablas N.E:C. (National Electric Code) 430-148 y 430-150... Por esto es importante que al Para más información visite: www.EmersonClimate.com/espanol

comparar dos sistemas de refrigeración, ó dos Moto-Compresores, no se pueden ni se deben comparar en base a sus HP, ya que para un fabricante tiene un compresor de i/4 HP ligero, y otro 1/4 HP pesado, otro tiene un compresor de 30 HP, y para otro fabricante es de 35 HP. En sistemas de Aire Acondicionado, y Refrigeración, se deben medir la Potencia de enfriamiento (QC) en Btu/h, Watts, Kcal./h etc. y la Potencia Eléctrica de entrada al motor (W) de compresor en Watts. Y desde luego estos valores serán a una sola condición predeterminada de Temperatura y Presión del refrigerante en la Descarga y la Succión del compresor. Los HP en refrigeración es un valor de referencia, que nos indica más o menos el tamaño físico del moto-compresor.

Tipos de Motores Eléctricos Los motores Eléctricos en refrigeración se pueden clasificar de acuerdo a su uso:  A.- Para accionar los compresores: Compresores Abiertos (con flecha visible) conectados mecánicamente por medio de bandas y poleas, o directamente mediante un acoplamiento Compresores Herméticos, Semiherméticos, Scroll .conectados en sus flechas internamente B.- Para accionar ventiladores: Para los condensadores Para los evaporadores Para manejadoras de aire Para extracción e introducción de aire C.- Para accionar Bombas Sistemas de de aceite (compresores Tornillo) Para mover el agua fría (en Chillers) Para agua en maquinas de fabricación de hielo.En este artículo se estudiará en principio dos tipos de motores de corriente alterna (a-c) más comunes en refrigeración, los Trifásicos y los Monofásicos,  ambos son de Inducción, aplicados a los compresores Herméticos y Semiherméticos, Un MotoCompresor para refrigeración, Hermético o un Semihermético, es una combinación de motor y compresor que se encuentran encerrados dentro de la misma carcasa. Su diferencia es que el Semihermético se puede desarmar sin destruirse, y el Hermético se destruye. Para fines prácticos ambos son compresores Herméticos (inclusive .el compresor Scroll).

Motor Trifásico de Inducción.-

Principio de Operación Su principio de operación es como sigue, ver Fig 2 Consta de de un embobinado trifásico, perfectamente balaceado (ó idénticos), por el cual circula una corriente alterna, cada una de las fases produce un campo magnético oscilatorio. Los ejes de los tres campos están desfasados eléctricamente y físicamente 120°. Y cuya dirección es constante. Observando la Fig. 4 la suma de los tres vectores nos produce un campo magnético de magnitud constante cuya dirección varía con el tiempo, cuyo eje gira a la velocidad de sincronismo, dicho campo magnético resultante tiene una magnitud de 1.5 veces la magnitud máxima de cualquiera de los tres campos componentes.

Para más información visite: www.EmersonClimate.com/espanol

Dirección de las tres Corrientes Alternas En los devanados del Estator 

Dirección del Campo Magnético Oscilatorio Fase 3

Rotor Jaula de Ardilla

Capo Magnético del Rotor, BR.

Dirección del Campo Magnético Oscilatorio Fase1

Angulo de Potencia Dirección de Rotación

Dirección del Campo Magnético Oscilatorio Fase 2

Campo Magnético B P Rotatorio Resultante, que Arrastra al Rotor 

IL a

R = Resistencia Eléctrica por fase en Ohms

   1   e   s   a    F

XL= Reactancia Total por Fase = Reactancia Propia del Estator + Reactancia Mutua Estator-Rotor en Ohms IL = Corriente de Línea en Amp.

L1

b

  2  s e   F a

L1 N;. L3 N; L2 N

XL

  X  L   R

Voltaje entre Fases (VP )

R

X  

N F  a  s e  3  



R  

Voltaje entre Líneas VL L1 L2;. L1 L3; L2 L3.

c

L2

L3

Motor Trifásico de Compresor Hermético Conectado en Estrell a “ Y”

Fig. 2 Dibujo de Operación de un Motor Trifásico y su Diagrama Eléctrico El campo magnético Principal B R induce una corriente en las barras de la Jaula de Ardilla del rotor, la cual a su vez produce un campo magnético B R de reacción opuesto al campo magnético principal, produciendo una Fuerza Contra Electromotriz oponiéndose al voltaje de alimentación del estator del motor, regulando así el valor de la corriente (Amp.) total del motor. Emerson prácticamente cubre todas las necesidades de aplicación de los motores trifásicos. Motores Emerson  de alta eficiencia para compresores Herméticos, Semiherméticos y Scroll, para las aplicaciones con los diferentes refrigerantes para Aire Para más información visite: www.EmersonClimate.com/espanol

 Acondicionado y todos los rangos de temperatura de la Refrigeración Comercial, desde 1/2 HP hasta 60 HP, 1750 rpm (Sinc1800 rpm), con todas las combinaciones de voltajes, y con arranque a corriente reducida (en su caso), Todos, con un Alto Par de arranque, y protecciones térmicas correspondientes, y de alta eficiencia Premium. Para Motores con flecha visible para la Industria de la Refrigeración, Aire Acondicionado y Calefacción , Emerson produce los motores trifásicos de alta eficiencia y eficiencia Premium, para aplicaciones en ventiladores para unidades condensadoras, Manejadoras de Aire, Fan and Coils, Evaporadores, en Ventiladores par enfriamiento, Son motores que pueden ser totalmente cerrados, con base resilente, intemperie, ambientes de polvo, aprueba de Goteo etc. altas temperaturas ambientales de operación (para condensadores a 60 °C ambiente, de 1/3 a 2 HP), ,de aplicaciones en propósitos generales desde 1/4 HP hasta 30 HP, y con mayores potencias, etc.

Motor Monofásico Si un motor eléctrico, su embobinado es de un solo devanado, o de una sola fase, y es excitado con corriente alterna, produce un solo campo oscilatorio, y por lo tanto su rotor no se movería. Para moverse requiere campos magnéticos desplazados espacialmente entre si, y excitados con corrientes desfasadas, para crear un campo giratorio. El rotor es del tipo de jaula de ardilla, al excitarse la bobina M con corriente alterna, su flujo magnético produce en el rotor por efectos de transformación una Fuerza Electromotriz y a su vez una corriente en la jaula de ardilla y un flujo magnético oscilante ΦP convirtiendo al rotor en una bobina con su flujo en la misma dirección de M. Si al rotor se le da un impulso inicial, corta al flujo de la bobina M, induciendo en sus conductores una Fuerza Electromotriz debida a la rotación, la cual hace circular una corriente que produce un flujo magnético ΦI perpendicular al flujo original de de M, ΦP . Estos dos flujos en cuadratura producen un campo giratorio, el cual hace que el rotor continúe con su propia rotación. IM IM

M

CA 60 Hertz

CA 60 Hertz

IR Flujo Oscilatorio ΦP

Flujo Oscilatorio ΦP

ΦP

Debido a la Corriente IM del Devanado Principal, ó Corriente del Estator 

ΦI

Flujo Oscilatorio ΦI Creado por la Corriente Inducida IR Generada por rotación del Rotor al cortar ΦP

Fig. 3 Principio de Operación De un Motor Monofásico

Se demuestra que la suma de dos Vectores Oscilatori os Desfasados Espacialmente, nos da como Resultante un Vector Rotativo, que es el que continúa arrastrando al Rotor haciéndolo girar 

Para más información visite: www.EmersonClimate.com/espanol

Por lo anterior se concluye que estos motores por si solos no tienen par de arranque, y que es necesario proveerlos de un medio para su arranque, para ello usualmente se tienen:

A.- Motores con Polos Sombreados  Al pasar el flujo principal Φ por la espira en corto circuito induce en ella una Tensión que hace circular una corriente que a su vez produce un flujo Φ1 que se encuentra atrasado y se opone al flujo principal, creando como resultado que el flujo principal se desplace en la forma indicada en la Fig. 4, este desplazamiento da el impulso inicial al rotor, necesario para moverlo. Este tipo de motores se pueden diseñar también para dos velocidades o más. Debido a su bajo par de arranque, y a que se pueden ofrecer a diferentes velocidades este tipo de motores se aplica en la refrigeración, en ventiladores pequeños. Espiras en Corto Circuito

.

Flujo Φ1

Polos Principales

Rotor Jaula de Ardilla

Flujo Magnético Principal Φ

Φ1

Φ

Fig, 4.- Esquema de un Motor de Polos Sombreados

Emerson Climate Technologies ofrece los Motores Emerson de Polos Sombreados con la diversidad de tipos requeridos cubriendo prácticamente todas las necesidades principales para cada aplicación en particular (diferentes versiones de flechas, armazones y lubricación desde 1/20 hasta 1/4 HP)

B.- Motores de Inducción de Fase Bipartida Es el motor más usado en aplicaciones de potencias fraccionarias de HP, de 1/2 HP hasta 5 HP en 1800 rpm y 3600 rpm, .y en motores abiertos hasta 10 HP en 1800 rpm Su operación en principio es simple, se usan dos devanados en el estator, uno denominado auxiliar A para el arranque, y el otro el de marcha u operación P, En su armadura o rotor no se encuentra ningún devanado, se encuentra un armazón de barras de cobre o de aluminio conectado en forma de jaula de ardilla Fig. 5.

Para más información visite: www.EmersonClimate.com/espanol

R

R

L1

IP .

IP

CA 60 Hertz

IA C

L1 C

L2

P

L2 Capacitor  De Arranque

P

5

1 22

2

Rotor 

A

S

Rotor 

Fig 5.- Motor de Inducción - Diagrama Eléctrico

CA 60 Hertz

IA

Relé de Potencial

S

A

Fig. 6.- Motor con Arranque con Capacitor y con Marcha de Inducción (CSIR)

En motores de baja potencia y bajo par de arranque no se requiere el capacitor, el desfasaje de I A con IP se logra haciendo el devanado P de alambre grueso y pocas vueltas (baja reactancia), y el devanado A de alambre delgado y muchas vueltas (alta reactancia). En estos motores el devanado auxiliar permanece conectado todo el tiempo. Los motores Emerson de este tipo son de 1/6, 1/4, 1/3, 1/2, HP, principalmente para ventiladores, ver Fig. 5. Para motores de un alto par de arranque , con un mejor desfasaje entre la corriente del devanado principal I P con da arranque auxiliar I A,, se logra con mayor perfección con un capacitor de arranque en el bobinado auxiliar, este capacitor y el devanado auxiliar se desconectan una vez alcanzada la velocidad de rotación del motor, mediante un Relé en el caso de motores para compresores herméticos de refrigeración o un interruptor centrifugo en otros casos,..

L1

R

R

L1 IP

IA C

CA 60 Hertz

IP C

L2

P

Capacitor de Marcha 2

CA 60 Hertz

IA

P

L2

5

1 22

Rotor 

A

S

Fig 7.- Motor de Inducción - Fase Bipartida con Capacitor  de Marcha Permanente PSC (Permanent Split Capacitor)

Rotor 

A

-Capacitor  de Marcha -Capacitor  de Arranque -Relé de Potencial

S

Fig. 9.- Diagrama Eléctrico de un Motor de Compresor con Capacitor de Arranque y Capacitor de Marcha (CSCR Capacitor Start – Capacitor Run)

Este motor se denomina Arranque con Capacitor y con Marcha de Inducción (Capacitor Start – Inducción Run, CSIR) ver Fig.6. Estos motores producidos por Emerson son usados en Compresores Herméticos pequeños desde 1/12 HP hasta 1/2 HP (a 3500 Para más información visite: www.EmersonClimate.com/espanol

rpm), para aplicaciones de Refrigeración alta media y bajas temperaturas de evaporación, como refrigeradores domésticos, congeladores, enfriadores de botellas, vitrinas enfriadoras, etc.

Motores de Fase Bipartida con Capacitor de Marcha Permanente sin Capacitor de Arranque y sin Relé. (Permanent Split Capacitor Motor PSC) Estos motores se aplican donde se requiere un bajo par de arranque, y que la corriente de línea se disminuya lo más posible, esto se logra colocando un capacitor de marcha como lo indica la Fig.7. Este capacitor de marcha es usado para mejorar la eficiencia, elevar el Factor de Potencia, y disminuir el ruido del motor. La Capacitancia debe ser determinada para cada motor y aplicación y obtener el consumo mínimo posible de corriente (amperes). El diagrama de la Fig. 8 nos muestra la variación de corriente eléctrica total del motor en operación V/S la variación en Capacitancia. En la Fig. 8 puede observar la gran variación en el consumo de corriente simplemente variando la capacitancia. Si en un motor en determinada condición se especifica una capacitor de marcha con una capacitancia de 40 microfaradios tomará 4.0 amperios, si se cambia el capacitor de marcha por uno de 30.0 microfaradios, el motor consumirá 6.2 amperios, el motor se calentará y se quemará, y además el costo del consumo eléctrico se aumentará. Estos motores se denominan Motores con Fase Bipartida con Capacitor de Marcha Permanente Su aplicación es muy amplia en Compresores Herméticos para Aire Acondicionado Y Bombas Térmicas desde 1 HP hasta 5 HP. En motores con flecha visible en los ventiladores de condensadores para uso residencial y comercial, para unidades condensadoras para refrigeración, Para ventiladores de evaporadores (Fan and Coil) con doble flecha, Operaciones de Potencia y velocidades múltiples con un solo motor Para temperaturas ambientales de 40 °C y 60 °C (para los condensadores), y diferentes clases de aislamiento, Rotación reversible, etc Emerson  los produce desde 1/20 HP a 2 HP, a diferentes voltajes dependiendo de los requerimientos de aplicación, satisfaciendo prácticamente todas las necesidades con motores de muy alta eficiencia y eficiencia Premium

14

   S    E    R    E12    P    M    A    L 10    A    T    O 8    T    E    T    N 6    E    I    R    R 4    O    C

FACTOR DE POTENCIA = 1

2 0 20

30

40

50

60

70

CAPACITANCIA EN MICROFARADIOS

Fig. 8 VARIACIÓN DEL CONSUMO DE CORRIENTE Amp. DEL MOTOR VARIANDO LA CAPACIDAD DEL CAPACITOR DE MARCHA Para más información visite: www.EmersonClimate.com/espanol

 Adicional a la descripción breve que se a expuesto de la operación de los diversos motores eléctricos usados en la Refrigeración, Aire acondicionado, y Calefacción, es necesario considerar para el conocimiento algunas definiciones y conceptos muy importantes,

CORRIENTE NOMINAL A PLENA CARGA (FLA Full Load Amperes). FLA es el término usado por la industria para indicar la corriente en Amp, máxima de operación de un motor. En el medio de compresores Herméticos los fabricantes usan el el término RLA (Rated Load Amperes) La forma de determinar el valor del RLA difiere de: Los motores convencionales o con flecha visible, usados en manejadoras de aire, para calefacción y aire acondicionado, en evaporadores de enfriamiento, condensadores enfriados por aire, en cámaras de refrigeración remotas, etc, y para los motores usados en compresores Herméticos (Herméticos, Semiherméticos y Scroll); usados en Aire Acondicionado, Refrigeración Doméstica y Comercial, Bombas de Calor, etc.  A.-Para los motores convencionales, la forma de determinar la FLA o Corriente a Plena Carga, es relativamente sencillo, Es la corriente que resulta cuando el motor es operado a su potencia nominal en la flecha, que el motor deberá entregar en forma constante (sin sobreelevar la temperatura 40 °C) en condiciones predeterminadas, tales como Temperatura ambiente (40 °C motores estándar ó 60°C motores expuestos a altos ambientes), y velocidad angular nominal (en rpm), a su voltaje y frecuencia eléctrica, nominales , . Y los amperes que resulten será su Corriente Nominal. B.- Para los motores de compresores herméticos la situación cambia para la determinación del RLA, ya que no es posible medir la potencia en la flecha, puesto que se encuentra adentro del moto-compresor, y las condiciones nominales de prueba son diferentes para cada aplicación a la que el compresor vaya a ser usado, temperaturas de evaporación Alta Media, .ó baja, tipo de refrigerante, temperatura ambiental moderada o clima caluroso o frío., frecuencia y voltaje eléctricos, etc. Con el fin de que el motor eléctrico de un compresor Hermético, las normas Emerson para compresores Copeland, indican que la Corriente Máxima Continua Permisible (MCC) debe superar los límites de funcionamiento extremos del compresor, y se determina con ensayos sometiéndolo a operar en condiciones extremas de carga, y condiciones eléctricas para cada condición y aplicación específica, haciendo descender el voltaje, hasta que llegue al disparo del protector térmico Para compresores Herméticos se cumplen: RLA = MCC /1.56 Requerimiento U.L. y N.E.C. (National Electric Code). Copeland ha establecido para el valor Máximo de Corriente de un Compresor es 140% del RLA. Esto da un mayor margen de seguridad para la selección de los elementos de los interruptores y alambrado de las líneas de alimentación, ya que por lo general se determinan a un 125 % (mínimo de 115 %) del valor de corriente RLA que se encuentra en la placa de identificación del compresor. Corriente a Rotor Bloqueado (Locked RotorCurrent, LRA) como su nombre lo indica es la corriente en Amp. que resulta al detener el rotor del motor completamente. Nos indica el valor máximo de corriente de entrada al arrancar el compresor. El contactor, fusibles, interruptor, o medio que desconecta a un compresor Hermético, debe ser seleccionado en base de los valores mostrados en la placa de identificación del Para más información visite: www.EmersonClimate.com/espanol

moto-compresor, el de corriente nominal (RLA), el de corriente a rotor bloqueado (LRA), y el de su voltaje nominal. Todos los compresores Copeland de Emerson, vienen con Protección Térmica de Sobrecarga, Protección de Sobrecarga Externa.- Hasta 3 HP., Con Apertura en la Línea Protección de Sobrecarga Interna – Hasta 15 H. Con Apertura en la Línea Protección de Sobrecarga Interna 15 HP. Con Apertura con Circuito Piloto Protección de Sobrecarga Interna Electrónica. De 20 HP hasta 60 HP con Apertura Piloto Por Ing. Javier Ortega C Diciembre 9 2005

Para más información visite: www.EmersonClimate.com/espanol

PRESIÓN DE SUCCIÓN y de DESCARGA del COMPRESOR La presión de succión en el Compresor es igual a la presión de saturación en el Evaporador, menos su caída de presión en el evaporador, menos la caída de presión en las líneas o tuberías de succión. La caída de presión en el evaporador es debida a la resistencia de fricción del flujo del refrigerante y a su diferencia de presiones necesaria para moverse, que da como resultado que la presión del refrigerante a la salida en el evaporador sea menor que a su entrada. Entre mayor sea esta caída de presión menor será la presión de salida, y menor también es la presión media de saturación que se considere. El evaporador se debe de seleccionar con una baja caída de presión. La caída de presión en la línea de succión es debida a las pérdidas de carga por la fricción en tuberías (codos, reducciones, cambios de velocidad, longitudes, estrangulaciones, válvulas, etc.). La Fig. 1 nos muestra la curva característica de Capacidad, de Presión, y Temperatura de Evaporación, a Temperatura de Condensado constante 110 °F (43.3 °C), para un compresor en aplicación de baja temperatura de evaporación con refrigerante R-404A. Se muestra que por una pequeña caída de presión en la succión, la densidad del refrigerante decrece entrado menos refrigerante al compresor, reduciendo su enfriamiento, con su consecuente drástica pérdida de capacidad (y la del sistema).

Fig. 1 FUNCIONAMIENTO TÍPICO DE UN COMPRESOR  A UNA TEMPERATURA DE CONDENSADO DE 110 °F (43.33 °C), R404A Capacidad Btu/h 60500

Reducción de Capacidad

52500

13.2 %

45100

25 %

38 % 37600 -40 4.5

-35 7.1

-30 9.9

-25 Temp de Succión °F 13.0 Presión de Succión psig

Para más información visite: www.EmersonClimate.com/espanol

Cuando una instalación se encuentra operando, y se presenta el problema de “no enfría” o una falla de mantener el producto a la temperatura deseada, “no baja”, etc. es entonces necesario conocer y determinar las presiones de succión y descarga del compresor, si están dentro del rango deseado, de acuerdo al sistema de enfriamiento en particular.  Además verificar si el compresor está funcionando adecuadamente. La consideración importante, es primeramente el de la presión de succión, pues una reducción pequeña con respecto a la presión de succión de diseño del sistema causará una pérdida significativa en la capacidad de enfriamiento del sistema (Btu/h), como se observa en la Fig. 1 Algunos instaladores o técnicos de refrigeración cuando este problema ocurre, por lo general la primera preocupación es la alta presión de descarga del compresor (o presión de condensado), sobre todo en épocas de alta temperatura ambiente (o el verano), pensando que este puede ser el problema de la baja capacidad, se olvidan que un aumento de presión (unas cuantas lb./pg 2) en la descarga, causará una pérdida de capacidad insignificante. Compresores para aplicaciones de Alta Temp, y Aire acondicionado operando con refrigerante R-22, con caídas de presión de succión del orden de 2 psi. sufren pérdidas de capacidad del orden de 4 %, y caídas de 5 a 7 psi. pérdidas en capacidad del 10 % o mas.. La situación se agrava en aplicaciones de media y baja temperaturas de evaporación (congelados), ver Tablas 2 y 3

TABLA 2 Compresor Típico Hermético de un sistema para operar con R-22 a una temperatura de Condensado de 130 °F (54.4 °C), y Temp de Evaporación de 40 °F (4.4 °C)  Aplicación Alta Temperatura Presión de Succión En el Compresor (psig) 68.5 66.5 64.5 62.5

Capacidad Btu/h 32800.0 31350.0 30625.0 28959.0

Pérdida de Capacidad (%) 0 4.4 6.6 11.7

Para más información visite: www.EmersonClimate.com/espanol

TABLA 3 Compresor Semihermético de un sistema para operar con R-22 a una temperatura de Condensado de 120 °F (48.9 °C), y Temp de Evaporación de 40 °F (4.4 °C) Variando la Temp. De Condensado la pérdida de capacidad no cambia significativamente  Aplicación Alta Temperatura Presión de Succión En el Compresor (psig) 68.5 66.5 64.5 62.5

Pérdida de Capacidad (%)

Capacidad Btu/h 265000.0 260000.0 249000.0 240000.0

0 1.9 6.0 9.4

TABLA 4 Compresor Semihermético de un sistema para operar con R-404A a una temperatura de Condensado de 110 °F (43.3 °C), y Temp de Evaporación de -25 °F (-31.3 °C)  Aplicación Baja Temperatura Presión de Succión En el Compresor (psig) 13.0 11.0 7.1

Capacidad Btu/h

Pérdida de Capacidad (%)

60500.0 52500.0 45100.0

0 13.0 25.0

TABLA 5 Compresor Semihermético de un sistema para operar con R-22 a una temperatura de Condensado de 110 °F (43.3 °C), y Temp de Evaporación de -30 °F (-34.4 °C)  Aplicación Baja Temperatura Presión de Succión En el Compresor (psig) 5.0 3.0 1.0

Capacidad Btu/h 18300.0 15000.0 16000.0

Pérdida de Capacidad (%) 0 22 40

Cada compresor dependiendo de su diseño y construcción tiene una holgura o cámara muerta de mayor o menor tamaño arriba del pistón en su punto muerto superior, para evitar que tenga una interferencia con el plato de válvulas. El gas que queda atrapado en esa cámara se encuentra a alta temperatura y

Para más información visite: www.EmersonClimate.com/espanol

presión y nunca puede ser descargado (se comprime y se re-expande continuamente) Cuando el pistón baja en el tiempo de succión o admisión, el gas en esta cámara reexpande, y entre menor sea la presión de succión el pistón bajará mas, antes que cualquier gas pueda entrar al cilindro. Existen adicionalmente otras pérdidas debidas al intercambio de calor por las diferencias en temperaturas, pero la re-expansión es la mayor causa de la bajas capacidad y eficiencia.

EFICIENCIA VOLUMÉTRICA. - RELACIÓN DE COMPRESIÓN.-

La cantidad real (volumen por unidad de tiempo) de gas en metros cúbicos por hora, o pies cúbicos por hora, que bombea realmente un compresor a una determinada presión de succión y una presión de descarga, comparada con el volumen de bombeo teórico interno del cilindro, se denomina Eficiencia Volumétrica. Como ejemplo si un compresor tiene un volumen teórico de 1615 c.f.h. (pies cúbicos por hora, 45.7 metros cúbicos por hora), y debido a su reexpansión solo bobea 1000 c.f.h, su eficiencia volumétrica es de 62.0 % (1000 100 = 62.0%)

/

1615 X

La eficiencia volumétrica de un compresor es función de las presiones, de succión, y de la presión de descarga. Ver Fig. 2. Cuando se determinan estas presiones, deben convertirse a libras por pulgada cuadrada absolutas, ó metros por centímetro cuadrado absolutos, añadiendo 14.7 psi (la presión atmosférica). Ejemplo: Presión de succión de 5 psig + 14.7 = 19,7 psia. Presión de descarga de 185 psig + 14.7 = 199.7 psia 200 psia / 20 psia = 10.0 : 1, se denomina Relación de Compresión Entonces la Relación de Compresión de un compresor, es su Presión Absoluta de Descarga entre su Presión Absoluta de Succión Si la presión de succión se reduce en 9 lb. a 11.0 psia se tiene una Relación de Compresión de 200 psia / 11 psia = 18 : .1 Para lograr la misma relación de compresión de 18 : 1 cambiando la presión de descarga se necesitaría aumentar la presión de descarga a 361.0 psia 361.0 / 20 =18: 1 en este ejemplo se muestra que 1 psi de reducción en la presión de succión, tiene el mismo efecto que una reducción de 16.1 psi en la presión de descarga

Para más información visite: www.EmersonClimate.com/espanol

Curvas Típicas de Eficiencia Volumétrica de Compresores

Fig. 2

25

  n    ó    i   s 20   e   r   p   m 15   o    C   e    d 10   n   o    i   c   a 5    l   e    R

Curva Típica para Baja Temp. Curva para un Compreor Usos Múltiples

Curva Para Aire Acondicionado

0 40

50

60

70

80

Eficiencia Volumétrica en %

El uso del refrigerante R-22 ver Tabla 5, se muestra en aplicación en baja temperatura, una sola etapa de compresión mínimo de -40 °F.. Es difícil de alcanzar una temperara de evaporación -30 °F, ya que solo una caída de presión de solo 2 psi reduce la capacidad en 22 % y a 4 psi de caída de presión se reduce en 40 %, adicionalmente 0.5 psig de presión de succión representa una temperatura de saturación de -40 °F. Si el evaporador opera a 1.0 psig y se tuviese 0.8 psi de caída de presión en la línea de succión, el compresor estaría viendo solamente 0.2 psig, debajo de su presión de operación, aun unas décimas de presión por debajo de lo establecido, significa mucho en la vida del compresor en esas condiciones de operación. El diseño de la línea de succión considerando la caída de presión equivalente a 2 °F (es 0.8 psig), esto significa que todo sistema de succión deberá tener una caída de presión no mayor de 0.8 psi. Por otro lado se requiere tener una velocidad adecuada del gas para retornar el aceite al compresor cuya caída de presión es proporcional al cuadrado de la velocidad del gas e inversamente proporcional al diámetro de la tubería, esta situación es un verdadero predicamento. Como dijimos la presión de descarga no afecta demasiado la capacidad, prácticamente a medida que la presión de descarga aumenta la capacidad del compresor disminuye, y la presión de succión se eleva, y también la habilidad de remover la humedad del aire se disminuye. La eliminación de la humedad es una gran parte de la carga de refrigeración, desde este punto de vista la temperatura ambiente en el condensador puede ser significativa. La temperatura de bulbo húmedo del aire entrando al evaporador representa

Para más información visite: www.EmersonClimate.com/espanol

un gran porcentaje de su carga térmica. Temperatura de bulbo húmedo baja significa baja carga térmica y baja presión de succión, Alta temp. de bulbo húmedo significa una alta carga térmica y una alta presión de succión.  Añadido al problema es la carga de refrigerante en el sistema, la cual puede causar cambios significativos en las presiones del sistema, además amenazar la vida del compresor por retorno de refrigerante en estado líquido. Para obtener una humedad relativa deseada, se puede ayudar a controlar con la diferencia de temperatura del aire de entrada al evaporador, y la temperatura de saturación del refrigerante de acuerdo a la siguiente tabla: Rango de Temperatura °F . 25 a 45 25 a 45 25 a 45 10 ó menor

Humedad Deseada % 90 85 80

TD °F 8 a 12 10 a 14 12 a 16 15 ó menor 

Causas de Baja Presión Tamaño de Componentes equivocados. Excesiva caída de presión en la línea de succión Tubería con trampas innecesarias •

Pérdida de carga de refrigerante



Válvula Termostática mal ajustada, Alto sobrecalentamiento



Filtros Tapados



Caída de Presión en la Línea de succión



Evaporador Pequeño



Ventiladores del evaporador sucios o descompuestos



Evaporador bloqueado



Evaporador con Hielo o sucio





Evaporador internamente con aceite

Por Javier Ortega Julio 4, 2005

Para más información visite: www.EmersonClimate.com/espanol

LA TECNOLOGÍA DEL COMPRESOR SCROLL Y SUS  APLICACIONES EN AIRE ACONDICIONADO, BOMBAS TÉRMICAS Y REFRIGERACIÓN Resumen: El concepto del compresor scroll ha estado disponible por más de cien años. Aún así, el desarrollo de la tecnología del compresor scroll moderno comenzó en la década de los 70. La introducción de máquinas con control numérico proporcionó las bases para la mecanización con la adecuada precisión de los elementos necesarios para que un compresor scroll pudiera operar silenciosa y eficientemente. La tecnología del compresor scroll es ampliamente utilizada en aplicaciones de aire acondicionado y refrigeración. Las aplicaciones scroll cubren un amplio rango de operación usando diversos refrigerantes. La línea más común de compresores scroll va de 1 a 25 toneladas. Generalmente los compresores scroll son de diseño hermético, pero también se producen algunas variantes semiherméticas. La tecnología scroll establece el fundamento tecnológico para compresores silenciosos, confiables y eficientes.

Palabras claves: Ventajas, Geometría, Conformidad, Inyección y Modulación. 1. INTRODUCCIÓN

Desde su introducción al mercado unitario de aire acondicionado a finales de la década de los 80, los compresores scroll han tenido un gran éxito en una amplia variedad de aplicaciones tanto residenciales como comerciales. En aire acondicionado, los compresores más pequeños (de 1 a 6 toneladas) se utilizan en sistemas residenciales, tales como los sistemas de bombas térmicas empleados para calentar o enfriar hogares y negocios. Los compresores más grandes (de 7 a 25 toneladas), se usan en aplicaciones comerciales como enfriadores de líquido (chillers) y en una variedad de sistemas de unidades condensadoras. Los compresores scroll de refrigeración se emplean en una amplia gama de aplicaciones que incluyen: sistemas paralelos para supermercados, tanques enfriadores de leche, transporte automotor de carga refrigerada y contenedores marinos. La tecnología scroll también ha sido exitosamente aplicada en criogenia y gas natural. Una de las razones del amplio éxito de la tecnología scroll es que ésta ha sido diseñada y fabricada a bajo costo, alta eficiencia, y alto volumen. Además, permite desarrollar y producir compresores de más alta eficiencia, teniendo en cuenta el recalentamiento global y los requerimientos de conservación de energía, aspectos cada vez más importantes a considerar por los fabricantes de compresores de hoy. La tecnología scroll ofrece todos los medios para responder satisfactoriamente a estos retos técnicos; proporciona al usuario final un beneficio real en lo que se refiere a eficiencia, confiabilidad, tamaño, peso y bajo nivel de ruido, más allá que otras tecnologías existentes. El uso de mecanismos de conformidad en los compresores scroll ha mejorado su capacidad para manejar refrigerantes líquidos e impurezas presentes en el sistema. Estas características, junto a las mejoras en los dispositivos de protección, desarrollados específicamente para resolver problemas de aplicación en el campo, han permitido el uso del scroll en forma exitosa a nivel mundial tanto en aire acondicionado como en refrigeración. 2. VENTAJAS DEL SCROLL

Los compresores scroll, como otras tecnologías rotativas, requieren pocas partes móviles en comparación con los compresores a pistón. Debido a la baja velocidad de deslizamiento en todos los puntos de contacto, el mecanizado de precisión y las ajustadas tolerancias de los elementos del scroll, es posible usar el contacto físico entre ambas espirales como un sello, lo que elimina la necesidad de usar un gran volumen de aceite como sellador. El contacto físico entre las espirales también tiene la ventaja de eliminar los espaciamientos y reducir las fugas, para que sea posible crear compresores de alto rendimiento con máquinas de menor desplazamiento. Esto está en directo contraste con

Para más información visite : www.EmersonClimate.com/espanol

los compresores a tornillo, donde las superiores proporciones de fuga se compensan usando desplazamientos más grandes. Los compresores scroll son de por sí máquinas silenciosas y de baja vibración. El ruido generado por un compresor scroll es relativamente independiente de la pulsación de gas y está generalmente asociado sólo con los dispositivos mecánicos reales del scroll. Las irregularidades en el mecanismo de los elementos del scroll pueden incrementar los efectos del contacto mecánico durante el funcionamiento. En el caso de compresores scroll para aire acondicionado, no existe válvula de descarga interior, lo cual ayuda a reducir el ruido al eliminar los cambios abruptos de flujo. En los compresores scroll de refrigeración, se usa una válvula para mejorar la eficiencia a bajas condiciones de evaporación, diseñada especialmente para minimizar su impacto sobre ruido del compresor. La vibración del compresor se minimiza con el uso de contrapesos balanceados dinámicamente y al utilizar un proceso de compresión continua, también se minimiza la pulsación de torque asociada. Debido a que dos elementos de precisión del scroll definen completamente el proceso de compresión, no es necesario utilizar una cubierta para ubicar el ensamblaje del scroll en forma precisa dentro del compresor. Aprovechando las ventajas de esta capacidad intrínseca del diseño, las espirales pueden alinearse por sí mismas libremente durante la operación del compresor. A esta capacidad se le denomina conformidad y es de gran importancia para el manejo de refrigerante en estado líquido durante condiciones de inundación y también de las pequeñas cantidades de impurezas que pueden estar presentes en el sistema. Esencialmente, la conformidad permite que las espirales se separen ligeramente ante los excesos de presión asociados con la presencia de un alto volumen de líquido. 3. GEOMETRÍA DE LA ESPIRAL

Las espirales pueden construirse en distintas formas y tamaños. Sin embargo, una geometría de círculos envolventes es ampliamente satisfactoria para el diseño y fabricación de los compresores scroll. Esta geometría ha sido exitosamente aplicada en perfiles de engranajes de dientes y provee el desplazamiento requerido para el rodaje y el deslizamiento. Un perfil específico se define por el uso de un movimiento giratorio de un miembro flexible alrededor de un círculo base para crear un perfil arqueado. Este perfil establece las superficies funcionales que las espirales necesitan. Al aumentar o disminuir el diámetro del círculo base se pueden crear perfiles diferentes y únicos. Si los puntos de partida se escalonan a lo largo del círculo base, se puede generar un espesor de pared. Después de establecer el círculo base y el espesor de pared, todo lo que se requiere es agregar una altura para crear una espiral funcional. Un compresor scroll consta de dos elementos en forma de espiral. Uno estacionario y otro que gira en un movimiento orbitante alrededor del centro del eje motor. Las dos espirales son idénticas y están ensambladas con una diferencia de fase de180º. El movimiento orbital de la espiral giratoria es circular, tiene la misma amplitud que el motor y se mantiene a 180º de diferencia de fase con el uso de un dispositivo antirotación, el cual se conoce generalmente como un típico acople Oldham. La magnitud del movimiento orbital depende del radio del círculo base y el espesor de la pared. Durante el funcionamiento, las dos espirales hacen contacto en varios puntos formando una serie independiente de bolsillos en cada posición del movimiento orbital. Estos bolsillos disminuyen progresivamente de tamaño hacia el centro. El proceso de compresión de un compresor scroll se describe como un proceso de desplazamiento positivo. Este tipo de proceso aumenta la presión del vapor refrigerante, reduciendo el volumen interno de la cámara de compresión mediante un esfuerzo mecánico. Ambos bolsillos sellados, interno y externo, se definen exclusivamente por la geometría del scroll y el movimiento orbital. Por su diseño, el dispositivo de involución en espiral del scroll tiene ya la capacidad incorporada de reducir el volumen y generar así una relación de compresión propia. Durante cada revolución consecutiva del motor, la masa de vapor inicial se mueve hacia el centro por el movimiento giratorio y su volumen se reduce significativamente a medida que se mueve de bolsillo

Para más información visite : www.EmersonClimate.com/espanol

a bolsillo. El proceso de compresión se completa finalmente cuando el refrigerante se comprime a su máxima presión de descarga y es liberado a través de un puerto de descarga. Éste es un puerto común localizado en el bolsillo más profundo formado por los elementos combinados. Como toma varias revoluciones completar este proceso, en realidad existe un proceso continuo de compresión durante la operación. Vea la Figura 1. Figura 1. Cómo Trabaja el Scroll Scroll Fijo Bolsillo de Presión Media

Bolsillo de Baja Presión

Bolsillo de Alta Presión

Puerto de Descarga

4.

Scroll Orbitante

CONFORMIDAD AXIAL Y RADIAL DEL SCROLL

La conformidad se define como la capacidad que permite que las dos espirales del scroll se separen ligeramente en la dirección axial o radial debido a la acción de elevadas presiones o de la presencia de impurezas. La conformidad axial se define en términos generales como la separación de la punta de una espiral, de la base de la espiral opuesta. Hay varios métodos para lograr este tipo de conformidad. Un método es usar sellos para la punta de la espiral. En este caso se le hace una ranura pequeña a lo largo de la punta de cada elemento espiral y luego se inserta un sello flexible en esta ranura. Este sello generalmente está hecho de un material de anillo de pistón y esencialmente realiza la misma función de un anillo de pistón, esto es, cuando las espirales se separan, este sello mantiene el contacto con la base contraria. Con este diseño la fabricación se hace más compleja en los casos en que los perfiles de las espirales son muy anchas. Otra aproximación es aplicar una carga, ya sea a la espiral fija o la orbitante, mediante presión de gas, para mantener sellada la punta y la base de contacto. Un método típico para lograr esto, es permitir un pequeño grado de movimiento axial al scroll fijo, entonces se instala un sello en una cavidad hecho en el scroll fijo; este sello tiene dos propósitos principales: uno es mantener sellados y separados el lado de alta presión (descarga) del lado de baja presión (succión), el otro objetivo es proporcionar la carga de gas requerida para mantener el contacto necesario entre la punta de la espiral y la base. Esto se logra mediante el uso de una cavidad intermedia que se forma bajo el sello después de que éste se inserta en el scroll fijo. Durante la operación, esta cavidad intermedia se presuriza mediante la alimentación de gas a través de un pequeño pasaje que conecta la cavidad y uno de los bolsillos de compresión formado en el scroll. Durante el arranque, el sello está en una posición relajada sin carga, lo que significa que incluso a presiones elevadas de succión el torque es bajo debido a la fuga a través de los bordes. Pero a medida que el compresor alcanza su condición de operación, la presión de la cavidad intermedia crece y carga el ensamblaje de las espirales. El

Para más información visite : www.EmersonClimate.com/espanol

scroll orbitante en este arreglo es soportado por una superficie de propulsión rígida. Esto proporciona una ventaja al reducir la carga real sobre las puntas, necesaria para generar un sello, ya que el buje rígido acomoda el momento lateral del scroll orbitante creado por las cargas tangenciales de gas. Un método de carga de un gas orbitando tendría cargas mayores en los bordes con el propósito de contrarrestar el momento lateral, incrementando así la fricción y reduciendo la eficiencia del compresor. La conformidad axial también proporciona los beneficios de una presión constante de sellado durante la operación y de una carga automática al momento del arranque. Vea la Figura 2. Figure Axial Com pliance Figura 2. 2. Conformidad Axial

Floating Seal Sello Flotante

Espiral Upper  Scroll Superior • (Fixed) (Fija)







constante y uniforme M aMantiene in ta in s Claonpresión st an t, E ve n sobre los bordes de las espirales Pressure On Scroll Tips El sello flotante es la clave: F lo at inOptimiza g S e al la I scarga K e ysobre los bordes • •

Balancea la presión

 – Optim izeslasTip Elimina fugasLo ad in g • •

Tiene un diseño patentado

 – Pr es su re Balan ce d 

Espiral Lower Scroll Inferior (Orbiting) (Orbitante)

• Eliminates Leakage  – Pa te nte d D es ign

La conformidad radial es simplemente la habilidad que tienen los flancos de las espirales de separarse ligeramente en la dirección radial. Esto se logra permitiendo que la espiral móvil se desplace una distancia pequeña en la dirección radial y mediante el uso de un buje descargador en el extremo del eje del compresor. La fuerza centrífuga generada por la masa rotatoria del scroll orbitante crea el sellado de los extremos de ambas espirales. Las fuerzas de gas generadas por el proceso de compresión se oponen a esta carga y son proporcionales al diferencial de presión de operación. Durante la operación normal, la fuerza centrífuga es mayor que la fuerza de gas que mantiene el sello. Al permitir que la espiral se mueva hacia adentro o que "descargue", el conjunto del scroll tiene la capacidad de manipular pequeñas cantidades de impurezas o de líquido adicional. La conformidad radial es un método excelente para asegurar el correcto sellado y proporciona protección contra pequeñas impurezas y refrigerante líquido. Vea la Figura 3.

Para más información visite : www.EmersonClimate.com/espanol

Figura 3. Conformidad Radial Figure 3. Radial Compliance

Debris Impurezas •



Asegura el contacto entre lasScroll espirales Contact • Ensures

• But, AllowsseScrolls Pero, permite que las espirales separen To Separate Sideways



De forma de permitir que impurezas o líquido puedan • Sodaños Debris And Liquid Can  pasar sin provocar

Pass Without Damage

Radial Compliance Conformidad Radial (Desplazamiento)

5. INYECCIÓN DE LÍQUIDO Y DE VAPOR

La inyección de vapor es un método usado para mejorar el rendimiento de los compresores scroll en refrigeración. Incluso puede extender el rango de operación un compresor a más bajos niveles de temperaturas de evaporación. El esquema de inyección de vapor generalmente usado en un scroll en refrigeración consiste de los siguientes componentes básicos: un condensador, un evaporador, un compresor, un intercambiador de calor, un tubo capilar y una válvula solenoide de cierre. Vea la Figura 1. Una pequeña cantidad de refrigerante es removida después del condensador y luego es circulada a través de un lado de un intercambiador de calor. Este refrigerante se inyecta entonces en el compresor scroll como un vapor saturado. La cantidad de refrigerante inyectada se determina por la diferencia entre la presión del condensador y la presión del bolsillo del scroll, así como por el diámetro del tubo capilar. El refrigerante restante del condensador circula a través del otro lado del intercambiador de calor antes de ser expandido y entrar al evaporador. Al circular a través de un intercambiador de calor, el refrigerante que entra en el evaporador es subenfriado y por lo tanto se obtiene un incremento en el efecto frigorífico obtenido. La entalpía del líquido refrigerante subenfriado h sc, en KJ/Kg, puede calcularse por la ecuación siguiente: hsc = hcon - Cpr (Tcon - Tsc)

(1)

donde: hcon = entalpía del refrigerante líquido saturado a la temperatura de condensación (KJ/Kg). Cpr  = calor específico del refrigerante líquido a presión constante (KJ/Kg º C). Tcon = temperatura de saturación del refrigerante líquido a la presión de condensación (° C). Tsc = temperatura del refrigerante líquido subenfriado (º C). Esto produce un aumento en la capacidad de enfriamiento del sistema. También hay un ligero aumento en el consumo de potencia del compresor, debido al aumento del trabajo al comprimir el refrigerante inyectado adicionalmente. Sin embargo, el efecto neto logrado es un aumento tanto en la capacidad como en la eficiencia del compresor. Hay otras ventajas que ofrece la inyección de vapor, además de una ganancia en eficiencia neta. El aumento de capacidad es mayor a temperaturas de evaporación más bajas y a más altas temperaturas de condensación. Esto está de acuerdo con los requerimientos de la mayoría de los sistemas de

Para más información visite : www.EmersonClimate.com/espanol

refrigeración. Como el esquema de inyección de vapor puede detenerse, cerrando la solenoide que habilita el paso del líquido que se expande a uno de los lados del intercambiador, también permite el potencial de proveer modulación, es decir, aumentar o disminuir la capacidad en función de la demanda. La inyección de vapor también proporciona la habilidad de extender el rango de operación, enfriando el compresor con el refrigerante inyectado. Vea la Figura 4.

Figura 4. Puertos Internos de Inyección Figure 4. Mid-Compression Injection Ports

Puntos de Inyección Injection Points

Espiral Fixed Fija Scroll



Low Temp. Safety Operación segura a bajas temperaturas de evaporación





Inyección en medio del proceso de compresión Injects into Middle of 



 No genera pérdida de capacidad Compression Process







Incrementa la capacidad y mejora la eficiencia

No Performance Loss with Liquid



Vapor enhances overall performance by increased capacity

Orbiting Espiral Scroll

Móvil

Otro método para extender el rango de operación a más bajas temperaturas de evaporación es usar un esquema de inyección de líquido. Este esquema generalmente consiste de cuatro elementos: el compresor, el condensador, el evaporador y un tubo capilar con un solenoide, para cortar la inyección cuando el compresor se detiene. Un método alternativo en lugar de un tubo capilar para controlar la inyección, es una válvula controlada por la temperatura de la descarga. En estos casos, una pequeña conexión va de la línea líquida del condensador a un tubo capilar o a una válvula controlada por la temperatura. La válvula o el tubo capilar están unidos directamente al puerto de inyección del compresor. Una pequeña cantidad de refrigerante se toma desde la línea de líquido y hará las veces de masa de inyección. Como en el proceso de inyección de vapor, esta masa de inyección está directamente relacionada con la diferencia de presión entre el condensador y la presión del bolsillo de intermedio del scroll, y con el diámetro del capilar de inyección y de la tubería de los pasajes internos del scroll por donde se inyecta esta masa. Aquí también se observa un ligero aumento en la potencia consumida por el compresor, debido al aumento de trabajo al comprimir el refrigerante inyectado adicionalmente. Sin embargo, el efecto neto es el enfriamiento del gas de la descarga suficientemente, de manera de permitir la operación a las más elevadas relaciones de compresión hallados comúnmente a las condiciones de bajas temperaturas de evaporación y de elevadas temperaturas de condensación. Tanto la Inyección de Líquido como la Inyección de Vapor emplean puertos de inyección intermedia dentro del scroll. 6. MODULACIÓN

Hay varios métodos para lograr la modulación en un compresor. Un método ya discutido es la inyección de vapor. Existen tres formas comunes de modulación, ellas son: velocidad variable, modulación mecánica y succión variable. La modulación de velocidad variable requiere del uso de un motor trifásico de inducción de velocidad variable y también requiere de un regulador que se una al sistema de tal forma, que pueda ajustar la velocidad del motor con precisión para alcanzar los requerimientos de

Para más información visite : www.EmersonClimate.com/espanol

capacidad (demanda del sistema), puesto que la capacidad es directamente proporcional a la velocidad del motor. También se necesitan otras modificaciones en el compresor scroll: una es aumentar o reforzar la conformidad radial para permitir que la estructura del scroll se ajuste a las diferentes velocidades del motor manteniendo el sellado requerido; otra es una bomba de aceite para mantener la lubricación apropiada de los bujes o rodamientos y las superficies en contacto, y finalmente en con junto con la anterior, un sistema de lubricación mejorado para acrecentar el flujo y el retorno interno de aceite. La modulación mecánica se lograr separando el scroll fijo y el orbitante en dirección axial. Esto genera un patrón de fuga que disminuye la capacidad del compresor, la disminución de capacidad es proporcional a la duración de la separación. Esta separación se logra físicamente con el uso de un pistón de elevación dentro de una tapa sobre el puerto de descarga (alta presión). La tapa tiene un volumen adicional que actúa como la cámara de un pistón, por lo queda una pequeña distancia entre el pistón y el tope de su cámara. Bajo circunstancias normales, la presión por encima y por debajo del pistón se iguala usando un pequeño pasadizo en el propio pistón. Sin embargo, cuando se requiere modulación de capacidad, hay una gran liberación de presión fuera del tubo que se localiza sobre el área del pistón y se fuga a la línea de succión que se abre a través de una válvula solenoide. A medida que la presión sobre el pistón disminuye, el pistón es empujado hacia arriba a la cámara extendida, esta acción levanta el scroll fijo causando la separación y la consecuente fuga, y además reduciendo el flujo de masa y la capacidad. El método de succión variable es similar en concepto al esquema de modulación mecánica. En este caso, sin embargo, en lugar de crear una separación forzada entre las espirales para disminuir el flujo de masa y la capacidad, la masa de succión inicial se disminuye liberando o dando salida a un porcentaje del gas del bolsillo inicial de succión. Esta liberación es controlada por una válvula de solenoide y un pasadizo que va hacia el bolsillo de succión. El efecto global de la eliminación de un porcentaje del gas del bolsillo inicial de succión es una reducción en la capacidad. 7. DIFERENCIAS DE DISEÑO EN EL SCROLL PARA REFRIGERACIÓN Y PARA AIRE ACONDICIONADO

Debido a que los scroll de refrigeración operan sobre un más amplio rango de temperaturas y relaciones de compresión, existen algunas diferencias de diseño entre un scroll de refrigeración y uno de aire acondicionado. La temperatura de descarga no es el único problema que se puede encontrar a bajas temperaturas de evaporación y a elevadas temperaturas de condensación. También hay relaciones de presión significativamente más altas, las cuales pueden causar un aumento del estrés sobre los elementos del scroll. Estos aumentos de la proporción de compresión también pueden afectar el puerto de descarga, generando un flujo de retorno hacia el scroll que puede afectar el consumo de energía significativamente, ya que produce la recompresión de una porción del gas de descarga. Una de las modificaciones incorporadas al scroll de refrigeración es el “mecanizado especial para elevadas relaciones de compresión” (HCR). El mecanizado especial genera un fuerte incremento de la fuerza e incluso una reducción en el volumen final de descarga, lo que provoca un aumento en la relación de volumen e inherentemente en la relación de compresión. Vea la Figura 5.

Para más información visite : www.EmersonClimate.com/espanol

Figure High Compression Ratio Scroll Form Figura 5. 5. Mecanizado para Altas Relaciones de Compresión

Fixed Scroll Scroll Fijo

Scroll Orbiting Móvil Scroll Geometría Especial Para Special HCR Internal Geometry Relaciones Elevadas de Compr esión

Figura 6. Válvula de Descarga Dinámica Figure 6. Dynamic Discharge Valve





 

Mejora la eficiencia

Improves Efficiency

Menor diferencia de presión que la Has a Lower Pressure válvula reciprocante Difference Than

Su mal funcionamiento no para la Reciprocating Type Discharge operación del compresor



Valve 

Malfunction Does Not Stop Compressor Operation

Otra modificación es el uso de una válvula dinámica de descarga para controlar el reflujo. Esta válvula se diseña para reducir el reflujo sin crear restricciones u obstrucciones adicionales en la vía y se combina con un puerto de dimensiones reducidas para las condiciones de bajas temperaturas de evaporación y el flujo de baja masa resultante. Vea la Figura 6. Adicionalmente, tal y como se discutió anteriormente, el uso de los esquemas de inyección de vapor y de inyección de líquido normalmente se usan para aumentar el rango de operación. La inyección de vapor y de la inyección de líquido también crean la necesidad de usar conexiones externas, tubería interna adicional y puertos de inyección.

Para más información visite : www.EmersonClimate.com/espanol

8. RENDIMIENTO Y NIVEL DE RUIDO

Existen dos métodos para entender las comparaciones de rendimiento entre compresores: eficiencia volumétrica y eficiencia isoentrópica. Las definiciones se detallan a continuación: Eficiencia Volumétrica =

volumen del flujo de succión que entra Desplazamiento del compresor

Eficiencia Isoentrópica =

potencia ideal aplicada para comprimir el gas Potencia eléctrica aplicada

(2) (3)

Los compresores scroll tienen una ventaja inherente de un 5 a un 10% de rendimiento por encima de los compresores rotativos a pistón. Esto se manifiesta en una reducción de las fugas de gas y de las pérdidas de flujo. Un compresor scroll en general tiene casi cero fugas de gas, comparado con una máquina rotativa con holgaduras fijas de operación. Además, para un compresor rotativo estas holgaduras aumentarán con el tiempo, a medida que sus componentes se desgastan. Los compresores scroll mantienen su capacidad de sellado durante el funcionamiento normal, ya que las partes apare jadas se desgastan juntas en su encastre, es decir, se acoplan entre ellas con el uso. Para los compresores scroll de aire acondicionado, las pérdidas de fluido también se reducen, debido a la ausencia de válvulas en la succión y en la descarga. En los compresores scroll de refrigeración, el uso de una válvula para relaciones de compresión por encima de 5 también manifiesta una mejora significativa en la eficiencia volumétrica, la cual compensa las pérdidas inherentes de fluido asociadas a la válvula. Otro efecto de la válvula de descarga y el puerto menor es la disminución de la recompresión de gas, lo que produce un menor intercambio de calor entre el gas de la descarga y de la succión, ayudando a crear una curva plana de eficiencia volumétrica. Los compresores scroll también experimentan mayores cargas en los rodamientos que los compresores rotativos, generalmente en el orden de 15 a 30%. Existe incluso un incremento de las cargas de fricción relativas con respecto a un compresor rotativo, debido al contacto entre las espirales del scroll y el empuje axial. En conjunto, esto conduce a una pérdida superior por fricción en el orden del 1 al 2% . Los compresores scroll funcionan generalmente mejor en aplicaciones de refrigeración que algunos compresores semiherméticos. Sin embargo, el rendimiento del compresor scroll puede presentarse en desventaja en relación al compresor semihermético de alta eficiencia. A elevadas relaciones de presión el compresor semihermético a pistón es mejor. La inyección de vapor puede usarse para me jorar el compresor scroll y el rendimiento del sistema, al proporcionar al líquido mayor subenfriamiento. Esta mejora del rendimiento puede igualar generalmente la elevada eficiencia de los compresores semiherméticos en las mismas condiciones de operación. A más bajas temperatura de condensación, las ventajas inherentes de las bajas fugas de gas y pérdidas de fluido permiten al scroll desempeñarse mejor hasta que el compresor semihermético de alta eficiencia. Para las aplicaciones de aire acondicionado, los compresores scroll ofrecen algunas ventajas intrínsecas, al reducir los niveles de ruido y vibración. Con la ausencia de válvulas dinámicas y un proceso de flujo casi continuo, hay una contribución mínima de las pulsaciones de gas al ruido del compresor. En los compresores rotativos, grandes pulsaciones de gas dan contra la carcaza, lo cual irradia ruido adicional. En los compresores scroll, la mayor contribución de sonido es el contacto mecánico entre los elementos. El nivel de sonido de un compresor rotativo y uno scroll del mismo tamaño es comparable. Sin embargo, un compresor scroll a menudo puede ser de 3 a 8 dBA más silencioso que un compresor semihermético. Para los compresores scroll de refrigeración la situación es algo diferente, ya que existen ambos efectos, el del ruido mecánico y el del ruido de gas generado por la válvula y el puerto. A menudo el ruido de gas se reduce internamente con el uso de un silenciador especialmente diseñado.

Para más información visite : www.EmersonClimate.com/espanol

La vibración asociada a un compresor scroll es generalmente muy baja. El proceso de flujo continuo baja significativamente la vibración de torsión experimentada por el compresor. Combinando esta vibración de baja torsión con el uso de contrapesos dinámicamente balanceados que compensan la rotación interna de los elementos, se pueden alcanzar niveles de vibración estables de menos de las 50 micrones. 9. CONSIDERACIONES DE APLICACIÓN

Tal como se estableció previamente, los compresores scroll son ampliamente utilizados en aire acondicionado y refrigeración. Aunque no es la intención de este documento considerar todas las posibles aplicaciones, hay ciertos lineamientos importantes a considerar cuando se diseña un sistema. Como protección de temperatura, generalmente se recomienda usar un termostato de línea de descarga que detenga el compresor si la temperatura de descarga sobrepasa ciertos límites. Algunos modelos de compresor traen un dispositivo interno de temperatura de descarga de manera estándar. Generalmente los compresores scroll son fabricados con protección interna del motor o con un módulo de protección de control externo. Los módulos de control externos normalmente actúan en base a la variación de la resistencia de una cadena de termistores localizada en el motor, la cual puede estar en serie o en paralelo. Los estándares de regulación de seguridad locales generalmente exigen control y corte por alta presión. En EE.UU., Underwriter Laboratories (UL) requiere el corte mecánico por alta presión. Los compresores scroll también pueden tener aplicación en una variedad de unidades de múltiples compresores, como los tándem y los sistemas paralelos. Una consideración importante a tener en cuenta, cuando se usan compresores scroll en estos tipos de aplicaciones, es el sistema de lubricación. Los diseños típicos en tándem incluyen tubos de ecualización de aceite para mantener los niveles de aceite apropiados. Para las aplicaciones de sistemas paralelos, se usan generalmente dispositivos electrónicos de control del nivel de aceite. En ambos casos, ciertas consideraciones de diseño del sistema, como el tamaño del separador de aceite, recipientes de aceite, válvulas de corte del flujo de aceite de retorno cuando el compresor no está operando, entre otras, pueden proporcionar protección extra y vida adicional a los compresores instalados, aumentando así la vida del sistema. Una consideración adicional en el diseño de sistemas es la manipulación de impurezas y humedad que puede mejorar significativamente la vida del sistema y del compresor. 10. FUTURO DEL SCROLL Y DE LOS REFRIGERANTES ALTERNATIVOS

Basados en el éxito del compresor scroll durante la última década, el futuro de este tipo de compresor en todos sus tamaños es en extremo brillante. El rendimiento del scroll y su bajo nivel de ruido han demostrado que él es claramente superior a otras tecnologías en aire acondicionado y, con algunas mejoras de eficiencia adicionales, también en refrigeración. El scroll es comparable a los compresores semiherméticos de alta eficiencia de hoy. Los compresores scroll ofrecen una amplia variedad de opciones en la modulación de capacidad y en esquemas mejorados de inyección de vapor, que pueden proporcionar un incremento en la eficiencia del compresor y del sistema. Esto es cada vez más importante para cumplir con los requerimientos futuros de conservación de energía y las obligaciones globales para reducir las emisiones de anhídrido carbónico. Adicionalmente, la tecnología scroll ofrece la mejor opción para diseñar y fabricar en el futuro compresores más silenciosos y confiables. Una ventaja adicional para los compresores scroll en el futuro es el uso creciente de R-410A. El scroll se ajusta naturalmente a este tipo de refrigerante. Los compresores scroll poseen una mayor eficiencia isoentrópica con R-410A y son más silenciosos. Incluso comparados con los compresores

Para más información visite : www.EmersonClimate.com/espanol

alternativos a pistón con R-22 actuales, resultan ser más silenciosos hoy; los compresores reciprocantes equivalentes demuestran ser entre 6-8 dBA más ruidosos. Los compresores scroll específicamente diseñados para el refrigerante R-410A están demostrando ser tan confiables como los compresores scroll de hoy en día. BIBLIOGRAFÍA:

Elson, J.P., Hundy, G.F. y Monier, K.J. “Scroll Compressor Design and Application Characteristics for Air Conditioning, Heat Pump and Refrigeration Applications.” Proceedings of the Institute of Refrigeration, 1990-91. Hundy, G.F. y Kulkarni, S. “The Refrigeration Scroll and its Application.” Proceedings of the Institute of Refrigeration, 1996-97. Wang, S.K. “The Handbook of Air Conditioning and Refrigeration.” McGraw Hill, Inc. Incropera, Frank P. y DeWitt, David P. “Fundamentals of Heat Transfer” John Wiley and Sons. Zucker Robert D., “Fundamentals of Gas Dynamics” Matrix Publishers, Inc.

Para más información visite : www.EmersonClimate.com/espanol

Retorno de Refrigerante Líquido Una de las Causas Más Frecuentes de Falla

Es cierto que el compresor falló, pero la causa de raíz que generó el problema está en el sistema y continuará allí, aún después de haber sido reemplazado el compresor dañado. Lo peor es que hasta tanto no se efectúen las correcciones necesarias, las fallas se repetirán. Revisaremos a continuación los efectos del retorno de refrigerante líquido en compresores Scroll y Reciprocantes, además de como prevenirlo.

Efecto del Retorno de Refrigerante Líquido en Compresores Scrolls

Este fenómeno se manifiesta cuando el refrigerante retorna al compresor sin haberse evaporado totalmente. En sistemas de aire acondicionado del tipo Bomba de Calor, algo de retorno de refrigerante líquido podría ser aceptable siempre y cuando este sea mantenido bajo control mediante un acumulador de succión. No importa cual sea la capacidad que un compresor Scroll tenga para manejar refrigerante líquido, siempre será necesario mantener una película lubricante de viscosidad adecuada entre superficies móviles en contacto, ya sea en los bujes o entre el borde de una espiral y la superficie opuesta en contacto para evitar desgastes prematuros y sus consecuencias. Las posibles causas del retorno de refrigerante pueden ser: 1. Exceso de Carga de Gas Refrigerante 2. Flujo de Aire Inadecuado a través del Evaporador 3. Ajuste o Selección Incorrecta del elemento de expansión. Cualquiera de estas causas puede hacer que el refrigerante líquido que regresa al compresor como consecuencia de ellas, diluya el lubricante hasta el punto de afectar la resistencia de la película lubricante, generándose desgastes prematuros en las espirales como los mostrados en las fotos que acompañan este artículo. El enfriamiento del compresor es una consecuencia secundaria del retorno de refrigerante líquido, lo cual propiciará la migración de gas refrigerante durante los períodos de parada. Este efecto traerá aparejado arranques inundados con serios riesgos de golpes de líquido, acortando la vida útil del compresor.

Para más información visite: www.EmersonClimate.com/espanol

Los compresores Scroll de Copeland tienen tres partes móviles que son afectadas por el retorno de refrigerante líquido. El eje, el manguito conductor y la espiral móvil. El retorno de refrigerante líquido causa marcas evidentes en los bordes de la espiral. El líquido refrigerante "lava" la película lubricante que separa superficies móviles, lo cual genera roce y desgaste.

El retorno continuo de refrigerante líquido erosionará el borde de las espirales.

El puerto de descarga en un compresor Scroll se encuentra en el centro de las espirales. Allí, una pequeña porción de la involuta de la espiral no tiene contacto con la espiral opuesta. Esta pequeña porción no mostrará desgaste como el resto del borde la espiral, lo cual indica la cantidad de material desprendido y arrastrado por el retorno de refrigerante líquido . Manguito y Buj es

El manguito conductor se instala en el extremo del eje, dentro del buje conductor debajo de la espiral móvil. Esta es una vista de la superficie del manguito desgastada debido a la lubricación deficiente causada por la dilución de la película lubricante.

El buje conductos está soportado en acero y bronce, el cual es cubierto por una capa de "Teflon" que hace las veces de lubricante en condiciones exigidas de lubricación.

En este caso, el bronce se hace visible debido a que parte de la cubierta de "Teflon"ha sido desprendida debido al desgaste.

Para más información visite: www.EmersonClimate.com/espanol

Si el retorno de refrigerante líquido continúa, la capa de "Teflon" desaparece por completo, dejando el bronce al descubierto.

 Aquí el desgaste es mucho más severo y puede ocasionar un funcionamiento ruidoso. Si el retorno de refrigerante continúa, el desgaste alcanzará la superficie del alojamiento donde el buje está instalado y provocará finalmente una rotura.

Efecto del Retorno de Refrigerante Líquido en Compresores Reciprocantes

Existen más superficies cargadas y partes móviles afectadas por el retorno de refrigerante líquido en este tipo de compresores. Este es un ejemplo de desgaste en la superficie de una biela en contacto con el cigüeñal. Puede observarse el desprendimiento de material causado por la dilución de la película lubricante y el arrastre de material debido al retorno de refrigerante líquido. Este es un típico ejemplo de un alojamiento de perno de pistón en una biela. El desgaste a ovalizado el alojamiento, el compresor se vuelve ruidoso e ineficiente, ya que el pistón no puede completar su carrera adecuadamente y deja gas atrapado dentro del cilindro.

Junto con el alojamiento, el perno de pistón también se desgasta

 Aquí se muestra el desgaste en el área del cigüeñal en

Para más información visite: www.EmersonClimate.com/espanol

contacto con el buje principal. Durante un retorno de refrigerante líquido, esta área del cigüeñal es la que menos lubricación recibe, ya que es la que se encuentra más alejada del punto desde donde el lubricante es tomado del cárter.. Si el cigüeñal se desgasta, el buje principal también lo hace, hasta que el rotor instalado en el extremo del cigüeñal toca al estator, lo cual genera que el compresor falle eléctricamente (compresor a tierra).

Sobrecalentamiento - Medición

El sobrecalentamiento es la diferencia entre la temperatura medida sobre la tubería de succión y la temperatura de saturación correspondiente a la presión de succión. La medición del sobrecalentamiento es clave para determinar si existe líquido refrigerante retornando al compresor, mientras éste está operando. Ejemplo Práctico

Para más información visite: www.EmersonClimate.com/espanol

IMPORTANCIA DEL SUBENFRIAMIENTO DE LÍQUIDO Se define como Subenfriamiento de Líquido en un sistema, al valor de temperatura (°F ó °C) de un refrigerante en estado líquido al quitarle calor sensible a partir de su punto de 100 % de saturación Empieza dentro del Condensador con líquido 100 % saturado, hasta el Dispositivo de Control de Líquido. Ver Fig 1.

Subenfriamiento • Se Remueve Calor del refrigerante Líquido, que Causa que su Temperatura Disminuya Abajo de su Temperatura de Saturación • La Tabla P/T no se aplica, la temperatura se disminuye sin disminuir su presión.

Subenfriamiento Ejemplo: Condiciones R-22 ; 280.0 PSIG

Temperatura de la Línea = 120 °F 120 °F

280 psig

De la Tabla a 280 psig 125 °F La Temperatura de la Línea = 120 °F 5 °F

El Refrigerante está Subenfriado 5 °F

Fig # 1. Una vez que el vapor saturado dentro del Condensador comienza a cambiar de fase a liquido saturado, el subenfriamiento empieza a ocurrir y calor sensible se rechaza, Recordar que Calor Sensible es calor que causa un cambio de temperatura, por lo que una disminución en temperatura de líquido saturado en el condensador se considera subenfriamiento Consideraremos dos tipos de Subenfriamientos A.- Subenfriamiento en el Condensador, y B.Subenfriamiento total. SUBENFRIAMIENTO EN EL CONDENSADOR. El subenfriamiento del líquido dentro del condensador, puede ser determinado mediante la diferencia de temperatura de condensado, y la del líquido a la salida del condensador. Cuando el refrigerante es subenfriado no tiene perdida en su presión de vapor, por lo que tabla (para cada refrigerante en particular) de la relación P/T presión y temperatura, no es aplicable, ver Fig. # 1. La temperatura de líquido a la salida del condensador debe ser medida mediante un termistor, ó un termocople para obtener una buena precisión. Por otro lado la temperatura de condensado debe ser obtenida mediante la medición con un manómetro la presión de condensado del sistema de refrigeración, y con este valor de presión determinar la temperatura en la tabla P/T, ya qué en condición de saturación existe la relación P/T presión y temperatura. Ejemplo # 1 Determinar el subenfriamiento en el condensador si la presión de descarga es 211.0 psig y la temperatura del refrigerante tomada con termistor en el tubo de salida del condensador es 95.0 °F (35.0 °C) (despreciar la caída de presión en el condensador). De la Tabla del refrigerante R-22, a 211.0 psig corresponde una temperatura de condensación de saturación de 105 °F por lo tanto.

Para más información visite : www.EmersonClimate.com/espanol

Temp de condensado Temp. de salida del condensador Subenfriamiento en el condesador

= 105 °F = 95 °F 10 °F

EL SUBENFRIAMIENTO TOTAL,: Abarca desde el subenfriamiento del condensador con 100 % líquido saturado hasta el dispositivo del control de líquido del sistema (válvula de expansión, tubo capilar, etc.), esto significa que el subenfriamiento total se incluye el del condensador, y el de cualquier otro subenfriamiento que tenga lugar después de este, se puede subenfriar en el recibidor, en el filtro secador, tubería o línea de líquido, etc. hasta el dispositivo de control de líquido. En el caso de tubo capilar como elemento para la regulación del flujo de líquido en el sistema, su funcionamiento es complejo y depende del subenfriamiento de liquido en su entrada, el subenfriamiento continua a todo lo largo del tubo capilar, por simplificación se supone que el subenfriamiento termina a la entrada del tubo, en servicio es muy difícil medir al temperatura a la salida del tubo. El cálculo del Subenfriamiento Total se hace restando la temperatura a la entrada del elemento regulador de flujo de la temperatura de condensado (de saturación) Ejemplo # 2 Cual es el subenfriamiento total, si la presión de descarga en un sistema con refrigerante R-22 es 226.0 psig, y la temperatura del refrigerante tomada con termistor o termopar en la entrada de una válvula de expansión es de 90.0 °F. De la Tabla del refrigerante R-22, a 226.0 psig corresponde una temperatura de condensación de saturación de 110 °F. Por lo tanto Temp de condensado = 110 °F Temp. entrada en la válvula de expansión = 90 °F Subenfriamiento Total 20 °F NOTA: Cuando se mida la temperatura a la entrada de una TXV, colocar en el tubo de líquido el termómetro o termocople de 5 a 8 cm. de ella y aislar el sensor de cualquier ganancia de calor ambiental. El subenfriamiento en el condensador nos asegura la existencia de líquido en la parte baja a la salida del condensador, en tal forma que el recibidor o la línea de líquido no se alimenten con vapor refrigerante. Esta situación también prevé que los gases no condensables salgan del condensador. Este subenfriamiento en conjunción con la presión de descarga en el condensador nos indica la cantidad de carga de refrigerante en el sistema (el fabricante del condensador deberá indicar el grado de subenfriamiento permisible, cuando un sistema de refrigeración o aire acondicionado se carga de refrigerante bajo este procedimiento) Un alto grado de subenfriamiento en el condensador indica que está inundado de refrigerante, su area efectiva de de disipación de calor se reduce y su presión será alta, con la consecuente perdida de capacidad del sistema (un aumento del 10 % en la presión de descarga de un compresor, causa un detrimento en su capacidad aproximadamente de un 10 %, con una baja en consumo potencia de solo un 7 %, por lo que también baja la eficiencia). Si se tuviera un sistema con un exceso de refrigerante. en el que se requiriera un enfriamiento de X Btu, este exceso se alojaría en la descarga en el condensador (o recibidor), a su vez este exceso disminuiría el área de disipación de calor del condensador, disminuyendo su capacidad, por lo que para enfriar los X Btu se requeriría mas tiempo de operación del compresor que nos costaría $ pesos, mas la ineficiencia con un mayor consumo eléctrico otros $ pesos. El subenfriamiento en el condensador nos determina con precisión la carga correcta de refrigerante en un sistema. Cero subenfriamiento en el condensador nos indica que al sistema le falta refrigerante, y se formaran burbujas de vapor en la línea de líquido. Un subenfriamiento elevado en el condensador nos causa altas pérdidas económicas y costos de operación (y elevación de la presión de descarga). Es necesario tomar en cuenta que cuando la temperatura ambiente sube, el valor del subenfriamiento en el condensador baja. (en el extremo pudiéndose quedar sin refrigerante líquido) Y viceversa cuando la temperatura ambiente baja el valor del subenfriamiento sube (existiendo mayor cantidad de líquido en el condensador).

Para más información visite : www.EmersonClimate.com/espanol

La caída de presión en la línea de líquido es causada por cualquier elemento restrictivo, incluyendo filtros secadores, válvulas, mirillas, líneas estranguladas, curvas torcidas, etc. También caídas de presión debido a longitud de la tubería, tuberías verticales para subir el refrigerante, pendientes incorrectas, etc. Entre mayor sea la longitud, y mayor el número de codos y curvaturas en la línea de líquido, mayor es la caída de presión. Si no hubiese subenfriamiento, el líquido saturado del condensador pasaría a través de estas caídas de presión, tendería a establecer una más baja temperatura de saturación de acuerdo a su menor presión, liberando su calor sensible, ocasionando la transformación del refrigerante liquido saturado a vapor. En otras palabras al bajar la presión del líquido saturado, inmediatamente se evapora, el calor necesario para esta evaporación es tomado del líquido el cual baja su temperatura a su nueva condición de saturación. Esta situación se refiere a Enfriamiento Adiabático ya que no hay una ganancia de energía en el líquido, ya que la energía para evaporar el líquido proviene del mismo líquido... SUBENFRIAMIENTO TOTAL

Condensador Enfriado con Aire

FLUJO

      O       J       U       L       F

Vapor Refrigerante Sobrecalentado

Vapor 100 % Saturado

Recibidor 

Liquido con mas grados de Subenfriamiento

Liquido con pocos grados de Subenfriamiento

SUBENFRIAMIENTO DEL CONDENSADOR

Fig. # 2 Siempre que líquido saturado pasé a través de una caída de presión en la línea de líquido, se evaporará instantáneamente y en consecuencia causará un detrimento en el funcionamiento del sistema. Los dispositivos para la regulación del flujo de líquido en el sistema experimentan en su entrada una mezcla de líquido y vapor en vez de liquido solamente. La mezcla líquido – vapor del refrigerante disminuye la capacidad del sistema, además de un funcionamiento errático. La Caída de Presión se debe a dos situaciones: La caída de presión debido a la Fricción en los deferentes elementos tales como: longitud y diámetro de tuberías, filtros, secadores, codos, curvas, restricciones, etc. esta pérdida de presión o de carga se estima de acuerdo a la siguiente relación 2

H ∝ f l/d x v /2g es proporcional a la longitud “l” de la tubería, inversamente a su diámetro “d”, y proporcional a la velocidad promedio del refrigerante “v” al cuadrado. La pérdida de energía del fluido debido a estas fricciones causa la perdida de presión, que origina la ebullición instantánea del refrigerante. Tamaños adecuados de tuberías, filtros limpios que no estén tapados, accesorios sin obstrucciones, disminuyen las caídas de presión. .

Para más información visite : www.EmersonClimate.com/espanol

Caída de Presión Estática Ocurre cuando el refrigerante en la tubería tiene que ascender a una altura determinada Supongamos se tiene un sistema operando con refrigerante R-22 con una temperatura de condensado de 105 °F (40.5 °C), que le 3 corresponde una presión de 210.75 psig, Su densidad = 70.472 lb/ft (1.131 gr./cm3). Esto es equivalente a una pérdida de presión de 0.489 psi por cada pie de altura. Si se tuviese una altura 20 ft. (6.1 m.), se tendría una pérdida de presión de 10 psi., que en términos de subenfriamiento significarían una disminución de 4 °F (2.22 °C). Si en la parte inferior del tubo se tuviese un subenfriamiento de 4 °F, en su parte superior el refrigerante estaría en ebullición, convirtiéndose en vapor, causando la falta de operación de la válvula de expansión y del sistema

Refrigerante R-22 R134a

 Alt ura

 Altura Vertical (ft) 20 40 60 80 100 Pérdida de Presión Estática (psi) 10 20 30 40 50 11 22 33 44 55

Lo anterior nos muestra la importancia de tener un grado de subenfriamiento de un valor tal que nos asegure liquido subenfriado en el dispositivos para la regulación del flujo de líquido del sistema (válvula de expansión, tubo capilar, etc). El grado de subenfriamiento en el condensador no debe excederse a un valor tal que se inunde de refrigerante el condensador, con el consecuente aumento de presión, la pérdida de capacidad (Btu/h), y pérdida de eficiencia del sistema, por lo qué la carga de refrigerante del sistema debe controlarse y medirse correctamente para no tener los problemas mencionados. La utilización de un intercambiador de calor de Emerson Climate Technologies “ALLS Series Liquid Line Stabilizer” funciona para asegurar un flujo consistente de refrigerante liquido en la válvula de expansión o dispositivo de control que se use . Es deseable tener un valor positivo de subenfriamiento total en la entrada del dispositivo de medición de flujo, ya que por cada grado de aumento de temperatura se tiene también un aumento en la capacidad y eficiencia del sistema de enfriamiento. La fórmula para determinar el aumento de capacidad en el evaporador de un sistema, es Q’ A x F A x ∆t + Q’ A = Q A donde Q’ A = Btu /h a cero grados de subenfriamiento F A = Factor de aplicación, Alta Temp = 0.009; Media Temp = .0.007; Baja Temp = 0.006 ∆t = Grado de subenfriamiento en °F a la entrada de dispositivo de control Q A = Btu /h con el subenfriamiento deseado Nota: La demostración de esta fórmula se presenta en otro reporte técnico Ejemplo # 3: Se tiene un sistema de refrigeración de 63500 Btu/h en alta temperatura y cero grados de subenfriamiento. ¿Cuál seria la capacidad de refrigeración con 8 °F de subenfriamiento?

 Aplicando la fór mula = 63500.0 x 0.009 x 8 + 63500 = 68072 Btu/h Por Ing. Javier Ortega C 21 de febrero de 2005.

Para más información visite : www.EmersonClimate.com/espanol

TEMPERARTURA DE DESCARGA EN COMPRESORES Dentro del medio de la refrigeración y aire acondicionado, la falla más frecuente de los compresores es la de Alta Temperatura de Descarga, en este artículo se trata de describir las principales razones de este problema. La temperatura de descarga en un compresor, se ve prácticamente afectada por casi todos los elementos y parámetros de un sistema, inclusive el refrigerante que se utilice. La temperatura es el resultado de la generación de calor del compresor, el cual es inevitable. Todos los procesos termodinámicos producen calor en forma natural, en el compresor es debido principalmente a la fricción de sus partes, y a la energía de compresión del refrigerante. Puesto que el punto mas caliente de un sistema de refrigeración es en el puerto de descarga del cilindro del compresor, el efecto de la alta temperatura es la pérdida de viscosidad o rompimiento molecular del aceite, las cuales causan entre otros, la carbonización del plato de válvulas del compresor, acidez y contaminantes que deterioran y tapan los filtros secadores del sistema, la excoriación de las partes friccionantes (cilindro en su parte superior con los anillos del pistón), ocasionado rebabas las cuales cortan el aislamiento de las bobinas del estator causando cortocircuitos y quemaduras, etc. Estas partículas permanecen con el aceite del compresor, causando que los bujes, chumaceras, el cedazo de la bomba de aceite se tapa, disminuyendo el flujo de aceite necesario para la lubricación y enfriamiento del compresor. El tremendo calor generado causa que las válvulas o Reeds de descarga del plato se debiliten o ablanden, ocasionando fugas de gas o su rompedura, además desgaste en los pernos de los pistones, etc. Debido a la alta temperatura del aceite, y por lo tanto una disminución de su viscosidad, la lubricación de chumaceras de bielas, bujes del cigüeñal, mecanismos de la bomba de aceite, etc., se ven seriamente afectados, disminuyendo considerablemente la durabilidad del compresor. El efecto de la alta temperatura de descarga, o SOBRECALENTAMIENTO se hace más evidente en los sistemas de refrigeración de baja temperatura, aunque suele suceder también en los sistemas, de aire acondicionado, y alta y media temperatura, por ejemplo cuando en estos el condensador es pequeño, su presión de operación será alta, y tendrá por lo tanto una alta temperatura de condensado A temperaturas internas el descarga del cilindro de 160 C la película de lubricación es prácticamente evaporada como el agua en un recipiente a 100 C. Muchos aceites hoy día son resistentes a la formación de carbón, por lo que las fallas por exceso de temperatura de descarga son difíciles de diagnosticar, pareciendo que el problema es de otro origen. La mayoría de los aceites de refrigeración empiezan a carbonizarse alrededor de los 175 C, la situación puede ser peor, pudiendo ser esta temperatura menor con la presencia de humedad y aire que se dejan dentro de los sistemas. Para estimar la temperatura en forma aproximada en los puertos de descarga se puede proceder en la siguiente manera. Se mide primero la temperatura en grados Celsius (°C) en la tubería de descarga del compresor entre doce y quince centímetros de la salida del compresor, a esta temperatura

Para más información visite: www.EmersonClimate.com/espanol

se le suma trece grados Celsius (C), y nos dará la temperatura aproximada en el puerto de descarga. Normalmente si esta temperatura en la línea de descarga es de 135 C, representa fallas. Si es de 120 C está en un nivel de peligro de falla. Si es de 105 C o menor, se puede esperar una larga vida del compresor. Por otro lado la temperatura en si del aceite es crítica, su viscosidad decrece mucho al aumentar su temperatura (arriba de 90 C es extremadamente peligroso), si la temperatura es menor, la vida del compresor será mayor. Largos periodos del compresor con altas temperaturas de descarga (o Sobrecalentamiento) , no solo tiene efectos nocivos en el compresor, sino en todo el sistema de refrigeración, el aceite y el refrigerante se descomponen reaccionando formando ácidos que a su vez vuelven a reaccionar, y así sucesivamente en cadena. Las altas temperaturas de descarga (en el puerto) son ocasionadas por prácticamente casi por cualquier problema en el sistema. La Relación de Compresión de un compresor (RC), se define como la presión absoluta de descarga entre la presión absoluta de succión . La combinación de ambas presiones tendrá un efecto en la temperatura de sobrecalentamiento en la descarga. El aumento de la RC propiciará un aumento en la temperatura de descarga, por lo que una disminución de la presión de succión, y/o aumento de la presión de descarga, aumentarán la temperatura de descarga. Como regla la temperatura de descarga se reduce, aumentado la presión de succión. En los sistemas de baja temperatura de evaporación (por ejemplo en congelación), la elevada temperatura del gas de succión en el compresor, causará una elevada temperatura en su descarga, por lo que es necesario aislar las tuberías de succión, y tratar de mantener una temperatura de sobrecalentamiento total a la entrada al compresor de 10 C. Mantener una adecuada ventilación en las cabezas del compresor y su motor, ayudan a bajar la temperatura de descarga, principalmente en estos sistemas de baja temperatura. Las causas de la baja presión de succión , son: Línea de Succión obstruida con alta caída de presión; Filtros secadores de succión y de líquido tapados; Pérdida del refrigerante; Válvula de Expansión mal ajustada ó seleccionada; Tamaño evaporador, Tuberías y otras componentes equivocadas, Baja carga térmica. Temperatura de Bulbo Húmedo. Volumen de aire en el evaporador (un 10% menos de volumen de aire, será un 10% de menor carga térmica, y por lo tanto menor presión. Las cusas de la alta presión de descarga son: Condensador Bloqueado ó sucio; Tubería de la línea de descarga pequeña; Ventilador del condensador inoperativo; Carga de refrigerante excesiva; Aire o no condensables en el sistema; Condensador pequeño. Los sistemas de baja temperatura de evaporación con Refrigerante R-22 tienen severos problemas, y requieren mucho cuidado en sus consideraciones de diseño, Si vemos la

Para más información visite: www.EmersonClimate.com/espanol

tabla #1 siguiente, la que muestra algunas de las temperaturas típicas de descarga con refrigerante R-22 TABLA #1: QUE MUESTRA LAS TEMEPRATURAS DE DESCARGA DE LOS CILINDROS CON REFRIGERANTE R-22

Temp. de Temp. de Saturación Saturación de De Succión Condensado C C -40 54.4 -23.3 54.4 -40 43 -23.3 43 -12 54.4 -12 43 N/R = No se Requiere Control

Temp. Típica del Gas de Retorno C 18 18 18 18 18 18

Temp. de Descarga del Cilindr o C 174 138 158 124 118 104

Temp. del Gas de Retorno Necesaria para Limitar la Temp, de Descarga a 115 C -29 2 -18 10 N/R N/R

Observando la tabla #1, las temperaturas de descarga para aplicaciones de baja temperatura son inaceptables, no existe compresor que pueda manejar esta situación durante la compresión, por lo que es esencial un medio de desobrecalentamiento en la succión para llevar las temperaturas de succión a la mostrada en la última columna. Un compresor con desobrecalentamiento es de mayor tamaño, ya que una menor presión de succión requerirá un compresor de mayor tamaño. El uso de compresores de dos etapas sería otra forma de resolver el problema cada una con baja relación de compresión, pero el calor generado por su compresión tiene que ser removido en alguna forma, y se logra desobrecalentándolo en la primera etapa. Ambos sistemas son prácticamente equivalentes, siendo el sistema de dos etapas más costoso y un poco más complicado inicialmente. En consecuencia el riesgo de probabilidad de falla existe tanto para el compresor de dos etapas, como el de para una sola etapa Las altas temperaturas de sobrecalentamiento en la descarga pueden ser controladas para compresores de una etapa, con el sistema DEMAND COOLING de Copeland. Opera a temperaturas de evaporación menores de 10 °F (12.2 C), inyectando líquido refrigerante dentro del compresor en su succión, desobrcalentando el gas de succión a la temperatura deseada, para obtener la temperatura de descarga dentro de límites seguros. El sistema DEMAND COOLING usa un circuito de control electrónico para inyectar el líquido dentro del compresor en su succión, solamente cuando se requiera, por lo que la eficiencia del sistema es mayor comparada con los otros sistemas mecánicos de Desobrecalentamiento. Se observa que el Refrigerante R-22 sigue siendo una magnifica elección para aplicaciones de refrigeración de alta temperatura y para aire acondicionado, ya que estos sistemas son de baja relación de compresión, y sus temperaturas de descarga son bajas ver Tabla # 1, sin embargo es necesario observar para estas aplicaciones, los demás elementos y componentes que operen correctamente y sean los adecuados.

Para más información visite: www.EmersonClimate.com/espanol

Para los refrigerantes usados en refrigeración en media y baja temperatura de evaporación (Ejemplo,- congelados, conservación baja, etc.) Hoy día se utilizan los refrigerantes R404A, R507, mas apropiados para estas temperaturas, su capacidad (superior) en Kcal./h (Btu/h) y sus presiones son del mismo orden del R22, siendo sus temperaturas de descarga en los cilindros menores que las del R-22, para la misma aplicación. La Tabla # 2 nos muestra algunos valores de temperatura de operación para refrigerantes R404A y R507, comparados con los de la Tabla # 1 TABLA #2: QUE MUESTRA LAS TEMPERATURAS DE DESCARGA DE LOS CILINDROS, CON REFRIGERANTE R404A y R507

Temp. de Saturación De Succión C -40 -23.3 -40 -23.3 -12 -12

Temp. de Saturación de Condensado C 54.4 54.4 43 43 54.4 43

Temp. de Descarga del Cilindro C 121 104 115 82.2 93.3 71

Temp. Típica del Gas de Retorno C 18 18 18 18 18 18

Temp. del Gas de Retorno Necesaria para Limitar la Temp, de Descarga a 115 C N/R N/R N/R N/R N/R N/R

N/R = No se Requiere Control Se puede observar que las temperaturas de descarga o de sobrecalentamiento con R404A y R507 tienen valores bajos seguros en comparación del R-22 a los mismos valores típicos de temperatura del gas de succión a 18 C (65 °F), no requiriendo inyección de refrigerante o sistema mecánico de desobrecalentamiento en la succión. El refrigerante R502 ha sido cancelado, y de hecho substituido por el R404A y R507, la Tabla #3 muestra un comparativo técnico de estos refrigerantes. Tabla # 3.- R502 v/s R404A y R507- Funcionamiento relativo del ciclo Teórico Refrigerante 1 Baja Temperatura (1) Relación de Capacidades Relación de Eficiencias Temp de Descarga K (C) 1 Baja Temperatura (1) Relación de Capacidades Relación de Eficiencias Temp de Descarga K (C) Presión e Saturación a 20 C, psia

R502

R404A

R507

1.0 1.0 0

1.04 0.98 -8.1

1.07 0.98 -8.3

1.0 1.0 0

1.0 0.95 -10.7

1.03 0.94 -11.1

146.63

159.25

162.88

Por Javier Ortega Julio 29, 2005

Para más información visite: www.EmersonClimate.com/espanol

Ext xte end ndie iend ndo o los lo s Lími Límite tes s de una Re Refrig fr ige eración raci ón Más Efici Efi cie ente nt e La primera parte de esta esta serie de dos artículos, explica cóm o la arquitectur a de refrigeración distr ibuid a resurge resurge como una soluci ón eficiente para para los sistemas de refrigeración com ercial. El sistema de refrigeración comercial, por su magnitud y diseño relativamente complejos, siempre se identifica como la causa principal del alto consumo de energía en supermercados y comercios minoristas. Mientras existan oportunidades para reducir la pérdida de energía y optimizar el rendimiento del sistema, los diseñadores de equipos, ingenieros y fabricantes continuarán introduciendo nuevos conceptos y tecnologías para conseguir una operación más eficiente. Muchas soluciones han sido ofrecidas para enfrentarse al reto de mejorar el rendimiento en las tiendas de hoy. Lo que vamos a investigar en este artículo no es un concepto nuevo, sino uno que está recuperando su popularidad. La refrigeración distribuida ha estado presente por más de cincuenta años en el mercado y ha resurgido recientemente como alternativa de diseño del sistema. En teoría, instalar sistemas múltiples de refrigeración por toda la tienda puede reducir costos de construcción, instalación y energía, mientras ofrece un nivel de flexibilidad mayor que los pesados sistemas convencionales de centrales de compresores en Para más información visite:  www.EmersonClimate.com/espanol

paralelo. Pero los beneficios de la refrigeración distribuida han sido difíciles de alcanzar hasta ahora. Gracias al flujo constante de avances en tecnología de los componentes y en la integración de los sistemas, la idea de dividir la carga de refrigeración en secciones más pequeñas y manejables, se considera ahora como una solución nueva y viable para optimizar el rendimiento de una tienda.

Vamos a ver con más profundidad la refrigeración distribuida en cuatro niveles: Los beneficios de la arquitectura de refrigeración distribuida. La capacidad de integrar los componentes del sistema para obtener un mayor rendimiento. El impacto de un equipo más confiable en el rendimiento de un sistema. Cómo se verá un sistema de refrigeración distribuida en el futuro y cómo beneficiará a los operadores de tiendas. • •

• •

Ventajas Ventajas de un Sistema Dist Dist ribui ri bui do La tendencia de la industria del supermercadismo actual, hace que las tiendas vean de forma diferente el impacto que el diseño del equipo tiene sobre las ventas. Las tiendas quieren distinguirse ofreciendo áreas especializadas como cafés, comida gourmet para llevar, bares sushi y otros servicios generalmente dependientes de la refrigeración.

Para más información visite:  www.EmersonClimate.com/espanol

Esta diversidad requiere flexibilidad en la ubicación y distribución de aplicaciones de baja y media temperatura. Por sus mismos principios de diseño, la arquitectura de refrigeración distribuida concuerda más con la nueva orientación que el negocio de los supermercados está tomando. Cuando hablamos de rendimiento, hay dos beneficios inmediatamente asociados con los sistemas distribuidos: la optimización de la presión de succión y la reducción de la caída de presión en la línea de succión. En primer término, la arquitectura distribuida ofrece una mayor facilidad para seleccionar la presión de succión. Los casos de operación con varias temperaturas de evaporación en sistemas paralelos pesados, resultan muchas veces en una falta de rendimiento del sistema. El enfoque tradicional fue dividir el colector de succión en tantos circuitos como diferentes temperaturas de evaporación se encuentren e instalar válvulas reguladoras de la presión de evaporación en cada circuito. Desde el punto de vista del compresor hay una mayor pérdida de carga en la línea de succión cuando el refrigerante se expande a través de dicha válvula reguladora. Estas caídas de presión fueron vistas como razonables para un sistema de compresores en paralelo que ofrece altos niveles de rendimiento. En una situación ideal, un sistema distribuido puede ser optimizado para evitar la instalación de las válvulas reguladoras de presión de evaporación y anular la re-expansión del refrigerante en las líneas de succión. También, la refrigeración distribuida es más eficiente que el diseño tradicional de sistemas paralelos pesados, ya que las líneas más cortas entre el equipo y los exhibidores refrigerados, resultan en una menor caída de presión en las líneas de succión. Menos metros de tubería de menor diámetro pueden generar ahorros múltiples para el operador de una tienda, que pueden llegar a representar hasta un 40% del costo de materiales y un 50% menos de carga de refrigerante.  Además, menos menos soldaduras soldaduras reducen reducen la posibilidad posibilidad de fugas fugas de refrigerant refrigerante. e. Así como la arquitectura distribuida ofrece ventajas de rendimiento, hay algunos componentes claves dentro del sistema que, cuando están bien seleccionados e instalados, pueden proporcionar ahorros de energía adicionales para el supermercado.

Tecno Tecno log ías ías que qu e Incr Incr ementan ementan el Rendi Rendi miento Dentro de un sistema de refrigeración distribuida, hay dos componentes que tienen un impacto mayor sobre el rendimiento de la instalación: los compresores y los motores. Los nuevos desarrollos tecnológicos en estos últimos años han llevado a la introducción de compresores y motores de alto rendimiento. Vamos a hablar del papel que desempeña cada uno en mejorar el rendimiento del sistema. La mayoría de los sistemas de refrigeración comerciales de compresores en paralelo están constituidos por compresores semi-herméticos gracias a su gran tamaño e historia comprobada de operación a alto rendimiento. Debido a los avances en obtener mayor rendimiento en los compresores Scroll de refrigeración, estos están

Para más información visite:  www.EmersonClimate.com/espanol

demostrando ser la elección perfecta para los requisitos de rendimiento y confiabilidad de los sistemas de refrigeración más pequeños. Debido en parte a estos avances, incluyendo la evolución y el rendimiento comprobado de las plataformas Scroll y Scroll Digital, los sistemas de refrigeración distribuida han llegado a ser una propuesta más que interesante tanto en el diseño como en la modificación de supermercados. Los grandes compresores Scroll fueron introducidos en aplicaciones de refrigeración de supermercados a mediados de los años’90 como una opción para reemplazar a los semi-herméticos. Estos modelos de mayor tamaño no cumplieron con los niveles de rendimiento de los semi-herméticos y tuvieron ciertos inconvenientes para cumplir con los requisitos de manejo del aceite de los sistemas pesados de compresores en paralelo. La tecnología introducida por Emerson Climate Technologies en su plataforma de compresores Scroll de menor tamaño, puede ofrecer de un 10% a un 15% de mejora del rendimiento sobre la tecnología actual de paralelo compacto (basado en un análisis anual de rendimiento) y se pueden ver cada vez más sistemas de refrigeración distribuida alrededor del mundo. Los progresos en los sistemas de manejo del aceite tienen un historial de confiabilidad comprobada que ha superado ampliamente los requisitos de los sistemas de refrigeración comerciales. (El análisis energético consiste en tomar los datos climáticos de una ciudad, una región o un país y dividir el registro histórico de temperaturas de un período de tiempo específico, normalmente se toma un año, en “paquetes” discretos de temperaturas que llamaremos “bines”. Por ejemplo, en Dayton – Ohio, en el curso de un año dado, habría en total 1000 horas en las que la temperatura varía entre los 70°F y los 75°F. Cada bin representa la parte de las 8760 horas totales del año en que se espera que el sistema funcione dentro del rango de temperatura establecida para cada bin. Se calcula o se comprueba el rendimiento del sistema funcionando durante las horas asignadas para ese bin. Los resultados se integran para obtener un valor anual de la capacidad frigorífica y del consumo de energía. La relación entre estos valores es el factor estacional de rendimiento). El incremento del rendimiento es un gran incentivo para la utilización del Scroll en aplicaciones con bajas temperaturas de condensación porque estos compresores no utilizan el subenfriamiento mecánico tradicional como los semi-herméticos grandes. El diseño avanzado de supermercados abraza el principio de recuperación de calor integrada, es decir capturar y utilizar el calor residual del proceso de refrigeración. Siguiendo este principio, Copeland ha “turbocargado” a su compresor Scroll para aumentar la capacidad frigorífica por medio de la inyección de vapor aumentada (EVI por su denominación en inglés: Enhanced Vapor Injection ). Los compresores Scroll con inyección de vapor (EVI), funcionan de manera similar a los compresores de dos etapas con enfriamiento de la etapa intermedia. Se consigue una capacidad adicional por efecto del subenfriamiento del líquido con un menor consumo de energía. Para más información visite:  www.EmersonClimate.com/espanol

 Así, los beneficios de mayor rendimiento se consiguen sin necesidad de un compresor de baja. Los compresores Scroll con inyección de vapor aumentada obtienen el mismo efecto de subenfriamiento que eleva la capacidad del sistema con un mayor rendimiento al mismo tiempo que se reduce la temperatura de descarga del compresor.

La tecnología Scroll digital ofrece un nivel adicional de ahorro energético dentro de sistemas de refrigeración distribuida. Este compresor es el único diseño Scroll con una capacidad inherente de regular su capacidad frigorífica del 10% al 100%, manteniendo una velocidad de rotación constante. El Scroll Digital provee un diseño mucho más sencillo porque modula la capacidad controlando la conformidad axial de los scrolls en vez de usar la tecnología más costosa de propulsar el motor a una velocidad variable. Modular la capacidad, le permite al compresor ajustarse a los requerimientos de carga brindando un control más preciso de temperatura con menos arranques y paradas. Puesto que el flujo de masa – o capacidad frigorífica - puede ser modulada como respuesta a la demanda, este compresor es ideal para los supermercados, donde las cargas térmicas de los exhibidores refrigerados están cambiando constantemente. La amplia línea de diseños Scroll de hoy ofrece flexibilidad máxima para el diseñador de un sistema distribuido. Cualquier combinación de compresores Scroll de plataforma pequeña, digital o de inyección de vapor aumentada puede ser integrada en el sistema, dependiendo de la carga frigorífica y de los requerimientos de temperatura.

Motores de Alto Rendi miento, Variadores de Velocidad Los motores de los ventiladores del condensador representan otra oportunidad para lograr beneficios de rendimiento en un sistema de refrigeración. Los motores de alto rendimiento y los variadores de velocidad pueden aumentar el rendimiento hasta un

Para más información visite:  www.EmersonClimate.com/espanol

5%, ya que los motores de ventilador consumen una gran cantidad de energía dentro del sistema de refrigeración. Hay que considerar dos opciones para el motor de velocidad variable: los motores de imán permanente sin escobilla (BPM) y los motores asincrónicos. Los motores BPM ofrecen un rendimiento más alto, pero tienen un mayor costo inicial. Los imanes instalados en el rotor están diseñados para reducir las pérdidas y producir rendimientos más altos. Otra ventaja tecnológica del motor BPM es un perfil de rendimiento que permanece casi constante a través de una amplia gama de velocidades de operación comparada con otras tecnologías. Esencialmente, el rendimiento del motor disminuye en un grado sensiblemente menor a la reducción de velocidad. Los motores de inducción son menos costosos que los motores BPM pero en general, son de un 3% a un 5% menos eficientes. Los motores asincrónicos pueden ser de varios tipos, incluyendo el de polo de sombra, capacitor permanente y trifásicos. El diseño de polo de sombra puede llegar a ser del 50% a un 60% menos eficiente que el motor BPM. Más allá de la tecnología de los motores, la tecnología de variación de la velocidad puede ofrecer aún mayor ganancia en el rendimiento. Se puede eliminar entre una tercera parte y hasta dos terceras partes de la energía consumida por los motores del condensador por medio de la aplicación de variadores de velocidad. Los variadores de velocidad regulan la velocidad de los ventiladores del condensador regulando el flujo de aire y así la capacidad del condensador. La reducción de la potencia en los ventiladores puede ser drástica como está indicado en el diagrama, basada en los resultados de una prueba realizada en un supermercado moderno de 63000 pies cuadrados sobre las estrategias de control de velocidad de los ventiladores del condensador mediante el control de la temperatura diferencial de condensación. Para un requerimiento del 60% de la capacidad del condensador, el control de velocidad variable requiere alrededor del 20% de la potencia total de ventiladores del condensador, mientras que el ciclado presostático de los ventiladores requiere casi un 60% de la misma. Esto puede ser una fuente principal de ahorro de energía en el supermercado típico de hoy. Los variadores de velocidad simplifican el control de los ventiladores y por ende el control de capacidad del condensador y hacen más fácil implementar la estrategia de control de ventiladores por temperatura diferencial de condensación. Cambiar la estrategia de control de los ventiladores del condensador de un sistema de refrigeración, desde un control de la presión de condensación a un control de la temperatura diferencial (donde la temperatura diferencial es la diferencia entre la temperatura ambiente y la temperatura de saturación del refrigerante en el proceso de condensación) puede reducir drásticamente el uso energético de los ventiladores y aumentar el grado de rendimiento energético (EER) del sistema de refrigeración.

Para más información visite:  www.EmersonClimate.com/espanol

Esta estrategia ahorra energía permitiendo a los ventiladores del condensador apagarse o disminuir su caudal cuando las cargas térmicas del condensador son bajas.(cuando las tiendas están cerradas, o cuando se está llevando a cabo un descongelamiento por gas caliente o cuando se activa la recuperación de calor) aunque las temperaturas ambientales sean altas.

Obteniendo un Real A hor ro de Energía. El ahorro que se puede obtener por medio del control del diferencial de temperatura (DT) del condensador en un supermercado determinado depende: •







del diferencial de temperatura (DT) real del condensador (la diferencia de temperatura de diseño menos la perdida de efectividad por la acumulación de polvo y degradación de la superficie). de la temperatura ambiental media (el ahorro será mayor cuanto más cálido sea el clima si lo comparamos con un sistema de control presostático convencional). de la relación entre la potencia de los motores del condensador en proporción a la capacidad de emisión de calor del mismo. de la mínima presión admisible para el lado de alta

El uso de una estrategia de control de la temperatura diferencial para los ventiladores del condensador, automáticamente minimiza la potencia total consumida sumando la de los compresores y la de los ventiladores del condensador. No hay otra estrategia que pueda lograrlo para todas las condiciones de carga frigorífica y para todas las condiciones ambientales exteriores. Sin embargo, para asegurar que se mantenga la confiabilidad del sistema, la estrategia de control por temperatura diferencial se cambia automáticamente por un control presostático tradicional si las presiones de condensación del sistema se acercaran a los límites de diseño durante períodos de temperatura ambiental extremadamente fríos o calientes. Mientras que el control por DT de los ventiladores del condensador es la mejor y única manera de reducir el consumo total de energía de una unidad condensadora de refrigeración a niveles mínimos, esta estrategia de control no se puede llevar a cabo perfectamente utilizando los algoritmos de control disponibles actualmente en los controladores electrónicos existentes. Esto es debido al hecho que el punto de seteo óptimo para el DT, está afectado por algunas variables incontrolables del sistema, como la capacidad y/o condición del condensador y la carga frigorífica instantánea del sistema. Cuando estas variables cambian, también lo hace el valor óptimo del DT. Para los sistemas de refrigeración de supermercados con potencias de ventilador relativamente altas y un bajo rendimiento de los condensadores – el estándar corriente de la industria – este cambio del punto de trabajo óptimo en el DT puede llegar a ser de 5°F a 6°F.

Para más información visite:  www.EmersonClimate.com/espanol

Los ingenieros de sistemas de control y de refrigeración, que están desarrollando los nuevos sistemas distribuidos de hoy, han respondido recientemente a este reto desarrollando un nuevo algoritmo de control por diferencial de temperatura flotante, que funciona de manera similar a los algoritmos de presión de succión flotante existentes. Este control único de la capacidad del condensador, eliminará complicaciones en la calibración de la instalación, en incertidumbre del técnico de servicio y en las pérdidas de energía asociados con la aplicación de la estrategia de control por diferencial de temperatura del pasado. La segunda parte tratará sobre la tecnología que contribuye a la eficiencia energética de los sistemas distribuidos. Tom Crone dirige la división Design Services Network and Integrated Products Business de Emerson Climate Technologies. Para más información diríjase a: www.emersonclimate.com

Para más información visite:  www.EmersonClimate.com/espanol

Sistemas Distribuidos:  Armando el Rompecabezas La segunda parte de este artículo s obr e las ventajas de la arqu itectu ra de refrigeración distrib uida, abarca los roles que cum plen los c omponentes de alta eficiencia y la electrónica del sistema.

La electrónica del sistema es una nueva área a explorar cuando se trata de mejorar la eficiencia. Así como ha avanzado la tecnología de los sistemas de refrigeración, también lo hizo el controlador electrónico y su capacidad de integrar a los componentes críticos como compresores, válvulas, motores y sensores. Un ejemplo es la válvula reguladora de presión de evaporación electrónica (ESR por su denominación en inglés: Electronic Stepper Regulator ), que utiliza un motor por pasos de respuesta lineal buscando mantener una presión de evaporación lo más alta posible. La válvula abre o cierra de forma de obtener el paso exacto necesario para lograr la temperatura deseada en el refrigerador. Si el refrigerador está demasiado frío, la válvula cerrará incrementando la presión y por lo tanto la temperatura de evaporación. Por el contrario, si la temperatura del refrigerador es demasiado alta, la válvula abrirá provocando el descenso de la presión de evaporación.

Los sistemas con válvulas ESR pueden llegar a controlar la temperatura de un exhibidor refrigerado con una precisión de un décimo de grado Fahrenheit, una mejora sustancial sobre las válvulas reguladoras de presión de evaporación mecánicas convencionales (EPR) que solo pueden mantener una presión de evaporación constante. Este grado de precisión, reduce la pérdida de producto brindando al operador un ahorro de dinero y de energía. Si al mismo tiempo se mantiene la presión de descarga tan baja como sea posible, se reduce la relación de compresión logrando por último un nivel mayor de eficiencia del sistema. Dado que las válvulas ESR son controladas electrónicamente por un sistema de control integrado, no es necesaria la intervención de personal calificado para regular la válvula como ocurre con las válvulas EPR. Al modular la presión dentro del evaporador, se reduce el estrés sobre las uniones y la tubería misma, lo que reduce la posibilidad de costosas fugas de refrigerante.

Reducir los descongelamientos ahorra energía El descongelamiento de un sistema, siempre ha sido un foco de atención cuando se trata de ahorrar energía y el control del ciclo de descongelamientp por tiempo ha sido el estándar de la industria. El método básicamente consiste en asignar varios períodos a lo largo del día que oscilan entre los 15 y los 90 minutos de duración donde se interrumpe la refrigeración en una línea de exhibidores para proceder al descongelamiento del evaporador. El proceso de descongelamiento, usualmente requiere la activación de algún sistema de calentamiento como la inyección de gas caliente o la aplicación de calefactores eléctricos lo que consume una considerable cantidad de energía. Eliminar los períodos de descongelamiento sin afectarla calidad del producto ni disminuir el rendimiento frigorífico ahorraría una gran cantidad de energía. Los algoritmos de descongelamiento por demanda fueron diseñados para forzar un ciclo de descongelamiento sólo cuando sea necesario. Generalmente se dispone de un sensor infrarrojo para monitorear la acumulación de hielo sobre el evaporador. Cuando se detecta una cantidad de hielo tal que pueda afectar la eficiencia del refrigerador, automáticamente se da inicio al próximo ciclo de descongelamiento programado.

La optimización del ciclo de descongelamiento es otro aspecto que los sistemas de control integrados modernos pueden ofrecer. Las tiendas modernas utilizan una cantidad cada vez mayor de exhibidores refrigerados, tornando en imprescindible el optimizar la duración y frecuencia de los ciclos de descongelamiento con el fin de lograr un manejo eficiente optimizando los coeficientes de utilización de energía. Si todos los exhibidores de una tienda descongelaran simultáneamente, la demanda de electricidad se dispararía resultando en altísimos índices de utilización. Integrando los controladores de los exhibidores en una red de comunicaciones permite la optimización con una precisión y flexibilidad que nunca antes se pudo lograr. Las resistencias anti-empañamiento son una necesidad en prácticamente toda instalación frigorífica que implique la utilización de puertas vidriadas. Estas resistencias aseguran que la condensación que naturalmente se produce sobre la superficie vidriada sea eliminada rápidamente al volver a cerrar la puerta. En aplicaciones de baja temperatura, las resistencias aseguran que no se pegue la puerta debido a la formación de hielo entre la puerta y su marco. Críticas como son, son relativamente ineficientes y consumen una importante cantidad de energía. La utilización de la energía se traduce en otra oportunidad para controlar el consumo de energía eléctrica de la tienda. Los fabricantes de controladores para refrigeración desarrollaron métodos para minimizar el uso de las resistencias anti-empañamiento operándolas solo cuando es necesario. Ensayado en un supermercado, el controlador de CPC mantuvo las resistencias anti-empañamiento apagadas algo más del 40% del tiempo. Esto es equivalente a tener dichas resistencias apagadas por aproximadamente cinco meses del año mientras se mantiene la calidad de exposición de mercadería que tienen las puertas.

Integrando l os Componentes del sis tema Un simple componente, ya sea un compresor o un motor de alta eficiencia o un controlador electrónico ultra preciso, puede llegar a tener un gran impacto en un sistema de refrigeración. Si consideramos el efecto acumulativo que puede producir la integración de estos componentes dentro de un sistema ya diseñado para optimizar la presión de succión y reducir las caídas de presión en las líneas, podemos ver el valor que tiene un sistema de refrigeración distribuida cuando de ahorrar energía se trata. Los datos recogidos en instalaciones reales nos dicen que hay una gran diferencia en el costo de la energía entre un sistema convencional de compresores en paralelo y un sistema de refrigeración distribuida. Cuando se aúnan la última tecnología en compresores Scroll, ventiladores con control de velocidad variable y control electrónico de los exhibidores refrigerados en un sistema de refrigeración distribuida que aplique la técnica de baja presión de condensación, el costo de la energía eléctrica puede reducirse hasta en un 20%.

 Aún puede lograrse un nivel de ahorro superior cuando el criterio de optimización de la demanda se expande a toda la tienda, desde los compresores hasta la iluminación, a través de un sistema de control integrado de las instalaciones. La confiabilidad es la consideración más importante en cualquier instalación de refrigeración. Además de asegurar que todos los sistemas estén activos y funcionando, hay circunstancias donde los componentes y un equipamiento confiables también establecen el rumbo del mejoramiento de la eficiencia. En los sistemas de refrigeración distribuida esto ocurre de dos formas: en primer término, cuando los componentes de un sistema operan confiablemente, conduciendo a mayores ahorros de energía y costos de mantenimiento y en segundo término cuando toda la instalación trabaja de forma más confiable, logrando un estado de optimización del consumo de energía que brinda un prolongado retorno de la inversión a través del tiempo. Hay numerosos ejemplos donde un componente confiable tiene también incidencia sobre un desempeño eficiente de la instalación. El diseño simple del compresor Scroll lo hace intrínsicamente más confiable. Un compresor Scroll cuenta solo con tres partes móviles. Menos partes móviles implican menor riesgo de fallas, la supresión de movimientos alternativos brinda menos vibraciones y dado que no hay pistones para comprimir el gas, no hay pérdida de rendimiento volumétrico debida a la re-expansión del mismo. El compresor Scroll carece de válvulas por lo que no hay posibilidad de falla de cierre de las mismas. Los compresores Digital Scroll  son otro excelente ejemplo donde la confiabilidad impacta directamente sobre la eficiencia. La modulación digital de la capacidad minimiza los ciclos de arranque-parada, lo que trae aparejados beneficios tanto desde el punto de vista del ahorro de energía como de la vida útil del compresor. Todos estos ejemplos se traducen en una reducción directa de costos para la tienda, especialmente cuando la reducción de costos de mantenimiento se logran a través de menores índices de falla.

 Aplicando tecnologías de aho rro de ener gía Pueden lograrse ganancias más significativas cuando un sistema distribuido opera a su máxima confiabilidad. Como fue destacado anteriormente, los sistemas distribuidos utilizan menos tubería lo que reduce el riesgo de fugas.

Un nivel de carga correcto, reduce el tiempo de funcionamiento y por lo tanto el consumo de energía. Un nivel de carga correcto también asegura el correcto enfriamiento del motor del compresor mediante el gas de retorno, manteniendo la confiabilidad del sistema. Finalmente un nivel correcto de carga asegura la mejor conservación de los productos reduciendo el descarte o desperdicio.  Aplicando más tecnologías energéticamente eficientes a sistemas de refrigeración nuevos o existentes y así generar un ahorro de energía es relativamente sencillo. Pero mantener esas ganancias ha demostrado ser dificultoso. Algunos puntos de fricción Incluyen: • • •

• • •

Anular los mandos de velocidad variable Subir o bajar el punto de trabajo establecido para la presión de operación Deshabilitar los sistemas de control anti-empañamiento o cambiar sus puntos de trabajo Fallas del equipo o problemas con las condiciones de trabajo del mismo Condensadores con bajo rendimiento Fallas del sistema de control que provoquen un funcionamiento ineficiente.

Una de las mejores maneras de obtener un ahorro de energía y mantener el rendimiento del sistema es a través del monitoreo permanente del equipo. La primera línea de defensa es la verificación de la calibración de los puntos de trabajo o “seteo” mediante una rutina automática de verificación para detectar, corregir y evitar el corrimiento de esos puntos debido al reajuste o recalibración realizado por personal de servicio técnico mal informado o mal entrenado. Si bien los estudios realizados han demostrado que la verificación periódica de los puntos de seteo ayuda a conservar los ahorros, esta no es la solución total. La eficiencia del sistema y el ahorro de energía pueden perderse debido a la superposición de órdenes dadas por el sistema de control o a la operación en modo manual del sistema aún cuando se mantengan la programación de los descongelamientos y los puntos de seteo correctos. Fallas en los equipos o ciertas condiciones ambientales pueden provocar pérdidas adicionales. En estos casos, un monitoreo de mantenimiento basado en las condiciones del sistema, es una de las mejores maneras de eliminar el desperdicio de energía. El algoritmo del monitoreo basado en las condiciones del sistema fue desarrollado para identificar los problemas que tengan un potencial para erosionar el ahorro de energía, y en consecuencia, emitir mensajes de advertencia y disparar alarmas para alertar al operador del supermercado. También puede reenviar la notificación si el sistema no detecta que el trabajo de reparación se halla efectuado. Esto requiere la instalación de sensores adicionales para permitir la detección remota de condiciones de trabajo incorrectas de los equipos que sean los mayores consumidores de energía de la instalación, debido a roturas, falta de mantenimiento, falla del sistema de control u operación en manual del sistema.

Los sensores están enclavados en el sistema de refrigeración distribuida, quedando preparados para detectar condiciones no deseadas y poder así emitir una advertencia temprana desde el momento mismo de su instalación. El fabricante asegura que serán tan eficientes en cinco años como en el primer dia de su instalación.

Ultra alta efic iencia en el hor izonte Cuál es la visión para el sistema de refrigeración distribuida del mañana? Cuando todos los componentes de un sistema de refrigeración de arquitectura distribuida estén totalmente integrados, la administración de energía se realizará a su más alto nivel. El máximo objetivo es construir un marco inteligente donde todo, desde los componentes individuales del sistema de refrigeración al más amplio sistema de calefacción, ventilación y aire acondicionado, pasando por la iluminación estén conectados, monitoreados y manejados desde un punto centralizado. Los propietarios y los operadores de tiendas podrán entonces ver qué locales de su cadena están funcionando a su máxima eficiencia y cuáles están necesitando de alguna tarea de mantenimiento, mejora de los equipos o renovaciones para mejorar la eficiencia de toda la tienda. La arquitectura de control de administración de sistemas de tiendas, harán de esta visión una realidad proveyendo una integración sin solución de continuidad de todos los sistemas de un supermercado. Este grado de conectividad automatiza la comunicación entre unidades, balanceando cargas, monitoreando el consumo de potencia y mucho más. Considere el siguiente panorama: En una tienda inteligente, luego de detectar que la iluminación del local está operando a su máxima intensidad se pueden evitar picos de consumo modificando levemente la presión de evaporación del sistema de refrigeración, sacando algún sistema de servicio adelantando así su descongelamiento, o disminuyendo la iluminación de algún sector, de forma de balancear el consumo de energía en un particular período. Este grado de manejo de la energía sólo puede ocurrir cuando todos los sistemas están comunicados entre sí en tiempo real y durante las 24 horas del día. La optimización de la eficiencia en sistemas frigoríficos se logra a través de la integración de componentes más confiables, lo más avanzado en controladores electrónicos y de servicios de monitoreo inteligentes. Cuando estas piezas se unen en la creación de nuevos sistemas distribuidos, los operadores de tiendas se beneficiarán al obtener un menor consumo de energía, menores costos operativos y por ende un negocio mucho más rentable.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF