OBSERVATION AND CALCULATIONS: FOR WATER AT 30° C AND 1 ATM: DENSITY=996kg/m KINEMATIC VISCOSITY=0.802*10^-6 VISCOSITY=0.802*10^-6 DIAMETER 1=0.0183 m DIAMETER 2=0.0240m Re=ρDV/ʋ Re=ρDV/ʋ
For enlargement and contraction: For enlargement and contraction change in area r esults in an additional pressure head which has been added to head loss readings for enlargement and contraction in the following tables: h’=(V22/2g)-(V12/2g) H1’=(0.380043379 ’=(0.3800433792/2*9.81)-(0.2209595962/2*9.81)= 0.00487308 H2’=(0.76008675 ’=(0.760086752/2*9.81)-( 0.4419191922/2*9.81)= 0.00019492 H3’=(0.95010844 ’=(0.950108442/2*9.81)-( 0.552398992/2*9.81)= 0.000304
Fitting
Manometer 1
Manometer 2
Head Loss h
Volume
Time
h₁h₁-h₂
Total head loss Δh h+H1’
h₁
h₂
V
t
m
m
m
m
m³*E-3
sec
MITRE
2.42
2.18
0.24
0.24
1
10
ELBOW
2.8
2.63
0.17
0.17
1
10
SHORT BEND
3
2.88
0.12
0.12
1
10
ENLARGEMENT
3.06
3.18
-0.12
-0.1151269
1
10
CONTRACTION
3.1
3.02
0.08
0.08487308
1
10 Flow
GAUGE VALUE READING= 0 m Reynold’s No.
Flow Rate
Area
Velocity
Dynamic Head
K
Qt
A=PI/4*d²
V
V²/2g
Δh/(V²/2g)
m³/s
m²
m/s
m
440220.465
0.0001
0.0002631
0.3800433
0.019370203
12.39016
Turbulent
440220.465
0.0001
0.0002631
0.3800433
0.019370203
8.776366
Turbulent
440220.465
0.0001
0.0002631
0.3800433
0.019370203
6.195082
Turbulent
335668.104
0.0001
0.0004525
0.2209595
0.011261957
-10.6552
Turbulent
440220.465
0.0001
0.0002631
0.3800433
0.019370203
4.130054
Turbulent
Fitting
Manometer 1
Manometer 2
Total head loss
Head Loss h
Volume
Time
t sec 10
Δh
MITRE
h₁ m 1.99
h₂ m 1.46
h₁-h₂ m 0.53
m 0.53
V m³ *10^-3 2
ELBOW
2.75
2.38
0.37
0.37
2
10
SHORT BEND ENLARGEMENT
3.15 3.25
2.94 3.44
0.21 -0.19
0.21 -0.18980507
2 2
10 10
CONTRACTION
3.41
3.18
0.23
0.23019492
2
10
K
Flow
Reynold’s No.
Flow Rate
GAUGE VALUE READING= 0 m Dynamic Area Velocity Head
Q t m³
A=PI/4*d² m²
V m/s
V²/2g m
Δh/(V²/2g)
17274251.03 17274251.03 17274251.03
0.0002 0.0002 0.0002
0.000263128 0.000263128 0.000263128
0.760086758 0.760086758 0.760086758
0.038740406 0.038740406 0.038740406
13.68081 9.550752 5.420697
Turbulent Turbulent Turbulent
13171616.41 17274251.03
0.0002 0.0002
0.000452571 0.000263128
0.441919192 0.76008675
0.022523914 0.038740406
-8.43548 5.936954
Turbulent Turbulent
Fitting
Manometer 1
Manometer 2
Head Loss h
Total head loss
Volume
Time
V
t
Δh h₁
h₂
h₁-h₂
m
m
m
m
m³*10^-3
sec
MITRE
2.41
1.78
0.63
0.63
2.5
10
ELBOW
3.30
2.86
0.44
0.44
2.5
10
SHORT BEND
3.75
3.50
0.25
0.25
2.5
10
ENLARGEMENT
3.95
4.10
-0.15
-0.149695
2.5
10
CONTRACTION
4.05
3.76
0.29
0.290304
2.5
10 Flow
GAUGE VALVE READING=0 m Reynold’s No
Flow Rate
Area
Velocity
Dynamic Head
K
Q t=V/t
A=PI/4*d²
V=Q/A
V²/2g
Δh/(V²/2g)
m/s
m²
m/s
m
21592813.79
0.00025
0.000263128
0.950108448
0.048425507
13.00967
Turbulent
21592813.79
0.00025
0.000263128
0.950108448
0.048425507
9.08612
Turbulent
21592813.79
0.00025
0.000263128
0.950108448
0.048425507
5.16256
Turbulent
16464520.52
0.00025
0.000452571
0.55239899
0.028154892
-5.32767
Turbulent
21592813.79
0.00025
0.000263128
0.950108448
0.048425507
5.98857
Turbulent
EXERCISE B: GATE VALVE EXPERIMENT Rotations of gate valve
Pressure 1
Pressure 2
P₁
P₂
Bar
Bar
1
0.7
2 3 Flow Rate Qt
Δh of water
Volume
Time
ΔP*10.2
V
t
Bar
m
m³
sec
1.1
0.4
4.08
0.004
10
1.1
1.62
0.52
5.304
0.003
10
1.62
2.25
0.63
6.426
0.002
10
Reynold’s number Re=ρDV/ʋ
Flow
K
34548502.07 25911376.55
Turbulent
34.6395978
Turbulent Turbulent
61.5815073 138.558391
Area
ΔP
A=PI/4*d²
Velocity V=Q T/A V
Dynamic Head V²/2g
m/s
m²
m/s
m
0.0004
0.00026313
1.520173517
0.117784277
0.0003 0.0002
0.00026313 0.00026313
1.140130138 0.760086758
0.066253656 0.029446069
17274251.03
Δh/(V²/2g)
1. DESCRIBE THE APPARATUS USED IN THIS EXPERIMENT. ANS. Energy Losses in Bends and Fittings Apparatus consists of:
Sudden Enlargement Sudden Contraction
Long Bend
Short Bend
Elbow Bend
Mitre Bend
Flow rate through the circuit is controlled by a flow control valve. Pressure tappings in the circuit are connected to a twelve bank manometer, which incorporates an air inlet/outlet valve in the top manifold. An air bleed screw facilitates connection to a hand pump. This enables the levels in the manometer bank to be adjusted to a convenient level to suit the system static pressure. A clamp which closes off the tappings to the mitre bend is introduced when experiments on the valve fitting are required. A differential pressure gauge gives a direct reading of losses through the gate valve. 2. WHAT ARE THE PRACTICAL USES OF STUDYING ENERGY LOSSES IN BEND? ANS. For any process, a certain range of flow rates is permitted for maximum efficiency, if the flow rate drops below that due to energy losses it disrupts the entire process and leads to loss o f expenditure and inefficiency. Hence the study of losses occurring in a particular fitting is necessary to obtain required efficiency.
3. FOR EXERCISE A, PLOT GRAPHS OF HEAD LOSS AGAINST DYNAMIC HEAD, AND K AGAINST VOLUME FLOW RATE(Q T).
HEAD LOSS AGAINST DYNAMIC HEAD: TOTAL HEAD LOSS
DYANAMIC HEAD V2/2g
Δh
m
m
MITRE
ELBOW
SHORT BEND
CONTRACTION
0.019370203 0.038740406 0.048425507
0.24 0.53 0.63
0.17 0.37 0.44
0.12 0.21 0.25
0.084873 0.230194 0.290304
DYANAMIC HEAD V2/2g
TOTAL HEAD LOSS Δh
m
m ENLARGEMENT
0.011261957
-0.115126
0.022523914
-0.189805
0.028154892
-0.149695
HEAD LOSS AGAINST DYNAMIC HEAD 0.7 0.6 0.5 0.4 MITRE S 0.3 S O L D 0.2 A E H
ELBOW SHORT BEND CONTRACTION
0.1
ENLARGEMENT 0 0
0.01
0.02
0.03
-0.1 -0.2 -0.3
DYNAMIC HEAD
0.04
0.05
0.06
LOSS COEFFICIENT AGAINST VOLUME FLOW RATE FLOW RATE 3 m /sec
0.0001 0.0002 0.00025
LOSS COEFFICIENT K MITRE
ELBOW
SHORT BEND
ENLARGEMENT
12.3901645 13.6808067 13.0096728
8.77636655 9.55075183 9.08612066
6.19508227 5.42069699 5.16256856
-10.655342 -8.4354789 -5.3276709
CONTRACTION 4.13005485 5.93695384 5.98857953
LOSS COEFFICIENT AGAINST VOLUME FLOW RATE 15
10
5 T N E I C I F F E 0 O C 0 S S O L
MITRE ELBOW 0.00005
0.0001
0.00015
0.0002
0.0003
SHORT BEND ENLARGMENT CONTRACTION
-5
-10
-15
0.00025
VOLUME FLOW RATE
4. FOR EXERCISE B, PLOT GRAPHS OF EQUIVALENT HEAD LOSS AGAINST DYNAMIC HEAD, AND K AGAINST Q T.
EQUIVALENT HEAD LOSS AGAINST DYNAMIC HEAD Head loss Δh
Dynamic head 2 v /2g
4.08
0.117784277
5.304
0.066253656
6.426
0.029446069
EQUIVALENT HEAD LOSS AGAINST DYNAMIC HEAD 0.14
0.12
0.1 D A0.08 E H C I M A N0.06 Y D
0.04
0.02
0 3
3.5
4
4.5
5
5.5
EQUIVALENT HEAD LOSS
6
6.5
7
LOSS CO-EFFICIENT “K” AGAINST Q T: Flow rate Q t 3 m /s
5. COMMENT ON ANY RELATIONSHIP NOTICED. WHAT IS THE DEPENDENCE OF HEAD LOSSES ACROSS PIPE FITTINGS UPON VELOCITY? ANS. According to the observation table and gr aphs obtained we can establish that value of K decreases with increase in flow rate for some fittings. Besides this, the head loss in a particular fitting increases with increase in velocity. 6. EXAMINING THE REYNOLD’S NUMBER OBTAINED, ARE THE FLOWS LAMINAR OR TURBULENT? ANS. The Reynolds’ numbers are very high indicating TURBULENT FLOW. 7. IS IT JUSTIFIABLE TO TREAT THE LOSS CO-EFFICIENT AS CONSTANT FOR A GIVEN FITTING? ANS. Yes. It’s justifiable to assume loss-coefficient constant for a given fitting as it varies with velocity, flow rate and head losses. 8. IN EXERCISE B, HOW DOES THE LOSS CO-EFFICIENT FOR A GATE VALVE VARY WITH THE EXTENT OF OPENING THE VALVE? ANS. The loss coefficient for gate valve increases with decrease in the extent of opening of the valve according to our observation this is also in accordance with the formula for loss coefficient as the flow rate is decreased (the valve is closed) the velocity decrease thus the loss coefficient increases.
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.