AC Circuits 1
January 5, 2017 | Author: Delmark Dionisio Lusterio | Category: N/A
Short Description
Ac circuits 1...
Description
I
.
)
.
'·
AC Circuits Part 1 Single Phase (1 ) Syste~
.
"THE ESTABLISHED LEADER IN EE REVIEW"
MULTIVECTOR · Review and Training Center
t.,·
· Rm. 867, Ground Floor, Isabel Bldg. F. Cay co corner Espafla S ts. Sampaloc, Manila Tel. No. 7317423 i
:
'
.
'
~
.
e
.
.;
.
•\
,.
.,1
.
'
•"
.
;II
i·
;
.:1
MULTIVECTOR REVIEW AND TRAINING CitNTER ) .
.
:!,
I
ALTERNATING CURRENT (AC) CJRq.JJTS PAI< ~' 0.636 Vm For sintlsoidal current wave, l.,e "' 0.636 rm Effcctivc Value · the vi1lue of al;ernating quantity wh'lch when applied to a given circuit for a given· time produces the same expenditure of energy as when d.c. is applied to th~ same circuit for the same itHerval of till\e. The effective . ,~,; value is also called· a~ the "root-mean-square" (rms) value. For sinusoidal voltage :wave, V''"'' ., o:707 V,., For sinusoidal current wave; r,;;;.; ~- 0.707 1m For other waves. avhage ~alue of voltage and current is given by
1 V.ve== - -
T
fo
l•ve~
T
v(t)dt
. T
-+-:f
i(t)dt
~
0
and for RMS of EffeCtive value
+J T
Yrms =
2
v (t)
dt
0
Forin. factor
_I_
T
·JT
P(t):dt
o
Effective valu·e Average value
:. For sine wave, Form· factor= I. I I
Crest or peak factor
Maximum value = -------
Effective value
For sine wave. Crest or peak factor= 1.414
AC Circuits Page 3 of 10
Pure Resistance .
Power Tri.angle:
I~:)
¥~-J_:_ 0 p ' I
V
~~
1R
0 =-power factor (p.f).anglc or phase angle p.f. ·· power factor · · cos 0 · PIS r.f. ' rcactivct-d.·or ' sin 0 ,. Q/S· tan 0 '" Q/P
where:
V · eflective or RMS voltage ''effective or RMS current R ~~ efTective or ac resistance
For Pure R. since 0 '' 0° p. f. ""cos 0° "'· I or unity r.f. ·~'~'sin 0° = 0 '
For sinusoidal Voltage supply,
P"'·S;
o~~o
Energy expended, W = Pt joules or watt-sec
1m ' I"' -::::-- ";' 0.707 1111
'>/2 Pure Inductance
: .. V 111
I111 H
=
'.
Phasor diagram:
v
L
where: I is in phase with V
XL = inductive reactance in ohms XL= wL =" 2nfl~ n
I. Real or True or Active or Average Power
f= frequency, Hz i
L := inductance. henry (I I)
. P ~VI cos 8 watts VI p =~cos
e watts
For simisoidal voltage supply.
2 2
P= 1 '1
I
Rwatts
1m
v2
Reactive Power Phasor diagrnm:
. Q =VI sin 8 volt-ampere reactives (~ars)
o
-+-r--------~Y
·Yrnlm . O Q = - - sm · vars 2 3. Apparent Power
I lags V by 90'? S =VI
Vmlm
s·=-.""'
volt-ampere (va) va
2
i.
1\C Circuits Page 4 of 10
MULTIVECTORREVIEW AND TRAINING CENTER .. For Pure L, since 0"' 90° P = VI cos q(jo "' 0 Q '"· VI sin
v = -,JvR2 +·v~,2 V =I -,JR 2. +X I. 2 V = IZ volts
capacitance,. farad (F)
For sinusoidal voltage supply,
where:
Z=
im~edance
in ohms + x~,2' p.f. =cos 0 =! VR!Y= R./Z r .. f. =sin 0 = V 1 !Y~ X1 /Z tan 8 = VtfV 1:( =X 1/R .
1111
z =-,JR.
J=-
'.
v2
Phasor diagram: Impedance Triangle:
I
ote~9oo ~
·~x,
v
0
I leads V by 90°
R
!
P =VI (p.f.) :~ 12R '"' V1/!R watts Q =VI (r.f.) ~ 12 Xt. = V12 /X1. vars S = VI ·~ 12Z = V 2/Z va
. . For Pure C, since 0 = .90° P~"O;Q=Vl,S=VI
S=Q·
Also,
Energy expended,
v"c
We= _ _ 2
joules
V,/C
We,_.·_ 4
.. I es
JOU
AC Circuits . Page 5 or 10
MULTIVECTOR REVIEW AND TRAINING dENTER R and C in Series
RLC in Series
----::;:.
--7
i
r~-
1' VR
~.
v
f'.,.
l
v
Yc
L V,
f-
w
J
R
,_
Phasor diagram:
x~_
~"> Yc,;,IXc ,
2
i
1
Xci
where:
V= IZ volts where:
=
Vc!VR
Note: Transpose XL and Xc if X(·-. X 1 • '
R
J
2
= Xc!R
P =VI (p.f.) = 1 R = V 1//R watts Q =VI (r.f.) = 12 (X~_ -Xc) Q = (V1. 2/XL)- (V/!Xc) 2 S -=VI·"' 1 Z:= V 2/Z va
Impedance Triangle:
6
"
R"' +(XL- Xc)"' p.f. =cos 0 = VRIV = R/Z ' r.f. =sin 0 = (VL- Vc)IV -~ (X 1 - Xc)IZ : tan 0 =' (V 1 --Vc)IVR ,, (X 1 Xt )/R Z·=
V ,;, I "H.? + Xc 2
tan 0
{2
V"' ~VR + (VL -Vd 2 V =I ~R +(X,V = IZ volts
V = 'YVR + Vc-
·z=,JR2+Xc2 p.r. =cos e = vRIV = R/Z r.f. =sin 8 = Vc!V = Xc!Z
n
I I Xc''~oc~
V=IZ (~
=· (J)L = 2nfl,
Also,
z P"' VI (p.f.) ~ 12R = VR 2/R watts Q =VI (rJ.) = ! 2 Xc = V~_ 2 /Xc vars S =VI=' 12Z = V 2/Z va
Also,
1\C Circuits Page 6 or I 0
MlJL TIVECTOR REVtEW AND TRAINING CElNTER I
Rand Lin Parallel
Phasor diagram: I(
·.
1 ·v
-----------~
r~fR J~~~~ R. · I.
·..
'
../~ : \
~f .....
Note:
V is colistant. X1. = mL c ·:2nfL n . IR ·.c VIR: I, ~ v;x, Phasor dingraii1: \\'here:
>V
P =VI (p.f.) c= 11/R · V2/R watts Q =VI (r.f.) = 1/ X( Q = V2/Xc vars: S"" VIr cc I/Z = V 2/Z va
lr = v /Z amp. where:
Z = impedance in ohms Also,
z p.f. =cos 0 = IR!Ir = Z/R r.f. =sin 8 =IL/h = ZIX1. tan 8 = 11/IR = RIXL
'·
.
')
.,
RLC in Parallel · ~
Ir
'
P =VI (p.f.) = IR-R = V'/R watts 2 Q= VI (r.f.) "''L x~."" V 2/X1. vars 2 2 S VI-r= 11, Z '"' V /Z va
=
Also,
Xc"" (I)L .., 2nfL
n
X( .. _ l __ _
Rand C in J>aralld ·
we
~h
2nfC
IR = V/R: l1. .. V/X 1 :It lr = ~l (IL - lc)'
VtXc
vx-;2 x~2 :i:-rZ26 Xc -0, ifXc > Xr.
In general, Z =. R ±.jX
.=.p ±jB
' .ti ~
+ j~
=
B
- J = . ,I 1i
=
where
I
x. '
Inductive susceptance. 13 1 = I/X 1 Capaciti-.:e susceptance. Be·= I 1X,
5 .. For Series RC
Note:
mho or sicmen ·
R
where: 0° < 8 < 90°
Z
mho or sicmen
z
6
~apaci~ive susceptance B.mductlve susce11tance 13 1
![
Admittances in Series
,'{ .I
Yl
I
- - + --Y2 Y1
Y,
I ...... -t
Yn
For two (2) admrtt~nces in series.
·
+ jX =inductive reactance - jX = capacitive reactance
Yir
~
Y,Y,
- - - · --Y, + y2
Admittances in Parallel *For the complex expression of an impedance, its angle ranges from oo to 90° only either positive or negative. Mathematically, 0° :50$ 90°.
Y1 =Y 1 +Y2+Y 3 +
Note: · In the above equations. admittances must be expressed in complex rorm. i\C Circuits Page li or I 0
'·
!
MULTIVECTOR REVIEW AND TRAINING CENTER . .
(
.
Power in Complex Form
I. Voltage Conjugate Method S c I x Conjugate of V with • resp~ct to the horizonial axis S · .JV '·-P±~ . . s "' ~ + J () va where: . S - :app·arcnt power. va P -, real or true or average; power. watts Q · reactive power. vars I c- .current, amperes V ., voltage. ~'(>Its : V " conjugate of the voltage, \'olts ·0 =· power factor angle Note: +j = Ois capo-c
4.
C=~L · (l)o-
4.
S.
I w_" 7" ~LC .
5. COo
Vc
w}C
·.·where W0 =angular frequency at . resonance, racl/sec (J.
I. lr.
lc
=
X~_=;
Xc
I c =---,ro 0 "L I = r:-;::;- 1
. \'LC
6.
;'
I
r, = _ __,_ 2rc..JLC
I
f,.;-~-
2rcvLC where ~ "' resonant frequency; hertz (HZ) 7. Supply ~oltage, V c=VR 8. Z == R ~ a pure resistance .·. Z is minimum. 9. Total reactance, Xr "'' 0 I 0. I = V /Z = V /R ,. . .' .. r is maximum. II. p.f. I or unity 12. S=P=VI. 1
.
=
7. Supply volt~\ge, V =VR 8. Z =R ~ a pure resistance :. Z ib maximUI!.). 9. Total reac·tahce, X-1 ~ 0 l
IR = V(Z= V/R :. 11 is minimur_!}. II. p. f. ~- I or unity 12. S~cP=VI 10. 11
=
13. Q
~o
13. Q=O .;
·'j'
i~ tl
1\C Circuits Page 9 of',IO
.
.
MULTIVECTOR REVIEW AND TRAlNING CENTER
,_
'
(I)(}~·
Parallel Resonance, Two-Bratich Circuit
J
\(til(!)-;
w,·c 2nf, ; (I)~
.
··-·---~J...
2711':
. . lr ·. \ r, t;. ~ 4. For Parallel RI.C.
R
Q = - - - .,. o>.,CR "
(I).,L
This is the rec,procal of .. f(lr series RI.C.
At resonance.
I
Effective Value of a Nonsinusoidal Current or Voltage Wave
,.-------'.---------·--,..---I=
__,_
R12
ill
I
1
I de 2 + ~-1· 2
1m/
1111 22 --, ·t--2
I
'
~~~~~·
,
--··-
---~:;--
LIC
-
2
' t
I
.. f ~
Rc2- L/C
I
where: I = effective· w11uc of thc current V =effective value of the voltagc Ide= de component of the current Vdc =de COlllJ?Onent of the voltage , 1111 = maximtlln value of the ac cornpiHlcfll of the current, subscript indicates thc degree ofti)e harmonic. (i.e .. I for· the fundan~ental or predor\1inant sinusoidal:fomponent. 2 for senind harmonic,~~ for third harmonic and so on) -~ vm = rnaximu\11 value of the ac component ofthe volt;ige, subscript indicates · . the degree pfthe harrnonic
RL 2 - LIC
t;= - - - ?.rr{Lf.
Rc 2 -L/C
· Quality Factor· Q
The qu;\lity f~1ctoi· of cofls, capacitors and circuits is defined by m~ximum
Q
stored energy
= 27t energy dissipaied per cycle
1. For Series RL,
Q=~=~= 2nfL R 2. For Series RC,
R
R
i .
Xc
I
.
I
Harmoni~s- components of th~ current or voltage in which
o=--=--=-. R ..
wCR
2rrfCR
3. For Series RLC. a{ resonance
Oo=
the frequencies are lll~ll~iples or the fundamental, Note: ' r ·~ fundament\tl fi·equency 2f= 2"" hanno'.nic fi·equcncy 3f= 3'" harmopic frequency
_[_,._~ _f,_
f2-f,
-
BW
where: fl ~nd
12 are the frequencies corresponding · to the half-power polnts.
BW =bandwidth }Vhich is the distance between half-power points. measured in hertz (HZ)
1\C Circuits Page 10 o( 10
MUL TIVECTOR REVIEW AND TRAINING CENTER _AC CIRCUITS
· ·
.
e
~~~
PART I- SINGLE PHASE SYSTEM EXERCISES:
1. In an experiment, a sinusoidal wave form is observedto complete 8 cycles in 25 msec. Determine the frequency of the wave form. A. 320Hz ~ B. 40Hz C. 200Hz D. 64Hz REE - Sept. 2007 . . 2. Wavelength is the distance traveled by an electronic wave .during the time of one cycle. Given a ' wavelength of 12 meters, what is the frequency? A. 250 KHZ B. 25 KHZ C. 250 MHZ D. 25 MHZ '
'
3. If emf in a circuit is given by e = 100 sin 628t, the maximum value of voltage and frequency is .
f\.
B. 100 V, 100Hz
100 V, 50 Hz '
.
D. 50-/2 V, 100Hz
C. 50-/2 V, 50 Hz I
REE - April 2007 · · 4. What is the complex expression for a given alternating current, i A.227+j106' . B.160-j75 C.227-j106
~"'-
=250 sin(wt- 2
deg)? D.160+j75
.
5. A sinusoidal voltage wave has an RMS value of 70.71 V and a frequency of 60 Hz. Determine the · value of the voltage 0.0014 second after the wave crosses the wt axis. A. 70.71 V B. 100 V C. 50 V D. 141.42 V REE - Sept. 201 0 1 6. In a single-phase circuit VA = 84.85 + j84.85 v and V 8 = 96.59- j25.88 v With respect to a reference · node 0. Calculate Vba· ' A.-11.74-j110.73v B.11.74+j110.73v C.11.74-j110.73v ; D.-11.74+j110.73v REE- April 2003 7. What is the rms value of a square wave with an amplitude of 10 A and frequency of 1 Hz? B.10A C.5A D.7.07A A.O REE - October 2000 · 8. A sinusoidal current wave has a maximum yalue of 20 A. What is the average value of one-half cycle? A 5 B. 12.7 C. 14.14 D. 0 REE- April1997. . , 9. A wire carries a current, i = 3 cos314t amperes. What is the average current over 6 seconds? B. 1.5A ·C. 3.0A D. 0.532A . A. OA
10. The average value ofthe function i A. 31.8 A B. 25 A
=50 sin 'wt + 30 sin 3wt is equal to __
.;
.io;f-:1_ _
C. 38.2 A
:; D. 51.43 A ii
r"
11. The rms value of a .half-wave rectified current is 100 A Its value for full ~ave rectification would be _ _ _ _ amperes. A.141.4A C. 200/rr A B. 200 A t D. 40/rr A I
12. A half wave rectified sine wave has an average value of 100 amp.'What is. the effective value? A.157A B.444A C.70.71A I D.100.A AC Circuits 1 Page 1 of 6
MULTlVECTOR REVIEW.· AND TRAINING CENTER . .
AC CIRCUITS
·
.·
p ~)
13. The form factor of a half-wave rectified alternating current is A.1.11 s. 1.57 · e. 1.73
D. 1.0
currents are given by i1 = 141 sin (rot + 45° ); .14. Three alternating .
i2 = 30 sin (
View more...
Comments