A Matemática Do Ensino Médio Vol 1
November 12, 2022 | Author: Anonymous | Category: N/A
Short Description
Download A Matemática Do Ensino Médio Vol 1...
Description
D @dtf`ätjkd cg Fnsjng @êcjg Xgbu`f 4 Fbgn Bdif Fbgn Bdifss Bj Bj`d `d Qdubg Qdu bg Kfzdr Kfzdr Qjntg Qjntg Kdrvdb Kdrvdbmg mg Fcudrcg Ydinfr Duiust Dui ustg g Kêzd Kêzdrr @gridc @gridcg g
[GBVKJGNÄUJG KG@QBFSG
KGBFÉËG CG QUGHF[ QUGHF[[GU [GU CF @DSF@ @DSF@ÄSJKD ÄSJKD [GKJFCDCF EUD[JBFJUD EUD[JBFJUD CF @DSF@ÄSJKD
[gbu½ kk˒ g ˒fs cg Bj Bjvrg vrg< D @dtf`dtjkd d ³tjkd cg Fnsjng @³ f fcjg cjg - [E@ [E@ (Fbgn Bdifs Bdifs Bj`d f kgb. kgb.)) njeebfcjfigAi`djb.kg` njeebfcjfigA Kg`pjbdcg cjd 5;/1:/5148
Fssf cgku`fntg fst³d f` kgnstdntf rfvjs˒ rfv js˒ddg. g. Xfz gu gu gut gutrd rd u` frrg cf pgrtuiuˈffss ³f kgrrjijcg, u`d pdssdif` quf n˒ ddgg fflkgu `ujtg `ujtg kbdrd ³f rfhfjtd, u`d sgbu½kk˒ ddg ˒g ffqujvgkdc qujvgkdcdd ³f suestjtu³ sue stjtu³ĴĴcd cd gu d sgbu½ sgb u½ k˒ddgg cf u`d cds qufst˒gfs djncd n˒dg n˒dg rfsgbvjcd rfsgbvjcdss dpdrfkf `dijkd`fntf f` `jnm `jnmdd kdef½kd, sfncg jnkbu³ Ĵcd Ĵcd f` vfr vfrs˒ s˒ gfs dtudbjzdcds cg cgku`fntg. Dssj`, vfrjfflquf sf g quf vgkˈf tf` f` `˒dgs ³f cf hdtg d vfrs˒ddgg `djs rfkfntf cg cgku`fntg . Sgcds Sgcds ds dtudbjzd½kk˒gfs ˒gfs cfbf fst˒ ddgg cjspgn³ĴĴvfjs vfjs f` f` www.nu`efr.=:1`.kg` www.nu`efr.=:1`.kg` sf` er `fs `fs`g. `g.
[f qujsfr jnhgr`dr dbiu` frrg cf pgrtuiuˈffs, s, cjijtd½kk˒ dg d˒g gu `fs`g `fs`g cf b³ gijkd ngs fxfrk³ Ĵkjgs fskrfvd pdrd< njeebfcjfigAi`djb.kg`
[u`³ drjg drjg 4 Kgnluntgs
5
5 N³ u`frgs Ndturdjs
43
; N³ u`frgs Kdrcjndjs 3 N³ u`frgs Ufdjs
55 5=
6 Hun Hun½ ½kg ˒fs Dfflns
;6
8 Hun Hun½ ½kg ˒fs Tudcr³ dtjkds
68
9 Hun Hun½ ½kg ˒fs Qgbjng`jdjs
=1
= Hun Hun½ ½kg ˒fs F Fx xpg nfnkjds f Bgidr³ Ĵt`jkds
=9
: Hun Hun½ ½kg gfs ˒fs Srjig Srjign ng`³ ftrjkds
:6
41 Dirdcfkj`fntg
415
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
4
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
Kgnluntgs
4. [fld` Q 4, Q5, T4 , T5 prgprjfcdcfs rfhfrfntfs d fbf`fntgs fbf`fntgs cf u` kgnluntg unjvfrsg V . [upgnmd quf Q 4 f Q5 fsigtd fsigtd` ` tgcgs tgcgs gs kdsgs pgss³ pgss³ĴĴvfjs vfjs (gu sfld, u` fbf`fntg fbf`fntg qudbqufr qudbqufr cf V gu tf` prg prgprj prjfcd fcdcf cf Q 4 gu gu tf` ˈf` Q 5 ). [u [upg pgnm nmdd djncd djncd quf quf T 4 f T5 s˒ddgg jjnkg nkg`pd `pdt³ t³ĴĴvfj v fjss (jstg (js tg ³ff,, fxkbuf`-s fxkbu f`-sff `u `utudb tudb`fntf) `fntf).. [upg [upgnmd, nmd, fflndb`fntf fflndb`fntf,, quf Q 4 T4 f Q5 T5 . Qrgvf Qrgvf quf vdbf` vdbf` ds rfk³ Ĵprg Ĵ prgkd kds< s< T4 Q 4 f T5 Q 5 .
⇕
⇕
⇕
⇕
[gbu½ k˒ dg< kg`gg Q 5 T5, fnt˒dg u` Kg`g Q 4 f Q5 fsigtd` tgcds ds pgssjejbjcdcfs pgssjejbjcdcfs f Q 4 T4 ef` kg` fbf`fntg cf V gu tf` ˈf` prgp prgprjfcd rjfcdcf cf T4 gutˈf` f` prgprjfcd prgprjfcdcf cf T5. Gu f` gut gutrds rds pdbdvr pdbdvrds< ds< n˒dg n˒dg pgcf mdvfr fbf`fntg cf V quf n˒dg igzf ig zf cf T 4 f T5 dg `fs`g tf`pg.
⇕
⇕
Q5 . Nfstf Nfstf kdsg u u` ` fbf`fntg fbf`fntg u pfrtfnkfntf d V tˈ f` td td` `e³ f` f` [upgnmd pgr desurcg quf T 4 prgprjfcdcf T5 , pg pgjs js Q 5 T5 . G quf ifr ifrdd u` desur desurcg cg l³d quf T4 f T5 sf fxkbuf` `utudb`fntf. Bgig T 4 Q 4.
⇕
⇕
⇕
Dndbgid`fntf sf prgvd quf T5
⇕ Q5.
5. Fnqudcrf ng kgntfxtg cg fxfrk³ĴĴkjg kjg dntfrjgr g sfiujntf hdtg ifg`³ftrjkg< ftrjkg< Cuds Cuds geb geb³ ³ Ĵqu Ĵquds ds quf sf dhdstd dhdstd` ` jiudb` jiudb`fnt fntff cg p³ f cd pf pfrpfnc rpfncjkubd jkubdrr sd dg ˒g ji jiudj udjs. s. [f sf dhdst dhdstd` d` cfsjiu cfsjiudb`f db`fntffnt˒ ntffnt˒dg s˒dg dg cf cfsj sjiu iudj djss f d `d `djg jgrr ³ f d quf `djs `djs sf dhds dhdstd td.. [gbu½ k˒ dg< Hdzfncg u`d kg`pdrd½kk˒ dg d˒g kg` g fxfrk³Ĵkjg Ĵkjg dntfrjgr dntfrj gr tfrf`gs<
Q4 < Qrgprjfcdcf cf sf dhdstdr dhdstdr jiudb`fntf. T4< Qrgpr Qrgprjfcdc jfcdcff cf sfrf` cf td`dnmgs td`dnmgs jiudjs. Q5 < Qrgprjfcdcf cf sf dhdstdr cfsjiudb`fntf. cfsjiudb`fntf. T5< Qrgprjfcdcf cf tfrf` tfrf` td`dnmgs cfsjiudjs. Cf `gcg quf Q 4
vfrcdcfjrd . ⇕ T4, Q5 ⇕ T5 f d rfkjprgkd td`e³ff`` ³f vfrcdcfjrd.
;. [fld` ] 4 ]5 , Z4Z5 suekgnluntgs cg kgnluntg unjvfrsg V. [upgn [upgnmd md quf quf ] 4 ]5 0 V f Qrgvf vf quf quf ] 4 0 Z4 f ]5 0 Z5 . quf ] 4 Z4 f quf ] 5 S5 . Qrg Z4 Z5 0 , quf
∪
∆
⊅
∬
⊅
[gbu½ k˒ dg< 4 Kg`g pg r mjp³ `gst `gstrdcg rdcg pgr quf< quf< ] 4gtfsf 0 Z] 4.
dg edstd prgvdr quf ] 4 ⊋ Z4 quf pgr cupbd jnkbus˒dg tfrf`gs ⊅ Z4 fnt˒dg Qdrd `gstrdr quf ] 4 ⊋ Z 4 tg`f`gs tg`f`gs u u` ` fbf`fntg fbf`fntg y ∍ Z 4 . Kg`g pgr mjp³gtfsf mjp³gtfsf ] 4 ∬ ] 5 0 V
fnt˒dg dg y pfrtfnkf d ] 4 gu pfrt pfrtfnkf fnkf d ] 5.
5
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
∍
⊅
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
∍
∪ Z 5 0 ∆. Bgig Bgig y ∍
[f [f y ] 5 f ]5 Z 5 fnt˒ ddg g y Z 5 . G quf sfrj sfrjdd u` desurc desurcgg l³d quf Z 4 ]4 g quf prgvd quf ] 4 Z 4 . F pgrtdntg pgrtdntg quf ] 4 0 Z4 .
⊋
Dndbgid`fntf sf prgvd quf ]5 0 Z5 .
3. Kg`pdrf Kg`pdrf g fxfrk fxfrk³³Ĵkjg dntfrjgr dntfrjgr kg` g prj`fjrg prj`fjrg f` f` tfr`gs tfr`gs cf cf kbdrfzd kbdrfzd f sj`pbjkjcdcf sj`pbjkjcdcf cgs fnunkjdcgs. @gstrf quf qudbqufr u` cfbfs pgcf sfr rfsgbvjcg rfsgbvjcg pfbg gutrg. [gbu½ k˒ dg<
⊋
Qdrd prgvdr`gs quf ]4 0 Z4 , pgr fxf`pbg prfkjs³ prfkjs³dvd`gs dpfnds `gstrdr `gstrdr quf< ] 4 Z 4. Dssj` sf tg`dr`g tg`dr`gss u` fbf`f fbf`fntg ntg u cf cf V, Q4 kg`g d prgprjfcdcf cf pfrtfnkfr d ] 4 f T4 kg`g d prgprjfcdcf cf pfrtfnkfr d Z 4 . Fnt˒dg pgcf`gs dfflr`dr quf Q 4 T 4 . L³d quf ] 4 Z 4 . Nfstf kdsg prgvdr d rfkjprgkd (T 4 Q 4), sfrjd g fqujvdbfnt fqujvdbfntff d prgvdr ]4 Z 4.
⇕ ⊋
⇕
⊅
F` gutrds pdbdvrds prgvdr d qufst˒dg dg ; j`pbjkd nd prgvd cd qufst˒dg 4 f vjkf-vfrsd.
⇕ T4 f Q5
6. Djncd ng tf`d cg prj`fjrg fxfrk fxfrk³³Ĵkjg, sfrjd v³dbjcg dbjcg suestjtujr ds j`pbjk j`pbjkd½ d½k˒ k˒gfs gfs Q 4
⇕ T5 nd mjp³ mj p³gtfsf pgr suds rfkjprgkds rfkj prgkds T 4 ⇕ Q4 f T5 ⇕ Q 57 [gbu½ k˒ dg<
⇕
⇕
Fssd suestjtuj½k˒ kddg ˒g n˒dg gerjid ger jid d j`pbj j `pbjkd½k˒ kd½k˒ dg dg Q4 T4 f Q5 T5. Edstd Edstd j` j`dijndr dijndr g fxf fxf`pbg `pbg f` quf V 0 N , Q4 f³ d prgprjfcdcf ‒n ³f pdr‐, Q5 sjinjfflkd ‒n ³f j`pdr‐, T4 quf cjzfr ‒n f `³ubtjpbg cf 3‐ f T 5 cjz ‒n ³f u` nu`frg prj`g `djgr cg cg quf 5‐.
8. Fskrfvd ds j`pbjkd½k˒ gfs gfs b³gij gijkds kds quf q uf kgrrfs kgrrfspgnc pgncff ` ad rfsgbu½ rfsgb u½k˒dg dg cd fqud½ fqu d½k˒dg dg
∜ x +5 05,vfld
qudjs s˒dg dg rfvfrs³ĴĴvfjs vfjs f fx fxpbjquf pbjquf g dpdrfkj`fntg dpdrfkj `fntg cf rd³Ĵzfs Ĵzfs fstrdnmds. fs trdnmds. Hd½ kd g `fs`g kg` d fqud½k˒ fqud½k˒ dg dg x + ; 0 x .
∜
[gbu½ k˒ dg< Hdzfnc Hdzfncgg y 0
∜ x tˈf` sf< sf< ⇕ y + 5 0 y 5 ∙
⇕ y5 ∕ y ∕ 5 0 1 5)(y +4)0 1 (4) ⇕ (y ∕ 5)(y ⇕ y 0 5, y 0 ∕4 (5) ∜ kg`g y 0 x cf (4) f (5) tf kg`g tf`gs `gs 1, d fqud½k˒ddgg
u`d rdjz. ∜ x + ` 0 x tf` fxdtd`fntf u`d
[gbu½ k˒ dg< [fld y 0 [fld
∜ x fnt˒dg< dg<
∜ x + ` 0 x pgcf sfr fskrjtd kg`g y + ` 0 y 5 ⇕ y5 ∕ y ∕ ` 0 1 Dpbjkdncg emdsodrd<
∜ ∕ (∕4) ´ (∕4)5 ∕ 3(4)(∕`) 4 ´ 4 + 3` y 0 0
5(4)
5
5
y ` 0 1 pgssujr³d cuds Kg`g pgr mjp³gtfsf ` > 1 fnt˒ fnt ˒dg dg d (4 + 3 `) > 1 f d fqud½k˒ddg g y rd³Ĵzfs, Ĵzfs, u`d pgsjtj pgsjtjvd vd f u`d nfidtjvd quf kmd`drf kmd`drf`gs `gs cf cf o 4 f o5 (kg` (kg` o 4 , o5 U ).
∜ [f [f y 0 ∕o5 fnt˒ dg dg x 0 ∕o5 f x 0 (o5 )5 sfncg dssj`< 3
∕
∕ ∕
∍
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
∜ x + ` 0 x ⇕ ∕o5 + ` 0 (o5)5 ⇕ ` 0 (o5)5 + o5 ⇕ ` > (o5)5 (4) ∜ dg< dg< `ds kg`g x 0 ∕o5 fnt˒ ` > (o5 )5
⇕ ` >x
Fssd j`pbjkd j`pbjkd½½k˒dg dg ng fntdntg ³f u` desurcg pgjs pgj s dndbjsdncg dndbj sdncg d fqud½ fqu d½k˒ddgg ( x + ` 0 x),f d kgncj½k˒ kd˒dgg cf quf ` > 1 fnt˒ fnt ˒dg dg cfvf`g cf vf`gss tfr x `. Bgig x n˒ddgg pgcf ssfr fr jiudb jiudb d o5 pgjs jssg rfsubtdrjd f` f` ` > x
∜ ∕
≦
Bgig d fqud½ fqu d½k˒ddgg s³g pgssuj u`d rdjz. F fbd ³f pgsjtjvd.
=. Kgnsjcfrf ds sfiujntfs (d (dpdrfntfs) pdrfntfs) fqujvdbˈ fnkjds fnkjds b³gijkds< gijkds< x 0 4
⇓ x5 ∕ 5x + 4 0 1
⇓ x5 ∕ 5 ¹ 4 +4 01 ⇓ x5 ∕ 4 0 1 ⇓ x 0 ´4 Kgnkbus˒ ddgg (7)< x 0 4
⇓ x 0 ´4. Gncf fst³d g frrg7
[gbu½ k˒ dg< G prgebf`d fst³d nd sfiuncd j`pbjkd j`pbjkd½½k˒dg. d g. Fn Fnqu qudn dntg tg x5 5x + 4 0 1 x5 5 4 + 4 0 1 d 5 rfkjprgkd rfkjprg kd n˒ddgg ³f vf vfrcdcfjr rcdcfjrd, d, pgjs sf sf x 0 4 fn fnt˒ t˒dg ( 4) 5 4 + 4 td`e³ td`e³ ff` ` ³f jiudb jiudb d zfrg. zfrg. Gu jrrfvfrs³ Ĵvfb. Ĵvfb. pdrd x 5 5(4) + 4 0 1 ³f jrrfvfrs³ sfld, d pdssd pdssdif` if` cf x 5 5x + 4 0 1 pdrd
∕
∕
∕ ∕ ∕ ¹
∕
⇕ ∕ ¹
:. Ds rd³Ĵzfs Ĵzfs cg pgbjnˈg`jg g`jg x ; 8x5 + 44 44x x 8 s˒ddgg 4, 5 f ;. [uestjtud [uestjtud,, nfssf pgbjnˈg`j pgbjnˈg`jg, g, g tf tfr`g r`g 44x 44x pgr 44 5 0 55, getfncg fnt˒dg dg x; 8x5 + 48, quf djncd tf` 5 kg kg`g `g rdjz rdjz `ds n˒ dg sf dnubd dnubd pdrd x 0 4 nf` pdrd nf` x 0 ;. Fnu Fnunkjf nkjf u` rfsubtdcg rfsubtdcg ifrdb ifrdb quf fxpbjquf fxpbjquf fstf hdtg f g rfbdkjgnf rfbdkjgnf kg` g fxfrk³ fxf rk³Ĵkjg Ĵkj g dntfr dntfrjgr jgr..
¹
∕
∕
∕
[gbu½ k˒ dg< rdjz jz ³f δ fnt˒ dg dg p(δ p( δ) 0 1. Sg`dnc Sg`dncgg digrd digrd Cdcg u` pgbjnˈg`jg p(x) 0 dx ; + ex5 + kx + c kuld rd u` sfiuncg pg pgbjnˈ bjnˈg`jg q(x) 0 kx pgcf-sf fskrfvfr fskrfvfr p(x) kg`g< p(x) 0 dx; + ex5 + q (x) + c
6
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
Ufpdrf Ufpd rf qu quff fst³d suestjtuj suest jtuj½½k˒ddgg ndcd `ucd `ucd f` p(x p(x). ). Cf `gcg `gcg qu f p p(( δ) kgntjnud kgntjnud sfncg sfncg rdjz cf p(x). p(x). Cfssf Cfssf `g `gcg cg suestjtuj suestjtujrr q( δ) pfbg tf tfr`g r`g ‒qx‐ ‒qx‐ f` p(x) sjinjfflkd sjinjfflkd dpfnds dpfnds quf fstd fstd`gs `gs suestjtujn suest jtujncg cg x pgr δ f` ‒qx‐. ‒qx‐. p( p(x) x) 0 dx ; + ex5 + kδ + c Dssj` δ kgntjnud sfncg rdjz cf p(x) Dssj` p(x),, `ds ds suds cf`djs rd³Ĵzfs Ĵzfs pfrcf` g sfntjcg. Fssf hdtg td`e³ f` f` sf vfrjffl vfrjfflkd kd ng ng fxfrk³ fxfrkĴkjg Ĵ³kjg dntfrjgr qudncg suestjtu³ suestjtu³Ĵ`gs x pgr 4 nd fqud½ k˒ dg dg 5
x
∕ 5x + 4 0 1 41. [fld Q( Q(x) x) u`d kgncj½ kgncj½k˒ k˒ dg dg fnvgbvfncg d vdrj³dvfb d vfb x. (4) ‒Qdrd ttgcg gcg x, ³f sdtjshfjtd sdtjshfjtd d kgncj½kk˒ dg d˒g Q(x)‐ (5) ‒Fxjstf ‒Fxjstf dbiu dbiu` ` x quf sdtjsh sdtjshdz dz d kgncj½ kgncj½ k˒ dg dg Q(x).
d) [fncg D g kgnlu kgnluntg ntg cf gelft gelftgs gs x (cf u` kfrt kfrtgg kgnluntg kgnluntg unjvfrsg unjvfrsg V) quf sdtjsh sdtjshdzf dzf` `d kgncj½k˒ kd˒dgg Q(x), fskrfvd ds sfntfn sfntfn½½kds kds (4) (4) f (5) dkj`d, usdncg d bjniudif` cgs kgnluntgs. kgnluntgs. e) Tudjs ds nfid½k˒ gfs gfs cf (4) f (5)7 k) Qdrd kdcd sfntfn½kd dedjxg cjid sf fbd ³f vfrcdcfjrd gu hdbsd f hgr`f sud nfid½k˒ kddg< ˒g< 5
Fxjstf u` nu`f nu`frg rg rfdb rfdb x tdb quf quf x 5 0 ∕4. •• Qdrd tgcg nu`frg jntfjrg jntfjrg n , vd vdbf bf n > n. • Qdrd tgcg nu`frg rfdb x , tf`-sf tf`-sf x > 4 gu gu x 5 2 4. ndturdb n tdb quf quf n > x. • Qdrd tgcg nu`frg rfdb x fxjstf u` nu`frg ndturdb • Fxjstf u` nu`f nu`frg rg ndtur ndturdb db n tdb quf, pdrd tgcg tgcg nu`frg nu`frg rfdb x , tf tf` ` sf n > x. [gbu½ k˒ k˒dg cf D<
∍
Cd sfntfn½kd kd (4) kgnkbuj-sf kgnkbuj-sf dpfnds dpfnds quf< tgcg x V td`e³ ff` ` pfr pfrtfn tfnkf kf d D. D. N˒ ddgg sf pgcf cjzfr quf D 0 V pgrquf pgrq uf n˒dg sf sdef sf V f³ kgnstjtu³Ĵcg Ĵcg dpfnds cf gelftgs x. Cf (5) sf kgnkbu kgnkbuj-quf j-quf D 0
∆
Dssj` ds sfntfn½ sfntfn½ kkds ds (4) f (5) fskrjtds nd hhgr`d gr`d cf kgnluntg kgnluntg sfrjd` rfspfktjvd`fntf< (4)D 0
{x|x ∍ V} (5) (5) D 0∆
[gbu½ k˒ k˒dg cf E< Dn nfid fid½½k˒ k˒dg dg cf cf (4) ³ff 4 D nfid nf id½ ½k˒ k˒ dg dg cd dfflr` dfflr`d½ d½k˒ d dg g sfr³ sfrd< d r . D nfid½ nf id½k˒ dg d g cd cd dffl dfflr`d r`d½ k½˒ dg sfr³ d r. D nfid nf id½ ½k˒ k˒ d dg g cd dffl dfflr` r`d½ d½k˒dg dg sfr³ sf r³d d 1 x∕6 5x + 8 > 1 x 6
∕
Kuld cfsjiudbcdcf gkgrrf pdrd x > 6 f x 2 ;. L³d d sfiuncd jnfqud½k˒dg dg hdrf`gs dssj`< x x
∕4 ∕ 6 2 4
;5
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
∕ ¹ xx ∕∕ 64 2 4 ¹ (∕4)
( 4)
4 x 4
∕ x > ∕4 ∕6
x
+
x
6
> 1
∕ ∕ x∕6 x∕6 4 ∕ x + (x ∕ 6) > 1 x∕6 4
∕ x + x ∕ 6 > 1 x∕6 ∕3 > 1 ∕6
x
Kuld Kul d sgb sgbu½ u½k˒ddgg gkgrrf sg`fntf pdrd x 2 6 (edstd (edstd gbmdr prg cfng` cfng`jndcgr). jndcgr). Dssj` hdzfncg d jntfrkfss˒ dg dg fntrf ds sgbu½ sgbu ½k˒gfs gfs fnkgntrd`gs kg`g sgbu½kk˒ dg d˒g d kgncj k gncj½½k˒dg dg cf quf x 2 ;. c) Nfssf kdsg prgkfcf`gs cd sfiujnt sfiujntff hgr`d<
|x ∕ 5| + |x + 3| 0 x∕(∕x5∕+5)|x++|x3|+03|=0 =
Cf kdcd kdc d fqud½ fqud ½k˒dg dg dkj`d djncd tf`-sf< x
∕ 5 + |x + 3 | 0
x x
∕ 5 + x +3 05 x +5 0= ∕ 5 ∕ (x + 3 ) 0 ∕8 0 =
f td`e³ f`< f`<
5
∕ x + |x + 3 | 0
5 5
∕ x + x + 3 0 8 0 = ∕ x ∕ x ∕ 3 0 ∕5x ∕ 5 0 =
Cgs cgjs ³ubtj`gs sjstf sjstf`ds `ds pfrkfef`gs quf ds ³unjkds ³unjkd s sgbu½kk˒gfs ˒gfs pgss³Ĵvfjs Ĵvfjs vˈff` ` cf 5x + 5 0 = x 0 ; f c cff 5x 5 0 = x 0 6.
∕ ∕
⇕
∕
Cf hdtg tfstdncg fstfs vdbgrfs tf`gs<
|(∕6) ∕ 5| + |(∕6 ) + 3| 0 | ∕ 9| + | ∕ 4| 0 = |(;) ∕ 5| + |(;)+3 | 0 |4| + |9| 0 = ;;
⇕
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
Dssj` d sgbu½k˒ sgbu½k˒ ddgg pdrd d fqud½k˒ fqud½k˒dg dg sfrjd 1.
x4 + x5 h (x4 ) + h (x5 ) d) @gstrf @gstrf quf h 2 . 5 5 e) @djs ifrdb`fntf `gstrf quf sf 11 2 d 2 4, fnt˒ddg g h (δx4 + (4 δ)x5) 2 δh (x4 )+ ifg`ftrjkd`fntf ftrjkd`fntf fstd fstd prgprjfcdcf. (4 δ)h (x5). Jntfrprftf ifg`
∕
∕
[gbu½ k˒ k˒dg 9d<
h
x4 + x5 5
0 d
x4 + x5 5
5
+e
x4 + x5 5
+ k (4)
h (x4 ) + h (x5) (x5 + x55 )5 + e(x4 + x5) + 5 k 0 d 4 (5) 5 5
81
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
kg`pdrdncg (4) f (5)< d
x4 + x5 5
5
+e
x4 + x5 5
+ k
d(x54 + x55 )5 + e(x4 + x5 ) + 5 k 5
d(x4 + x5)5 + e(x4 + x5 ) + 5 k d(x54 + x55 )5 + e(x4 + x5 ) + 5k 5 5 5 5 5 5 e(x + x5 ) + 5 k e(x + x5 ) + k d(x4 + x5 ) + 5 4 4 d(x4 + x5) + 5 5 (x4 + x5 )5 ( x54 + x55)5 Kgnkbujncg quf< (x4 + x5)5 2 (x54 + x55 )5 [gbu½ k˒ k˒dg 9e<
nt˒˒ddg< g< Qrgvf`gs jnjkjdb`fntf quf sf x 4 0 x 5 f 1 2 δ 2 4 ffnt _δx4 + (4 Qrgvd< _δx4 + (4
∕ δ)x5P5 2 δx54 + (4 ∕ δ)x55
∕ δ)x5P5 ∕
δx54 + (4
∕ δ)x55
2 1
∕ δ)5x54 ∕ 5δ(4 ∕ δ)x4x5 + ( δ ∕ δ5)x55 5 ⇕ δ(4 ∕ δ)_)_xx4 ∕ x5P > 1 sfsf x4 0 x5 f 1 2 δ 2 4 K.q.c. (δ
Hjndb`fntf vgbtd`gs dg prgebf`d prjnkjpdb.
∕ δ)x5) 0 d(δx4 + (4 ∕ δ)x5)5 +e(δx4 + (4 ∕ δ)x5) + k 2d(δx54 + (4 ∕ δ)x55) + e(δx4 + (4 ∕ δ)x5 ) + k h (δx4 + (4
Vsdncg g rfsubtdcg r fsubtdcg cd prj`fjrd cf`gnstrd½k˒dg< dg< 0 δdx54 + δex4 + δk + (4
∕ δ)x55 + (4 ∕ δ)ex5 + (4 ∕ δ)k
0 δh (x4 ) + ( 4 Kg`g sf qufrjd cf`gnstrdr.
∕ δ)h (x5)
=. Qrgvf quf ssff d , e f k s˒ddgg jntfjrgs jntfjrg s j`pdrfs, j`pdr fs, ds rd³ r d³ĴĴzfs zfs cf y 0 dx5 + ex + k n˒dg dg s˒dg dg rdkjg rdk jgnd ndjs js.. [gbu½ k˒ dg< J`dijnf pgr desurcg quf fxjstd u`d rdjz rdkjgndb p/q f` sud hgr`d jrrfcut³Ĵvfb. Ĵvfb. N˒dg dg pgcf gkgrrfr cf p fq sfrf` d`eg d`egss pdrf pdrfss pgjs, nfst nfstff kdsg p/q n˒ dg dg fstdrjd f` sud hgr`d jrrfcut jrrfcut³³Ĵvfb. Bgig sfiuf trˈffss pgssjejbjcdcfs< 84
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
4◨ - ( p f q s˒dg dg d`egs j`pdrfs). Nfstf kdsg< p q
d
5
+e
p q
+ k 0 1
dp5 + ep + k 0 1 q5 q
dp5 + epq + kq5 0 1 Kg`g g prgcutg cf cgjs n³u`frgs n³u`fr gs j`pdrfs j `pdrfs ³f j`pdr fnt˒ dg, dg, dp5 ,epq,kq 5 td`e³f` sdg d˒g j`pdrfs, j`pd rfs, g quf ³f u` desu desurcg, rcg, pgjs n˒dg dg pgcf mdvfr trˈfs fs n³ u`frgs u`frgs j`pdrfs kuld sg`d sfld jiudb jiudb d zfrg. 5◨ - ( p f q s˒dg dg d`egs pdrfs). Nfstf kdsg kdsg dp5 ³f jj`p `pdr dr,, epq,kq 5 s˒ddgg pdrfs. Kg`g d sg`d cf cgjs pdrfs f u` j`pdr f³ j`pdr fnt˒ddgg n˒dg pgc pgcff gkgrrfr gkgr rfr cf< cf < dp5 + epq + kq5 0 1 g quf ifrd ngvd`fntf ngvd`fntf u` desurcg. ;◨ - (V` ³f pdr f gutrg gu trg ³f j`pdr). Qdrd fssd cf`gnstrd½kk˒ dg d˒g dssu`jrf`gs quf p f³ pdr f f q f³ j`pdr. Nfstf kdsg kdsg dp 5 f epq f³ pdr f f kq 5 ³f j`pdr. G quf ngvd`fntf ngvd`fntf rfsubtd rfsubtd ng desurcg.
:. V`d pfssgd pgssuj u` irdvdcgr irdvdcgr cf v³ v³Ĵcfg cgtdcg cf u`d kgntdcgr quf rfijstrd g nu`frg cf vgbtds vgbtds cdcd cdcdss pfbg kd kdrrftfb rrftfb cd cjrfjtd. cjrfjtd. D ffltd,cf 8 mgrds mgrds cf curd½ curd½k˒ k˒ ddg, g, fst fst³d³ pdrkjdb`fntf irdvdcd. G kgntdcgr kgntdcgr jncjkd 4961 dg fflndb cg trfkmg irdvdcg irdvdcg f 4:11 dg fflndb cd ffltd. G prgebf`d prgebf`d ³f sdefr sdefr qudntg tf`pg cf irdvd½kk˒ dg d˒g djncd fst³d cjspgn³ĴĴvfb vfb ng fflndb cd ffltd.
d) Fxpbjqu Fxpbjquff pgrquf n˒ ddgg ³f rdzg³ rdz g³ ddvfb vfb supgr quf g tf`pg f irdvd½k˒dg dg sfld prgpgrkjgndb dg nu`frg cf vgbtds cg kgntdcgr. e) Kgnsjcfrdcg quf d ffltd sf fnrgbd f` kdcd kdrrftfb sfiuncg k³ k³Ĵrkubgs kgnkˈ fntrjkgs fntrjkgs jiudb`fntf fspd½kdcgs, kdcgs, `gstrf quf g tf`pg tf`pg S (n) cf irdvd½k˒ ddgg dp dp³³gs n vgb vgbttds ³f cdcg cd cg pgr u`d u `d hun½ hu n½k˒ddgg cd hgr`d S (n) 0 dn5 + en. en.
85
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
k) @fcjncg g tf`pg cf irdvd½k˒ dg dg kgrrfspgncfntf kgrrfspgncfntf ds prj`fjrds 411, 511, ;11 f 311 vgbt vgbtds, ds, hgrd` fnkgntrdcds fnkgntrdcds gs cdcgs cdcgs ddedjxg edjxg.. Fstfs vdbgr vdbgrfs fs s˒ddgg kg kgnsjcfr nsjcfrdcgs dcgs kg` g `gcfbg dkj`d7 Xgbtd 411 511 ;11
Sf`pgs(s) 666 4498 4=8;
311 5848 c) Tudntg tf`pg cf irdvd½ irdvd½k˒ k˒ dg dg rfstd nd ffltd7
[gbu½ k˒ k˒dg :d< Fvjcfntf. [gbu½ k˒ k˒dg :e< Qfbd kjnf`³dtjkd dtjkd sdef-sf quf<
∕
5ρ(U + ( n 4) 4)rr v Gncf r f³ d fspfssurd cd ffltd, n g nu`frg cf vgbtds f U g rdjg cg kdrrftfb. Gncf G tf`pg tgtdb sfr³d d sg`d cgs tf`pgs cf kdcd vgbtd. S (n) 0
n
S 0
S ( n) 0
j04
5ρU 5ρ(U + r) 5 ρ(U + 5 r) 5 ρU ρU + ( n + + +... + v v v v
0 5ρ (U + (U + r) + ( U + 5r) + . . . + (U + ( n v
4)rr)) ∕ 4)
5ρ (Un + (r + 5 r + . . . + (n 4) 4)rr) v 4) 4)rr sf kg`pgrtd kg`g u`d u`d Q.D. fnt˒dg<
∕
Kg`g r + 5 r + . . . + (n Kg`g
∕
5
r + 5 r + . . . + ( n
(r + (n ∕ 4) 4)rr)n 5n r ∕ rn ∕ 4) 4)rr 0 0 5 5
Bgig S 0
5ρ v
0 0
Un +
5n5r rn 5
∕
5ρUn 3ρn5r + v 5v
∕ 5ρrn 5v
5ρr v
n5 +
Tu Tuff ³f cd hgr`d hg r`d S (n) 0 dn5 + en. en.
8;
ρ(5 (5U U v
∕ r)
n
∕ 4) 4)rr
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
[gbu½ k˒ k˒dg :k< Kg` gs cdcgs hgrnfkjcgs ` `gntd`-sf gntd`-sf gs sfi sfiujntfs ujntfs sjstf`ds.
d(;11)5 + e(;11 (;11)) 0 4= 4=8; 8; d(311)5 + e(311 (311)) 0 58 5848 48 d(411)5 + e(411)0 (411)0 666 d(511)5 + e(511 (511)) 0 44 4498 98
Kuld sgbu½k˒ kd˒g ³f [4 0 1.11;; 11;;?? 6.55 f [5 0 1.11; 11;;? ;? 6.55 . Kg`g d`egs gs gs sjstf`ds pgssuf pgssuf` ` d `fs`d sgbu½k˒dg dg fnt˒dg dg gs vdbgrfs vdbgr fs s˒dg kgnsj kgnsjstfntfs. stfntfs.
{
}
{
}
[gbu½ k˒ k˒dg dg cf :c :c 1) ¹ ρc3 + 46
f g vdbgr kgerd kgerdcg cg pgr E ³f cf K E (c) 0
4= 4=ρc ρc5 + 51 51ρc ρc + 811 (kg` (kg` c > 1). 3
Gs vdbgrfs vdb grfs cf ‒c‐ pdrd g q qudb udb d f`prfsd D ³f `djs vdntdlgsd ³f g rfsubtdcg rfsub tdcg cd jnfqud½ jnfq ud½k˒ kd˒dg< g< K D (c)
∕ K E (c) 2 1 93
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
⇕
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
51 51ρc ρc5 4=ρc 4=ρc5 + 46 46ρc ρc + 51 5111 + 51ρc 51ρc +811) ( 3 3
∕
2 1
5
311 ⇕ 6ρc ∕5 ρc + 311
2 1
Ufsgbvfncg fssd ³u ubtj`d btj`d jnfqud½kk˒ dg d˒g fnkgntrd`gs 6ρ + c>
∜ 56ρ 56ρ5 + =1 =1ρ ρ ρ
6ρ +
∜ 56 ρ5 + =1 56ρ =1ρ ρ
f c 2
∕
ρ
,
∕ fntrftdntg kg`g kg`g c > 1 pgcf`gs cfskdrtdr d sfiuncd sgbu½k˒ddg, g, sfncg dssj`, dssj`, ∜ 6ρ + 56 56ρ ρ 5 + =1 =1ρ ρ c> 0≍ 54 54..95 ρ Tuf j`pbjkd f` c > 54 54..95 Dssj` d f`prfsd ‒D‐ ³f `djs vdntdlgsd qudncg c > 54 54..95`.
,k pgsjtjvgs xy 0 k f quf y 0 dx dx + ey ey sfld g `fngr ;3. ;3. Cd Cdcg cgss d ,e ,k pgsjtjvgs,, cftfr cftfr`jndr `jndr x f y tdjs quf xy pgss³Ĵvfb. Ĵvfb. [gbu½ k˒ dg< Hdzfncg h (x, y) 0 dx + ey ey kg`g kg`g xy 0 k , fnt˒dg dg h (x, y) pgcf sfr fskrjtd kg`g< kg`g< ek
(4) x J`dijnf digrd quf cfsfld`gs getfr x f` hun½k˒dg dg cd sg`d h (x). @ubtjp @ubtjpbjk bjkdnc dncgg ((4) 4) pgr x f h (x) 0 dx +
rfgridnjzdncg sfus tfr`gs getf`gs dx5 F usdncg Emdsodrd.
∕ h (x) + ek ek 0 1
⇕ x 0 h (x) ´
h (x)5 5d
∕ 3dek
Qdrd Qdr d quf ddss sgbu½ sgb u½kk˒˒ggfs fs cd fqud½kk˒dg ˒dg j`fcjdtd`fntf j`fcjdtd`fntf dkj`d sfld` rfdjs cfvf`gs tfr tfr h (x)5 3dek 1, gncf getf getf`gs `gs h (x) 5 dek dek gu gu h (x) 5 dek. dek.
≦ ∜
≣ ∕ ∜
∕
≦
∜
Dssu`jncg quf quf h (x) ³f pgsjtj pgsjtjvg vg fnt˒ dg dg g `³ĴĴnj`g nj `g gkgrrf gkg rrf qudnc q udncgg h (x) 0 5 dek. dek. Kgnkbus˒ d dg< g< x f y cfvf` sfr fskgbmjcgs cf `gcg quf dx + ey
≣ ∕5∜ dek. dek.
;6. Kdvdr u` eurdkg rftdniubdr rftdniubdr cf 4 ` cf bdriurd cf `gcg quf g vgbu`f kdvdcg sfld sfld ;11 `; . [defncg quf kdcd `ftrg qudcrdcg cf ³drfd kdvdcd kustd 41 rfdjs f kdcd `ftrg cf prghuncjcdcf kustd ;1 rfdjs, cftfr`jndr ds cj`fns˒gfs cg eurdkg cf `gcg quf g sfu kustg sfld `³ĴĴnj`g. nj`g. 96
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
[gbu½ k˒ dg< [fld 4, 4 , m f w ds cj`fns˒ cj`f ns˒ggfs fs c cgg eurdkg eur dkg fnt˒ f nt˒dg<
¹ ¹
X ( m, w) 0 4 m Y 0 ;11 ((4) 4) f g kustg kus tg sfr sfr³³d cf K (m, w) 0 4 1 w + ;1 ;1m m (5) fvjcfnkjdncg m f` (4 fvjcfnkjdncg (4)) f lgidn lgidncg cg f` f` (5) (m) 0 4 1 w +
:111 w
⇕ k(m)w 0 41 41w w5 + :111 :111 ⇕ 41 41w w5 ∕ k(m)w +:111 0 1
(;)
Qdrd quf d fqud½kk˒ dg d˒g (;) tfnmd sgbu½k˒ sgbu½k˒ ddgg g sfu cjskrj`jndn cjskrj`jndntf tf cfvf sfr `djgr gu jiudb d zfrg. zfrg. Jstg ³f< f< k(m)5
∕ ;81 ;81..111 ≦ 1
⇕ k(m) ≦ 811 pgjs kg`g w > 1 fnt˒ddg g k (m) > 1 td`e³ f`. f`. Dssj`, p kustg ` `³³Ĵnj`g ³f cf 811 rfdjs. [f [f k (m) 0 811 fnt˒dg dg cf (;) fskrfvf`gs 41 41w w5
∕ 811 811w w +:111 01 ⇕ w 0 ;1 ;1` `
G quf j` j`pbjkd pbjkd f` m 0 41 41` `. Dssj`, ds cj`fns˒gfs cg c g eurdkg eu rdkg ³f cf 4`
Ù ;1 ;1` ` Ù 41 41` `.
;8. Cgjs f`prfs³ f`prfs³ ddrjgs rjgs hgr hgr`d` `d` u`d sgkjfcdcf kulg kdpjtdb ³f cf 411 `jb rfdjs. V` cfbfs trdedbmd nd f`prfsd trˈ fs fs cjds cjds pgr sf`d sf`dnd nd f g gutrg cgjs. cgjs. Dp³ gs gs u` kfrtg tf`pg, tf`pg, vfncf vfncf` ` g nfi³gkjg nfi³gkjg f kdcd u` rfkfef rfkfef :: ` `jb jb rfdjs. rfdjs. Tud Tudbb hgj d kg kgntr ntrjeu jeuj½ j½ k˒ dg dg cf kdcd u` pdrd hgr`dr d sgkjfcdcf7 sgkjfcdcf7
98
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
[gbu½ k˒ dg< [upgncg ‒x‐ g vdbgr cg kdpjtdb jnvfstjcg pfbg s³gkjg quf trdedbmd ; cjds, fnt˒dg fnt˒dg pgr `fjg cf rfird cf trˈffss sj` sj`pbfs pbfs cfcuzj`gs quf g kdpjtdb kdpjtdb jnvfstjcg pfbg s³ggkjg kjg quf trdedbmd dpfnds 5 cjds ;x cfvf sfr cf . 5 ; cjds ‛ x 5 cjds ‛ 7 Kg`g g kdpjtdb f`prfidcg ³f jnvfrsd`fntf prgpgrkjgndb prgpgrkjgndb dgs cjds cf trdedbmg g fsquf`d dkj`d sghrf sghr f u`d ‒j ‒jnvfr nvfrs˒ s˒ddg‐ g‐ 5 cjds ‛ x ; cjds ‛ 7 ;x 70 5
⇕
Dpbjkdncg d rfird cd sgkjfcdcf: d sg`d cgs cgs kdpjtdjs, kdpjtdjs, cf d`egs d`egs gs s³gkjgs, s³gkjgs, cfvf sfr jiudb d 411 `jb. [fncg ds dssj`< sj`< ; x + x 0 411 411 5
Ù 41;
⇕ x 0 31 Ù 41; f pgrtdntg
; x 0 81 5
Ù 41;
Bgig g s³ggkjg kjg quf trdedbmd ; cjds jnvfstju U$ 31.111,11 (qudrfntd `jb) f g gutrg U$ 81.111,11.
;9. Nds ³diuds pdrdcds pdrdcds cf cf u` bdig, @drkfbg @drkfbg rf`d sfu edrkg edrkg d 45o` pgr mgrd. mgrd. Nu` kfrtg rjg, rjg, kg` g `fs`g edr edrkg kg f ds `fs`ds rf`dcds rf`dcds,, fbf pfrkgrrfu pfrkgrrfu 45o` d hdvgr cd kgrrfntf kgrrfntf f =o` kgntrd kgntrd d kgrrf kgrrfntf, ntf, nu` tf`p tf`pgg tgtdb tgtdb cf 5 mgrds. mgrds. Tudb frd d vfbgkjcdcf vfbgkjcdcf cg rjg, rjg, qudntg tf`pg tf`pg fbf bfvgu pdrd jr f qudntg tf`pg pdrd vgbtdr7 [gbu½ k˒ dg< [fld v d vfbgkjcdcf [fld vfbgkjcd cf cd kgrrfntf kgrrfntf,, fnt˒dg dg g tf`pg tf `pg ids idstg tg d hdvgr hdv gr cd kgrrfntf kgrrf ntf f³ cf< ∈t 0
∈s 45 45o` o` 0 v 45 45o`/m o`/m + v
Gncf 45 o`/m ³f d vfbgkjcdcf cg edrkg f` diud ³ pdrdcd ff v ³f d vfbgkj vf bgkjcdcf cdcf cds ddiuds ³iuds cg rjg41. L³d d vfbgkjcdcf kgntrd d kgrrfntf sfr³d< :
rfird rfir d cd sgkjfc sgkjfcdcf dcf
KdsgFrjcdn n˒dg kgnmf½ suij rg quf vfld vfld ds ngtd ngtds s cf du dubd bd cf=;44/@dtf`d @ @dtf`³ dtf`³ dtjkd Hjndnk Hjndnkfjrd fjrd cd prgh(d). @djd,kdp³ddijnd 6. Cjspgn³ĴĴvfb vfb f`< suijrg mttps 1 (dn xn + o ) 0 ∕∞, pg pgjs js d n > 1 ³f j` j`pd pdr. r.
x↕∞
x↕∕∞
=3
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
Bgig fxjstf x 4 f x 5 tdjs quf Q( x4 ) 2 1 f Q( x5 ) > 1. F dt dtrd rdv³ v³ fs fs cg tfgrf`d cg vdbg grr `³ fcjg fcjg fxjstf td`e³ f` f ` u` x ; f` Px4 , x5 _ td tdbb quf quf Q( Q(x x; ) 0 1, gu sfld, Q(x) tf` ˈf` pfbg `fngs u`d rrdjz djz rfdb.
9. @gs @gstrf trf quf sf n ³f u` n³ u`frg u`frg pdr, pdr , fnt˒dg g pgbjnˈg`jg g`jg p (x) 0 x n + xn∕4 + pgssujj rdjz rfdb. pgssu
¹ ¹ ¹ + x + 4 n˒dg
[gbu½ k˒ dg< Uffskrfvfncg Uffskrf vfncg g pgbjnˈg`jg cf tr³ds pdrd hrfntf ngtd-sf n gtd-sf quf sfus sfu s tfr`gs fst˒ dg f` prgirfss˒ prgirfss ˒dg ifg`³ fftrjkd trjkd kg` kg` rdz˒ dg jiudb d ‒x‐ ‒x ‐ f kuld sg`d sg `d ³f [n 0
xn 4 x 4
∕ ∕
[fncg dssj`, pgcf sf dfflr`dr dfflr`dr quf
xn 4 x 4 Gesfrvdncg d fqud½kk˒ dg d˒g dkj`d vf`gs quf g ³unjkg vdbgr quf pgcfrjd sf u`d rdjz rdj z ³f 4, fntrftdntg Q(4) rfsubtdrjd nu`d jncft jncftfr`jnd½k˒ fr`jnd½k˒ dg d g cg tjpg tjpg 1/1, 1/1, sfn sfncg cg dssj`, dssj`, Q(x Q(x)) n˒ dg pgssuj pgssuj nfn nfnmu` mu`dd rdjz rfdb.
∕ ∕
Q (x) 0
=. Sg`dnc Sg`dncgg x 1 0 ;, usf d rfbd½ rfbd½k˒ dg dg cf rfkgrrˈ fnkjd fnkjd 4
6
xn+4 0 5
xn + xn
Qdrd kdbkubdr 6 kkg` g` tr trˈˈffss dbidr dbidrjs`g js`g cfkj`djs cfkj`djs fxdtgs. fxdtgs. (Qgr fxf`pbg fxf`pbg 6 d rfspgstd rfsp gstd ³f 5.5;8. 5. 5;8.
=6
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
:. Vsdncg Vsdncg g `³ ftgcg cf Nfwtgn, fstdefbf½ kd u` prgkfssg jtfrdtjvg p pdrd drd kdbkubdr d ffl` cf getfr getfr u` vdbgr dprgxj` dprgxj`dcg dcg cf 5.
∜
∜ d f dpbjquf-g ;
;
[gbu½ k˒ dg< G `³ ftgcg ftgcg cf Nfwtgn ³f u` `³ fftgcg tgcg nu`³ frjkg frjkg pdrd cftfr`jndr ds rd³Ĵzfs Ĵzfs rfdjs rfdjs cf u` pgbjnˈ g`jg. Nfstf kdsg cg pgbjnˈg`jg p (x) 0 x; 5 (vfld K³dbkubg kg` k g` ifg`ftrjd dndb³Ĵtjkd cg Bgujs Bftmgbc, vgbu`f 4, p³dijnd 84). Kg`f½kdncg kdncg d pdrtjr cf x 1 0 4 getf getf`gs< `gs<
∕
x4 0 4.;;; x5 0 4.58;: x; 0 4.56::: Kg`g (4. (4 .56:::); 2 5 2 (4 (4..58); d dprgxj`d½kk˒dg ˒dg pdrd
∜ 5 kg`g kg `g pfcj pfcjcg cg ³f cf 4.56::. ;
[f dbiu`d dbiu`d pdssdif` pdssdif` fflkgu gesku rd gu sfr sf dbiu` dbiu hgj hgj kgrrf½ kg`ftjcg kg`f pgr hdvgr fskrfvd fskrfvd pdrd njeebfcjfigAi`djb.kg` pdrdgeskurd quf pgssd hfjtg`d frrg cfvjcd kgrr f½tjcg k˒dg. dg.pgr Qdrd fnkgntrdr fnkg ntrdr fssf f gutrgs fx fxfrk frk³³Ĵkjgs rfsgbvjcgs rf sgbvjcgs c cff `dtf`³ dtjkd dtjkd dkfssf< www.nu`efr.=:1`.kg`
=8
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
³ JKD ³ D @DSF @DSF@ @DS DSJK D CG FN[J FN[JNG NG @ FCJG D `dtf`³dtjkd cg F nsjng `³fcjg fcjg (vgbu`f 4) Fbgn Bdifs Bj Bj`d `d Qdubg Kfzdr Qjntg Kdrvdbmg. Fcudrcg Ydinfr. Duiustg K³ffsdr sdr @gridcg. Ufsgbvjcg Ufsgb vjcg pgr< Cjfig Gbjvfj Gbjvfjrd rd
=
Hun Hun½kgfs gfs Fxpgnfn ˒ Fxpgnfnkjd kjdss f Bgidr Bgidr³ ³Ĵt`jkd Ĵt`jkdss
4. Kg` u` b³dpjs b³dpjs kuld pgntd tf` 1,15 `` cf fspfssurd, fspfssurd, cfsfld-sf trd½ kdr g ir³dfflkg cd hun½k˒ dg dg h (x) 0 5x . Dtf³ quf cjstˈ ddnkjd nkjd ³d fsqufrcd cg fjxg vfrtjkdb pgcf-sf jr sf` quf g ir³ dfflkg dtjnld g fjxg mgrjzgntdb7 [gbu½ k˒ dg< Kmd`dncg cf cf r g rdjg cd pgntd cg b³dpjs, b³dpjs, fnt˒ ddgg d bj bjnmd nmd quf fseg½ f seg½kd kd g ir ir³³dfflkg tgkdr³d g fjxg G] ng pgntg ( x, 5x )kg`5 x 2 r . Ufsgbvfncg d jnfqud½kk˒ dg d˒g hgr`dcd getf`gs d sgbu½k˒dg. dg. 5x 2 r kg` kg` ( r > 1) x
bgi(5 (5 ) 2 bgi bgi (r ) ⇕ bgi bgi(5) (5) 2 bgi bgi (r ) ⇕ x ¹ bgi bgi bgi((r) ⇕ x 2 bgi bgi(5) (5) kg`g bgi (5) kg`g
bgi( bgi (r ) ≍ 1.;14 fn fnt˒ t˒dg dg x 2 . 1.;14
Dssj`, g ir³dfflkg tgkdr³d g fjxg mgrjzgntdb ng pgntg gncf d deskjsd ³f j`fcjdtd`fntf `fngs quf bgi bgi((r ) . 1.;14
5. Cfˈ fxf`pbg cf u`d hun½kk˒dg ˒dg krfskfntf krfskfntf h < U U + tdb quf quf,, pdr pdrdd tgcg tgcg x U , d ssfq fquˈ uˈ fnkjd fnkjd h (x + 4), 4), h (x + 5),...,h 5),...,h (x + n),... f³ u`d prgirfss˒ dg dg ifg`³ ftrjkd ftrjkd `ds `ds h n˒ ddgg ³f c cgg ttjp jpgg h (x) 0 e dx .
↕
[gbu½ k˒ dg< Sg`dncg h (x) 0 xe xe (hun½kk˒dg ˒dg bjnfdr) bjnfdr),, fnt˒ ddgg
=9
∍
¹
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
h (1 +4), +4), h (1 + 5) 5),,
+4), h (4 + 5) 5),, h (4 +4),
¹¹¹
¹ ¹ ¹ , h (1 + n), ¹ ¹ ¹ 0 (e,e, ¹ ¹ ¹
¹ ¹ ¹ , h (4 + n), ¹ ¹ ¹ 0 (e,e, .. .
h (n + 4) 4),, h (n + 5) 5),,
¹ ¹ ¹ , h (n + n), ¹ ¹ ¹ 0 ( e,e, ¹ ¹ ¹
.. . Tuf s˒dg prgir p rgirfss˒ fss˒gfs gfs ifg`³fftrjkds trjkds kgnstdn kgnstdntfs tfs (Q.I. cf rdz˒ dg ji jiudb udb d 4) 4).. Kg`g Kg`g h (x) n˒dg dg ³f cg tjpg tjpg e dx fnt˒ddgg ³f u`d rfspgs rfspgstd td dkfjt³ dk fjt³ dvfb dvfb dg prgebf`d prgebf`d..
¹
;. Cd Cdcg cgss d > 1 f e > 1, d`egs d`egs cjhfr cjhfrfntf fntfss cf 4, qudb d prgprjfcd prgprjfcdcf cf cd hun½ hun½ k˒ ddgg fxpg fxpgnfnkj nfnkjdb db quf dssfiurd d fxjstˈfnkjd fnkjd cf m 0 00 0 1 tdb tdb quf quf e x 0 dx/m pdrd tgcg x U 7 @gstrf kg`g getfr g ir³dfflkg x cf cf y 0 e x d pdrtjr pdrtj r cg ir³dfflkg cf y 0 dx . Vsf ssud ud kg kgnkbus˒ nkbus˒dg dg pdrd trd½kdr g ir³dfflkg cf y 0 4/ 3 x d pdrtjr pdrtj r cg ir³dfflkg cf y 0 5 .
∍
∜ ;
[gbu½ k k˒ ˒ d dg g cd prj`fjrd pdrtf< U
+
↕ U
x
D prgprjfcdcf f`ntg, qufst˒dg qufst˒ dg cjz qu hun½ k˒ dg dgtdb fxpgnfnkjdb fxpgnfnkjdb cffflnjcd jcd. pgr pCgrdĴ³ h e x(x0 )0 e , ³f sgerfl sgerflftjvd ftjvd.. Qgrtdntg, Qgrtd cdcg cdcg d >quf 1,f d mhun½k˒ b quf quf em 0 dh , 1 qudjsqufr, `gstrf quf fxjstf d > 1 tdb tdb quf d x 0 y1 .
1
[gbu½ k˒ dg< 4 x Sg`dncg d 0 y1 1 fnt˒ ddg g dx 0 1
x1
4 x y 1
0 y1 , kg`g rfqufrjcg. rfqufrjcg.
1
dg-nubgs f cf `fs`g sjndb, prgvf quf fxjstf` d > 1 f e tdjs quf 8. Cdc Cdcgs gs x 1 0 x 4 f y1, y4 n˒dg-nubgs e dx 0 y1 f e dx 0 y 4.
¹
1
¹
4
[gbu½ k˒ dg< Edstd tg`dr tg`dr d 0
y1 y4
4 x1 ∕x4
f e 0
y1 . dx 1
9. D iirdnc rdncfzd fzd y sf fxprj`f kg`g y 0 e dt f` hun½k˒dg dg cg tf`pg t. [f [fld ld` ` c g dkr³ ffskj`g skj`g quf
¹
sf cfvf cdr d t pdrd quf y cgerf f ` (`fjd-vjcd t/c cf y ) g dkr cf dkr³ fskj`g f³skj`g cf t nfkfss³drjg drjg pdrd quf y sf rfcuzd ³d `ftdcf. @gstrf quf ` 0 c f y 0 e 5 , bg bgig ig c 0 bgid 5 0 4 /bgi5 d.
∕
¹
:1
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
[gbu½ k˒ dg< Xd`gs kg`f½ kdr prgvdncg quf sf sf y (t + c) 0 5w f y (t) 0 w , kg kg` ` y (t)edt , fnt˒dg dg c 0 Qrgvd. y(t + c) 0 5w edt+c 0 5w
⇕ edt+c 0 ∜ 3 w ⇕ Kg`g ed t 0 w fnt˒ Kg`g dg< dg<
∜ 3 w ⇕ dc 0 ∜ 3
wdc 0
4 ⇕ c 0 bgi bgi((d) 0 bgi(3) bgi(3) 5 bgi(3) (3) ⇕ c 0 5 bgi ¹ bgi( bgi(d) K.T. C. Qrgvdcd d dfflr`d½kk˒ dg d˒g pdrtjrf`gs digrd pdrd d rfsgbu½k˒dg dg cg prgebf`d prgpgstg. [fld y (t) 0 w kgnsjcfrdncg g fnunkjdcg tf`gs< [fld y(t + c) 0 edt+c 0 5w (4) 4 y (t + `) 0 edt+` 0 edt+` 0 w (5) 5 Kg`pdrdncg Kg`pd rdncg (4) (4) kg` (5)
¹
y(t + c) 0 3 y(t + `)
⇕ edt+c 0 3 ¹ edt+` ⇕ edtdc 0 3 ¹ edt d` c
⇕d
`
0 3d c
⇕ dd` 0 3 :4
bgi(3) bgi(3) . 5 bgi( bgi(d)
¹
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
⇕ dc
`
∕
03
Dpbjkdncg bgidrjt`g bgi dc∕` 0 bgi(3) bgi (3)
bgi(d) 0 bgi(3) bgi (3) ⇕ (c ∕ `)bgi( bgi bgi(3) (3) ⇕ c ∕ ` 0 bgi( bgi(d)
V`d vfz quf prgvd`gs quf c 0
bgi(3) bgi(3) fnt˒ ddgg 5 bgi( bgi(d)
¹
c
bgi(3) bgi(3) ∕ ` 0 bgi bgi((d)
bgi bgi(3) (3) ⇕ ` 0 c ∕ bgi( bgi(d) bgi(3) bgi(3) bgi (3) ⇕ ` 0 5 bgi(3) ∕ bgi( ¹ bgi( bgi (d) bgi (d) bgi (3) 0 ∕c ⇕ ` 0 ∕ 5 bgi(3) bgi( bgi (d) ¹ ⇕ ` 0 ∕c Kg` jssg fflkd prgvdcg quf ` 0 ∕c, f `ucdncg `ucdncg d edsf edsf cf c cf 41 pdrd 5 kgnkbu³Ĵ-sf Ĵ-sf td`e³ f` f`
quf<
c 0
bgi(3) bgi(3) 4 0 5 bgi( bgi (d) bgi5 (d)
¹
K.T. C.
=. Ges Gesfrv frvd½ d½k˒ kg˒gfs fs hfjtds curdnt curdntff bgnig tf`pg `gstrd` quf, dp³gs pfr³Ĵgcg Ĵgcg cf `fs`d curd½k˒ kdg, dg ˒ ,d pgp pgpub ubd½ d½k˒ k˒ddgg cd ttfrrd frrd fflkd `ubtjpbjkdcd `ubtjpbjkdcd pfbg `fs`g `fs`g hdtgr. [defncg quf fssd pgpubd½ k˒ dg dg frd cf 5,8= ejbm˒ gfs gfs f` ;,9= ej ejbm˒ bm˒D gfs f` 4:95 4:95, pfcf-sf< sf< (d) G tf`pg tf`p nfkfss³drjg ³drjg qufddpgpubd pg pubd½ dg ddg cd tfrrd cge4:68 cgerf rf cffvdbgr? (e) pgpubd½k˒ dg d,gpfcffstj`dcd fstj`dcd pdrd pdrd g dngg5145? 5nfkfss 145? (k) F` pdrd quf dng ppgpubd½ gpubd½ ½ k˒ k˒ dgg cd tfrrd frd cf 4 ejbm˒dg.
:5
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
[gbu½ k˒ k˒dg cf d< Dp³ gs gs u` tf`pg ‒t‐ d pgpubd½ pgpubd½k˒ k˒ dg dg ³f u`d u` d fx fxprf prfss˒ ss˒ dg dg cg tjpg y (t) 0 e fdt gncf ‒e‐ ³f d pgpub pg pubd½ d½ k˒ kdg d˒g jnjkjdb (5.8= `jbm˒gfs). [fncg dssj`
¹
y(t) 0 ;.9= d(4:95∕4:68)
0 ;.9= ⇕ 5.8= ¹ f ⇕ d ≍ 1.1546
⇕ 5.8= ¹ fdt 0 5 .8= ¹ f1.1546t Tudncg d pgpubd pgpubd½½k˒dg dg cd tfrrd cgerdr tfrf`gs< y(t) 0 5e
⇕ eeff1.1546t 0 5 e ⇕ f1.1546t 0 5 ⇕ t ≍ 5; 5;,, 53 [gbu½ k˒ kd ˒ dg< g< 5;,53 dngs.
[gbu½ k˒ k˒dg cf e< F` 5145 tfrf`gs tfrf`gs t 0 68 ((5145 5145
4:688 0 45) 45),, dssj` dssj` ∕ 4:6
5.8= 8=ff1.1546¹45 0 = .:ej
[gbu½ k˒ kd ˒ dg< g< D pgpub p gpubd½ d½k˒dg dg cd tfrrd ssfr³ fr³d cf =.: ejbm˒gfs.
[gbu½ k˒ k˒dg cf k< 5.8= 8=ff1.1546t 0 4
⇕ 1.1546 1546tt ¹ bn bn((f) 0 bn bn(4 (4//5.8=) t
≍ ∕36 36..=9
∕
Hjndb`fntf Hjndb` fntf,, hdzfncg hdzfncg 4:68 4:68 + ( 36 36..=9) kmfid`gs d sgbu½ sgbu½k˒ k˒ dg. dg.
∕
4:68 4:68 + ( 36. 36.=9) =9) 0 4:68 4:68 0 4:41 4:41..4;
∕ 36 36..=9
:;
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
Dssj`. cfskgerf-sf qu quff g gkgrrjc gkgrrjcgg hgj ng dng cf 4:41.
:. Cˈf u` driu`fntg jncfpfncfn jncfpfncfntf tf cf gesfrvd½ k˒ gfs gfs pdrd lustjfflkdr lustjfflkdr quf, f` kgncj½k˒ kgncj½k˒ gfs gfs ngr`djs, d pgpub p gpubd½ d½k˒dg dg cd tfrrd dp³gs g cfkursg cf kursg cf pfr³Ĵgcgs Ĵgcgs jiudjs fflkd `ubtjpbjkdcd `ubtjpb jkdcd pfbd `fs`d kgnstdntf. [gbu½ k˒ dg< 777
41. Ufsgbvd gs fxfrk³Ĵkjgs Ĵkjgs cg bjvrg ‒Bgidrjt`gs‐, ‒Bgidrjt`gs‐, fspfkjdb`fntf gs cg ³u ubtj`g btj`g kdp³ Ĵtubg. Ĵtubg. [gbu½ k˒ dg< G prghfssgr prghfss gr quf kgerdr cg dbung fssd qufst˒ dg ³f t˒ dg sf` ng½k˒dg dg quf `frfkf u`d surrd!
[f dbiu`d dbiu`d pdssdif` pdssdif` fflkgu gesku rd gu sfr sf dbiu` dbiu hgj hgj kgrrf½ kg`ftjcg kg`f pgr hdvgr fskrfvd fskrfvd pdrd njeebfcjfigAi`djb.kg` pdrdgeskurd quf pgssd hfjtg`d frrg cfvjcd kgrr f½tjcg k˒dg. dg.pgr Qdrd fnkgntrdr fnkg ntrdr fssf f gutrgs fx fxfrk frk³³Ĵkjgs rfsgbvjcgs rf sgbvjcgs c cff `dtf`³ dtjkd dtjkd dkfssf< www.nu`efr.=:1`.kg`
:3
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
³ JKD ³ D @DSF @DSF@ @DS DSJK D CG FN[J FN[JNG NG @ FCJG D `dtf`³dtjkd cg F nsjng `³fcjg fcjg (vgbu`f 4) Fbgn Bdifs Bj Bj`d `d Qdubg Kfzdr Qjntg Kdrvdbmg. Fcudrcg Ydinfr. Duiustg K³ffsdr sdr @gridcg. Ufsgbvjcg Ufsgb vjcg pgr< Cjfig Gbjvfj Gbjvfjrd rd
:
Hun Hun½kgfs gfs Srjign ˒ rjigng`³ g`³ ftrjkds ftrjkds
4. Cftfr`jnf gs vdbgrfs `³dxj`g f `³Ĵnj`g cd hun½kk˒ ddg ˒g h < ;/(5 + sfn sfn((x)).
↕ U cffflnjcd pgr h (x)
U
0
[gbu½ k˒ dg< Kg`g 4 sfn sfn((x) 4 fnt˒dg h(x) ³f `³ dxj`d dxj`d qudncg sfn sfn((x) 0 4 (gu (gu sfl sfld, d, qud qudncg ncg g cfng`jndcgrr cf h(x) ³f `³Ĵnj`g) cfng`jndcg Ĵnj`g) f `³Ĵnj`d Ĵnj`d qudncg sfn sfn((x) 0 4 (qudn (qudncg cg g cfng`jndcgr cfng`jndcgr cf h(x) ³f `³ dxj`g). dxj`g).
∕ ≣
X`dx 0
≣
∕
; 0; 5 + ( 4)
∕
X`jn 0 ; 0 4 5 +(4)
5. Gesfr Gesfrvdncg vdncg d ffli ffliurd urd d sfiujr, sfiujr, gncf DE 0 x, `gst `gstrf rf quf quf t 0 sfn sfn((x)/kgs /kgs((x). t 4 E x
[gbu½ k˒ dg< Srdkf u`d rftd kg`g d rftd pgntjbmdcd nd ffliurd d sfiujr. :6
G D
D @dtf`³dtjkd cg Fnsjng @³ffcjg cjg
Cjfig Gbjvfjrd - Xjt³ grjd cd Kgnqujstd Kgnquj std / ED
t E x G
K
D
∲ ∈ SGD ddssj`< ssj`<
Gesfrvf quf ∈ GEK
KE GK 0 DS GD
sfn((x) kgs( kgs(x) sfn sfn((x) ⇕ sfn 0 ⇕ t 0 t t kgs kgs((x)
¹
;. [f sfn sfn((x) + kgs( kgs(x) 0 4 .5, qudb ³f g vdbgr cg prgcutg sfn sfn((x) kgs kgs((x)7 [gbu½ k˒ dg< sf sfn( n(x) x) + kgs( kgs(x) x) 0 4. 4.55
⇕ (sfn(x)+kgs(x))5 0 4.4.33 33 4+5sfn(x) n(x)kgs(x kgs(x)) 0 4.33 ⇕ 4+5sf 5sfn(x)kgs(x)0 gs(x)0 1.33 ⇕ 5sfn(x)k 1.33 sfn(x)kgs(x) (x) 0 ⇕ sfn(x)kgs 5 ⇕ sfn sfn(x)k (x)kgs(x)0 gs(x)0 1.55 3) Cffflnj`gs Cffflnj`gs dquj ds hun½k˒ hun½k˒ ggfs< fs< sfkdntf
View more...
Comments