A Matemática Do Ensino Médio Vol 1

November 12, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download A Matemática Do Ensino Médio Vol 1...

Description

 

 

D @dtf`ätjkd cg Fnsjng @êcjg Xgbu`f 4 Fbgn Bdif Fbgn Bdifss Bj Bj`d `d Qdubg Qdu bg Kfzdr Kfzdr Qjntg Qjntg Kdrvdb Kdrvdbmg mg Fcudrcg Ydinfr  Duiust Dui ustg g Kêzd Kêzdrr @gridc @gridcg g

[GBVKJGNÄUJG KG@QBFSG

KGBFÉËG CG QUGHF[ QUGHF[[GU [GU CF @DSF@ @DSF@ÄSJKD ÄSJKD [GKJFCDCF EUD[JBFJUD EUD[JBFJUD CF @DSF@ÄSJKD

 

 

[gbu½ kk˒ g ˒fs cg Bj Bjvrg vrg< D @dtf`dtjkd d ³tjkd cg Fnsjng @³ f fcjg cjg - [E@ [E@ (Fbgn Bdifs Bdifs Bj`d f kgb. kgb.)) njeebfcjfigAi`djb.kg` njeebfcjfigA Kg`pjbdcg cjd 5;/1:/5148

Fssf cgku`fntg fst³d f` kgnstdntf rfvjs˒ rfv js˒ddg. g. Xfz gu gu gut gutrd rd u` frrg cf pgrtuiuˈffss ³f kgrrjijcg, u`d pdssdif` quf n˒ ddgg fflkgu `ujtg `ujtg kbdrd ³f rfhfjtd, u`d sgbu½kk˒ ddg ˒g ffqujvgkdc qujvgkdcdd ³f suestjtu³ sue stjtu³ĴĴcd cd gu d sgbu½ sgb u½ k˒ddgg cf u`d cds qufst˒gfs djncd n˒dg n˒dg rfsgbvjcd rfsgbvjcdss dpdrfkf `dijkd`fntf f` `jnm `jnmdd kdef½kd, sfncg jnkbu³ Ĵcd Ĵcd f` vfr vfrs˒ s˒ gfs dtudbjzdcds cg cgku`fntg. Dssj`, vfrjfflquf sf g quf vgkˈf tf` f` `˒dgs ³f cf hdtg d vfrs˒ddgg `djs rfkfntf cg cgku`fntg . Sgcds Sgcds ds dtudbjzd½kk˒gfs ˒gfs cfbf fst˒ ddgg cjspgn³ĴĴvfjs vfjs f` f`   www.nu`efr.=:1`.kg`  www.nu`efr.=:1`.kg`  sf` er `fs `fs`g. `g.

[f qujsfr jnhgr`dr dbiu` frrg cf pgrtuiuˈffs, s, cjijtd½kk˒ dg d˒g gu `fs`g `fs`g cf b³ gijkd ngs fxfrk³ Ĵkjgs fskrfvd pdrd<   njeebfcjfigAi`djb.kg`

[u`³ drjg drjg 4 Kgnluntgs

5

5 N³ u`frgs Ndturdjs

43

; N³ u`frgs Kdrcjndjs 3 N³ u`frgs Ufdjs

55 5=

6 Hun Hun½ ½kg ˒fs Dfflns

;6

8 Hun Hun½ ½kg ˒fs Tudcr³ dtjkds

68

9 Hun Hun½ ½kg ˒fs Qgbjng`jdjs

=1

= Hun Hun½ ½kg ˒fs F Fx xpg nfnkjds f Bgidr³ Ĵt`jkds

=9

: Hun Hun½ ½kg gfs ˒fs Srjig Srjign ng`³ ftrjkds

:6

41 Dirdcfkj`fntg

415

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

4

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

Kgnluntgs

4. [fld` Q 4, Q5, T4 , T5   prgprjfcdcfs rfhfrfntfs d fbf`fntgs fbf`fntgs cf u` kgnluntg unjvfrsg   V .          [upgnmd quf Q   4   f Q5   fsigtd fsigtd` ` tgcgs tgcgs gs kdsgs pgss³ pgss³ĴĴvfjs vfjs (gu sfld, u` fbf`fntg fbf`fntg qudbqufr qudbqufr cf   V           gu tf` prg prgprj prjfcd fcdcf cf Q   4   gu gu tf` ˈf` Q 5 ). [u [upg pgnm nmdd djncd djncd quf quf T   4   f T5   s˒ddgg jjnkg nkg`pd `pdt³ t³ĴĴvfj v fjss (jstg (js tg ³ff,, fxkbuf`-s fxkbu f`-sff `u `utudb tudb`fntf) `fntf).. [upg [upgnmd, nmd, fflndb`fntf fflndb`fntf,, quf Q 4   T4   f Q5   T5 . Qrgvf Qrgvf quf vdbf` vdbf` ds rfk³ Ĵprg Ĵ prgkd kds< s< T4   Q 4   f T5   Q 5 .

 ⇕

 ⇕

 ⇕

 ⇕

[gbu½ k˒ dg< kg`gg Q   5   T5, fnt˒dg u` Kg`g Q 4   f Q5   fsigtd` tgcds ds pgssjejbjcdcfs pgssjejbjcdcfs f Q   4   T4   ef` kg` fbf`fntg cf V       gu    tf` ˈf` prgp prgprjfcd rjfcdcf cf T4   gutˈf` f` prgprjfcd prgprjfcdcf cf T5. Gu f` gut gutrds rds pdbdvr pdbdvrds< ds< n˒dg n˒dg pgcf mdvfr fbf`fntg cf   V        quf    n˒dg igzf ig zf cf T   4   f T5   dg `fs`g tf`pg.

 ⇕

 ⇕

Q5 . Nfstf Nfstf kdsg u u` ` fbf`fntg fbf`fntg   u   pfrtfnkfntf d   V           tˈ f` td td` `e³ f` f` [upgnmd pgr desurcg quf T   4 prgprjfcdcf T5 , pg pgjs js Q 5 T5 . G quf ifr ifrdd u` desur desurcg cg l³d quf T4   f T5   sf fxkbuf` `utudb`fntf. Bgig T 4   Q 4.



 ⇕



Dndbgid`fntf sf prgvd quf T5

  ⇕   Q5.

5. Fnqudcrf ng kgntfxtg cg fxfrk³ĴĴkjg kjg dntfrjgr g sfiujntf hdtg ifg`³ftrjkg< ftrjkg< Cuds Cuds geb geb³  ³  Ĵqu Ĵquds     ds quf  sf dhdstd dhdstd` ` jiudb` jiudb`fnt fntff cg p³  f cd       pf pfrpfnc rpfncjkubd jkubdrr sd dg ˒g ji jiudj udjs. s. [f sf dhdst dhdstd` d` cfsjiu cfsjiudb`f db`fntffnt˒ ntffnt˒dg s˒dg dg cf cfsj sjiu iudj djss f d `d `djg jgrr ³ f d quf `djs `djs sf dhds dhdstd td.. [gbu½ k˒ dg< Hdzfncg u`d kg`pdrd½kk˒ dg d˒g kg` g fxfrk³Ĵkjg Ĵkjg dntfrjgr dntfrj gr tfrf`gs<

Q4 < Qrgprjfcdcf cf sf dhdstdr dhdstdr jiudb`fntf. T4< Qrgpr Qrgprjfcdc jfcdcff cf sfrf` cf td`dnmgs td`dnmgs jiudjs. Q5 < Qrgprjfcdcf cf sf dhdstdr cfsjiudb`fntf. cfsjiudb`fntf. T5< Qrgprjfcdcf cf tfrf` tfrf` td`dnmgs cfsjiudjs. Cf `gcg quf Q   4

vfrcdcfjrd .   ⇕   T4, Q5  ⇕   T5   f d rfkjprgkd td`e³ff`` ³f vfrcdcfjrd.

;. [fld` ] 4 ]5 , Z4Z5   suekgnluntgs cg kgnluntg unjvfrsg   V. [upgn [upgnmd md quf quf ]   4 ]5   0   V   f Qrgvf vf quf quf ] 4   0 Z4   f ]5   0 Z5 . quf ] 4 Z4   f quf ] 5 S5 . Qrg Z4 Z5   0 , quf











[gbu½ k˒ dg< 4 Kg`g pg r mjp³ `gst `gstrdcg rdcg pgr quf< quf< ] 4gtfsf   0 Z] 4.

dg edstd prgvdr quf ] 4  ⊋ Z4   quf pgr cupbd jnkbus˒dg tfrf`gs   ⊅ Z4  fnt˒dg Qdrd `gstrdr quf ]   4 ⊋   Z 4   tg`f`gs tg`f`gs u u` ` fbf`fntg  fbf`fntg  y   ∍   Z 4 . Kg`g pgr mjp³gtfsf mjp³gtfsf ] 4 ∬   ] 5   0   V

fnt˒dg  dg   y   pfrtfnkf d ] 4   gu pfrt pfrtfnkf fnkf d ]  5.

5

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

 ∍

 ⊅

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

 ∍

  ∪   Z 5   0 ∆. Bgig Bgig   y   ∍

[f  [f   y   ] 5   f ]5   Z 5   fnt˒ ddg  g   y   Z 5 . G quf sfrj sfrjdd u` desurc desurcgg l³d quf Z 4 ]4   g quf prgvd quf ]   4   Z 4 . F pgrtdntg pgrtdntg quf ]   4   0 Z4 .

 ⊋

Dndbgid`fntf sf prgvd quf ]5   0 Z5 .

3. Kg`pdrf Kg`pdrf g fxfrk fxfrk³³Ĵkjg dntfrjgr dntfrjgr kg` g prj`fjrg prj`fjrg f` f` tfr`gs tfr`gs cf cf kbdrfzd kbdrfzd f sj`pbjkjcdcf sj`pbjkjcdcf cgs fnunkjdcgs. @gstrf quf qudbqufr u` cfbfs pgcf sfr rfsgbvjcg rfsgbvjcg pfbg gutrg. [gbu½ k˒ dg<

 ⊋

Qdrd prgvdr`gs quf ]4   0 Z4 , pgr fxf`pbg prfkjs³ prfkjs³dvd`gs dpfnds `gstrdr `gstrdr quf< ]   4   Z 4. Dssj` sf tg`dr`g tg`dr`gss u` fbf`f fbf`fntg ntg   u   cf cf   V, Q4   kg`g d prgprjfcdcf cf pfrtfnkfr d ]   4   f T4 kg`g d prgprjfcdcf cf pfrtfnkfr d Z   4 . Fnt˒dg pgcf`gs dfflr`dr quf Q   4   T 4 . L³d quf ] 4   Z 4 . Nfstf kdsg prgvdr d rfkjprgkd (T   4   Q 4), sfrjd g fqujvdbfnt fqujvdbfntff d prgvdr ]4   Z 4.

 ⇕  ⊋

 ⇕

 ⊅

F` gutrds pdbdvrds prgvdr d qufst˒dg dg ; j`pbjkd nd prgvd cd qufst˒dg 4 f vjkf-vfrsd.

  ⇕   T4   f Q5

6. Djncd ng tf`d cg prj`fjrg fxfrk fxfrk³³Ĵkjg, sfrjd v³dbjcg dbjcg suestjtujr ds j`pbjk j`pbjkd½ d½k˒ k˒gfs gfs Q 4

⇕   T5   nd mjp³ mj p³gtfsf pgr suds rfkjprgkds rfkj prgkds T   4  ⇕   Q4   f T5  ⇕   Q 57 [gbu½ k˒ dg<

 ⇕

 ⇕

Fssd suestjtuj½k˒ kddg ˒g n˒dg gerjid ger jid d j`pbj j `pbjkd½k˒ kd½k˒ dg dg Q4   T4   f Q5   T5. Edstd Edstd j` j`dijndr dijndr g fxf fxf`pbg `pbg f` quf V 0 N ,        Q4   f³ d prgprjfcdcf ‒n ³f pdr‐, Q5   sjinjfflkd ‒n ³f j`pdr‐, T4   quf cjzfr ‒n f `³ubtjpbg cf 3‐ f T   5   cjz ‒n ³f u` nu`frg prj`g `djgr cg cg quf 5‐.

8. Fskrfvd ds j`pbjkd½k˒ gfs gfs b³gij gijkds kds quf q uf kgrrfs kgrrfspgnc pgncff ` ad rfsgbu½ rfsgb u½k˒dg dg cd fqud½ fqu d½k˒dg dg

  ∜ x  +5 05,vfld

qudjs s˒dg dg rfvfrs³ĴĴvfjs vfjs f fx fxpbjquf pbjquf g dpdrfkj`fntg dpdrfkj `fntg cf rd³Ĵzfs Ĵzfs fstrdnmds. fs trdnmds. Hd½ kd g `fs`g kg` d fqud½k˒ fqud½k˒ dg dg x + ; 0  x .

∜  

[gbu½ k˒ dg< Hdzfnc Hdzfncgg y 0

∜ x    tˈf` sf< sf<   ⇕ y  + 5 0  y 5 ∙

⇕ y5 ∕ y ∕ 5 0 1 5)(y  +4)0 1 (4) ⇕ (y ∕ 5)(y ⇕ y  0 5, y   0 ∕4 (5) ∜   kg`g   y   0 x   cf (4) f (5) tf kg`g tf`gs `gs  1, d fqud½k˒ddgg

u`d rdjz. ∜ x  + `  0   x   tf` fxdtd`fntf u`d

[gbu½ k˒ dg< [fld   y   0 [fld

∜ x    fnt˒dg< dg<

∜ x  + `  0  x   pgcf sfr fskrjtd kg`g   y   + `  0   y 5 ⇕ y5 ∕ y ∕ `   0 1 Dpbjkdncg emdsodrd<

∜     ∕ (∕4) ´ (∕4)5 ∕ 3(4)(∕`)   4 ´ 4 + 3` y  0   0



5(4)

5

5

y `   0 1 pgssujr³d cuds Kg`g pgr mjp³gtfsf   ` >   1 fnt˒ fnt ˒dg dg d (4 + 3 `)   >   1 f d fqud½k˒ddg  g  y rd³Ĵzfs, Ĵzfs, u`d pgsjtj pgsjtjvd vd f u`d nfidtjvd quf kmd`drf kmd`drf`gs `gs cf  cf  o 4   f o5   (kg`  (kg`   o 4 , o5 U ).   

∜   [f  [f   y   0 ∕o5   fnt˒ dg dg x  0 ∕o5   f   x   0 (o5 )5 sfncg dssj`< 3



∕ ∕



 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

∜ x  + `  0  x ⇕ ∕o5  + `  0 (o5)5 ⇕ `  0 (o5)5 + o5 ⇕ ` >   (o5)5 (4)   ∜   dg< dg< `ds kg`g x   0 ∕o5   fnt˒ ` >   (o5 )5

⇕ ` >x

Fssd j`pbjkd j`pbjkd½½k˒dg dg ng fntdntg ³f u` desurcg pgjs pgj s dndbjsdncg dndbj sdncg d fqud½ fqu d½k˒ddgg ( x   +   `   0   x),f d kgncj½k˒ kd˒dgg cf quf   ` >   1 fnt˒ fnt ˒dg dg cfvf`g cf vf`gss tfr   x   `. Bgig   x   n˒ddgg pgcf ssfr fr jiudb jiudb d o5   pgjs jssg rfsubtdrjd f`  f`   ` > x

∜     ∕

 ≦

Bgig d fqud½ fqu d½k˒ddgg s³g pgssuj u`d rdjz. F fbd ³f pgsjtjvd.

=. Kgnsjcfrf ds sfiujntfs (d (dpdrfntfs) pdrfntfs) fqujvdbˈ fnkjds fnkjds b³gijkds< gijkds< x  0 4

⇓ x5 ∕ 5x + 4 0 1

⇓ x5 ∕ 5 ¹ 4 +4 01 ⇓ x5 ∕ 4 0 1 ⇓ x  0 ´4 Kgnkbus˒ ddgg (7)<   x   0 4

⇓ x  0 ´4. Gncf fst³d g frrg7

[gbu½ k˒ dg< G prgebf`d fst³d nd sfiuncd j`pbjkd j`pbjkd½½k˒dg. d g. Fn Fnqu qudn dntg tg   x5 5x  + 4 0 1   x5 5 4 + 4 0 1 d 5 rfkjprgkd rfkjprg kd n˒ddgg ³f vf vfrcdcfjr rcdcfjrd, d, pgjs sf sf   x   0 4 fn fnt˒ t˒dg ( 4) 5 4 + 4 td`e³ td`e³ ff` ` ³f jiudb jiudb d zfrg. zfrg. Gu jrrfvfrs³ Ĵvfb. Ĵvfb. pdrd   x 5 5(4) + 4 0 1 ³f jrrfvfrs³ sfld, d pdssd pdssdif` if` cf   x 5 5x + 4 0 1 pdrd

 ∕



∕ ∕ ∕ ¹



 ⇕ ∕ ¹

:. Ds rd³Ĵzfs Ĵzfs cg pgbjnˈg`jg  g`jg  x ; 8x5 + 44 44x x 8 s˒ddgg 4, 5 f ;. [uestjtud [uestjtud,, nfssf pgbjnˈg`j pgbjnˈg`jg, g, g tf tfr`g r`g 44x 44x   pgr 44 5 0 55, getfncg fnt˒dg dg   x; 8x5 + 48, quf djncd tf` 5 kg kg`g `g rdjz rdjz `ds n˒ dg sf dnubd dnubd pdrd   x   0 4 nf` pdrd nf`   x   0 ;. Fnu Fnunkjf nkjf u` rfsubtdcg rfsubtdcg ifrdb ifrdb quf fxpbjquf fxpbjquf fstf hdtg f g rfbdkjgnf rfbdkjgnf kg` g fxfrk³ fxf rk³Ĵkjg Ĵkj g dntfr dntfrjgr jgr..

¹







[gbu½ k˒ dg< rdjz jz ³f   δ   fnt˒ dg dg p(δ p( δ) 0 1. Sg`dnc Sg`dncgg digrd digrd Cdcg u` pgbjnˈg`jg p(x) 0   dx ; + ex5 + kx + c   kuld rd u` sfiuncg pg pgbjnˈ bjnˈg`jg q(x) 0   kx   pgcf-sf fskrfvfr fskrfvfr p(x) kg`g<   p(x) 0  dx; + ex5 + q (x) + c

6

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

Ufpdrf Ufpd rf qu quff fst³d suestjtuj suest jtuj½½k˒ddgg ndcd `ucd `ucd f` p(x p(x). ). Cf `gcg `gcg qu f p p(( δ) kgntjnud kgntjnud sfncg sfncg rdjz cf p(x). p(x). Cfssf Cfssf `g `gcg cg suestjtuj suestjtujrr q( δ) pfbg tf tfr`g r`g ‒qx‐ ‒qx‐ f` p(x) sjinjfflkd sjinjfflkd dpfnds dpfnds quf fstd fstd`gs `gs suestjtujn suest jtujncg cg x pgr   δ   f` ‒qx‐. ‒qx‐. p( p(x) x) 0   dx ; + ex5 + kδ + c Dssj`   δ   kgntjnud sfncg rdjz cf p(x) Dssj` p(x),, `ds ds suds cf`djs rd³Ĵzfs Ĵzfs pfrcf` g sfntjcg. Fssf hdtg td`e³ f` f` sf vfrjffl vfrjfflkd kd ng ng fxfrk³ fxfrkĴkjg Ĵ³kjg dntfrjgr qudncg suestjtu³ suestjtu³Ĵ`gs x pgr 4 nd fqud½ k˒ dg dg 5

x

∕ 5x + 4 0 1 41. [fld Q( Q(x) x) u`d kgncj½ kgncj½k˒ k˒ dg dg fnvgbvfncg d vdrj³dvfb d vfb x. (4) ‒Qdrd ttgcg gcg x, ³f sdtjshfjtd sdtjshfjtd d kgncj½kk˒ dg d˒g Q(x)‐ (5) ‒Fxjstf ‒Fxjstf dbiu dbiu` ` x quf sdtjsh sdtjshdz dz d kgncj½ kgncj½ k˒ dg dg Q(x).

d) [fncg D g kgnlu kgnluntg ntg cf gelft gelftgs gs x (cf u` kfrt kfrtgg kgnluntg kgnluntg unjvfrsg unjvfrsg   V) quf sdtjsh sdtjshdzf dzf` `d kgncj½k˒ kd˒dgg Q(x), fskrfvd ds sfntfn sfntfn½½kds kds (4) (4) f (5) dkj`d, usdncg d bjniudif` cgs kgnluntgs. kgnluntgs. e) Tudjs ds nfid½k˒ gfs gfs cf (4) f (5)7 k) Qdrd kdcd sfntfn½kd dedjxg cjid sf fbd ³f vfrcdcfjrd gu hdbsd f hgr`f sud nfid½k˒ kddg< ˒g< 5

Fxjstf u` nu`f nu`frg rg rfdb rfdb   x   tdb quf quf   x 5 0 ∕4. ••    Qdrd tgcg nu`frg jntfjrg  jntfjrg   n , vd vdbf bf   n > n. •   Qdrd tgcg nu`frg rfdb   x , tf`-sf tf`-sf   x >   4 gu gu   x 5 2  4. ndturdb   n   tdb quf quf   n > x. •   Qdrd tgcg nu`frg rfdb   x   fxjstf u` nu`frg ndturdb  •   Fxjstf u` nu`f nu`frg rg ndtur ndturdb db   n   tdb quf, pdrd tgcg tgcg nu`frg nu`frg rfdb   x , tf tf` ` sf   n > x. [gbu½ k˒ k˒dg cf D<

 ∍

Cd sfntfn½kd kd (4) kgnkbuj-sf kgnkbuj-sf dpfnds dpfnds quf< tgcg   x   V   td`e³ ff` ` pfr pfrtfn tfnkf kf d D. D. N˒ ddgg sf pgcf cjzfr quf D 0   V   pgrquf pgrq uf n˒dg sf sdef sf   V   f³ kgnstjtu³Ĵcg Ĵcg dpfnds cf gelftgs x. Cf (5) sf kgnkbu kgnkbuj-quf j-quf D 0

  ∆

Dssj` ds sfntfn½ sfntfn½ kkds ds (4) f (5) fskrjtds nd hhgr`d gr`d cf kgnluntg kgnluntg sfrjd` rfspfktjvd`fntf< (4)D 0

  {x|x ∍ V} (5) (5) D    0∆

[gbu½ k˒ k˒dg cf E< Dn nfid fid½½k˒ k˒dg dg cf cf (4) ³ff  4 D nfid nf id½ ½k˒ k˒ dg dg cd dfflr` dfflr`d½ d½k˒ d dg g sfr³ sfrd< d r . D nfid½ nf id½k˒ dg d g cd cd dffl dfflr`d r`d½ k½˒ dg sfr³ d r. D nfid nf id½ ½k˒ k˒ d dg g cd dffl dfflr` r`d½ d½k˒dg dg sfr³ sf r³d d  1 x∕6 5x + 8   >  1 x 6



Kuld cfsjiudbcdcf gkgrrf pdrd   x >  6 f   x 2  ;. L³d d sfiuncd jnfqud½k˒dg dg hdrf`gs dssj`< x x

∕4 ∕ 6   2  4

;5

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

∕ ¹   xx ∕∕ 64   2  4 ¹ (∕4)

( 4)

4 x 4

∕ x   > ∕4 ∕6

x

 +

 x

6

  >  1

∕ ∕ x∕6 x∕6 4 ∕ x + (x ∕ 6)   >  1 x∕6 4

∕ x + x ∕  6 >  1 x∕6 ∕3   >  1 ∕6

x

Kuld Kul d sgb sgbu½ u½k˒ddgg gkgrrf sg`fntf pdrd   x 2   6 (edstd (edstd gbmdr prg cfng` cfng`jndcgr). jndcgr). Dssj` hdzfncg d jntfrkfss˒ dg dg fntrf ds sgbu½ sgbu ½k˒gfs gfs fnkgntrd`gs kg`g sgbu½kk˒ dg d˒g d kgncj k gncj½½k˒dg dg cf quf   x 2  ;. c) Nfssf kdsg prgkfcf`gs cd sfiujnt sfiujntff hgr`d<

|x ∕ 5| + |x + 3| 0   x∕(∕x5∕+5)|x++|x3|+03|=0 =



Cf kdcd kdc d fqud½ fqud ½k˒dg dg dkj`d djncd tf`-sf< x

∕ 5 + |x + 3 | 0



 x x

∕ 5 + x +3 05 x +5 0= ∕ 5 ∕ (x + 3 ) 0 ∕8 0 =

f td`e³ f`< f`<

5

∕ x + |x + 3 | 0



 5 5

∕ x + x + 3 0 8 0 = ∕ x ∕ x ∕ 3 0 ∕5x ∕ 5 0 =

Cgs cgjs ³ubtj`gs sjstf sjstf`ds `ds pfrkfef`gs quf ds ³unjkds ³unjkd s sgbu½kk˒gfs ˒gfs pgss³Ĵvfjs Ĵvfjs vˈff` ` cf 5x + 5 0 = x  0 ; f c cff 5x 5 0 = x   0 6.

 ∕ ∕





Cf hdtg tfstdncg fstfs vdbgrfs tf`gs<

|(∕6) ∕ 5| + |(∕6 ) + 3| 0 | ∕ 9| + | ∕ 4| 0 = |(;) ∕ 5| + |(;)+3 | 0 |4| + |9| 0 = ;;



 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

Dssj` d sgbu½k˒ sgbu½k˒ ddgg pdrd d fqud½k˒ fqud½k˒dg dg sfrjd   1.





x4  + x5   h   (x4 ) + h   (x5 ) d) @gstrf @gstrf quf   h   2   . 5 5 e) @djs ifrdb`fntf `gstrf quf sf 11   2 d 2   4, fnt˒ddg  g   h   (δx4 + (4 δ)x5)   2 δh   (x4 )+ ifg`ftrjkd`fntf ftrjkd`fntf fstd fstd prgprjfcdcf. (4 δ)h   (x5). Jntfrprftf ifg`





[gbu½ k˒ k˒dg 9d<

h  

x4  + x5 5

0  d

x4  + x5 5

5

+e

x4  + x5 5

        

+ k   (4)

h   (x4 ) + h   (x5) (x5  + x55 )5 + e(x4  + x5) + 5 k   0  d 4   (5) 5 5

81

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

kg`pdrdncg (4) f (5)< d



x4  + x5 5

5

  +e

x4  + x5 5



+ k  

  d(x54  + x55 )5 + e(x4  + x5 ) + 5 k 5

d(x4  + x5)5 + e(x4  + x5 ) + 5 k   d(x54  + x55 )5 + e(x4  + x5 ) + 5k    5 5         5 5 5 5 e(x +   x5 ) +    5  k e(x + x5 ) +   k   d(x4  + x5 ) +    5  4    4     d(x4  + x5) +        5   5 (x4  + x5 )5    ( x54  + x55)5 Kgnkbujncg quf< (x4  + x5)5 2   (x54  + x55 )5 [gbu½ k˒ k˒dg 9e<



nt˒˒ddg< g< Qrgvf`gs jnjkjdb`fntf quf sf   x 4 0  x 5   f 1  2 δ 2   4 ffnt _δx4  + (4 Qrgvd< _δx4  + (4

∕ δ)x5P5 2 δx54  + (4 ∕ δ)x55

∕ δ)x5P5 ∕



δx54  + (4

∕ δ)x55



2  1

∕ δ)5x54 ∕ 5δ(4 ∕ δ)x4x5  + ( δ ∕ δ5)x55 5 ⇕ δ(4 ∕ δ)_)_xx4 ∕ x5P >  1 sfsf   x4  0   x5   f 1  2 δ 2  4   K.q.c. (δ

Hjndb`fntf vgbtd`gs dg prgebf`d prjnkjpdb.

∕ δ)x5) 0   d(δx4  + (4 ∕ δ)x5)5 +e(δx4  + (4 ∕ δ)x5) + k 2d(δx54  + (4 ∕ δ)x55)   + e(δx4  + (4 ∕ δ)x5 ) + k h   (δx4  + (4

Vsdncg g rfsubtdcg r fsubtdcg cd prj`fjrd cf`gnstrd½k˒dg< dg< 0   δdx54  + δex4  + δk + (4

∕ δ)x55  + (4 ∕ δ)ex5  + (4 ∕ δ)k

0  δh   (x4 ) + ( 4 Kg`g sf qufrjd cf`gnstrdr.

∕ δ)h   (x5)

=. Qrgvf quf ssff   d ,   e   f   k   s˒ddgg jntfjrgs jntfjrg s j`pdrfs, j`pdr fs, ds rd³ r d³ĴĴzfs zfs cf y   0   dx5 + ex + k   n˒dg dg s˒dg dg rdkjg rdk jgnd ndjs js.. [gbu½ k˒ dg< J`dijnf pgr desurcg quf fxjstd u`d rdjz rdkjgndb   p/q f` sud hgr`d jrrfcut³Ĵvfb. Ĵvfb. N˒dg dg pgcf gkgrrfr cf   p   fq sfrf` d`eg d`egss pdrf pdrfss pgjs, nfst nfstff kdsg   p/q n˒ dg dg fstdrjd f` sud hgr`d jrrfcut jrrfcut³³Ĵvfb. Bgig sfiuf trˈffss pgssjejbjcdcfs< 84

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

4◨ - (  p   f   q s˒dg dg d`egs j`pdrfs). Nfstf kdsg<  p q

d

5

+e

 p q

+ k  0 1

 

dp5  +   ep + k   0 1 q5 q

dp5 + epq + kq5 0 1 Kg`g g prgcutg cf cgjs n³u`frgs n³u`fr gs j`pdrfs j `pdrfs ³f j`pdr fnt˒ dg,  dg,   dp5 ,epq,kq 5 td`e³f` sdg d˒g j`pdrfs, j`pd rfs, g quf ³f u` desu desurcg, rcg, pgjs n˒dg dg pgcf mdvfr trˈfs fs n³ u`frgs u`frgs j`pdrfs kuld sg`d sfld jiudb jiudb d zfrg. 5◨ - (  p   f   q s˒dg dg d`egs pdrfs). Nfstf kdsg  kdsg   dp5 ³f jj`p `pdr dr,, epq,kq 5 s˒ddgg pdrfs. Kg`g d sg`d cf cgjs pdrfs f u` j`pdr f³ j`pdr fnt˒ddgg n˒dg pgc pgcff gkgrrfr gkgr rfr cf< cf < dp5 + epq + kq5 0 1 g quf ifrd ngvd`fntf ngvd`fntf u` desurcg. ;◨ - (V` ³f pdr f gutrg gu trg ³f j`pdr). Qdrd fssd cf`gnstrd½kk˒ dg d˒g dssu`jrf`gs quf   p   f³ pdr f f   q f³ j`pdr. Nfstf kdsg  kdsg   dp 5 f   epq f³ pdr f f   kq 5 ³f j`pdr. G quf ngvd`fntf ngvd`fntf rfsubtd rfsubtd ng desurcg.

:. V`d pfssgd pgssuj u` irdvdcgr irdvdcgr cf v³ v³Ĵcfg cgtdcg cf u`d kgntdcgr quf rfijstrd g nu`frg cf vgbtds vgbtds cdcd cdcdss pfbg kd kdrrftfb rrftfb cd cjrfjtd. cjrfjtd. D ffltd,cf 8 mgrds mgrds cf curd½ curd½k˒ k˒ ddg, g, fst fst³d³ pdrkjdb`fntf irdvdcd. G kgntdcgr kgntdcgr jncjkd 4961 dg fflndb cg trfkmg irdvdcg irdvdcg f 4:11 dg fflndb cd ffltd. G prgebf`d prgebf`d ³f sdefr sdefr qudntg tf`pg cf irdvd½kk˒ dg d˒g djncd fst³d cjspgn³ĴĴvfb vfb ng fflndb cd ffltd.

d) Fxpbjqu Fxpbjquff pgrquf n˒ ddgg ³f rdzg³ rdz g³ ddvfb vfb supgr quf g tf`pg f irdvd½k˒dg dg sfld prgpgrkjgndb dg nu`frg cf vgbtds cg kgntdcgr. e) Kgnsjcfrdcg quf d ffltd sf fnrgbd f` kdcd kdrrftfb sfiuncg k³ k³Ĵrkubgs kgnkˈ fntrjkgs fntrjkgs jiudb`fntf fspd½kdcgs, kdcgs, `gstrf quf g tf`pg  tf`pg   S    (n) cf irdvd½k˒ ddgg dp dp³³gs   n   vgb vgbttds ³f cdcg cd cg pgr u`d u `d hun½ hu n½k˒ddgg cd hgr`d   S     (n) 0  dn5 + en. en.

85

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

k) @fcjncg g tf`pg cf irdvd½k˒ dg dg kgrrfspgncfntf kgrrfspgncfntf ds prj`fjrds 411, 511, ;11 f 311 vgbt vgbtds, ds, hgrd` fnkgntrdcds fnkgntrdcds gs cdcgs cdcgs ddedjxg edjxg.. Fstfs vdbgr vdbgrfs fs s˒ddgg kg kgnsjcfr nsjcfrdcgs dcgs kg` g `gcfbg dkj`d7 Xgbtd 411 511 ;11

Sf`pgs(s) 666 4498 4=8;

311 5848 c) Tudntg tf`pg cf irdvd½ irdvd½k˒ k˒ dg dg rfstd nd ffltd7

[gbu½ k˒ k˒dg :d< Fvjcfntf. [gbu½ k˒ k˒dg :e< Qfbd kjnf`³dtjkd dtjkd sdef-sf quf<



  5ρ(U  + ( n 4) 4)rr v Gncf   r   f³ d fspfssurd cd ffltd,   n   g nu`frg cf vgbtds f U g rdjg cg kdrrftfb. Gncf G tf`pg tgtdb sfr³d d sg`d cgs tf`pgs cf kdcd vgbtd. S    (n) 0

n

S     0



S   (  n) 0

j04

  5ρU   5ρ(U  + r)   5 ρ(U  + 5 r)   5 ρU  ρU  + ( n   +   +   +... + v v v v

0 5ρ  (U  + (U  + r) + ( U  + 5r) + . . . + (U  + ( n v

4)rr)) ∕ 4)

5ρ  (Un + (r  + 5 r  + . . . + (n 4) 4)rr) v 4) 4)rr   sf kg`pgrtd kg`g u`d u`d Q.D. fnt˒dg<



Kg`g   r   + 5 r  + . . . + (n Kg`g



5

r  + 5 r   + . . . + ( n

  (r  + (n ∕ 4) 4)rr)n   5n r ∕ rn ∕ 4) 4)rr   0   0 5 5

Bgig S     0

  5ρ v

0 0

  Un +

5n5r rn 5





  5ρUn   3ρn5r   + v 5v

  ∕   5ρrn 5v

5ρr v

n5 +

  

Tu Tuff ³f cd hgr`d hg r`d S     (n) 0  dn5 + en. en.

8;

ρ(5 (5U U v

∕ r)

n



∕ 4) 4)rr

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

[gbu½ k˒ k˒dg :k< Kg` gs cdcgs hgrnfkjcgs ` `gntd`-sf gntd`-sf gs sfi sfiujntfs ujntfs sjstf`ds.



  d(;11)5 + e(;11 (;11)) 0 4= 4=8; 8; d(311)5 + e(311 (311)) 0 58 5848 48   d(411)5 + e(411)0 (411)0 666 d(511)5 + e(511 (511)) 0 44 4498 98



Kuld sgbu½k˒ kd˒g ³f [4   0 1.11;; 11;;?? 6.55   f [5   0 1.11; 11;;? ;? 6.55 . Kg`g d`egs gs gs sjstf`ds pgssuf pgssuf` ` d `fs`d sgbu½k˒dg dg fnt˒dg dg gs vdbgrfs vdbgr fs s˒dg kgnsj kgnsjstfntfs. stfntfs.

{

}

{

}

[gbu½ k˒ k˒dg dg cf :c :c  1) ¹   ρc3   + 46

f g vdbgr kgerd kgerdcg cg pgr E ³f cf K E   (c) 0

  4= 4=ρc ρc5   + 51 51ρc ρc + 811 (kg`  (kg`   c >   1). 3

Gs vdbgrfs vdb grfs cf ‒c‐ pdrd g q qudb udb d f`prfsd D ³f `djs vdntdlgsd ³f g rfsubtdcg rfsub tdcg cd jnfqud½ jnfq ud½k˒ kd˒dg< g< K D   (c)

∕ K E  (c)  2   1 93

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg





Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

  51 51ρc ρc5 4=ρc 4=ρc5   + 46 46ρc ρc + 51 5111   + 51ρc 51ρc +811) ( 3 3





2  1

5

311 ⇕   6ρc ∕5 ρc  + 311

  2  1

Ufsgbvfncg fssd ³u ubtj`d btj`d jnfqud½kk˒ dg d˒g fnkgntrd`gs   6ρ   + c>

∜ 56ρ   56ρ5 + =1 =1ρ ρ ρ

 

6ρ  +

∜ 56   ρ5 + =1 56ρ =1ρ ρ

f  c 2

 ∕

 

ρ

,

∕ fntrftdntg kg`g  kg`g   c >  1 pgcf`gs cfskdrtdr d sfiuncd sgbu½k˒ddg, g, sfncg dssj`, dssj`, ∜      6ρ  + 56 56ρ ρ 5 + =1 =1ρ ρ c>   0≍ 54 54..95 ρ Tuf j`pbjkd f`   c >  54 54..95 Dssj` d f`prfsd ‒D‐ ³f `djs vdntdlgsd qudncg   c >  54 54..95`.

,k   pgsjtjvgs xy   0   k   f quf   y   0   dx  dx   +  ey ey   sfld g `fngr ;3. ;3. Cd Cdcg cgss   d ,e ,k  pgsjtjvgs,, cftfr cftfr`jndr `jndr x f y tdjs quf   xy  pgss³Ĵvfb. Ĵvfb. [gbu½ k˒ dg< Hdzfncg h   (x, y) 0  dx + ey ey   kg`g  kg`g   xy   0   k , fnt˒dg dg   h   (x, y) pgcf sfr fskrjtd kg`g< kg`g<   ek

  (4) x J`dijnf digrd quf cfsfld`gs getfr   x   f` hun½k˒dg dg cd sg`d   h   (x). @ubtjp @ubtjpbjk bjkdnc dncgg ((4) 4) pgr   x   f h   (x) 0  dx +

rfgridnjzdncg sfus tfr`gs getf`gs dx5 F usdncg Emdsodrd.

∕ h   (x) + ek  ek  0 1

⇕ x  0   h   (x) ´



h   (x)5 5d

∕ 3dek

Qdrd Qdr d quf ddss sgbu½ sgb u½kk˒˒ggfs fs cd fqud½kk˒dg ˒dg j`fcjdtd`fntf j`fcjdtd`fntf dkj`d sfld` rfdjs cfvf`gs tfr  tfr  h   (x)5 3dek 1, gncf getf getf`gs `gs   h   (x) 5 dek  dek  gu gu   h   (x) 5 dek. dek.

≦ ∜  

≣ ∕ ∜  





∜  

Dssu`jncg quf  quf   h   (x) ³f pgsjtj pgsjtjvg vg fnt˒ dg dg g `³ĴĴnj`g nj `g gkgrrf gkg rrf qudnc q udncgg  h   (x) 0 5 dek. dek. Kgnkbus˒ d dg< g<   x   f   y   cfvf` sfr fskgbmjcgs cf `gcg quf   dx + ey

  ≣ ∕5∜ dek. dek.

;6. Kdvdr u` eurdkg rftdniubdr rftdniubdr cf 4 ` cf bdriurd cf `gcg quf g vgbu`f kdvdcg sfld sfld ;11 `; . [defncg quf kdcd `ftrg qudcrdcg cf ³drfd kdvdcd kustd 41 rfdjs f kdcd `ftrg cf prghuncjcdcf kustd ;1 rfdjs, cftfr`jndr ds cj`fns˒gfs cg eurdkg cf `gcg quf g sfu kustg sfld `³ĴĴnj`g. nj`g. 96

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

[gbu½ k˒ dg< [fld 4, 4 , m   f   w   ds cj`fns˒ cj`f ns˒ggfs fs c cgg eurdkg eur dkg fnt˒ f nt˒dg<

¹ ¹

X     (  m, w) 0 4 m Y 0 ;11 ((4) 4) f g kustg kus tg sfr sfr³³d cf K   (m, w) 0 4 1 w  + ;1 ;1m m   (5) fvjcfnkjdncg   m   f` (4 fvjcfnkjdncg (4)) f lgidn lgidncg cg f` f` (5) (m) 0 4 1 w  +

  :111 w

⇕ k(m)w   0 41 41w w5 + :111 :111 ⇕ 41 41w w5 ∕ k(m)w  +:111 0 1

(;)

Qdrd quf d fqud½kk˒ dg d˒g (;) tfnmd sgbu½k˒ sgbu½k˒ ddgg g sfu cjskrj`jndn cjskrj`jndntf tf cfvf sfr `djgr gu jiudb d zfrg. zfrg. Jstg ³f< f< k(m)5

∕ ;81 ;81..111 ≦ 1

⇕ k(m) ≦ 811 pgjs kg`g   w >  1 fnt˒ddg  g   k (m)   >   1 td`e³ f`. f`. Dssj`, p kustg ` `³³Ĵnj`g ³f cf 811 rfdjs. [f  [f   k (m) 0 811 fnt˒dg dg cf (;) fskrfvf`gs 41 41w w5

∕ 811 811w w  +:111 01 ⇕ w   0 ;1 ;1` `

G quf j` j`pbjkd pbjkd f`   m   0 41 41` `. Dssj`, ds cj`fns˒gfs cg c g eurdkg eu rdkg ³f cf 4`

Ù ;1 ;1` ` Ù 41 41` `.

;8. Cgjs f`prfs³ f`prfs³ ddrjgs rjgs hgr hgr`d` `d` u`d sgkjfcdcf kulg kdpjtdb ³f cf 411 `jb rfdjs. V` cfbfs trdedbmd nd f`prfsd trˈ fs fs cjds cjds pgr sf`d sf`dnd nd f g gutrg cgjs. cgjs. Dp³ gs gs u` kfrtg tf`pg, tf`pg, vfncf vfncf` ` g nfi³gkjg nfi³gkjg f kdcd u` rfkfef rfkfef :: ` `jb jb rfdjs. rfdjs. Tud Tudbb hgj d kg kgntr ntrjeu jeuj½ j½ k˒ dg dg cf kdcd u` pdrd hgr`dr d sgkjfcdcf7 sgkjfcdcf7

98

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

[gbu½ k˒ dg< [upgncg ‒x‐ g vdbgr cg kdpjtdb jnvfstjcg pfbg s³gkjg quf trdedbmd ; cjds, fnt˒dg fnt˒dg pgr `fjg cf rfird cf trˈffss sj` sj`pbfs pbfs cfcuzj`gs quf g kdpjtdb kdpjtdb jnvfstjcg pfbg s³ggkjg kjg quf trdedbmd dpfnds 5 cjds   ;x cfvf sfr cf   . 5 ; cjds ‛ x 5 cjds ‛ 7 Kg`g g kdpjtdb f`prfidcg ³f jnvfrsd`fntf prgpgrkjgndb prgpgrkjgndb dgs cjds cf trdedbmg g fsquf`d dkj`d sghrf sghr f u`d ‒j ‒jnvfr nvfrs˒ s˒ddg‐ g‐ 5 cjds ‛ x ; cjds ‛ 7   ;x 70 5



Dpbjkdncg d rfird cd sgkjfcdcf: d sg`d cgs cgs kdpjtdjs, kdpjtdjs, cf d`egs d`egs gs s³gkjgs, s³gkjgs, cfvf sfr jiudb d 411 `jb. [fncg ds dssj`< sj`<  ; x + x   0 411 411 5

Ù 41;

⇕ x  0 31 Ù 41; f pgrtdntg

 ; x   0 81 5

Ù 41;

Bgig g s³ggkjg kjg quf trdedbmd ; cjds jnvfstju U$ 31.111,11 (qudrfntd `jb) f g gutrg U$ 81.111,11.

;9. Nds ³diuds pdrdcds pdrdcds cf cf u` bdig, @drkfbg @drkfbg rf`d sfu edrkg edrkg d 45o` pgr mgrd. mgrd. Nu` kfrtg rjg, rjg, kg` g `fs`g edr edrkg kg f ds `fs`ds rf`dcds rf`dcds,, fbf pfrkgrrfu pfrkgrrfu 45o` d hdvgr cd kgrrfntf kgrrfntf f =o` kgntrd kgntrd d kgrrf kgrrfntf, ntf, nu` tf`p tf`pgg tgtdb tgtdb cf 5 mgrds. mgrds. Tudb frd d vfbgkjcdcf vfbgkjcdcf cg rjg, rjg, qudntg tf`pg tf`pg fbf bfvgu pdrd jr f qudntg tf`pg pdrd vgbtdr7 [gbu½ k˒ dg< [fld   v   d vfbgkjcdcf [fld vfbgkjcd cf cd kgrrfntf kgrrfntf,, fnt˒dg dg g tf`pg tf `pg ids idstg tg d hdvgr hdv gr cd kgrrfntf kgrrf ntf f³ cf< ∈t   0

  ∈s   45 45o` o`   0 v 45 45o`/m o`/m + v 

Gncf 45 o`/m ³f d vfbgkjcdcf cg edrkg f` diud ³ pdrdcd ff   v  ³f d vfbgkj vf bgkjcdcf cdcf cds ddiuds ³iuds cg rjg41. L³d d vfbgkjcdcf kgntrd d kgrrfntf sfr³d< :

  rfird rfir d    cd           sgkjfc  sgkjfcdcf  dcf                   

KdsgFrjcdn n˒dg kgnmf½ suij rg quf vfld vfld ds ngtd ngtds s cf du dubd bd cf=;44/@dtf`d @ @dtf`³ dtf`³ dtjkd Hjndnk Hjndnkfjrd fjrd cd prgh(d). @djd,kdp³ddijnd 6. Cjspgn³ĴĴvfb vfb f`<   suijrg mttps   1 (dn xn + o ) 0 ∕∞, pg pgjs js   d n   >   1 ³f j` j`pd pdr. r.

x↕∞

x↕∕∞

=3

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

Bgig fxjstf   x 4   f   x 5   tdjs quf Q( x4 )   2   1 f Q( x5 )   >   1. F dt dtrd rdv³ v³ fs fs cg tfgrf`d cg   vdbg grr `³ fcjg fcjg fxjstf td`e³ f` f ` u` x ;   f` Px4 , x5 _ td tdbb quf quf Q( Q(x x; ) 0 1, gu sfld, Q(x) tf` ˈf` pfbg `fngs u`d rrdjz djz rfdb.

9. @gs @gstrf trf quf sf n ³f u` n³ u`frg u`frg pdr, pdr , fnt˒dg g pgbjnˈg`jg  g`jg   p (x) 0  x n + xn∕4 + pgssujj rdjz rfdb. pgssu

¹ ¹ ¹ + x + 4 n˒dg

[gbu½ k˒ dg< Uffskrfvfncg Uffskrf vfncg g pgbjnˈg`jg cf tr³ds pdrd hrfntf ngtd-sf n gtd-sf quf sfus sfu s tfr`gs fst˒ dg f` prgirfss˒ prgirfss ˒dg ifg`³ fftrjkd trjkd kg` kg` rdz˒ dg jiudb d ‒x‐ ‒x ‐ f kuld sg`d sg `d ³f [n   0

  xn 4 x 4

∕ ∕

[fncg dssj`, pgcf sf dfflr`dr dfflr`dr quf

  xn 4 x 4 Gesfrvdncg d fqud½kk˒ dg d˒g dkj`d vf`gs quf g ³unjkg vdbgr quf pgcfrjd sf u`d rdjz rdj z ³f 4, fntrftdntg Q(4) rfsubtdrjd nu`d jncft jncftfr`jnd½k˒ fr`jnd½k˒ dg d g cg tjpg tjpg 1/1, 1/1, sfn sfncg cg dssj`, dssj`, Q(x Q(x)) n˒ dg pgssuj pgssuj nfn nfnmu` mu`dd rdjz rfdb.

∕ ∕

Q (x) 0

=. Sg`dnc Sg`dncgg   x 1   0 ;, usf d rfbd½ rfbd½k˒ dg dg cf rfkgrrˈ fnkjd fnkjd  4

 6

xn+4  0 5

xn   + xn

Qdrd kdbkubdr 6 kkg` g` tr trˈˈffss dbidr dbidrjs`g js`g cfkj`djs cfkj`djs fxdtgs. fxdtgs. (Qgr fxf`pbg fxf`pbg  6 d rfspgstd rfsp gstd ³f 5.5;8. 5. 5;8.

=6



 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

:. Vsdncg Vsdncg g `³ ftgcg cf Nfwtgn, fstdefbf½ kd u` prgkfssg jtfrdtjvg p pdrd drd kdbkubdr d ffl` cf getfr getfr u` vdbgr dprgxj` dprgxj`dcg dcg cf 5.

∜  

∜ d    f dpbjquf-g ;

;

[gbu½ k˒ dg< G `³ ftgcg ftgcg cf Nfwtgn ³f u` `³ fftgcg tgcg nu`³ frjkg frjkg pdrd cftfr`jndr ds rd³Ĵzfs Ĵzfs rfdjs rfdjs cf u` pgbjnˈ g`jg. Nfstf kdsg cg pgbjnˈg`jg   p (x) 0  x; 5 (vfld K³dbkubg kg` k g` ifg`ftrjd dndb³Ĵtjkd cg Bgujs Bftmgbc, vgbu`f 4, p³dijnd 84). Kg`f½kdncg kdncg d pdrtjr cf   x 1   0 4 getf getf`gs< `gs<



x4   0 4.;;; x5   0 4.58;: x;   0 4.56::: Kg`g (4. (4 .56:::); 2  5   2   (4 (4..58); d dprgxj`d½kk˒dg ˒dg pdrd

∜ 5  kg`g kg `g pfcj pfcjcg cg ³f cf 4.56::. ;

[f dbiu`d dbiu`d pdssdif` pdssdif` fflkgu gesku rd gu sfr sf dbiu` dbiu hgj hgj kgrrf½ kg`ftjcg kg`f pgr hdvgr fskrfvd fskrfvd pdrd njeebfcjfigAi`djb.kg` pdrdgeskurd quf pgssd hfjtg`d frrg cfvjcd kgrr f½tjcg k˒dg. dg.pgr Qdrd fnkgntrdr fnkg ntrdr fssf f gutrgs fx fxfrk frk³³Ĵkjgs rfsgbvjcgs rf sgbvjcgs c cff `dtf`³ dtjkd dtjkd dkfssf<   www.nu`efr.=:1`.kg`

=8

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

³ JKD ³ D @DSF @DSF@ @DS DSJK D CG FN[J FN[JNG NG @ FCJG D `dtf`³dtjkd cg F nsjng `³fcjg fcjg (vgbu`f 4) Fbgn Bdifs Bj Bj`d `d Qdubg Kfzdr Qjntg Kdrvdbmg. Fcudrcg Ydinfr. Duiustg K³ffsdr sdr @gridcg. Ufsgbvjcg Ufsgb vjcg pgr< Cjfig Gbjvfj Gbjvfjrd rd

=

Hun Hun½kgfs gfs Fxpgnfn ˒ Fxpgnfnkjd kjdss f Bgidr Bgidr³ ³Ĵt`jkd Ĵt`jkdss

4. Kg` u` b³dpjs b³dpjs kuld pgntd tf` 1,15 `` cf fspfssurd, fspfssurd, cfsfld-sf trd½ kdr g ir³dfflkg cd hun½k˒ dg dg h   (x) 0 5x . Dtf³ quf cjstˈ ddnkjd nkjd ³d fsqufrcd cg fjxg vfrtjkdb pgcf-sf jr sf` quf g ir³ dfflkg dtjnld g fjxg mgrjzgntdb7 [gbu½ k˒ dg< Kmd`dncg cf  cf   r   g rdjg cd pgntd cg b³dpjs, b³dpjs, fnt˒ ddgg d bj bjnmd nmd quf fseg½ f seg½kd kd g ir ir³³dfflkg tgkdr³d g fjxg G] ng pgntg ( x, 5x )kg`5 x 2 r . Ufsgbvfncg d jnfqud½kk˒ dg d˒g hgr`dcd getf`gs d sgbu½k˒dg. dg. 5x 2 r   kg` kg` ( r >  1) x

bgi(5 (5 )  2 bgi bgi (r ) ⇕ bgi bgi(5) (5)   2 bgi bgi (r ) ⇕ x ¹ bgi bgi bgi((r) ⇕ x 2   bgi bgi(5) (5) kg`g   bgi (5) kg`g

  bgi( bgi (r ) ≍ 1.;14 fn fnt˒ t˒dg dg   x 2  . 1.;14

Dssj`, g ir³dfflkg tgkdr³d g fjxg mgrjzgntdb ng pgntg gncf d deskjsd ³f j`fcjdtd`fntf `fngs quf bgi bgi((r )  . 1.;14

5. Cfˈ fxf`pbg cf u`d hun½kk˒dg ˒dg krfskfntf  krfskfntf   h     <   U       U +     tdb quf quf,, pdr pdrdd tgcg tgcg   x   U ,    d ssfq fquˈ uˈ fnkjd fnkjd h   (x + 4), 4), h   (x + 5),...,h  5),...,h   (x + n),...   f³ u`d prgirfss˒ dg dg ifg`³ ftrjkd ftrjkd `ds  `ds  h     n˒ ddgg ³f c cgg ttjp jpgg h   (x) 0  e dx .



[gbu½ k˒ dg< Sg`dncg h   (x) 0  xe  xe   (hun½kk˒dg ˒dg bjnfdr) bjnfdr),, fnt˒ ddgg

=9



¹

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

 

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED









h   (1 +4), +4), h   (1 + 5) 5),,

+4), h   (4 + 5) 5),, h   (4 +4),



  ¹¹¹

¹ ¹ ¹   , h   (1 + n), ¹ ¹ ¹ 0 (e,e, ¹ ¹ ¹ 

¹ ¹ ¹   , h   (4 + n), ¹ ¹ ¹ 0 (e,e, .. .







h   (n + 4) 4),, h   (n + 5) 5),,



¹ ¹ ¹   , h   (n + n), ¹ ¹ ¹ 0 ( e,e, ¹ ¹ ¹



.. . Tuf s˒dg prgir p rgirfss˒ fss˒gfs gfs ifg`³fftrjkds trjkds kgnstdn kgnstdntfs tfs (Q.I. cf rdz˒ dg ji jiudb udb d 4) 4).. Kg`g Kg`g   h   (x) n˒dg dg ³f cg tjpg  tjpg   e dx fnt˒ddgg ³f u`d rfspgs rfspgstd td dkfjt³ dk fjt³ dvfb dvfb dg prgebf`d prgebf`d..

¹

;. Cd Cdcg cgss   d >  1 f   e >  1, d`egs d`egs cjhfr cjhfrfntf fntfss cf 4, qudb d prgprjfcd prgprjfcdcf cf cd hun½ hun½ k˒ ddgg fxpg fxpgnfnkj nfnkjdb db quf dssfiurd d fxjstˈfnkjd fnkjd cf m 0 00 0 1 tdb tdb quf quf   e x 0  dx/m pdrd tgcg   x U 7    @gstrf kg`g getfr g ir³dfflkg x cf  cf   y   0   e x d pdrtjr pdrtj r cg ir³dfflkg cf   y   0   dx . Vsf ssud ud kg kgnkbus˒ nkbus˒dg dg pdrd trd½kdr g ir³dfflkg cf   y   0 4/ 3 x d pdrtjr pdrtj r cg ir³dfflkg cf   y   0 5 .





 ∜    ;

[gbu½ k k˒ ˒ d dg g cd prj`fjrd pdrtf< U    

+

↕ U    

x

D prgprjfcdcf f`ntg, qufst˒dg qufst˒ dg   cjz qu hun½  k˒ dg dgtdb fxpgnfnkjdb  fxpgnfnkjdb cffflnjcd jcd. pgr pCgrdĴ³    h e  x(x0 )0 e , ³f sgerfl sgerflftjvd ftjvd.. Qgrtdntg, Qgrtd cdcg  cdcg d >quf   1,f d mhun½k˒ b quf quf   em 0     dh ,      1 qudjsqufr, `gstrf quf fxjstf   d >  1 tdb tdb quf   d x 0  y1 .



1

[gbu½ k˒ dg< 4 x Sg`dncg d  0   y1 1  fnt˒ ddg  g  dx 0 1

x1

4 x y 1

 

0  y1 , kg`g rfqufrjcg. rfqufrjcg.

1

dg-nubgs f cf `fs`g sjndb, prgvf quf fxjstf`   d >   1 f   e   tdjs quf 8. Cdc Cdcgs gs   x 1 0  x 4   f   y1,   y4   n˒dg-nubgs e dx 0  y1   f   e dx 0  y 4.

¹

1

  ¹

4

[gbu½ k˒ dg< Edstd tg`dr  tg`dr   d   0

 y1 y4

4 x1 ∕x4

f  e   0

  y1 . dx 1

9. D iirdnc rdncfzd fzd   y   sf fxprj`f kg`g   y   0   e dt f` hun½k˒dg dg cg tf`pg   t. [f [fld ld` `   c   g dkr³ ffskj`g skj`g quf

¹

sf cfvf cdr d   t   pdrd quf   y   cgerf f   `   (`fjd-vjcd t/c cf   y ) g dkr cf  dkr³ fskj`g f³skj`g cf t   nfkfss³drjg drjg pdrd quf   y   sf rfcuzd ³d `ftdcf. @gstrf quf   `   0 c   f   y   0   e 5 , bg bgig ig   c   0   bgid 5 0 4 /bgi5 d.



¹

:1

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

[gbu½ k˒ dg< Xd`gs kg`f½ kdr prgvdncg quf sf  sf   y (t + c) 0 5w   f   y (t) 0  w , kg kg` `   y (t)edt , fnt˒dg  dg   c   0 Qrgvd. y(t + c) 0 5w edt+c 0 5w

⇕ edt+c 0 ∜ 3  w ⇕ Kg`g   ed t 0  w   fnt˒ Kg`g dg< dg<

∜ 3  w ⇕ dc 0 ∜ 3 

wdc 0

 4 ⇕ c  0   bgi bgi((d) 0 bgi(3) bgi(3) 5 bgi(3) (3) ⇕ c  0  5 bgi ¹ bgi( bgi(d) K.T. C. Qrgvdcd d dfflr`d½kk˒ dg d˒g pdrtjrf`gs digrd pdrd d rfsgbu½k˒dg dg cg prgebf`d prgpgstg. [fld   y (t) 0  w   kgnsjcfrdncg g fnunkjdcg tf`gs< [fld y(t + c) 0  edt+c 0 5w   (4)  4 y (t + `) 0  edt+` 0   edt+` 0 w   (5) 5 Kg`pdrdncg Kg`pd rdncg (4) (4) kg` (5)

¹

y(t + c) 0 3 y(t + `)

⇕ edt+c 0 3 ¹ edt+` ⇕ edtdc 0 3 ¹ edt d` c

⇕d

`

0 3d c

⇕   dd`   0 3 :4

  bgi(3) bgi(3) . 5 bgi( bgi(d)

¹

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

⇕ dc

`



03

Dpbjkdncg bgidrjt`g bgi dc∕` 0  bgi(3) bgi (3)

 

bgi(d) 0  bgi(3) bgi (3) ⇕ (c ∕ `)bgi( bgi bgi(3) (3) ⇕ c ∕ `  0   bgi( bgi(d)

V`d vfz quf prgvd`gs quf   c   0

  bgi(3) bgi(3)   fnt˒ ddgg 5 bgi( bgi(d)

¹

c

bgi(3) bgi(3) ∕ `  0   bgi bgi((d)

bgi bgi(3) (3) ⇕ `  0  c ∕   bgi( bgi(d) bgi(3) bgi(3) bgi (3) ⇕ `  0 5  bgi(3) ∕   bgi( ¹ bgi( bgi (d) bgi (d) bgi (3)   0 ∕c ⇕ `  0 ∕ 5  bgi(3) bgi( bgi (d) ¹ ⇕ `  0 ∕c Kg` jssg fflkd prgvdcg quf   `   0 ∕c, f `ucdncg `ucdncg d edsf edsf cf   c   cf 41 pdrd 5 kgnkbu³Ĵ-sf Ĵ-sf td`e³ f` f`

quf<

c  0

  bgi(3) bgi(3)   4  0 5 bgi( bgi (d) bgi5 (d)

¹

K.T. C.

=. Ges Gesfrv frvd½ d½k˒ kg˒gfs fs hfjtds curdnt curdntff bgnig tf`pg `gstrd` quf, dp³gs pfr³Ĵgcg Ĵgcg cf `fs`d curd½k˒ kdg, dg ˒ ,d pgp pgpub ubd½ d½k˒ k˒ddgg cd ttfrrd frrd fflkd `ubtjpbjkdcd `ubtjpbjkdcd pfbg `fs`g `fs`g hdtgr. [defncg quf fssd pgpubd½ k˒ dg dg frd cf 5,8= ejbm˒ gfs gfs f` ;,9= ej ejbm˒ bm˒D gfs f` 4:95 4:95, pfcf-sf< sf< (d) G tf`pg tf`p nfkfss³drjg ³drjg qufddpgpubd pg pubd½ dg ddg cd tfrrd cge4:68 cgerf rf cffvdbgr? (e) pgpubd½k˒ dg d,gpfcffstj`dcd fstj`dcd pdrd pdrd g dngg5145? 5nfkfss 145? (k) F` pdrd quf dng ppgpubd½ gpubd½ ½ k˒ k˒ dgg cd tfrrd frd cf 4 ejbm˒dg.

:5

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

[gbu½ k˒ k˒dg cf d< Dp³ gs gs u` tf`pg ‒t‐ d pgpubd½ pgpubd½k˒ k˒ dg dg ³f u`d u` d fx fxprf prfss˒ ss˒ dg dg cg tjpg   y (t) 0  e fdt gncf ‒e‐ ³f d pgpub pg pubd½ d½ k˒ kdg d˒g jnjkjdb (5.8= `jbm˒gfs). [fncg dssj`

¹

y(t) 0 ;.9= d(4:95∕4:68)

0 ;.9= ⇕ 5.8= ¹ f ⇕ d ≍ 1.1546

⇕ 5.8= ¹ fdt 0 5 .8= ¹ f1.1546t Tudncg d pgpubd pgpubd½½k˒dg dg cd tfrrd cgerdr tfrf`gs< y(t) 0 5e

⇕  eeff1.1546t 0 5 e ⇕ f1.1546t 0 5 ⇕ t ≍ 5; 5;,, 53 [gbu½ k˒ kd ˒ dg< g<   5;,53 dngs.

[gbu½ k˒ k˒dg cf e< F` 5145 tfrf`gs tfrf`gs   t   0 68 ((5145 5145

4:688 0 45) 45),, dssj` dssj` ∕ 4:6

5.8= 8=ff1.1546¹45 0 = .:ej

[gbu½ k˒ kd ˒ dg< g<   D pgpub p gpubd½ d½k˒dg dg cd tfrrd ssfr³ fr³d cf =.: ejbm˒gfs.

[gbu½ k˒ k˒dg cf k< 5.8= 8=ff1.1546t 0 4

⇕ 1.1546 1546tt ¹ bn bn((f) 0  bn bn(4 (4//5.8=) t

≍ ∕36 36..=9



Hjndb`fntf Hjndb` fntf,, hdzfncg hdzfncg 4:68 4:68 + ( 36 36..=9) kmfid`gs d sgbu½ sgbu½k˒ k˒ dg. dg.



4:68 4:68 + ( 36. 36.=9) =9) 0 4:68 4:68 0 4:41 4:41..4;

∕ 36 36..=9

:;

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

Dssj`. cfskgerf-sf qu quff g gkgrrjc gkgrrjcgg hgj ng dng cf 4:41.

:. Cˈf u` driu`fntg jncfpfncfn jncfpfncfntf tf cf gesfrvd½ k˒ gfs gfs pdrd lustjfflkdr lustjfflkdr quf, f` kgncj½k˒ kgncj½k˒ gfs gfs ngr`djs, d pgpub p gpubd½ d½k˒dg dg cd tfrrd dp³gs g cfkursg cf kursg cf pfr³Ĵgcgs Ĵgcgs jiudjs fflkd `ubtjpbjkdcd `ubtjpb jkdcd pfbd `fs`d kgnstdntf. [gbu½ k˒ dg< 777

41. Ufsgbvd gs fxfrk³Ĵkjgs Ĵkjgs cg bjvrg ‒Bgidrjt`gs‐, ‒Bgidrjt`gs‐, fspfkjdb`fntf gs cg ³u ubtj`g btj`g kdp³ Ĵtubg. Ĵtubg. [gbu½ k˒ dg< G prghfssgr prghfss gr quf kgerdr cg dbung fssd qufst˒ dg ³f t˒ dg sf` ng½k˒dg dg quf `frfkf u`d surrd!

[f dbiu`d dbiu`d pdssdif` pdssdif` fflkgu gesku rd gu sfr sf dbiu` dbiu hgj hgj kgrrf½ kg`ftjcg kg`f pgr hdvgr fskrfvd fskrfvd pdrd njeebfcjfigAi`djb.kg` pdrdgeskurd quf pgssd hfjtg`d frrg cfvjcd kgrr f½tjcg k˒dg. dg.pgr Qdrd fnkgntrdr fnkg ntrdr fssf f gutrgs fx fxfrk frk³³Ĵkjgs rfsgbvjcgs rf sgbvjcgs c cff `dtf`³ dtjkd dtjkd dkfssf<   www.nu`efr.=:1`.kg`

:3

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

³ JKD ³ D @DSF @DSF@ @DS DSJK D CG FN[J FN[JNG NG @ FCJG D `dtf`³dtjkd cg F nsjng `³fcjg fcjg (vgbu`f 4) Fbgn Bdifs Bj Bj`d `d Qdubg Kfzdr Qjntg Kdrvdbmg. Fcudrcg Ydinfr. Duiustg K³ffsdr sdr @gridcg. Ufsgbvjcg Ufsgb vjcg pgr< Cjfig Gbjvfj Gbjvfjrd rd

:

Hun Hun½kgfs gfs Srjign ˒ rjigng`³ g`³ ftrjkds ftrjkds

4. Cftfr`jnf gs vdbgrfs `³dxj`g f `³Ĵnj`g cd hun½kk˒ ddg ˒g   h     <   ;/(5 + sfn sfn((x)).

  ↕   U      cffflnjcd pgr   h   (x)

U    

0

[gbu½ k˒ dg< Kg`g 4   sfn sfn((x)   4 fnt˒dg h(x) ³f `³ dxj`d dxj`d qudncg   sfn sfn((x) 0 4 (gu (gu sfl sfld, d, qud qudncg ncg g cfng`jndcgrr cf h(x) ³f `³Ĵnj`g) cfng`jndcg Ĵnj`g) f `³Ĵnj`d Ĵnj`d qudncg sfn sfn((x) 0 4 (qudn (qudncg cg g cfng`jndcgr cfng`jndcgr cf h(x) ³f `³ dxj`g). dxj`g).

 ∕  ≣

X`dx   0

 ≣

 ∕

  ;  0; 5 + ( 4)



X`jn   0   ;   0 4 5 +(4)

5. Gesfr Gesfrvdncg vdncg d ffli ffliurd urd d sfiujr, sfiujr, gncf   DE   0   x, `gst `gstrf rf quf quf   t   0   sfn sfn((x)/kgs /kgs((x). t 4 E x

[gbu½ k˒ dg< Srdkf u`d rftd kg`g d rftd pgntjbmdcd nd ffliurd d sfiujr. :6

G D

 

 

D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg

Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED

t E x G

K

D

  ∲ ∈ SGD ddssj`< ssj`<

Gesfrvf quf ∈ GEK  

KE   GK    0 DS     GD

sfn((x)   kgs( kgs(x)   sfn sfn((x)   ⇕   sfn   0   ⇕ t  0 t t kgs kgs((x)

¹

;. [f   sfn sfn((x) + kgs( kgs(x) 0 4 .5, qudb ³f g vdbgr cg prgcutg sfn sfn((x) kgs kgs((x)7 [gbu½ k˒ dg< sf sfn( n(x) x) + kgs( kgs(x) x) 0 4. 4.55

⇕   (sfn(x)+kgs(x))5 0 4.4.33 33 4+5sfn(x) n(x)kgs(x kgs(x)) 0 4.33 ⇕   4+5sf 5sfn(x)kgs(x)0 gs(x)0 1.33 ⇕   5sfn(x)k   1.33 sfn(x)kgs(x) (x) 0 ⇕   sfn(x)kgs 5 ⇕   sfn sfn(x)k (x)kgs(x)0 gs(x)0 1.55 3) Cffflnj`gs Cffflnj`gs dquj ds hun½k˒ hun½k˒ ggfs< fs< sfkdntf
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF