A102_Trigonometry.doc

May 21, 2019 | Author: Krystel Monica Manalo | Category: Trigonometric Functions, Sine, Angle, Elementary Mathematics, Geometric Measurement
Share Embed Donate


Short Description

Download A102_Trigonometry.doc...

Description

 Philippine  Philippine Handbook in Chemical Engineering

Trigonometry Trigonometry and and Solid Mensuration Mensuration Azucena Puertollano

A2. TRIGONOMETRY TRIGONO METRY AND SOLID SOLI D MENSURATION A2.1. TRIGONOMETRY A2.1.1 Angles 1.  Angle - set of points determined by two rays or finite line segments, L 1 (initial side) and L2 (terminal side) having a common end point O. 2.  Standard position of an Angle - obtained by taking its vertex at the origin of the rectanglar coordinate system and letting the initial side L1 coincide with the positive x!axis. 3.  Positive Angle - formed by a conterclockwise rotation of L1 to its terminal position L2. 4.  egative Angle - formed by a clockwise rotation of L1 to L2. 5.  Straight Angle - sides lie on the same straight line bt extend in opposite direction from its vertex, e.g., 1"## . 6. Co!terminal Co!terminal Angles - any two angles having the same initial and terminal sides, no matter the amont or direction of rotation of L 1  before coming to position L2 in a specified $adrant, e.g., %2## and !&###. 7. "uadrantal Angle - terminal side lies on a coordinate axis, e.g ., '## or 1"##. 8. #ne degree $% & ' -  the measre of the central angle of a circle sbtended by (or  opposite to) an arc e$al in length to the radis of the circle. 9. Conversion (actors -  radians  1"##* +# mintes  deg * +# seconds  min. 1.  Measures of Angle ) cte ngle    # # -    - '# # Obtse ngle    '# # -    - 1"# #     0 '# # omplementary ngles   /           0 1"# # pplementary ngles   /       ight ngle  '# # &# #



%5#



+# #



'# #



 Special Angles

&##

2

&

+#

#

1 3 &#o!+#o!'#o 4

2 %5

%5#

#

1

 

+   %   &   2

1 3 %5o!%5o!'#o4

7sally, no nits n its are sed for radian measre, i.e.,    5 means    5  radians, not NOTE6 7sally,    5 degrees.

2 ! 1

 Philippine  Philippine Handbook in Chemical Engineering

Trigonometry Trigonometry and and Solid Mensuration Mensuration Azucena Puertollano

11. *ength 1.  *ength of a circular arc s  on a circle of radis r sbtending a central angle of radian measre   6    s = r  

(2 ! 1) 12. Area 12. Area A of a circular circular sector #

 s

 A =

r    r 

1 2

r 2  ,

 

, in radians

(2 ! 2)

irclar sector 13. Angular 13. Angular speed     of a wheel rotating at a constant rate of n revoltions per minte !the angle generated per nit time by a line segment from the center of the wheel to a  point on its circmference6   n (2 ! &) pointt on the the circ circm mfe fere rence nce of a whee wheell of radis radis r 6 distance 14. *inear 14. *inear speed    of a poin r     traveled by the point per nit time, . NOTE6 8hereas the linear speed   depends on the diameter of the wheel, the latter is irrelevant in finding the anglar speed   . A2.1.2 T$%g&n&'e($%! )*n!(%&ns

ngle T+"le A2-1. 9rigonometric :nctions of an cte ngle )UN,TION

DE)INITION

)ORMULA

ine

O;;  ?  ?

tan   

osecant

?  O;;

cot   

  Hypotenuse !

"

Opposite side  

9he ight 9riangle 2 ! 2

b c a c b a c

b c a a b

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

+, #ther Trigonometric (unctions,

vers   1  cos  cov ers   1  sin   ex sec   sec   1 hav  

1 2

vers 

(2 ! %) (2 ! 5) (2 ! +) (2 ! @)

NOTE# 1. 9he vales of the six trigonometric fnctions are positive for every acte angle   since the lengths of the sides of a right triangle are positive real nmbers. 2. 9he hypotense is always greater than the adAacent or opposite side. &. 9he following fnctions are reciprocal of each other6 sine and cosecant, cosine and secant, tangent and cotangent. %. ccording to the ;ythagorean 9heorem6 2 2 2  Hyp  adj.  opp (2 ! ") 5. 9he adAacent and opposite sides are perpendiclar to each other* hence, their  inclded angle is '# # . -, Trigonometric (unction of the .uadrantal angle of coordinates of point ; on a nit circle6

(#,1)

#  sin1"#

#

# cos 1"#

 1

# tan1"#

#

 in the standard position in terms

 y 1 r  # cos '#   x  # r  #  y tan '#     x

 sin '##

y

 



(1,#) (!1,#)

r 01

x

 sin #

#

#

#

1

#

#

cos # tan #

#  sin 2@#

 1

# cos 2@#

#

# tan 2@#



(#,!1)

9he Badrantal ngles

2 ! &

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

/, To determine the value of the function of any angle   0 1. Cet the vale of the fnction of the reference angle   R , i.e., the acte angle that the terminal side of    makes with the x!axis.

2. ;refix the sign of the fnction of the angle    in the specified $adrant HH

HH

H sin    

sin     cos   

cos   

tan    

tan    

sin    

sin    

cos   

cos   

tan    

tan    

H

y

  

θ  R

θ  R

x

 θ  x

y

y

   x

   θ  R

θ  R

HHH

HJ

HHH

y

x

HJ

lgebraic igns of 9rigonometric :nctions 9he eference ngles, D  # # &. :or    # and    &+# , obtain its coterminal angle # #     &+# # * then  perform steps (1) and (2), sing the reference angle   R  and the coterminal angle, respectively. EFG;LE6 :ind the exact vale of OL79HOI6



cos 2#  

 +



cos  2# 

+



cos( +## # ) cos( &+# # 2%# # ) 







 

cos +# #

oterminal angle of the given  Een +n O T$%g&n&'e($%! )*n!(%&ns

a. Even fnction   f  (  x )    f  ( x)  6 cos( x)  cos( x) sec( x)  sec( x)  b. Odd fnction   f  ( x)    f  ( x) 6 sin(  x )   sin( x) tan( x)   tan( x) csc( x)   csc( x) cot(  x)   cot( x )

2 ! %

  R

 

1

2

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

NOTE6 9he graphs of even fnctions are symmetrical with respect to the y!axis* the odd fnctions, symmetrical with respect to the origin.

2 ! 5

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

A2.1.3. T$%g&n&'e($%! )&$'*l+s %, Trigonometric Substitution  x  a sin    for   

EFG;LE6

a   x 2

2



2

     

a   a sin  2

 x  a tan    for



  2

2

   

 x  a sec   for #    



  2

2

 and a K #

a cos    a cos  2

2

 and a K #

&     or       and a K # 2 2

+, The (undamental 1dentities

1. Reciprocal Identities sin   

1

(2  1#)

csc   1 cos    sec   1 tan    cot  

(2  11) (2  12)

2. an!ent " #otan!ent Identities tan    cot   

sin   cos   cos  

(2  1&) (2  1%)

sin  

$. %ytha!orean Identities sin 2    cos 2    1 1  tan 2    sec 2   1  cot 2    csc 2  

(2  15) (2  1+) (2  1@)

-, Addition and Subtraction (ormulas $u and v are real numbers' sin u  v   sin u cos v  cos u sin v cos u  v   cos u cos v sin u sin v

tan  u  v 



tan u  tan v

(2  1") (2  1') (2  2#)

1 tan u tan v

2 ! +

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

/, 2eduction of trigonometric functions of sm or difference of angles into fnctions of     alone. Al(e$n+(%e I#  7se additionsbtraction formlas Al(e$n+(%e II#  :ind the terminal side of the given smdifference of angles. 9hen apply the steps for determining the vale of the fnction of any angle  previosly otlined.   5     in terms of a trigonometric fnction EFG;LE6 Express cos   2     of    alone.

OL79HOI6 ALTERNATI/E I

   

cos  

5  

5 

5 

  cos  #    sin 1  sin    cos  cos   sin  sin 2   2 2

ALTERNATI/E II 0See )%g*$e

5 2

  5   cos      cos  R   sin  2      2

3, Cofunction (ormulas

          sin    2         sin      cos    2        tan      cot     2   cos

(2  21) (2  2&) (2  25)

         csc    2        csc       sec    2        cot       tan    2  

 sec

(2  22) (2  2%) (2  2+)

4, 5ouble!Angle (ormulas sin 2u  2 sin u cos u cos 2u  cos 2 u  sin 2 u  1  2 sin 2 u  2 cos 2 u  1 2 tan u tan 2u  1  tan 2 u

2 ! @

(2  2@) (2  2") (2  2') (2  &#) (2  &1)

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

6, Half!Angle 1dentities  (so!called becase the nmber  is one!half the angle 2 on the right side of the e$ality sign) sin 2 u



cos 2 u



tan 2 u



1  cos 2u

(2  &2)

2 1  cos 2u

(2  &&)

2 1  cos 2u

(2  &%)

1  cos 2u

7, Half!Angle (ormulas  sin cos tan

v



2 v

(2  &5)

2



2 v

1  cos v 1  cos v

(2  &+)

2



2

1  cos v



1  cos v

1  cos v



 sin v

 sin v

(2  &@)

1  cos v

NOTE# hoose the algebraic sign depending on the $adrant containing the angle

9hs if

v

2

.

v  v   is in $adrant HHH, cos   is negative (!). 2  2 

8, Product!to!Sum (ormulas  sin u cos v

 12  sin u  v    sin u  v 

(2  &")

cos u sin v

 12  sin u  v    sin u  v  

(2  &')

cos u cos v

 12  cos u  v   cos u  v  

 sin u sin v

 12  cos u  v   cos u  v  

(2  %#) (2  %1)

%&, Sum!to!Product (ormulas sin    sin    2 sin

    

sin    sin    2 cos

cos

2     

cos    cos    2 cos

sin

2     

     2     

2     

cos 2 2           cos    cos    2 sin sin 2 2

A2.1.4. Ine$se T$%g&n&'e($%! )*n!(%&ns %, 19E2SE S1E $or arcsine' (:CT1# # en&(e " sin 1  &$ +$!s%n

2 ! "

(2  %2) (2  %&) (2  %%) (2  %5)

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

DE)INITION#

 y    arcsin  x  if

and only if  x  sin  y ,

DOMAIN#  1  x  1 * GENERAL SOLUTION O)  sin y = x6  y ; n< = $!%'n arcsin >? n   @1 @2 @3 @,,  y ; arcsin >? with range of

RIN,IAL /ALUE#



 

2

 arcsin x 

vales.

 

2

+, 19E2SE C#S1E $or arccosine' (:CT1# # en&(e " cos DE)INITION#

1



&$ +$!!&s

 y   arccos x  if and only if cos y    x ,

 1  x  1 and range6 #  arccos x   

DOMAIN#

GENERAL SOLUTION of  cos  y   x #  y

2n

 ?

arccos  >  ? n

1 ?

2 ?

3 ?

 ,,,,,

RIN,IAL /ALUE#  y   arccos x -, 19E2SE TABET $or arctangent' (:CT1# # en&(e " tan 1 &$ +$!(+n DE)INITION#

 y    arctan  x  if and only if tan  y    x ,

   x   DOMAIN# GENERAL SOLUTION of  tan  y    x #  y

n

arctan >  ? n

 ?

1 ?

2 ?

RIN,IAL /ALUE#  y   arctan x , with a range6

3 ?

  

 ,,,,,

2

 arctan x   

2

/, 19E2SE C#TABET $or arccotangent' (:CT1# # en&(e " cot +$!!&( DE)INITION#

 y  arc cot  x  if and only if  x  cot  y ,    x   DOMAIN# GENERAL SOLUTION of  cot  y    x #  y

n

arc cot  >  ? n

2 ! '

 ?

1 ?

2 ?

3 ?

 ,,,,,

1



&$

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

RIN,IAL /ALUE#  y  arc cot x , with a range6 #  arc cot x    3, 19E2SE C#SECAT $or arccosecant' (:CT1# # en&(e " csc +$!!s! DE)INITION#

1



&$

 y  csc 1  x  if and only if csc  y    x ,

 1 DOMAIN# GENERAL SOLUTION O) csc  y   x #  x

 y

1

n

RIN,IAL /ALUE#  y   

n

arc csc  >  ? n

 ?

1 ?

2 ?

3 ?

 arc csc x , with a range6 2

 arc csc x   

2

4, 19E2SE SECAT $or arcsecant' (:CT1# # en&(e " sec DE)INITION#

 ,,,,,



1

&$ +$!se!

 y  sec 1  x  if and only if sec  y    x ,

 x  1 DOMAIN# GENERAL SOLUTION O) sec y    x #  y

2n

RIN,IAL /ALUE#  y

arc sec  >  ? n

 ?

1 ?

2 ?

3 ?

 ,,,,,

 arc sec x , with a range6 #  y   

NOTE6 M Arcsin xN means Man an!le &hose sine is xN and Marccosine xN., Man an!le &hose 1 & , arccos , arctan & , etc, refer to the same angle cosine is xN, and so on. 9hs, arcsin 2 2 # y0+# .

A2.1.5. S&l*(%&ns & T$%+ngles %, Solving the 2ight Triangle 1.  An!le of 'levation  angle that the line of sight (to an elevated obAect) makes with the horiontal line, sally at eye level of observer. 2.  An!le of (epression  similarly defined, except that the obAect sighted is below the horiontal line or eye level. NOTE# 9he sm of the interior angles of any triangle6        

 1"# # Civen6 one side (a) b or c) and any acte angle   , or any 2 sides 2 ! 1#

(2  %+)

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano a

(c  b)(c  b)  c sin    b tan  

b

(c  a )(c  a #)  c cos    a tan  

(2  %@) (2  %")

+, Solution of #bli.ue Triangles O"l%*e T$%+ngle  does not contain a right angle. olving obli$e triangles mean finding the measres of the angles  ,   and   corresponding to the vertices , P and , and measres of the sides opposite them designated by a, b and c, respectively. -, *a of Sine a

sin  



b

sin  



c

(2  %')

sin  

,+se I# Civen the measres of two angles and a side, where        

 1"# # ,+se II# (ambigos)  Civen the measre of 2 sides a and b and an acte angle   opposite a &ss%"%l%( 10See )%g*$e# a  b sin  

y

C  a

SOLUTION# Io triangle formed becase P does not intersect the x!axis to complete a triangle &ss%"%l%( 20See )%g*$e# a   b sin  

b

 D

y



SOLUTION# One right triangle formed

b

a

 A

&ss%"%l%( 30See )%g*$e# b sin    a  b SOLUTION# 2 possible triangles formed, P1 and P2, since side a intersect the x!axis at P1 and P2

2 ! 11

b sin x

 D

y

C  b

a

a

b s%n

 A

&ss%"%l%( 4# a   b SOLUTION# Only one possible triangle* side a intersects the x!axis at P only. Hf a   b , an isosceles triangle is obtained.

x

b sin

 A

 D+

 D%

x

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

,+se III# One angle (   ) is obtse6 the measre of the side a opposite the angle is greater than the measres of the other sides. &ss%"%l%( 1# a  b SOLUTION# One triangle is formed

e G$+> & (>e T>$ee R&&(s & Un%(

NOTE# 9he three roots are e$ally spaced on a circle of radis

&

1  1.

A2.2. SOLID MENSURATION A2.2.1. A$e+s & l+ne )%g*$es 1.  S.uare#

d   e 2 *

 A  e 2.  2ectangle#

d  

2

d is length of diagonal and e is the edge

 d 2

b2

1 2

 h 2 ,  A  bh  b d 2  b 2  h d 2  h 2

3.  Parallelogram $opposite sides parallel #  A  bh , h is the perpendiclar distance between  parallel sides 1  A  2  s1 ( s1  b)( s1  h)( s1  d 1 ) , where  s1  2 (b  h  d 1 )  A  2  s2 ( s2  b)( s2  h)( s2  d 2 ) ,

where  s 2

1

 2 (b  h  d 2 )

d 1  is short diagonal, d 2  is long diagonal

4.  2hombus $e.uilateral parallelogram'#  A 

1 2

ab , a and b are length of the diagonals.

2 ! 15

 Philippine Handbook in Chemical Engineering

5. Triangle#

Trigonometry and Solid Mensuration Azucena Puertollano

 A  12 bh ,

h is length of line dropped  perpendiclarly from one vertex to the line where its opposite side lies.

 A



 s ( s



a )( s



b)( s



c)

where  s

,

1



 2 a bc

   and

a) b

and c are the three sides of the triangle 1 6. Trapezoid $four sides? to parallel' #  A  2 (b1

 b2 )h , h is the perpendiclar distance s

 between shorter and longer bases, b1 and b2, respectively. 7. Circle#

  2 # 2 ?  A   r   d   % % 

#    2 r    d 

2



# = circmference ) r 0 radis, d  0 diameter  8.  Sector of a Circle# A  12 rs  12 r    , s 0 arc length  s 0 r   ,    in radians 2

b h



9.  Segment of a Circle#  A  rs  bh 1 2

,%$!*l+$ Se!(&$

1 2

s

,%$!*l+$ Seg'en( 1. Ellipse# (See )%g*$e

 A   ab

b

length of maAor axis 0 2 a length of minor axis 0 2 b

# (approximate) 0 2 

a

2

 b2 2

a

2  Parabolic Segment # 0See )%g*$e  A  & bh

2 Length of arc  ('0   %h

2   b     2h  %h 2       2 2 b  b    1     2              ln   b  2   2   2h      2    

 E 

h

 5

b 2 ! 1+



 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

11. 2egular Polygon of n sides#  A   R 

1 2

1 %

 1"##    , l  0 length of each side n    

nl  cot  2

 1"##    , R 0 radis of circmscribed circle n    

csc 

 1"##   r   cot  n  , r 0 radis of the inscribed circle 2     1

  

&+# # n

l   2 r tan

  

 

 2 R sin

2 (n  2)1"# #

 

2

n

12. Area of polygon inscribed in a circle of radius 2 $See (igure' #

 &+# #    sin   A  2 n     nR 2



inscribed circle

r   2

13. Perimeter of inscribed polygon$See (igure'0

 %   2 nR sin

1"# # n

14. Area of polygon circumscribed about a circle of radius r $See (igure'# 2  A  nr  tan

1"# # n

inscribed circle 2 ! 1@



r   2

circmscribed circle

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

A2.2.2. S*$+!e A$e+s +n /&l*'e & S&l%s 1.  Polyhedron   solid bonded by polygons* if reglar, all faces are reglar polygons $ $ $ $

Eges & + &l>e$&n   intersections of the bonding planes +!es   portions of the bonding planes enclosed by the edges. e$(%!es   intersections of the edges. (e($+>e$&n   for faces are e$ilateral triangles6  A  f   (area of one face) 

& %

e 2 , where

Jolme of 9etrahedron, 1  

2 12

e

e 0 length of an edge

&

adis of inscribed sphere in a tetrahedron, r  0 e

$

>e:+>e$&n   cbe, radis of inscribed sphere , r  

$

&!(+>e$&n   eight faces that are e$ilateral triangles  A  f  



1  

$

$

& 2 e % 2 &

e

 A   2 & e

&

2

2

radis of inscribed sphere 0

Gene$+l )&$'*l+s &$ &l>e$&ns  A   n  f   A  f   1   1& n  f   A  f  r  ,*"e6 9otal rea,  A 

+ e 12

 +e 2 ,

Jolme, 1   e & 

+ e +

where n f  = nuber of faces

e 0 edge length

& & d  , d  0 length of diagonal of cbe '

$

Re!(+ng*l+$ +$+llele%e#  A   2(ab  bc  ac) 1   abc , where a) b and c are length, width and height, respectively

$

$%s' ! polyhedron with two e$al and parallel base polygons and lateral faces which are parallelograms6 Lateral rea,  A 3  e% r    where e 0 lateral edge  % r   0 perimeter of right section 1    *h   Ar e   where * 0 area of the base Jolme, h 0 altitde  Ar  0 area of the right section

2. Cylinders

2 ! 1"

 Philippine Handbook in Chemical Engineering $ $ $

Trigonometry and Solid Mensuration Azucena Puertollano

R%g>( ,%$!*l+$ ,l%ne$ 6  A 3  2 rh ,  *   r 2 , 1    r 2 h 2 2 @&ll&= ,l%ne$s 6 1    h( R  r  ) , where R and r  are external and internal radii T$*n!+(e R%g>( ,%$!*l+$ ,l%ne$ 0See )%g*$e#  A 3  2 rh , 1    r 2 h , where h  12 (h1  h2 ) h1

 h  h2 h

h1

h2

3.  Pyramid 

 A 3 0 sm of areas of trianglar faces 1   1&  *h NOTE# :or a reglar pright pyramid (vertex directly above the center of the bases),

 12  % b 34    where % b 0 perimeter of the base*  34   0 slant height or altitde of one

 A 3 face

4.  2ight Circular Cone

 A 3

  r34   12 #34 

1   1&  r  h 2

where #  0 circmference of the base

 34  0 slant height of cone

5. (rustum $ :rstm of eglar ;yramid (obtained by ctting off the portion containing the vertex with a plane, sally parallel to the base)6

 A 3



 % 1   % 2  2



34 

  A   A2   1  &  

 A1

  A2   h   

 % 1 0 perimeter of bigger base  % 2 0 perimeter of smaller base  34  0 slant height or altitde of one trapeoidal face  A1 0 area of bigger base  A2 0 area of smaller base $

:rstm of a ight irclar one6  #   # 2     A 3   1  34    R  r  34    2   1  

1 &

 A   A 1

2



 A1

  A2 h

where R and r  are radii of the bigger base and smaller base, respectively.r 1 h1

6.  Sphere $See (igure' srface area,  A  % R 2

h

h2  2

2 ! 1'

 5

r 2

 Philippine Handbook in Chemical Engineering

volme, 1   %&   R

Trigonometry and Solid Mensuration Azucena Puertollano

 1+   ( & 2 2  (spherical sector)  2&   R h  1+   ( h &

 (spherical segment with one base) 

  h1

 (spherical segment with two bases) 

+   h +

 &r 

 h12 

 &r 

 &r 22  h22 

2 2

2 1

&ne ! portion of the srface of a sphere inclded between two parallel planes  A( /one)   2  Rh    (h

7.  Ellipsoid   every section perpendiclar to the axis of the solid is an ellipse

1   %&  abc , where a) b, and c are the length of the semi!axes. 8. Torus   obtained by rotating a circle of radis r  abot a line whose distance is R5r   from the center of the circle. 1   2  2 Rr 2

 srface area 0 %  2 Rr 

9.  Spheroids $

$&l+(e S>e$&%   obtained by rotating an ellipse abot its maAor axis6

srface area  2 b  2  ab 2

e

 sin

1

e , where e is the eccentricity (e-1).

1   %&  ab 2 $

O"l+(e S>e$&%   by rotating ellipse abot its minor axis6

  b 2   1  e 2   ln   a 2   srface area , where e is the eccentricity (e-1). e     1  e 2 1   %&  a b

A2.3. S@ERI,AL TRIGONOMETRY A2.3.1. T>e S>e$%!+l T$%+ngle 1. Circle  intersection of a plane with a sphere 2. Breat Circle  formed when the plane passes throgh the center of the sphere &.  Small Circle  formed when the plane passes throgh any point other than the center.

2 ! 2#

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

%.  A>is of Circle  line throgh the center of the sphere perpendiclar to the plane of the great circle and pierces the sphere at two extreme points called the poles. 5.  Spherical Triangle ADC  (see %g*$e)  bonded by three arcs (P, P and ) of  great circles* composed of three angles (, P and ) and their opposite sides (a, b and c, respectively). P

a





O

c



  b 

+. Trihedral Angle  Mspace cornerN opposite to the spherical triangle* vertex is at the center O of the sphere. 9he plane angles  ,     and    are the face angles of the trihedral angle. @.  Sides of the Spherical Triangle   measred by the corresponding face angles of the trihedral angle6 a is measred by *O#  or   * b by AO#  or    * and c by AO* or   . ".  Angles of the Spherical Triangle   measred by the corresponding dihedral angles of  the trihedral angle. :or example, angle  A is measred by the dihedral angle whose edge is OA and bonded by the faces AO* and AO# . '. #bli.ue spherical triangle  6 does not have a right angle ('#S) NOTE6 ince the face angles  ,    and    are the central angles of the respective sides a) b)  and c of the spherical triangle, a    , b      and c      in anglar measres. 9herefore, the sides of the spherical triangle have trigonometric fnctions.

 *imitations on the sides of a spherical triangle0 1. # o - a 7 b 7 c - &+# o 2. a) b) or c shold not be greater than 1"# o

 *imitations on the angles of a spherical triangle 1. Io angle ( A) *) or  # ) of a spherical triangle is e$al to or greater than 1"# o 2. 1"# o - A 7 * 7 #  - 5%#o Theorems on spherical triangles

2 ! 21

 Philippine Handbook in Chemical Engineering

H. HH.

Trigonometry and Solid Mensuration Azucena Puertollano

9he sm of any two sides of a spherical triangle is greater than the third side 9he largest angle is opposite to the longest side* the smallest angle is opposite to the shortest side.

A2.3.2. Gene$+l L+=s The Cosine *a for Sides 6 9he cosine of any side of a spherical triangle e$als the  prodct of the cosines of the other two sides pls the prodct of the sines of these two sides mltiplied by the cosines of their inclded angle. cos a  cos b cos c  sin b sin c cos  A cos b  cos c cos a  sin c sin a cos * cos c  cos a cos b  sin a sin b cos # 

The Cosine *a for Angles6 9he cosine of any angle of a spherical triangle is e$al to the prodct of the sines of the other two angles mltiplied by the cosine of their inclded side mins the prodct of the cosine of the other two angles. cos  A  sin  * sin # # cos a  cos * cos #  cos *  sin # sin  A # cos b  cos # cos  A cos #   sin  A sin  * # cos c  cos  A cos *

The Sine *a 6 Hn a spherical triangle, the sines of the angles are proportional to the sines of the opposite sides. sin  A sin a



sin  * sin b



sin #  sin c

 Haversine *a for Angles0

Let s = T ,a 7 b 7 c

sin( s  b) sin( s  c ) sin b sin c sin( s  c) sin( s  a) hav*  sin c sin a sin( s  a) sin( s  b) hav#   sin a sin b havA 

 Haversine *a for Sides0 hav a  hav (b  c)  sin b sin c havA hav b  hav (c  a)  sin c sin a hav* hav c  hav (a  b)  sin a sin b hav # 

 A b

A2.3.3. S&l*(%&ns & S>e$%!+l T$%+ngles

c O

 2ight Spherical Triangle

2 ! 22

#   *

a

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

Hf angles * and #  0see %g*$e  are both '##!angles, then the faces AO* and AO#  are  perpendiclar to plane  *O# , 9he edge of intersection OA of planes  AO*  and  AO#  are likewise perpendiclar to the planes *O# * ths, angles AO*  and  AO#   are right angles and arcs A* and A#  are $adrants of great circles, i.e., '##!arcs.  right spherical triangle  contains one '##!angle* birectanglar triangle, two right angles* and trirectanglar triangle, three right angles.  .uadrantal triangle  has one side e$al to a $adrant or '##* bi$adrantal, two sides each e$al to '##* tri$adrantal, three '##!sides. NOTE# 1. Hn a birectanglar triangle like A*# , the sides (b and c) opposite the right angles * and #  are $adrants ('##). 2. 9he third angle A has the same measre as its opposite side a. &. Hf each of the three angles is '##, each side is also '## or $adrantal. Hn this case, the triangle is its own polar. %.  right spherical triangle (only one angle e$al '##) has its opposite side different from '##.

 A

N+%e$Bs R*les 9he :ive nglar  Bantities of the ight pherical 9riangle (Left :igre) rranged  in a icle (ight :igre)

 A b

c

c b  * a

'#

#



 *

9he bars over the letters A) * and c are read Mthe complement ofN, example6  A  means M'##    AN. #ircular parts  anglar $antities a) b) c  A , and  *  ( 0 '## is exclded in the circle).  8iddle part   any given part  Adjacent parts  parts contigos with or adAacent to any given part Opposite parts  two non!adAacent or non!contigos parts ,

Example6 Hn the right figre, if and  * and a are opposite to it.

 A

 is the middle or given part,

2 ! 2&

c

 and b are adAacent to

 A

,

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

 apiers 2ules State0

H.

9he sine of any middle part is e$al to the prodct of the cosines of the opposite  parts. 9he sine of any middle part is e$al to the prodct of the tangents of the adAacent  parts.

HH.

NOTE6 Msine middle 0 cos opposite 0 tan adAacentN E:+'le# Obtain the formla for tan b sing IapierQs rles.

S&l*(%&n#

le HH is directly applicable, since it involves tangents of adAacent parts. :or b to be adAacent, choose either 9  or a as middle part (conslt the circle). Hf a is chosen, b and  * are adAacent to it* then from le HH6 sin a 0 tan b tan  * olving for tan b6 tan b 

sin a 

tan *



sin a tan('# o

  * )



sin a cot *

 sin a tan *

2 ! 2%

 Philippine Handbook in Chemical Engineering

Trigonometry and Solid Mensuration Azucena Puertollano

 2eferences0 E>8>, .avid E. ;enney. 1''%. Calculus ith Analytic Beometry, ;rentice!e GoivreQs 9heorem, 2!1& ellipsoid, 2!1' even fnction, 2!% frstm, 2!1' fndamental identities, 2!5
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF