Cairo Oil Refining Co.
א אول
Subsidery of Egyotian Gen. Petroleum Corp.
د
א א א ول
P.O. Box : Heliopolis 11757 Cairo A.R.E.
אد د١١٧٥٧ وو س:..ص
Tel. : 202 - 2529821 (5 Lines)
(طوط# ٥) ٢٠٢ - ٢٥٢٩٨٢١:ون%
Fax : 202 - 2529826
٢٠٢ - ٢٥٢٩٨٢٦:& س
[email protected]:'( دא و
E-mail :
[email protected]
Shell & Tube Heat Exchanger
DESIGN CALCULATIONS Code :
ASME Section VIII, Division 1, Edition 2001, Addenda 2002 & TEMA Class R, 7th. Edition 1988. Code Stamp : U Client : Project : Location : Item No. :
Amerya Petroleum Refining Co. (APRC) Design & Fabrication of Residue Cooler Alexandria, EGYPT E-323 A E-323 B E-514 C 7443-33-U-2009, 7443-33-U-2010 Serial No. : 7443-33-U-2008, Title : Heat Exchanger Service : Residue Cooler Type : AES Job No. : 7443-33 Dwg. No. : 7443-33-1A Rev. : 1
Cooler capacity Weight of exchanger, empty (erection), W Weight of contents, Wc Total weight of vessel and contents, Wt MAWP :
Shell Side Tube Side Tube Side Design Temp. : Shell Side Tube Side MDMT : Shell Side Tube Side Tube Side
1.910848 4152.911 764 4917 284.776 71.7082 302 140 29 29
PSIG PSIG o F o F o F o F
No. of saddles No. of anchor bolts per saddle Anchor bolts size
E-514 C & 7443-33-U-2011
M3 Kg Kg Kg
20.04826 Kg/CM2G 5.04826 Kg/CM2G o C 150 o C 60 o C -2 o C -2 2 4 28 MM
Saddles Bolts Dia.
By
Eng. Abdel Halim Galala Design General Manager
ط عא מ+
Design Sector Page : 1 of 136
Sheet 1 of 2
Date : 11.4.2004
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Page : 2 of 136 Sheet : 2 of 2 Rev. : 1
Project Job No.
: Design & Fabrication of Heat Exchanger for APRC Refinery : 7443-33
Date : 11.4.2004 Location : Alex.
Dwg. No.
: 7443-33-1A, Rev. 1
Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R
Items : E-323A/B & E-514C/D
A. Title (cont.)
DESIGN CALCULATIONS Code :
ASME Section VIII, Division 1, Edition 2001, Addenda 2002 & TEMA Class R, 7th. Edition 1988. Client : Amerya Petroleum Refining Co. Project : Design & Fabrication of Residue Cooler Location : Alexandria, EGYPT Item No. : E-323 A E-323 B E-514 C Serial No. : 7443-33-U-2008, 7443-33-U-2009, 7443-33-U-2010 Title : Heat Exchanger Service : Residue Cooler Type : AES Job No. : 7443-33 Dwg. No. : 7443-33-1A Rev. : 1
E-514 C & 7443-33-U-2011
Notes. 1. The calculated thicknesses are the min. required, where the actual thicknesses shown on drawings shall be equal or may be greater. 2. The greater thicknesses at drawings are taken into consideration while calaculating the MDMT and additional stresses due to incresed weight of vessel.
3 2 1 0
Rev.
Issued for approval
11.4.2004 A. Halim Issued for comments 4.7.2003 Designed by Description Date
11.4.2004 A.H. Galala 4.7.2003 Reviewed by Date
Revision Table Dwg. No. :
7443-33-1A
Rev. : 1
11.4.2004 A.H.G 4.7.2003 Approved by Date
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
B. Copyright.
Copyright 2002 by CORC A.H.Galala, the Design Manager, on behalf of Cairo Oil Refining Co. (CORC) All rights reserved.
1st. date of issue - July, 4th., 2003
No part of this document may be reproduced in any form, in an electronic retrieveal system or any otherwise without the prior written permission of the CORC/Designer.
Page : 3 of 136 Sheet : 1 of 1 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
C. Revision Description.
This page is a record of all revisions of the document, and the following revision(s) has (have) been made to this document.
Rev. 0 1 2
Date 4.7.2003 11.4.2004 16.1.2005
Sheet No. Revision Description all Issued for comments all Issued for approval 7 UG-22 : Abnormal pressures
Page : 4 of 136 Sheet : 1 of 1 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 5 of 136 Sheet : 1 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
D. Table of Contents.
Description
Page
A. Title. B. Copyright. C. Revisions Description. D. Table of Contents. E. Applicable Loading Considered in Design. F. Impact Test Requirements. G. Standarad ASME B16.5 Flange Rating Class. H. Cylindrical Main Shell Thickness 1. Under Internal Pressureal (Pipe 20" NPS) 2. Check of Main Shell Thickness for External Pressure (FV). I. Cylindrical Stationary Head-Channel. 1. Under Internal Pressure 2. Check of Channel Thickness for External Pressure (Full Vacuum) J. Main Ellipsoidal Head Thickness Under Internal Pressure.
Page Page Page Page Page Page Page
: 1 of 136 : 3 of 136 : 4 of 136 : 5 of 136 : 7 of 136 : 8 of 136 : 8 of 136
Page : 9 of 136 Page : 10 of 136 Page : 12 of 136 Page : 13 of 136 Page : 14 of 136
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded)
1. For Shell-Side : 2. For Tube-Side : 3. For Tubes : (Item 38)
Page : 15 of 136 Page : 15 of 136 Page : 17 of 136
L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum)
1. Ellipsoidal Head (Stationary Head-Bonnet NA) 2. Channel 3. Tubes M. Nozzle Neck Thicknesses & Nozzle Openings Compensation : S1 & S2 6" NPS M1 300# WNRF Sch. 80 T1 & T2 6" NPS M2 150# WNRF Sch. 80 N. Main Shell Flange (item no. 4). E514FLG N1. Main Shell Flanges (item no. 3). E514FLG N2. Main Shell Flanges (item no. 12). E514FLG O. Main Channel Flanges (items no. 18). E514FLG P. Channel Cover (blind flange) (item no. 22). E514FLG Q. Stationary Tubesheet (item no. 36). TUBSH514 Q1. Floating Tubesheet (item no. 37). TUBSH514 Q2. TEMA Pass Partition Plate Thickness Calculation (item nTUBSH514 Q3. Floating Head, Flange & Backing Ring (items no. 29, 30 E514FLG File
Page : 18 of 136 Page : 19 of 136 Page : 20 of 136 10.9728 10.9728 5 6 7 9 14 4 6 7 15 Sheet
Page Page Page Page Page Page Page Page Page Page Page
: 21 of 136 : 26 of 136 : 36 of 136 : 46 of 136 : 56 of 136 : 66 of 136 : 76 of 136 : 82 of 136 : 84 of 136 : 86 of 136 : 87 of 136
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 6 of 136 Sheet : 2 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
D. Table of Contents (cont.) Description
Page
R. Design of Saddle Supports. S. Lowest MDMT Without Impact Test. T. Radiography. U. Hydrostatic Test Pressure. [UG-99(b)] [ Refer to V. Post Weld Heat Treatment (PWHT). W. Calculation of Exchanger Weight. X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method. Y. Check for the Anchor Bolts Due to Seismic and Wind Loading. Check for the Existing Anchor Bolts Due to Seismic and Wind Loading. Z. Check for Bundle Pulling. Z1. Lifting Lugs Thickness Calculations. Z2. References. Z3. Notes.
Page Page Page Page Page Page Page Page Page Page Page Page Page
: 99 of 136 : 106 of 136 : 116 of 136 : 116 of 136 : 116 of 136 : 117 of 136 : 121 of 136 : 129 of 136 : 130 of 136 : 131 of 136 : 133 of 136 : 135 of 136 : 136 of 136
Figures Index. Figure (1) Figure (2) Figure (3) Figure (4) Figure (5) Figure (6) Figure (7) Figure (8) Figure (9) Figure (10) Figure (11) Figure (12) Figure (13) Figure (14) Figure (15) Figure (16) Figure (17) Figure (18) Figure (19) Figure (20) Figure (21) Figure (22)
Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page
: 36 of 136 : 46 of 136 : 56 of 136 : 66 of 136 : 76 of 136 : 87 of 136 : 91 of 136 : 100 of 136 : 100 of 136 : 104 of 136 : 122 of 136 : 123 of 136 : 124 of 136 : 124 of 136 : 128 of 136 : 129 of 136 : 129 of 136 : 131 of 136 : 131 of 136 : 132 of 136 : 133 of 136 : 134 of 136
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 7 of 136 Sheet : 1 of 1 Rev. : 2
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
E. Applicable Loading Considered in Design.
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-22 & UG-98]
I. By considering UG-22 : 1. The loadings to be considered in design of exchanger shall include the following : a. Internal & external design pressure (see item II below). b. Weight of the vessel and contents under test conditions. c. Attachment of vessel supports such as lifting lugs and saddles. 2. No expected effect for superimposed static reactions such as piping . There is no attached equipment such as motors, machinery, other vessels, and lining. 3. The effect of the following loadings is considered negligible and /or not applicable : a. Cyclic and dynamic reactions due to pressure for thermal variations. b. Snow reactions. c. Impact reactions due to fluid chock. d. Temperature gradients and differential thermal expansion. e. Abnormal pressures, such as those caused by deflagration. and insulation.
II. By considering UG-21 & UG-98 : The max. allowable working pressure for a vessel part is the max.internal pressure at the highest point of vessel (i.e. including the static head theron). Since the exchanger is intended to be erected horizontaly, the static head equals almost the ID of the exchanger (dimension units of water). Max. Operating Pressure,
Shell side Tube side Internal design pressure, P (MAWP) Shell side Tube side External design pressure, Pex (Tube side)
241.5 42.6 284.0909 71.02273 15
PSIG PSIG PSIG PSIG PSIG
17 3 20 5 1.056
Kg/cm2G Kg/cm2G Kg/cm2G Kg/cm2G Kg/cm2G
Exchanger shell ID (fabricated from Pipe 24" NPS, Sch. 30), ID Water sp. gr. Fluid sp. gr.
19 1 0.8
INCH
482.6
MM
Max. hydrostatic head at internal bottom of vessel* Max. internal pressure : Shell side Tube side * p water
0.685511 284.7764 71.70824 0.036127
PSIG PSIG PSIG lb/INCH3
0.04826 20.0483 5.04826 1000
Kg/cm2G Kg/cm2G Kg/cm2G Kg/M3
Max. internal working pressure MAWP for calculation : Shell side Tube side External design pressure, Pe (at tube side)
286 73 15
PSIG PSIG PSIG
2 20.0483 Kg/cm G 2 5.04826 Kg/cm G Kg/cm2G 1.056
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 8 of 136 Sheet : 1 of 1 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
F. Impact Test Requirements. [UG-22 & UG-98] Impact test is not mandatory for the following pressure vessels materials at the specified MDMT : I. Pressure Parts. a. Main Exchanger Components : P-No. Group No. Curve a. Shell, Main Shell : ASME SA 106 Grade B 1 1 B Shell Cover Course Channel : ASME SA516 Grade 70 1 1 D b. Faormed Heads (cap) : ASME SA234 WPB 1 1 B Floating Head (Spherical Sector) : c. Nozzle Necks : ASMESA 106 Grade B 1 1 B d. Standard Flanges : ASME SA105 1 2 B Non Standard Shell Flanges : ASME SA266 Class 2 1 2 B Non Standard Channel Flanges : ASME SA266 Class 2 1 2 Channel Cover (blind flange) : ASME SA266 Class 2 1 2 Floating Head Flange : ASME SA266 Class 2 1 2 Backing Ring Flange : ASME SA266 Class 2 1 2 e. Stationary Tubesheet : ASME SB171 C63000 1 1 B Floatng Tubesheet : ASME SB171 C63000 1 1 B f. Tubes : ASME SB111 C68700 1 2 B g. Fittings : Half Couplings : ASME SA105 90 0 Elbows : ASME SA234 WPB b. Stud Bolts & Nuts : i. Stud Bolts : ASME SA193 Grade B7 UNS No. G41400 [Size < 2-1/2"] j. Nuts : ASME SA194 Grade 2H II. Non-Pressure Parts. a. Saddle plate : ASME SA106 Grade B 1 1 B b. Lifting lugs & Pads : ASME SA 516 Grade 70 1 2 D Thickness of exchanger components : - Shell & Heads ASME SA106 Grade B 0.5 INCH 12.7 MM - Max. Nozzle Necks Thk. ASME SA106 Grade B 0.432 INCH 10.9728 MM o o F C Min. Design Metal Temperature, MDMT 28 -2 Where the MDMT is in accordance with UG-20(f), UCS-66 and FIG. UCS-66, no impact test is required. Please refer to : Page : 106 of 136 Impct Test is not required as per ASME Code for MDMT of
28
o
F
-2
o
C
but is required as a client request.
G. Standard ASME Flange Rating Class. 1. Standard ASME B16.5 welded neck flanges shall be used. 2. For standard flange, Carbon Steel material in accordance with ASME SA105, P-No. 1, Group No. 2 : a. Shell side flanges, S1 & S2, 6" NPS : MAWP 186 PSIG & Design temp. 302 oF : Raing 300# b. Tube side flanges, T1 & T2, 6" NPS : MAWP 72 PSIG & Design temp. 140 oF : Raing 150#
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R H. Cylindrical Main Shell Thickness 1. Under Internal Pressureal (Pipe 20" NPS) Shell material, Killed carbon steel Operating Temperature : Shell Side Tube Side Design Temperature : Shell Side Tube Side Min. Design Metal Temperature, MDMT Operating Pressure: Shell Side Tube Side Internal Design Pressure: Shell Side Tube Side Shell Inside Diameter, D (by using pipe 20" NPS, Sch.30) Shell Inside Radius, R Stationary Shell Inside Diameter, Ds Static Head = Inside Diameter (D) Static Head Pressure: Shell & Tube Side Floating Head Side Internal Design Pressure, P (MAWP): Shell Side Tube Side Max. Allowable Stress @ Design Temp., S Max. Allowable Stress @ Test Temp., St [ Table 1A , SubPart 1 , ASME Sec. II , Part D] Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S)
Ph = 1.5*MAWP(St/S)
[shell side]
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-27(C)]
ASME SA 106 Grade B o F 110 230 o F 40 104 o F 150 302 o F 60 140 o F -2 28 241.477 PSIG 17 42.6136 PSIG 3 284.091 PSIG 20 71.0227 PSIG 5 19 INCH 482.6 9.5 INCH 241.3 INCH 482.6 19 0.4826 0.68551 PSIG 0.04826 0.68551 PSIG 0.04826 284.776 PSIG 20.04826 71.7082 PSIG 5.04826 17100 PSIG 1203.84 17100 PSIG 1203.84
o
C C o C o C o C o
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
MM MM MM M Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G 2
[UG-99(b)]
[Owner request]
Corrosion Allowance, C Joint Efficiency, E
Page : 9 of 136 Sheet : 1 of 3 Rev. : 1
[UG-25] [Table UW-12]
[Spot Radiography], [Table UCS-57] Value of 0.385 SE [UG-27C(1)] Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, [UG-27C(1)] t1 = PR/(SE - 0.6 P) [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE + 0.4 P) [UG-27C(2)]
The Min. Thickness shall be the Greater of t1 or t2 By Adding Corrosion Allowance to Wall Tickness, t Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM) 20" Pipe wall thickness without tolerance 12.5% 20" Pipe wall thickness without corrosion allowance Min. Pipe Shell Thickness according to TEMA Table R-3.13
370.2093347
PSIG
26.062738
427.164617
PSIG
30.07239
Kg/CM G
Kg/CM2G
0.19685 INCH 0.85
5
5595.98 PSIG
393.9567 Kg/CM2G
0.18834 INCH
4.783898 MM
0.0927
INCH
2.354604 MM
0.18834 0.38519 0.5 0.4375 0.24065 0.375
INCH
4.783898 9.783898 12.7 11.1125 6.1125 9.525
INCH INCH INCH INCH INCH
MM
MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Page : 10 of 136 Sheet : 2 of 3 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC
Items : E-323A/B & E-514C/D
2. Check of Main Shell Thickness for External Pressure (FV). a. Check of Shell Thickness (NA) For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L Height of shell flange-stationary head end (flange 7), L7 Height of shell flange-rear head end (flange 6), L6 Total shell length (flange-to-flange), L'
3.70079 INCH 3.74016 INCH 228.346 INCH
94 95 5800
MM MM MM
Effective shell length without stiffening,
228.346 INCH
5800
MM
In case of shell with heads, L = 1/3 each head depth + straight
234.68
5960.867 MM
Assume t for internal pressure (corroded) Do = ID + 2 t
0.24065 INCH 19.4813 INCH
L = L' - (L6 + L7)
L / Do Do / t
INCH
6.1125 494.825
MM MM
12.0464 For L/Do > 50, use it = 50 80.953
a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A
0.00038
b. Enter Fig. CS-2 with A (to find factor B), Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t)
5600 PSIG 92.2346 PSIG
Kg/CM2G 394.24 2 6.493318 Kg/CM G
15 OK
1.056
Change t untill PA > 15 PSI (full vacuum) For A falling to the left of the applicable material/temp. line, Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) E = Modulus of elasticity at design temp. at amp. temp. The uncorroded shell wall thickness must not lrss than Use the uncorroded shell wall thickness Use Thickness of Construction, t (Adopted thickness)
86.4329 PSIG 2.8E+07 PSIG 2.9E+07 PSIG
Corroded Thickness = Adopted thickness + Corrosion allowance Insulation Post Weld Heat Treatment, PWHT
PSIG
Yes N.A.
Kg/CM2G
6.084877 Kg/CM2G 1970355 Kg/CM2G 2055680 Kg/CM2G
S
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R A. CYLINDRICAL SHELL THICKNESSES
Page : 11 of 136 Sheet : 3 of 3 Rev. : 1 Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
[UG-27(C)]
a.2. Floating Shell
Shell material, Killed carbon steel (Pipe 26" Sch. 20) Operating Temperature : Shell Side Tube Side Design Temperature : Shell Side Tube Side Min. Design Metal Temperature, MDMT Operating Pressure: Shell Side Tube Side Internal Design Pressure: Shell Side Tube Side Shell Inside Diameter, D Shell Inside Radius, R Stationary Shell Inside Diameter, Ds Static Head = Inside Diameter (D) Static Head Pressure: Shell & Tube Side Floating Head Side Internal Design Pressure, P (MAWP): Shell Side Tube Side Max. Allowable Stress @ Design Temp., S Max. Allowable Stress @ Test Temp., St
ASME SA 516 Grade 70 o F 110 230 o F 40 104 o F 150 302 o F 60 140 o F -2 28.4 241.477 PSIG 17 42.6136 PSIG 3 284.091 PSIG 20 71.0227 INCH 5 634.6 24.9843 INCH 12.4921 INCH 317.3 19 INCH 482.6 0.6346 0.90142 PSIG 0.06346 0.0009 PSIG 6.35E-05 284.092 PSIG 20.00006 71.9241 PSIG 5.06346 17100 PSIG 1203.84 17100 PSIG 1203.84
o
C C o C o C o C o
Kg/CM2G Kg/CM2G Kg/CM2G
MM MM MM MM M Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
[ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S)
369.319 PSIG
2 26.00008 Kg/CM G
[ UG-99(b) ]
Corrosion Allowance, C Joint Efficiency, E
0.19685 INCH 0.85
5
Value of 0.385 SE [UG-27C(1)] Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, t1 = PR/(SE-0.6P) [UG-27C(1)] [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE+0.4P) [UG-27C(2)]
5595.98 PSIG
393.9567 Kg/CM2G
0.24706 INCH
6.275335 MM
0.12161 INCH
3.088797 MM
The Min. Thickness shall be the Greater of t1 or t2 By Adding Corrosion Allowance to Wall Tickness, t Use Plate with thickness of Construction, t Min. Plate Shell Thickness according to TEMA Table R-3.13 Insulation Post Weld Heat Treatment, PWHT
0.24706 0.44391 0.5 0.4375 Yes N.A.
6.275335 11.27533 12.7 11.1125
[UG-25] [TABLE UW-12]
MM
[Full Radiography], [Table UCS-57]
INCH INCH INCH INCH
MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R I. Cylindrical Stationary Head-Channel. 1. Under Internal Pressure Shell material, Killed carbon steel Operating Temperature : Shell Side Tube Side Design Temperature : Shell Side Tube Side Min. Design Metal Temperature, MDMT Operating Pressure: Shell Side Tube Side Internal Design Pressure: Shell Side Tube Side Shell Inside Diameter, D Shell Inside Radius, R Stationary Shell Inside Diameter, Ds Static Head = Inside Diameter (D) Static Head Pressure: Shell & Tube Side Floating Head Side Internal Design Pressure, P (MAWP): Shell Side Tube Side Max. Allowable Stress @ Design Temp., S Max. Allowable Stress @ Test Temp., St
Page : 12 of 136 Sheet : 1 of 2 Rev. : 1 Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
[UG-27(C)]
ASME SA 106 Grade B o F 110 230 o F 40 104 o F 150 302 o F 60 140 o F -2 28.4 241.477 PSIG 17 42.6136 PSIG 3 284.091 PSIG 20 71.0227 PSIG 5 INCH 482.6 19 9.5 INCH 241.3 483 19.0157 INCH 0.4826 0.68551 PSIG 0.04826 0.68608 PSIG 0.0483 284.776 PSIG 20.04826 71.7082 PSIG 5.04826 17100 PSIG 1203.84 17100 PSIG 1203.84
o
C C o C o C o C o
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
MM MM MM M Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
[ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D] Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S)
Ph = 1.5*MAWP(St/S)
[tubel side]
[UG-99(b)]
370.2093347
PSIG
26.062738
[Owner request]
427.164617
PSIG
30.07239
Corrosion Allowance, C Joint Efficiency, E
Kg/CM2G
Kg/CM2G
0.19685 INCH 0.85
5
Value of 0.385 SE [UG-27C(1)] Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, t1 = PR/(SE-0.6P) [UG-27C(1)] [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE+0.4P) [UG-27C(2)]
5595.98 PSIG
393.9567 Kg/CM2G
0.04743 INCH
1.204611 MM
0.0927
INCH
2.354604 MM
The Min. Thickness shall be the Greater of t1 or t2 By Adding Corrosion Allowance to Wall Tickness, t Use plate thickness,
0.0927 INCH 0.28955 INCH 0.51181 INCH
2.354604 MM 7.354604 MM 13 MM
[UG-25] [TABLE UW-12]
MM
[Full Radiography], [Table UCS-57]
Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM)
20" Pipe wall thickness without tolerance 12.5%
0.511811024
Plate Thickness less corrosion allowance Min. Plate thickness according to TEMA Table R-3.13 20" Pipe wall thickness without corrosion allowance
Min. Pipe Shell Thickness
INCH
0.51181 INCH INCH 0.375
13
13 9.525
MM
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Page : 13 of 136 Sheet : 2 of 2 Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
I. Cylindrical Stationary Head-Channel.
[UG-27(C)]
2. Check of Channel Thickness for External Pressure (Full Vacuum) For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L Height of shell flange-stationary head end (flange 5), L7 Height of shell flange-rear head end (flange 6), L6 Total shell length (flange-to-flange), L'
4.72441 INCH 5.11811 INCH 23.622 INCH
120 130 600
MM MM MM
Effective shell length without stiffening,
23.622
600
MM
L = L' - (L6 + L7)
In case of shell with heads, L = 1/3 each head depth + straight
Assume t for internal pressure (corroded) Do = ID + 2 t L / Do Do / t a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A
29.96062992
INCH
0.51181 INCH 20.0236 INCH
761
13 508.6
MM
MM MM
1.49626 For L/Do > 50, use it = 50 39.1231
0.00038
b. Enter Fig. CS-2 with A (to find factor B), which is off to the left side and can 4750 Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t) 161.882 Change t untill PA > 15 PSI (full vacuum) 15 OK For A falling to the left of the applicable material/temp. line, Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) 201.032 E = Modulus of elasticity at design temp. 3.1E+07 at amp. temp. 2.9E+07 The uncorroded shell wall thickness must not lrss than Use the uncorroded shell wall thickness Use Thickness of Construction, t (Adopted thickness) Corroded Thickness = Adopted thickness + Corrosion allowance Insulation Post Weld Heat Treatment, PWHT
INCH
Yes N.A.
PSIG PSIG
Kg/CM2G 334.4 2 11.39651 Kg/CM G
PSIG
1.056
PSIG PSIG PSIG
14.15267 Kg/CM2G 2214784 Kg/CM2G 2055680 Kg/CM2G
Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Page : 14 of 136 Sheet : 1 of 1 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC
Items : E-323A/B & E-514C/D
J. Main Ellipsoidal Head Thickness Under Internal Pressure. Head Material, Carbon Steel Design Temperature (shell side) MIN. Design Metal Temperature, MDMT
[UG-32(d)] [Semi-ellipsoidal form 2:1 ] ASME SA 234 WPB o F 150 302 o F -2 28
Operating Pressure (shell side) Internal Design Pressure (shell side)
156.25 PSIG 284.091 PSIG
11 20
Kg/CM2G Kg/CM2G
Internal Design Pressure, P (MAWP) Head Skirt Inside Diameter, Di Head Inside Radius, L ( ri ) Static Head Max. Allowable Stress @ Design Temp., S Max. Allowable Stress @ Test Temp., St [TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
284.992 24.9843 12.4921 0.90142 17100 17100
20.06346 634.6 317.3 0.06346 1203.84 1203.84
Kg/CM2G
Corrosion Allowance, C Joint Efficiency, E (Spot Radiography)
0.19685 INCH 0.85
5
MM
Assume Outside Diameter of Head, DO Outside Radius of Head, RO
25.4751 INCH 12.7375 INCH
647.0672 MM 323.5336 MM
Value of 0.665 SE Since the value of 0.66SE > P, Use Thin Wall Equation for Calculating the Min. required Thickness of Head, t: [UG-32(d)] t1 = PD /(2SE-0.2P)
9665.78 PSIG
680.4706 Kg/CM2G
(1)
0.24542 INCH
6.233623 MM
Ps = 0.665 SE Since P < Ps, Calculate Thickness for thin Wall Spherical Shell: t2 = PR/(2SE-0.2P) [UG-27(d)] (2) Head Thickness due to Internal Pressure: t = MAX ( t1 , t2 ) By adding Corrosion Allowance to Wall Thickness, Use 26" Cap with thickness of Construction, t (Thk. 14.27 MM)
9665.78 PSIG
680.4706 Kg/CM2G
0.12271 0.24542 0.44227 0.56181
3.116812 6.233623 11.23362 14.27
[UG-25] [Table UW-12]
PSIG INCH INCH
PSIG PSIG PSIG
o
C C
o
MM MM Kg/CM2G Kg/CM2G Kg/CM2G
Compare to Thickness of Seamless Spherical Shell :
INCH INCH INCH INCH
MM MM MM MM
[ t Represents the Min. Thickness after Forming ]
Head required thickness,
tr = P K1 D / (2SE - 0.2P)
0.22088 INCH
5.610261 MM
NB. The required head thickness for reinforcement calculation are to be determined by the hemispherical head formula using an equivalent radius of K1 D where, Spherical Radius Factor, K1 (for ellipsoidal head 2:1) [Table UG-37] 0.9
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 15 of 136 Sheet : 1 of 3 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) [MWP is differ from MAP or MAWP] o o F C 1. For Shell-Side : 302 150 Main shell (Item 1) : Kg/CM2G MWP, New & cold (12.7 MM-12.5%) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2G MWP, Operating & corroded (9.286 MM) P = SE t /(R + 0.6 t) 455.517 PSIG 32.068 Head (cap) (Item 13) : MWP, New & cold (12.7-12.5% MM) P = 2SE t /(D + 0.2 t) [UG-32(d)(1)] 621.582 PSIG MWP, Operating & corroded (9.286 MM), P = 2SE t /(D + 0.2 t) 462.789 PSIG Nozzle Neck 6" NPS, Sch. 80 for N3 & N4 (item 6) : MWP, New & cold (7.489 MM-12.5%) neck MWP, Operating & corroded (4.289 MM) neck N3 & N4 Standard Flange 6" NPS, ANSI 300#, Sch. 80 for N3 & N4 (items 5) : MWP, New & cold [TEMA Table D-6.1] MWP, Operating & corroded [TEMA Table D-6.1]
43.75937 Kg/CM2G 32.58034 Kg/CM2G
740 664.4
PSIG PSIG
52.096 46.774
Kg/CM2G Kg/CM2G
740 655
PSIG PSIG
52.096 46.112
Kg/CM2G Kg/CM2G
Non Standard Flange (Item 4) : MWP, New & cold MWP, Operating & corroded
425.258 PSIG 335.398 PSIG
29.938 23.612
Kg/CM2G Kg/CM2G
Non Standard Flange (Item 3) : MWP, New & cold MWP, Operating & corroded
425.258 PSIG 335.398 PSIG
29.938 23.612
Kg/CM2G Kg/CM2G
Non Standard Flange (Item 12) : MWP, New & cold MWP, Operating & corroded
425.258 PSIG 335.398 PSIG
29.938 23.612
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Page : 16 of 136 Sheet : 2 of 3 Rev. : 2 Date : 4.7.2003 Location : Alex. Client : APRC
Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.) [MWP is differ from MAP or MAWP] o o F C 2. For Tube-Side : 608 320 Channel (Item 17) : Kg/CM2G MWP, New & cold (13 MM .) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2G MWP, Operating & corroded (8 MM) P = SE t /(R + 0.6 t) 455.537 PSIG 32.07 -12.5%
Nozzle Neck 6" NPS, Sch. 80 for N1& N2 (item 20) : MWP, New & cold (7.489 MM-12.5%) neck MWP, Operating & corroded (4.289 MM) neck
285 275
PSIG PSIG
20.064 19.36
Kg/CM2G Kg/CM2G
Standard Flange 6" NPS, ANSI 150#, Sch. 80 for N1& N2 (item 19) : MWP, New & cold [TEMA Table D-6.1] MWP, Operating & corroded [TEMA Table D-6.1]
285 260
PSIG PSIG
20.064 18.304
Kg/CM2G Kg/CM2G
Non Standard Flanges (Item 18) : MWP, New & cold MWP, Operating & corroded
425.258 PSIG 335.368 PSIG
29.938 23.61
Kg/CM2G Kg/CM2G
Blind Flange (Item 22) : [see page 47 of 80]MWP, New & cold MWP, Operating & corroded
289.381 PSIG 263.006 PSIG
20.372 18.516
Kg/CM2G Kg/CM2G
Stationary Tubesheet (Item 36) : [see page 49 of 80]MWP, New & cold MWP, Operating & corroded
431.681 PSIG 384.282 PSIG
30.39 27.053
Kg/CM2G Kg/CM2G
Floating Tubesheet (Item 37) : [see page 49 of 80]MWP, New & cold MWP, Operating & corroded
431.681 PSIG 384.282 PSIG
30.39 27.053
Kg/CM2G Kg/CM2G
Floating Head Spherical Sector (Item 30) : [see page 49 of 80]MWP, New & c 431.681 PSIG MWP, Operating & corroded 384.282 PSIG
30.39 27.053
Kg/CM2G Kg/CM2G
Floating Head Elange (Item 29) : [see page 49 of 80]MWP, New & cold MWP, Operating & corroded
431.681 PSIG 384.282 PSIG
30.39 27.053
Kg/CM2G Kg/CM2G
Floating Head Backing Ring (Item 31) : [see page 49 of 80]MWP, New & cold 431.681 PSIG MWP, Operating & corroded 384.282 PSIG
30.39 27.053
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 17 of 136 Sheet : 3 of 3 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.) 3. For Tubes : (Item 38) Tube Material ASME SB111 UNS No. C68700-061 P-Number Group Number o o F 232.2222 C Max. Temp. Limit 450 o o F C 150 Design Temperature : Shell Side 302 o o F C 60 Tube Side 140 o o F C 40 Test Pressure Temp. (ambient temp.) 104 o o Max. Allowable Stress @ Design Temp.302 F (150 C), S 11492 PSIG 809.0368 Kg/CM2G Max. Allowable Stress @ Test Temp. 104 oF (40 oC), St 11992 PSIG 844.2368 Kg/CM2G [Table 1A, SubPart 1, ASME Sec. II, Part D] No of tubes, n Tube OD Tube length, L Tube pitch, p Tube BWG Tube wall thickness, tt
[TEMA Table D-7] [TEMA Table D-7] o
Tube pattern (Triangle, equal angles 60 ) MWP (internal), New & cold MWP (internal), Operating & corroded
30
(square rotated)
[TEMA Table D-9] [TEMA Table D-9]
Design pressure (tube-side), P Design temperature (tube-side) o o Max. Allowable Stress @ Design Temp.302 F (150 C), S Corrosion Allowance, C [UG-25] Joint Efficiency, E [TABLE UW-12] Tube required thickness,
trn = PRn /(SnEn - 0.6 P)
[UG-27]
Max. Internal Working pressure MWP for whole Exchanger : Shell side : MWP, New & cold MWP, Operating & corroded Tube side :
MWP, New & cold MWP, Operating & corroded
146 1 236.22 1.45472 13 0.09843
INCH INCH INCH
25.4 6000 36.95
MM MM MM
INCH
2.500122 MM
o
4132.3 PSIG 3963.55 PSIG
290.9139 Kg/CM2G 279.0339 Kg/CM2G
71.0227 PSI o F 140 11492 PSIG 0 INCH 1
Kg/CM2G 5 o C 60 2 Kg/CM G 809.0368 0 MM
0.0062
0.157561 MM
INCH
425.258 PSIG 335.398 PSIG
29.938 23.612
Kg/CM2G Kg/CM2G
285 260
20.064 18.304
Kg/CM2G Kg/CM2G
PSIG PSIG
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 18 of 136 Sheet : 1 of 3 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum) 1. Ellipsoidal Head (Stationary Head-Bonnet NA) [UG-33(d)] Assumed corroded thickness of head, t Outside diameter of the head skirt, Do The equivalent outside spherical, Ro = Ko Do [UG-33(b)] Outside height of the ellipsoidal head (measured from head-bend line), ho Ratio of the major to the minor axis of ellipsoidal head, Do/2ho Factor depending on the ellipsoidal head proportions Do/2ho, Ko (use interpolation) [See Table UG-33.1]
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
0.43583 23.7638 20.2171 6.28484 1.89056
INCH INCH INCH INCH
11.07 603.6 513.5147 159.635
MM MM MM MM
PSIG
696.96
Kg/CM2G
0.85075
The required thickness of an ellipsoidal head having pressure on the convex side, either seamless or of built-up construction with butt joints, shall not be less than that determined by the following procedure : Step 1. Assume a value for t and calculate the value of factor A using the following formula : A = 0.125 / (Ro / t)
0.00269
Step 2. Using the value of A calculate in Step 1, follow the same procedure as that given for sphericalshells in UG-28(d), Step 2 through 6 : a. Enter Fig. CS-2 with A (to find factor B), which is under the curve, B Follow step (4) of UG-28(d), and calculate the value of max. allowable external working pressure, PA = B / (Ro / t) Change t untill PA > 15 PSI (full vacuum)
9900
213.417 PSIG 15 OK
PSIG
2 15.02459 Kg/CM G
1.056
Kg/CM2G
1823360
Kg/CM2G
Notes. 1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated in accordance with Step 5 of UG-28(d), as follows : Pa = 0.0625 E / (Ro /t)2 E = Modulus of elasticity at design temp.
2.6E+07 PSIG
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 19 of 136 Sheet : 2 of 3 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.) 2. Channel Channel Material Design Temperature Corrosion allowance Channel Diameter, 20" NPS Channel Thickness (20" Sch. 30) Channel Thickness (20" Sch. 30) - 12.5%
ASME SA106 Grade B o F 60 140 5 0.19685 INCH 20 INCH 508 0.562 INCH 14.2748 0.49175 INCH 12.49045
For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L :
23.622
Assume t for internal pressure (at corroded condition) Do = ID + 2 t L / Do Do / t
0.2949 INCH 20 INCH 1.1811 67.8197 > 10
Since Do/t > 10, use UG-28(c)(1) a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A
0.00035
b. Enter Fig. CS-2 with A (to find factor B), which falls under the curve. Follow step (6) of UG-28(c)(1), and calculate the value of max. allowable external working pressure, PA = 4B / 3 (Do / t) Change t untill PA > 15 PSI (full vacuum)
E = Modulus of elasticity at design temp. at amp. temp.
Notes
1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t) 2. For L/Do > 50, use L/Do = 50 For L/Do < 0.05, use L/Do = 0.05 3. For Do/t > 10, use UG-28(c)(1) For Do/t < 10, use UG-28(c)(2)
INCH
o
C MM MM MM MM
600
MM
7.49045 508
MM MM
UG-28(c)(1)
Kg/CM2G
11500
PSIG
809.6
226.09
PSIG
2 15.91672 Kg/CM G
15 OK
PSIG
1.056
Kg/CM2G
2323200 2055680
Kg/CM2G Kg/CM2G
3.3E+07 PSIG 2.9E+07 PSIG
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 20 of 136 Sheet : 3 of 3 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.) 3. Tubes Tube Material Design Temperature Corrosion allowance Tube OD Tube BWG Tube Wall Thickness
ASME SB111 UNS No. C68700-061 o o F C 140 60 INCH 0 MM 0 1 INCH 25.4 MM 13 0.09843 INCH 2.500122 MM
For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of tube without stiffening rings, L :
236.22
INCH
6000
0.09843 1 236.22 50 10.1595
INCH INCH > 50
2.500122 MM 25.4 MM
>
UG-28(c)(1)
Assume t for internal pressure (at corroded condition) Do L / Do Use L / Do Do / t Since Do/t > 10, use UG-28(c)(1)
10
MM
Step 1. Enter Fig. G in Subpart 3 of Sec. II, Part D with L / Do and read across to sloping line of Do/t Read factor A 0.012 Step 2. Enter Fig. NFC-2 with A (to find factor B), which falls under the curve. 6150 PSIG Follow step (2) of UG-28(c)(1), and calculate the value of max. allowable external working pressure. Step 3. Calculate a value of Pa = 4 B / 3 (Do/t) 807.126 PSIG
56.82167 Kg/CM2G
Step 4. Compare the calculated value of Pa with Pe Change t untill Pa > 15 PSI (full vacuum)
PSIG PSIG
56.82167 Kg/CM2G Kg/CM2G 1.056
PSIG
13.0944
Kg/CM2G
PSIG
30.6944
Kg/CM2G
807.126 15 OK Change t untill Pa > 186 PSI (full vacuum with respect to shell-side) 186 OK Change t untill Pa > 30.7Kg/cm2 (436 PSI) (hydrostatic test of tube sid 436 OK Notes 1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t) 2. For L/Do > 50, use L/Do = 50 For L/Do < 0.05, use L/Do = 0.05 3. For Do/t > 10, use UG-28(c)(1) For Do/t < 10, use UG-28(c)(2) : - for Do/t < 4, A = 1.1 / (Do/t)2 - for A > 0.10, use a value of 0.10
432.96
Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 21 of 136 Sheet : 1 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) with Reinforcement Nozzle Neck Thickness Calculation [UG-27(c) & Appendix 1-1] Nozzle Size, NPS Nozzle Material
INCH 150 6 ASME SA 106 Grade B
Design Pressure, P Design Temperature For nominated Design Pressure & Temperature, Flange Rating [ASME B16.5-1996]
284.776 PSIG o F 302 300#
20.04826 Kg/CM2G o C 150
Max. Allowable Stress of Nozzle Material @ Design Temp.(150 C), Sn Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 oC), Snt [Table 1A, SubPart 1, ASME Sec. II, Part D]
17100 17100
PSIG PSIG
1203.84 1203.84
Kg/CM2G
Outside Radius of Nozzle, Ron Joint Efficiency of Nozzle, En (Seamless Pipe) Nozzle Corrosion Allowance, Can
3.3125 INCH 1 0.19685 INCH
84.1375
MM
5
MM
0.0548
INCH
1.391917 MM
0.25165 INCH
6.391917 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t
0.28311 INCH
7.190907 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80, with Thickness 0.432" ( 10.97 MM ). [Table 2 of ASME B 36.10M-1985-(R-1994)]
0.432
INCH
10.9728
MM
Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% Nozzle wall thickness less tolerance 12.5% - Corrosion allowance MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t)
0.378 0.18115 2044.67 956.056
INCH INCH
MM MM
PSIG PSIG
9.6012 4.6012 143.944 67.306
Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 300# @ 100 oF [ASME B.165, Table 2] MWP, Operating & corroded, 300# @ 302 oF [ASME B16.5, Table 2]
740 664.4
PSIG PSIG
52.096 46.774
o
DN
Kg/CM2G
Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) By adding Corrosion Allowance, t
[Appendix 1.1] [UG-25]
Kg/CM2G Kg/CM2G
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 22 of 136 Sheet : 2 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS Nozzle Pipe Sch. Design Pressure, P Design Temparture
INCH 6 80 185.483 PSIG o F 302
Shell Material Nozzle Material Reinforcing Pad Material Allowable Stress of Shell Material, Sv Allowable Stress of Nozzle Material, Sn Allowable Stress of Pad Material, Sp
ASME SA106 Grade B ASME SA 106 Grade B ASME SA 106 Grade B 17100 PSIG 1203.84 17100 PSIG 1203.84 17100 PSIG 1203.84
Kg/CM2G Kg/CM2G Kg/CM2G
Shell Thickness Shell Corrosion Allowance, Cas Shell Thickness less Pipe Tolerance 12.5% Shell Thickness less Corrosion Allowance & 12.5%, t
0.5 0.19685 0.4375 0.24065
INCH INCH INCH INCH
12.7 5 11.1125 6.1125
MM MM MM MM
0.432 0.378 0.19685 0.18115 0.18115 0.5 1 1 1 1 20 19.5187 9.75935
INCH INCH INCH INCH INCH INCH
10.9728 9.6012 5 4.6012 4.6012 12.7
MM MM MM MM MM MM
INCH INCH INCH
508 MM 495.775 MM 247.8875 MM
INCH INCH INCH INCH INCH INCH INCH
168.275 146.3294 0 15.28125 11.503 159.0726 79.5363
(12.5% NA)
(12.5% NA)
Nozzle Wall Nominal Thickness Nozzle Wall Thickness less Pipe Tolerance 12.5% Nozzle Corrosion Allowance, Can Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti
Reinforced Pad Thickness, te Joint Efficiency of Shell, E Joint Efficiency of Nozzle, En Correction Factor, F [UG-37(a)] E1 [Nozzle in solid plate] Shell Outside Diameter, OD Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t Shell Inside Radius in Corroded Condition, R Nozzle Outside Diameter, OD Nozzle Inside Diameter, ID Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) h1 = 2.5 t h2 = 2.5 ti Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn
Finished Radius of Circular Opening, Rn
6.625 5.761 0 0.60162 0.45287 6.2627 3.13135
150
DN
13.058 150
o
Kg/CM2G
C
MM MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 23 of 136 Sheet : 3 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad (if used) [UG-40(b)&FIG.UG-37.1] Dp1 = 2 d 12.5254 INCH Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 12.5254 INCH [UW-16(c)(2)&Fig.UW-16.1] Calculating Siz of Fillet Welds : * For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1Sketch (c)] Calculation of tmin. : tmin.1 = 0.75 inch tmin.2 (nozzle wall nominal thickness) tmin.3 (shell wall thickness) tmin. = lesser of tmin.1, tmin. & tmin.3 Calculation of tc : tc1 = 0.25 inch tc2 = 0.7 t min. tc = lesser of tc1 & tc2 By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc Use Leg with Dimension E in Dwg. No. 7443-33-1A [Fig.UW-16 Sketch (c)] * For Outer Reinforcing Pad Weld tmin.1 = 0.75 inch tmin.2 ( te = thk. of reinforcing element) tmin.3 ( shell wall thickness) tmin. = lesser of tmin.1, tmin. 2 & tmin.3 1/2 tmin. By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) Use Leg with Dimension D in Dwg. No. 7443-33-1A
* Wall Thickness Required : Shell Nozzle * Strength Reduction Factors :
[UG-27(c)(1)] tr = PR / (SE - 0.6 P) trn = PRn /(SnEn - 0.6 P)
Sp / Sv fr1 = Sn / Sv fr2 = Sn / Sv fr3 = lesser of Sn/Sv or Sp/Sv fr4 = Sp / Sv
0.75 0.432 0.56181 0.432 0.25 0.3024 0.25
INCH INCH INCH INCH INCH INCH INCH
318.1452 MM 180.5 MM 318.1452 MM
19.05 10.9728 14.27 10.9728 6.35 7.68096 6.35
MM MM MM MM MM MM MM
0.35355 INCH 0.35433 INCH
8.980256 MM 9 MM
0.75 0.5 0.5 0.5 0.25
19.05 12.7 12.7 12.7 6.35
MM MM MM MM MM
0.35355 INCH 0.35433 INCH
9 9
MM MM
0.1255 INCH 0.03419 INCH
3.187732 MM 0.868379 MM
1 1 1 1 1
INCH INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 24 of 136 Sheet : 4 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Min. Nozzle Neck Wall Thickness Check Per UG-45 A. Wall Thickness per UG-45(a) :
trna = trn + C.A.
0.23104 INCH
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.2906 trnb11 = tr + C.A. (tr for shell or head at E=1) 0.32235 trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only),
INCH INCH INCH INCH
6.223 7.38125 8.187732 7.38125
INCH
#VALUE! MM
INCH
#VALUE! MM
INCH
6.223
MM
INCH
7.112
MM
0.25935 INCH 0.44685 INCH
6.5875 11.35
MM MM
0.2906
INCH
7.38125
MM
0.2906
INCH
7.38125
MM
INCH INCH
6.223 9.6012
MM MM
NA
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 The min. nozzle thk. provided = t (1-0.125) 0.378 So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
5.868379 MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 25 of 136 Sheet : 5 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27] Area of Reinforcement (witht Reinforcing element) : Required Area, A = d tr F + 2 tn tr F(1-fr1)
0.78598 INCH
Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) A1 = The Greater of A11 or A12 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t A22 = 2 (tn - trn)(2.5tn+te) fr2 A2 = The Lesser of A21 or A22
0.17683 INCH 2 0.28007 INCH 2 0.17683 INCH
Area Available in Inward Nozzle, A3 : (Not applicable) A31 = 5 t ti fr2 A32 = 5 ti ti fr2 A33 = 2 h ti fr2 A3 = The Greater of A31, A32 or A33
0.21797 0.16408 0 0
Area Available in Outward Nozzle Weld, A41: 2 A41 = (LEG) fr2
2
2 507.0808 MM
0.72114 INCH 2 0.09714 INCH 2 0.72114 INCH
2
2 465.2505 MM 2 62.67018 MM 2 465.2505 MM
2
2 114.0844 MM 2 180.691 MM 2 114.0844 MM
140.6242 105.8552 0 0
MM2 MM2 MM2 MM2
2 0.12555 INCH
81
MM2
Area Available in Outer Reinforcing Pad Weld, A42: 2 A42 = (LEG) fr4
2 0.12555 INCH
81
MM2
Area Available in Inward Nozzle Weld, A43 : 2 A43 = (LEG) fr2
0
INCH
2
0
MM2
Area Available in Reinforcing Pad, A5 : A5 = (Dp - d - 2tn) te fr4
2.9502
INCH
2
2 1903.352 MM
Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43 + A5
4.09927 INCH
2
2 2644.686 MM
AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
INCH2 INCH2 INCH2 INCH2
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 26 of 136 Sheet : 1 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) with reinforcement Nozzle Neck Thickness Calculation Nozzle Size, NPS Nozzle Material
[UG-45, UG-27 & APPENDIX 1-1] INCH 150 DN 6 ASME SA 106 Grade B
Design Pressure, P Design Temperature For nominated Design Pressure & Temperature, Flange Rating [ ASME B16.5-1996]
71.708 140 150#
o
o
PSIG F
5.04826 60
Kg/CM2G o
C
Max. Allowable Stress of Nozzle Material @ Design Temp.(60 C), Sn Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 oC), Snt [Table 1A, SubPart 1, ASME Sec. II, Part D]
17100 17100
PSIG PSIG
1203.84 1203.84
Kg/CM2G
Outside Radius of Nozzle, Ron Joint Efficiency of Nozzle, En (Seamless Pipe) Nozzle Corrosion Allowance, Can
3.3125 INCH 1 0.19685 INCH
84.1375
MM
5
MM
0.01387 INCH
0.352236 MM
0.21072 INCH
5.352236 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t
0.23706 INCH
6.021265 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80,
0.432
INCH
10.9728
MM
Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% Nozzle wall thickness less tolerance 12.5% - Corrosion allowance MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t)
0.378 0.18115 2044.67 956.056
INCH INCH
MM MM
PSIG PSIG
9.6012 4.6012 143.944 67.306
Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 150# @ 100 oF [ASME B.165, Table 2] MWP, Operating & corroded, 150# @ 140 oF [ASME B16.5, Table 2]
285 275
PSIG PSIG
20.064 19.36
Kg/CM2G
Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P)
[APPENDIX 1.1]
By adding Corrosion Allowance, t
with Thickness 0.432" ( 10.97 MM ).
[UG-25]
[Table 2 of ASME B 36.10M-1985-(R-1994)]
Kg/CM2G Kg/CM2G
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 27 of 136 Sheet : 2 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS INCH 150 DN 6 Nozzle Pipe Sch. 80 Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2G o o F C Design Temparture 140 60 Shell Material Nozzle Material Reinforcing Pad Material Allowable Stress of Shell Material, Sv Allowable Stress of Nozzle Material, Sn Allowable Stress of Pad Material, Sp
ASME SA106 Grade B ASME SA 106 Grade B ASME SA106 Grade B 17100 PSIG 1203.84 17100 PSIG 1203.84 17100 PSIG 1203.84
Kg/CM2G Kg/CM2G Kg/CM2G
Shell Thickness Shell Corrosion Allowance, Cas Shell Thickness less Pipe Tolerance 12.5% Shell Thickness less Corrosion Allowance & 12.5%, t
0.5 0.19685 0.4375 0.24065
INCH INCH INCH INCH
12.7 5 11.1125 6.1125
MM MM MM MM
0.432 0.378 0.19685 0.18115 0.18115 0.5 1 1 1 1 20 19.5187 9.75935
INCH INCH INCH INCH INCH INCH
10.9728 9.6012 5 4.6012 4.6012 12.7
MM MM MM MM MM MM
INCH INCH INCH
508 MM 495.775 MM 247.8875 MM
INCH INCH INCH INCH INCH INCH INCH
168.275 146.3294 0 15.28125 11.503 159.0726 79.5363
(12.5% NA)
(12.5% NA)
Nozzle Wall Nominal Thickness Nozzle Wall Thickness less Pipe Tolerance 12.5% Nozzle Corrosion Allowance, Can Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti
Reinforced Pad Thickness, te Joint Efficiency of Shell, E Joint Efficiency of Nozzle, En Correction Factor, F [UG-37(a)] E1 [Nozzle in solid plate] Shell Outside Diameter, OD Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t Shell Inside Radius in Corroded Condition, R Nozzle Outside Diameter, OD Nozzle Inside Diameter, ID Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) h1 = 2.5 t h2 = 2.5 ti Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn
Finished Radius of Circular Opening, Rn
6.625 5.761 0 0.60162 0.45287 6.2627 3.13135
MM MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 28 of 136 Sheet : 3 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad [UG-40(b) & Fig.UG-37.1] Dp1 = 2 d Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 [UW-16(c)(2) & Fig.UW-16.1] Calculating Size of Fillet Welds : * For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1 Sketch (c)] Calculation of tmin. : tmin.1 = 0.75 inch tmin.2 (nozzle wall nominal thickness) tmin.3 (shell wall thickness) tmin. = lesser of tmin.1, tmin. & tmin.3 Calculation of tc : tc1 = 0.25 inch tc2 = 0.7 t min. tc = lesser of tc1 & tc2 By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc Use Leg with Dimension E in Dwg. No. 7443-33-1A [Fig.UW-16 Sketch (c)] * For Outer Reinforcing Pad Weld tmin.1 = 0.75 inch tmin.2 ( te = thk. of reinforcing element) tmin.3 ( shell wall thickness) tmin. = lesser of tmin.1, tmin. 2 & tmin.3 1/2 t min. By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) Use Leg with Dimension D in Dwg. No. 7443-33-1A
* Wall Thickness Required : Shell Nozzle * Strength Reduction Factors :
[UG-27(c)(1)] tr = PR / (SE - 0.6 P) trn = PRn /(SnEn - 0.6 P)
Sp / Sv fr1 = Sn / Sv fr2 = Sn / Sv fr3 = lesser of Sn/Sv or Sp/Sv fr4 = Sp / Sv
12.5254 INCH 7.1063 INCH 12.5254 INCH
318.1452 MM 180.5 MM 318.1452 MM
0.75 0.432 0.5 0.432 0.25 0.3024 0.25
19.05 10.9728 12.7 10.9728 6.35 7.68096 6.35
INCH INCH INCH INCH INCH INCH INCH
MM MM MM MM MM MM MM
0.35355 INCH 0.35433 INCH
8.980256 MM 9 MM
0.75 0.5 0.5 0.5 0.25
19.05 12.7 12.7 12.7 6.35
MM MM MM MM MM
0.35355 INCH 0.35433 INCH
9 9
MM MM
0.04829 INCH 0.03419 INCH
1.226577 MM 0.868379 MM
1 1 1 1 1
INCH INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 29 of 136 Sheet : 4 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Min. Nozzle Neck Wall Thickness Check Per UG-45 A. Wall Thickness per UG-45(a) :
trna = trn + C.A.
0.23104 INCH
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only),
INCH INCH INCH INCH
6.223 6.226577 6.226577 7.38125
INCH
#VALUE! MM
INCH
#VALUE! MM
INCH
6.223
MM
INCH
7.112
MM
0.25935 INCH 0.44685 INCH
6.5875 11.35
MM MM
0.2906
INCH
7.38125
MM
0.2906
INCH
7.38125
MM
INCH INCH
6.223 9.6012
MM MM
NA
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std0.28 Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 The min. nozzle thk. provided = t (1-0.125) 0.378 So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
5.868379 MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 30 of 136 Sheet : 5 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-37] Area of Reinforcement (with reinforcing Element) : Required Area, A = d tr F + 2 tn tr F(1-fr1)
0.30243 INCH
Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) A1 = The Greater of A11 or A12 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t A22 = 2 (tn - trn)(2.5tn+te) fr2 A2 = The Lesser of A21 or A22
0.17683 INCH 2 0.28007 INCH 2 0.17683 INCH
Area Available in Inward Nozzle, A3 : A31 = 5 t ti fr2 A32 = 5 ti ti fr2 A33 = 2 h ti fr2 A3 = The Greater of A31, A32 or A33
0.21797 0.16408 0 0
Area Available in Outward Nozzle Weld, A41: 2 A41 = (LEG) fr2
2
2 195.1147 MM
1.20469 INCH 2 0.16227 INCH 2 1.20469 INCH
2
2 777.2165 MM 2 104.6926 MM 2 777.2165 MM
2
2 114.0844 MM 2 180.691 MM 2 114.0844 MM
2
140.6242 105.8552 0 0
MM2 MM2 MM2 MM2
2 0.12555 INCH
81
MM2
Area Available in Outer Reinforcing Pad Weld, A42: 2 A42 = (LEG) fr4
2 0.12555 INCH
81
MM2
Area Available in Inward Nozzle Weld, A43 : 2 A43 = (LEG) fr2
0
INCH
2
0
MM2
Area Available in Reinforcing Pad, A5 : A5 = (Dp - d - 2tn) te fr4
2.9502
INCH
2
2 1903.352 MM
Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43 + A5
4.58282 INCH
2
2 2956.652 MM
AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
INCH INCH2 INCH2 INCH2
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 31 of 136 Sheet : 1 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M4a. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Shell) without reinforcement Nozzle Neck Thickness Calculation Nozzle Size, NPS Nozzle Material
[UG-45 , UG-27 & APPENDIX 1-1] INCH 150 DN 6 ASME SA 106 Grade B
Design Pressure, P Design Temperature For nominated Design Pressure & Temperature, Flange Rating [ANSI/ASME B16.5-1996]
71.708 140 150#
o
o
PSIG F
5.04826 60
Kg/CM2G o
C
Allowable Stress of Nozzle Material @ Design Temp. (60 C), Sn Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 oC), Snt [Table 1A, SubPart 1, ASME Sec. II, Part D]
17100 17100
PSIG PSIG
1203.84 1203.84
Kg/CM2G
Outside Radius of Nozzle, Ron Joint Efficiency of Nozzle, En (Seamless Pipe) Nozzle Corrosion Allowance, Can
3.3125 INCH 1 0.19685 INCH
84.1375
MM
5
MM
0.01387 INCH
0.352236 MM
0.21072 INCH
5.352236 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t
0.23706 INCH
6.021265 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80, with Thickness 0.432" ( 10.97 MM ). [Table 2 of ANSI B 36.10M-1985-(R-1994)]
0.432
INCH
10.9728
MM
Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% Nozzle wall thickness less tolerance 12.5% - Corrosion allowance MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t)
0.378 0.18115 2044.67 956.056
INCH INCH
MM MM
PSIG PSIG
9.6012 4.6012 143.944 67.306
Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 150# @ 100 oF [ASME B.165, Table 2] MWP, Operating & corroded, 150# @ 140 oF [ASME B16.5, Table 2]
285 275
PSIG PSIG
20.064 19.36
Kg/CM2G
Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P)
[APPENDIX 1.1]
By adding Corrosion Allowance, t
[UG-25]
Kg/CM2G Kg/CM2G
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 32 of 136 Sheet : 2 of 5 Date : 11.4.2004
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Client : APRC Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation Without Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS INCH 150 DN 6 Nozzle Pipe Sch. 80 Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2G o o F C Design Temparture 140 60 Shell Material Nozzle Material Reinforcing Pad Material Allowable Stress of Shell Material, Sv Allowable Stress of Nozzle Material, Sn Allowable Stress of Pad Material, Sp
ASME SA106 Grade B ASME SA 106 Grade B N.A. 17100 PSIG 1203.84 17100 PSIG 1203.84 0 PSIG 0
Kg/CM2G Kg/CM2G Kg/CM2G
Shell Thickness Shell Corrosion Allowance, Cas Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA)
0.5 0.19685 0.4375 0.24065
INCH INCH INCH INCH
12.7 5 11.1125 6.1125
MM MM MM MM
Nozzle Wall Nominal Thickness Nozzle Wall Thickness less Pipe Tolerance 12.5% Nozzle Corrosion Allowance, Can
0.432 0.378 0.19685 0.18115 0.18115 0 1 1 1 1 20 19.5187 9.75935
INCH INCH INCH INCH INCH INCH
10.9728 9.6012 5 4.6012 4.6012 0
MM MM MM MM MM MM
INCH INCH INCH
508 MM 495.775 MM 247.8875 MM
INCH INCH INCH INCH INCH INCH INCH
168.275 146.3294 0 15.28125 11.503 159.0726 79.5363
Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti
Reinforced Pad Thickness, te Joint Efficiency of Shell, E Joint Efficiency of Nozzle, En Correction Factor, F [UG-37(a)] E1 [Nozzle in solid plate] Shell Outside Diameter, OD Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t Shell Inside Radius in Corroded Condition, R Nozzle Outside Diameter, OD Nozzle Inside Diameter, ID Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) h1 = 2.5 t h2 = 2.5 ti Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn
Finished Radius of Circular Opening, Rn
6.625 5.761 0 0.60162 0.45287 6.2627 3.13135
MM MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 33 of 136 Sheet : 3 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad (if used)
[UG-40(b)&FIG.UG-37.1]
Dp1 = 2 d Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 [UW-16(c)(2)&FIG.UW-16.1] Calculating Size of Fillet Welds : * For Outward Nozzle Weld [UW-16(c)(2)&FIG.UW-16.1SKETCH (c)] Calculation of tmin. : tmin.1 = 0.75 inch tmin.2 (nozzle wall nominal thickness) tmin.3 (shell wall thickness) tmin. = lesser of tmin.1, tmin. & tmin.3 Calculation of tc : tc1 = 0.25 inch tc2 = 0.7 t min. tc = lesser of tc1 & tc2 By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc Use Leg with Dimension E in Dwg. No. 7443-33-1A
* For Outer Reinforcing Pad Weld (NA) [FIG.UW-16 SKETCH (c)] tmin.1 = 0.75 inch tmin.2 ( te = thk. of reinforcing element) tmin.3 ( shell wall thickness) tmin. = lesser of tmin.1, tmin. 2 & tmin.3 1/2 t min. By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) Use Leg with Dimension D in Dwg. No. 7443-33-1A * Wall Thickness Required : Shell Nozzle
[UG-27(c)(1)] tr = PR / (SE - 0.6 P) trn = PRn /(SnEn - 0.6 P)
* Strength Reduction Factors : Sp / Sv fr1 = Sn / Sv fr2 = Sn / Sv fr3 = lesser of Sn/Sv or Sp/Sv fr4 = Sp / Sv
12.5254 INCH 7.1063 INCH 0 INCH
318.1452 MM 180.5 MM 0 MM
0.75 0.432 0.5 0.432 0.25 0.3024 0.25
19.05 10.9728 12.7 10.9728 6.35 7.68096 6.35
INCH INCH INCH INCH INCH INCH INCH
MM MM MM MM MM MM MM
0.35355 INCH 0.35433 INCH
8.980256 MM 9 MM
0.75 0 0.5 0 0
INCH INCH INCH INCH INCH
19.05 0 12.7 0 0
MM MM MM MM MM
0 0
INCH INCH
0 0
MM MM
0.04829 INCH 0.01316 INCH 0 1 1 1 0
1.226577 MM 0.334373 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 34 of 136 Sheet : 4 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) MIN. NOZZLE NECK WALL THICKNESS CHECK PER UG-45 A. Wall Thickness per UG-45(a) :
trna = trn + C.A.
0.21001 INCH
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only),
INCH INCH INCH INCH
6.223 6.226577 6.226577 7.38125
INCH
#VALUE! MM
INCH
#VALUE! MM
INCH
6.223
MM
INCH
7.112
MM
0.25935 INCH 0.44685 INCH
6.5875 11.35
MM MM
0.2906
INCH
7.38125
MM
0.2906
INCH
7.38125
MM
INCH INCH
6.223 9.6012
MM MM
NA
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (icluding CA) 0.245 (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 The min. nozzle thk. provided = t (1-0.125) 0.378 So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
5.334373 MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 35 of 136 Sheet : 5 of 5 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation Without Reinforcing [UG-37] Area of Reinforcement (without reinforcing Element) : Required Area, A = d tr F + 2 tn tr F(1-fr1)
0.30243 INCH
Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) A1 = The Greater of A11 or A12 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t A22 = 5 (tn - trn) fr2 tn A2 = The Lesser of A21 or A22
0.20213 INCH 2 0.15215 INCH 2 0.15215 INCH
Area Available in Inward Nozzle, A3 : (Not applicable) A31 = 5 t ti fr2 A32 = 5 ti ti fr2 A33 = 2 h ti fr2 A3 = The Greater of A31, A32 or A33
0.21797 0.16408 0 0
Area Available in Outward Nozzle Weld, A41: 2 A41 = (LEG) fr2
2 0.12555 INCH
Area Available in Outer Reinforcing Pad Weld, A42: 2 A42 = (LEG) fr4
0
Area Available in Inward Nozzle Weld, A43 : 2 A43 = (LEG) fr2
0
Area Available in Reinforcing Pad, A5 : (Not applicable) A5 = (Dp - d - 2tn) te fr4
0
Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43
1.48239 INCH
AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
2
2 195.1147 MM
1.20469 INCH 2 0.16227 INCH 2 1.20469 INCH
2
2 777.2165 MM 2 104.6926 MM 2 777.2165 MM
2
2 130.4049 MM 2 98.16263 MM 2 98.16263 MM
INCH2 INCH2 INCH2 INCH2
140.6242 105.8552 0 0
MM2 MM2 MM2 MM2
81
MM2
INCH2
0
MM2
INCH
2
0
MM2
INCH2
0
MM2
2
2 956.3792 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 36 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
N. Integral Type (WN) Main Shell Flange Thickness (item no. 4) Flange Material, [Attached by Bolts] Design Temperature (shell side) Min. Design Metal Temperature, MDMT Bolt-up and Gasket Seating Temperature Assume no corrosion, C [UG-25] Operating Pressure (shell side) Internal Design Pressure, P (MAWP) Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB :
Sheet : 5
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
ASME SA266 ClassSubjected to internal press. o o F C 302 150 o o F C 53.6 12 o o F C 86 30 0.19685 INCH 5 MM Kg/CM2G 241.477 PSIG 17 284.776 PSIG 20.0483 Kg/CM2G 25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
20000
PSIG
1408
Kg/CM2G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) : * at design temp.(operating condition), SnH 17100
PSIG
1408
Kg/CM2G
PSIG
2 1203.84 Kg/CM G
PSIG
2 1203.84 Kg/CM G
INCH
25.4
MM
28 685 482.6 623 12.7
MM MM MM MM MM
25.4 38 40 44
MM MM MM MM
6.35 6 5 31
MM MM MM MM
* at design temp.(operating condition), Sb * or at atmospheric temp./bolt-up temp. (gasket seating), Sa Allowable Stress of Flange Material (ASME SA266 Class 2) : * at design temp.(operating condition), SfH
* or at atmospheric temp./bolt-up temp.(gasket seating), SnC
17100
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
FIG. 2-4, Sketch (6a) Figure (1)
Nominal bolt dia., dB
No. of bolts
28 1
Bolt Hole, d Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] Hup thickness at small end, go = Shell Thickness t
1.10236 26.9685 19 24.5276 0.5
INCH INCH INCH INCH
Hup thickness at back of flange, g1 (assume g1 = 2 go) R must not less than 1.5 the bolt hole (see TEMA Table D-5) Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] Use max. slope 1:3, h = 3.5 g0 Slope angle, Y = arc Tan [(g1-go)/h] Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a] Use r h1 = r * Tan (45-Y/2) E = (A-C)/2
1 1.5 1.5748 1.73228 16.1001 0.25 0.23622 0.17768 1.22047
INCH
(Check D292 )
INCH INCH INCH INCH
Degree INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 37 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 2 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Attached by Bolts] Nominal shell (pipe) size Pipe Schedule No. of bolts Nominal bolt dia., dB Bolt diameter at root of thread
Subjected to internal pressure 20" 30 28 1 INCH 25.4 MM 0.88189 INCH 22.4 MM
Actual cross-sectional area of each bolt, Total actual cross-sectional area of bolts, Ab
0.551 15.428
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[TEMA Table D-5]
Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C Gasket Details: - Flat metal, jacketed asbestos filled, iron or soft steel - Outside diameter = (B.C.D - d) - 2*13 - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 Since bo > 1/4 inch (6.35 MM), [Table 2-5.2] Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] Gasket Factor, m [Table 2-5.1] Min. Seating Stress, y [Table 2-5.1] Facing Sketch [Table 2-5.1] Diameter at location of gasket load reaction, G When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b
685 482.6 623
MM MM MM
22.0472 INCH 20.8661 INCH 0.59055 INCH
560 530 15
MM MM MM
0.29528 INCH
7.5
MM
0.2717 INCH 3.75 7600 PSIG (1a); Column II
6.90109 MM
21.5039 INCH
546.198 MM
[Table 2-5.2]
N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO)
INCH2
2 355.483 MM 2 9953.53 MM
26.9685 INCH 19 INCH 24.5276 INCH
[ Appendix 2-3]
N.B. When b < 1/4", the effective gasket seating width, b = bo
INCH2
[Table 2-5.2]
535.04
Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 38 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal pressure
1. Bolt loading and size of bolts: [Appendix 2-5(c)] (a) Total hydrostatic end force, H = 0.785 G2 P [Appendix 2-3] (b) Total joint-contact surface compression load, Hp =2b*3.14GmP
103373 39182.8
lb lb
46889.2 Kg 17773 Kg
142556 139426
lb lb
64662.2 Kg 63242.6 Kg
25000 25000
PSIG PSIG
1760 1760
5.70222 5.57703
INCH2 INCH2
2 3678.84 MM 2 3598.08 MM
5.70222 15.428 OK
INCH2 INCH2
2 3678.84 MM 2 9953.53 MM
142556 264128
lb lb
64662.2 Kg 119806 Kg
80701.4
lb
36605.6 Kg
39182.8
lb
17773
22671.4
lb
10283.6 Kg
[Table 2-6]
2.17768
INCH
55.3131 MM
hG = (C - G) / 2
[Table 2-6]
1.51185
INCH
38.4011 MM
hT = (R' + g1 + hG) / 2
[Table 2-6]
2.09477
INCH
53.2071 MM
1.67768
INCH
42.6131 MM
[Appendix 2-3]
(c) Min. required bolt load for operating conditions, Wm1 = H + Hp Min. required bolt load for gasket seating, Wm2 = 3.14 b G y Allowable Bolt Stress at atmospheric temp., Sa Allowable Bolt Stress at design temp., Sb
Kg/CM2G Kg/CM2G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
(d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = Wm1 / Sb - Gasket seating, Am2 = Wm2 / Sa [Appendix 2-3] Total required cross-sectional of bolts, Am = the greater of Am1 & Am2
Actual bolt area Ab Since area Ab > area Am, the bolts are adequately enough. (e) Flange design bolt load, W : - For operating conditions, Wo = Wm1 [Appendix 2-5(d)] - For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 2. Total flange moment for design condition: [Appendix 2-5(c)] Flange Loads: Hydrostatic end force on area inside flange, HD = 0.785 B2 P Gasket load (flange design bolt load - total hydrostatic end force), HG
Gasket seating force
H G = Wm1 - H
Kg
Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT
HT = H - HD Lever arms: hD = R' + 0.5 g1
Where R' = R + h1
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 39 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal presure
Flange Moments: Component of moment due to HD, MD = HD hD
[Appendix 2-3]
175742
lb-in
2024.77 Kg-M
Component of moment due to HG, MG = HG hG
[Appendix 2-3]
59238.6
lb-in
682.503 Kg-M
Component of moment due to HT, MT = HT hT
[Appendix 2-3]
47491.3
lb-in
547.16
282472 23539.3
lb-in lb-ft
3254.43 Kg-M
264128
lb
119806
Total moment acting upon the flange, Mo: - For operating condition
Kg-M
[Appendix 2-6]
MO1 = MD + MG + MT
3. Total flange moment for bolt-up condition (Gasket condition): [Appendix 2-6]
Flange Load:
HG = W A = 0.5 (Am + Ab) * Sa
Lever Arm., hG = (C - G) / 2 Flange Moment for gasket condition, M O2 = HG hG = W A (C - G) / 2
(5)
Mo2 * (SfH / SfC ) 4. MO = The greater of MO1 or MO2 (SfH/SfC)
Kg
1.51185 INCH
38.4011 MM
399323
lb-in
4600.7
Kg-M
399323 399323 33276.9
lb-in lb-in lb-ft
4600.7 4600.7
Kg-M Kg-M
5. Shape constants for flange: K=
From Appendix 2, FIG. 2-7.1:
T = Z=
A
1.41939
B
K (1 + 8.55246 Log10 k ) − 1 (1.04720 + 1.9448 k 2 )( k − 1) 2
1.74578
K2 + 1
2.97106
K2 − 1
⎡ K Log10 K ⎤ 1 0.66845 + 5.71690 K −1 ⎢ K2 −1 ⎥ ⎣ ⎦ 2 K (1 + 8.55246 Log K ) − 1 10 U = 1.36136 ( K 2 − 1)( K − 1) 2
Y =
From Appendix 2, FIG. 2-7.2: From Appendix 2, FIG. 2-7.3: From Appendix 2, FIG. 2-7.6:
g1/go ho = SQRT(B go) h/ho F V f
d = (U/V) ho go2 (for integral type flanges) [APPENDIX 2-3] e = F / ho (for integral type flanges) [APPENDIX 2-3]
5.71057 6.27534 2 3.08221 0.56203 0.81225 0.21166 1.02557 22.8457 INCH3 0.26353 INCH-1
3 374374 MM -1 0.01038 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 40 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
[Attached by Bolts]
6. Calculation of flange actual stresses Assume t Factor L =
te + 1 t ^ 3 + d T
Where t = flange thickness factor e = F/ ho (for integral type flanges) e = FL/ ho (for loose type flanges) F = factor for integral type flanges T = factor involving K d = (U/V) ho go2
[Appendix 2-3] [Appendix 2-3] [Appendix 2-3] [Fig. 2-7.2] [Fig. 2-7.1] [Appendix 2-3]
For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)] 1. a. Longitudinal hub stress, operating SH = f Mo / L g12 B (6) [Appendix 2-7(a)] b. Longitudinal hub stress, seating SH = f Mo2 / L g12 B (6) [Appendix 2-7(a)]
1.45669 0.928
INCH
0.26353 INCH-1 NA 0.81225 1.74578 22.8457 INCH3
37
MM
-1 0.01038 MM
374374
MM3
23226.7
PSIG
2 1635.16 Kg/CM G
23226.7
PSIG
2 1635.16 Kg/CM G
2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2 B (7) [Appendix 2-7(a 16135.7
PSIG
2 1135.96 Kg/CM G
SR = (1.33 t e +1) Mo2 / L t2 B (7) [Appendix 2-7(a 16135.7
PSIG
2 1135.96 Kg/CM G
3. a. Tangential flange stress, operating ST = (Y Mo / t2 B) - Z SR (8) [Appendix 2-7(a)] 8620.34
PSIG
2 606.872 Kg/CM G
ST = (Y Mo2 / t2 B) - Z SR (8) [Appendix 2-7(a)8620.34
PSIG
2 606.872 Kg/CM G
b. Radial flange stress, seating
b. Tangential flange stress, seating 4. a. Flange stress, operating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19681.2
PSIG
2 1385.56 Kg/CM G
b. Flange stress, seating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19681.2
PSIG
2 1385.56 Kg/CM G
5. a. Flange stress, operating
0.5 (SH + ST)
[Appendix 2-8(a)(4)]
15923.5
PSIG
2 1121.02 Kg/CM G
b. Flange stress, seating 0.5 (SH + ST) 6. a. Bolt stress, operating = Wm1 / Ab b. Bolt stress, seating = Wm2 / Ab 7. a. Shear stress carried by the fillet weld
[Appendix 2-8(a)(4)]
15923.5 9240.05 9037.19 0
PSIG PSIG PSIG PSIG
1121.02 650.5 636.219 0
7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8] 7.a. For Operating Condition : Allowable design stress of flange at operating condiotion, Sf 20000 PSIG Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG Assume flange thickness (without C.A), toperating 1.45669 INCH Allowable stresses PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable
Kg/CM2
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
Kg/CM2G 1408 1203.84 Kg/CM2G 37 MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
23226.7
20000
>
16135.7
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 41 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
20000
Subjected to internal pressure > 8620.34
0.5(SH + SR) = Sf < Allowable stress
20000
>
19681.2
0.5(SH + ST) = Sf < Allowable stress
20000
>
15923.5
25000
>
9240.05
Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The calculated (actual) stress
The calculated (actual) stress Bolt stress = Wm1 / Ab The calculated (actual) stress
< Allowable stress
7.b. For Gasket Seating : 20000 PSIG 17100 PSIG 1.45669 INCH
Allowable design stress of flange at gasket seating, Sf Allowable design stress of nozzle/vessel at gasket seating, Sn
Assume flange thickness (without C.A), tgasket
Allowable stresses PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable
Kg/CM2
Kg/CM2G 1408 1203.84 Kg/CM2G 37 MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
23226.7
20000
>
16135.7
20000
>
8620.34
20000
>
19681.2
The calculated (actual) stress
0.5(SH + SR) = Sf < Allowable stress 0.5(SH + ST) = Sf < Allowable stress
20000
>
15923.5
The calculated (actual) stress Bolt stress = Wm2 / Ab The calculated (actual) stress
25000
>
9037.19
< Allowable stress
Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The min. flange thickness, t = Max. (toperating, tgasket)
1.45669 INCH
37
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 42 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 7 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure Since all actual stresses are less than the allowable stresses, the selection of t = 4.5 inch, is adequate. If an optimum min. thickness of flange is desired, calculations must be operated with a smaller value of t until one of the actual stresses or stress combination is approximately equal to the allowable stress even though other actual stresses are less than the allowable stress for that actual stress. Flange thickness with C.A & RF = t + 2*corrosion all. + raised face
2.04724
INCH
52
MM
Use flange thickness for construction
2.16535
INCH
55
MM
BOLT SUMMARY Factor K = A/B Gasket width, N Total required cross-sectional area of bolts Actual bolt cross-sectional area, Ab Nominal bolt dia., dB
1.41939 0.59055 INCH 5.70222 INCH2 INCH2 15.428 1 INCH
15 3678.84 9953.53 25.4
MM MM2 MM2 MM
1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.22047 INCH Min. Edge distance, E (for bolt size 0.75") 0.8125 INCH Min. Edge distance, E (for bolt size 7/8") 0.9375 INCH Min. Edge distance, E (for bolt size 1") 1.0625 INCH Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 INCH Min. Edge distance, E (for bolt size 1-1/4") 1.25 INCH 2. Actual Bolt spacing, B from drawing 2.74622 INCH Min. Bolt spacing, B (for bolt size 0.75") 1.75 INCH Min. Bolt spacing, B (for bolt size 7/8") 2.0625 INCH Min. Bolt spacing, B (for bolt size 1") 2.25 INCH Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 INCH Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 INCH Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-11.224.05651 INCH 3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 1.56693 INCH Min. Radial distance, Rh (for bolt size 0.75") 1.125 INCH Min. Radial distance, Rh (for bolt size 7/8") 1.25 INCH Min. Radial distance, Rh (for bolt size 1") 1.375 INCH Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 INCH Min. Radial distance, Rh (for bolt size 1-1/4") 1.75 INCH
31 20.6375 23.8125 26.9875 28.575 31.75 69.7539 44.45 52.3875 57.15 63.5 71.4375 103.035 39.8 28.575 31.75 34.925 38.1 44.45
MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 43 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 8 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) FLANGE FACTORS (a) For Integral Flanges E F = Factor F per Fig. 2-7.2 is then solved by (1 + A ) C 6
3
[
V =
Factor V per Fig. 2-7.3 is then solved by
2.7 3
]1/ 4
Sheet : 5
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure 0.81225
C
E4 2.73 1/ 4 [ ] (1 + A ) 3 C
0.21166
h/SQRT(BGo 0.562026971 f = C36 / (1 + A) 1.02557 The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho
Factor f per Fig. 2-7.6 is then solved by
as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved. (b) For Loose Hub Flanges Factor FL per Fig. 2-7.4 is solved by
FL =
⎛ 1 C 18 ⎜ + ⎝ 2
11A ⎞ A⎞ A ⎞ A ⎞ ⎛ 1 ⎛ 1 ⎛ 1 + + − ⎟ + C 21 ⎜ ⎟ + C 24 ⎜ ⎟ − ⎜ ⎟ ⎝ 4 ⎝ 70 ⎝ 40 6 ⎠ 84 ⎠ 105⎠ 72 ⎠ 1/ 4 3 (1 + A ) ⎛ C ⎞ ⎜ ⎟ ⎝ 2 .7 3 ⎠ C
Factor VL per Fig. 2-7.5 is solved by
VL
1 3C 21 C − 24 − − C18 4 5 2 = 1/ 4 ⎛ 2.73 ⎞ (1 + A ) 3 ⎟ ⎜ ⎝ C ⎠
1.435
0.66229
Factor f per Fig. 2-7.6 is set equal to 1. f=1 1 The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12), (14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3. go
0.5
INCH
12.7
MM
g1 h ho = SQRT(B go), Effective hub length B
1 1.73228 3.08221 19
INCH INCH INCH INCH
25.4 44 78.2881 482.6
MM MM MM MM
(1) (2) (3)
A = (g1/go) - 1 C = 43.68(h/ho)4 C1 = 1/3 + A/12
1 4.35824 0.41667
(4)
C2 = 5/42 + 17 A / 336
0.16964
(5)
C3 = 1/210 + A/360
0.00754
(6)
C4 = 11/360 + 59 A/5040 + (1+3 A)/C
0.96006
(7)
C5 = 1/90 + 5 A/1008 - (1+ A)3/C
-1.81953
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 44 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 9 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) FLANGE FACTORS (CONT.) (8) C6 = 1/120 + 17 A/5040 +1 /C
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure 0.24116
(9)
C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2/7 + 5 A3/2)/C
(10)
C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2/7 + 5 A3/11)/C
1.19331
(11)
C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2/28 + 25 A3/84)/C
1.06991
(12)
C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2/28 + 13 A3/12)/C
-1.55598
(13)
C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2/28 + 5 A3/42)/C
0.46941
(14)
C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2/385 + 6 A3/55)/C 0.28903 C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2/70 + 3 A3/70)/0.09326
(15)
8.80529
(17)
C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2/70 + A3/10)/C -0.12378 C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2/14 + 2 A3/105)/C 0.04744
(18)
C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C32C7 + C82C1 + C22C12)
0.46133
(19)
C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C82C4 + C12C2C9)] / C16
2.2676
(20) (21)
C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C82C5 + C12C2C10)] / C16 -4.32293 C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C82C6 + C12C2C11)] / C16 0.55926
(22)
C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C32C9 + C13C8 C1 + C12C4C2)] / C16
(16)
(C32C10 (C32C11
(23)
C21 = [C1C10C12 + C5C8C3 + C3C14C2 -
(24)
C22 = [C1C11C12 + C6C8C3 + C3C15C2 -
(25)
C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C22C13)] / C16
0.0956
+ C14C8 C1 + C12C5C2)] / C16 -0.11503 + C15C8 C1 + C12C6C2)] / C16 0.05056
(26)
C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 +
(27)
C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 +
C22C14)] C22C15)]
-0.13119
/ C16
0.15946
/ C16
-0.05919
1/4
(28)
C26 = - (C/4)
-1.02168
(29)
C27 = C20 - C17 - 5/12 + C17C26
-4.90543
(30)
C28 = C22 - C19 - 1/12 + C19C26
-1.16343
(31)
1/2
C29 = - (C/4)
-1.04382
(32)
C30 = - (C/4)3/4
-1.06644
(33)
C31 = 3 A/2 - C17 C30
3.91827
(34)
C32 = 1/2 - C19 C30
1.09642
(35)
C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29)
-2.03619
(36)
C34 = 1/12 + C18 - C21 - C18C26
-8.54118
(37)
C35 = - C18 (C/4)3/4
4.61016
(38)
C36 = (C28C35C29 - C32C34C29)/C33
2.05114
(39)
C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33
-2.16975
(40)
E1 = C17C36 + C18 + C19C37
-0.88522
(41)
E2 = C20C36 + C21 + C22C37
-0.02864
(42)
E3 = C23C36 + C24 + C25C37
0.01881
(43)
E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1
1.50639
(44)
E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105)
-0.60061
(45)
E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C)
-1.67593
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 45 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 10 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 5
Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure APPENDIX 2-3 When B < 20 g1, it will be optional for the designer to substitute B1 in the formula stress SH = f * Mo /( L * g12 * B). 20 * g1 B
20 19
INCH INCH
508 482.6
MM MM
B1 = B + g1 for loose & integral type flanges have f 1
20 19.5
INCH INCH
508 495.3
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 46 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
N1. Integral Type (WN) Main Shell Flange Thickness (item no. 3) Flange Material, [Attached by Bolts] Design Temperature (shell side) Min. Design Metal Temperature, MDMT Bolt-up and Gasket Seating Temperature Assume no corrosion, C [UG-25] Operating Pressure (shell side) Internal Design Pressure, P (MAWP) Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB :
Sheet : 6
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
ASME SA266 ClassSubjected to internal press. o o F C 302 150 o o F C 53.6 12 o o F C 86 30 0.19685 INCH 5 MM Kg/CM2G 241.477 PSIG 17 284.776 PSIG 20.0483 Kg/CM2G 25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
20000
PSIG
1408
Kg/CM2G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) : * at design temp.(operating condition), SnH 17100
PSIG
1408
Kg/CM2G
PSIG
2 1203.84 Kg/CM G
PSIG
2 1203.84 Kg/CM G
INCH
25.4
MM
28 840 482.6 778 12.7
MM MM MM MM MM
25.4 38 40 44
MM MM MM MM
6.35 6 5 31
MM MM MM MM
* at design temp.(operating condition), Sb * or at atmospheric temp./bolt-up temp. (gasket seating), Sa Allowable Stress of Flange Material (ASME SA266 Class 2) : * at design temp.(operating condition), SfH
* or at atmospheric temp./bolt-up temp.(gasket seating), SnC
17100
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
FIG. 2-4, Sketch (6a) Figure (2)
Nominal bolt dia., dB
No. of bolts
32 1
Bolt Hole, d Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] Hup thickness at small end, go = Shell Thickness t
1.10236 33.0709 19 30.6299 0.5
INCH INCH INCH INCH
Hup thickness at back of flange, g1 (assume g1 = 2 go) R must not less than 1.5 the bolt hole (see TEMA Table D-5) Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] Use max. slope 1:3, h = 3.5 g0 Slope angle, Y = arc Tan [(g1-go)/h] Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a] Use r h1 = r * Tan (45-Y/2) E = (A-C)/2
1 1.5 1.5748 1.73228 16.1001 0.25 0.23622 0.17768 1.22047
INCH
(Check D292 )
INCH INCH INCH INCH
Degree INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 47 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 2 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.) [Attached by Bolts] Nominal shell (pipe) size Pipe Schedule No. of bolts Nominal bolt dia., dB Bolt diameter at root of thread
Subjected to internal pressure 20" 30 32 1 INCH 25.4 MM 0.88189 INCH 22.4 MM
Actual cross-sectional area of each bolt, Total actual cross-sectional area of bolts, Ab
0.551 17.632
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[TEMA Table D-5]
Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C Gasket Details: - Flat metal, jacketed asbestos filled, iron or soft steel - Outside diameter = (B.C.D - d) - 2*13 - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 Since bo > 1/4 inch (6.35 MM), [Table 2-5.2] Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] Gasket Factor, m [Table 2-5.1] Min. Seating Stress, y [Table 2-5.1] Facing Sketch [Table 2-5.1] Diameter at location of gasket load reaction, G When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b
840 482.6 778
MM MM MM
27.9528 INCH 26.7717 INCH 0.59055 INCH
710 680 15
MM MM MM
0.29528 INCH
7.5
MM
0.2717 INCH 3.75 7600 PSIG (1a); Column II
6.90109 MM
27.4094 INCH
696.198 MM
[Table 2-5.2]
N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO)
INCH2
2 355.483 MM 2 11375.5 MM
33.0709 INCH 19 INCH 30.6299 INCH
[ Appendix 2-3]
N.B. When b < 1/4", the effective gasket seating width, b = bo
INCH2
[Table 2-5.2]
535.04
Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 48 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal pressure
1. Bolt loading and size of bolts: [Appendix 2-5(c)] (a) Total hydrostatic end force, H = 0.785 G2 P [Appendix 2-3] (b) Total joint-contact surface compression load, Hp =2b*3.14GmP
167947 49943.3
lb lb
76179.4 Kg 22653.9 Kg
217890 177716
lb lb
98833.4 Kg 80610.6 Kg
25000 25000
PSIG PSIG
1760 1760
8.7156 7.10863
INCH2 INCH2
2 5622.96 MM 2 4586.2 MM
8.7156 17.632 OK
INCH2 INCH2
2 5622.96 MM 2 11375.5 MM
217890 329345
lb lb
98833.4 Kg 149389 Kg
80701.4
lb
36605.6 Kg
49943.3
lb
22653.9 Kg
87245.4
lb
39573.9 Kg
[Table 2-6]
2.17768
INCH
55.3131 MM
hG = (C - G) / 2
[Table 2-6]
1.61028
INCH
40.9011 MM
hT = (R' + g1 + hG) / 2
[Table 2-6]
2.14398
INCH
54.4571 MM
1.67768
INCH
42.6131 MM
[Appendix 2-3]
(c) Min. required bolt load for operating conditions, Wm1 = H + Hp Min. required bolt load for gasket seating, Wm2 = 3.14 b G y Allowable Bolt Stress at atmospheric temp., Sa Allowable Bolt Stress at design temp., Sb
Kg/CM2G Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
(d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = Wm1 / Sb - Gasket seating, Am2 = Wm2 / Sa [Appendix 2-3] Total required cross-sectional of bolts, Am = the greater of Am1 & Am2
Actual bolt area Ab Since area Ab > area Am, the bolts are adequately enough. (e) Flange design bolt load, W : - For operating conditions, Wo = Wm1 [Appendix 2-5(d)] - For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 2. Total flange moment for design condition: [Appendix 2-5(c)] Flange Loads: Hydrostatic end force on area inside flange, HD = 0.785 B2 P Gasket load (flange design bolt load - total hydrostatic end force), HG
Gasket seating force
H G = Wm1 - H
Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT
HT = H - HD Lever arms: hD = R' + 0.5 g1
Where R' = R + h1
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 49 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal presure
Flange Moments: Component of moment due to HD, MD = HD hD
[Appendix 2-3]
175742
Component of moment due to HG, MG = HG hG
[Appendix 2-3]
Component of moment due to HT, MT = HT hT
[Appendix 2-3]
Total moment acting upon the flange, Mo: - For operating condition
lb-in
2024.77 Kg-M
80422.7
lb-in
926.571 Kg-M
187052
lb-in
2155.08 Kg-M
443217 36934.7
lb-in lb-ft
5106.42 Kg-M
329345
lb
149389
[Appendix 2-6]
MO1 = MD + MG + MT
3. Total flange moment for bolt-up condition (Gasket condition): [Appendix 2-6]
Flange Load:
HG = W A = 0.5 (Am + Ab) * Sa
Lever Arm., hG = (C - G) / 2 Flange Moment for gasket condition, M O2 = HG hG = W A (C - G) / 2
(5)
Mo2 * (SfH / SfC ) 4. MO = The greater of MO1 or MO2 (SfH/SfC) 5. Shape constants for flange: K =
From Appendix 2, FIG. 2-7.1: T = Z=
A
Kg
1.61028 INCH
40.9011 MM
530337
lb-in
6110.16 Kg-M
530337 530337 44194.8
lb-in lb-in lb-ft
6110.16 Kg-M 6110.16 Kg-M
1.74057
B
K (1 + 8.55246 Log10 k ) − 1 (1.04720 + 1.9448 k 2 )( k − 1) 2
K
2
+1
K2 − 1
⎡ K 2 Log10 K ⎤ 0.66845 + 5.71690 Y = ⎢ K −1 ⎣ K2 −1 ⎥ ⎦ 2 K (1 + 8.55246 Log K ) − 1 10 U = 1.36136 ( K 2 − 1)( K − 1)
1.60851 1.98542
1
From Appendix 2, FIG. 2-7.2: From Appendix 2, FIG. 2-7.3: From Appendix 2, FIG. 2-7.6:
g1/go ho = SQRT(B go) h/ho F V f
d = (U/V) ho go2 (for integral type flanges) [APPENDIX 2-3] e = F / ho (for integral type flanges) [APPENDIX 2-3]
3.67613 4.03969 2 3.08221 0.56203 0.81225 0.21166 1.02557 14.7067 INCH3 0.26353 INCH-1
3 241000 MM -1 0.01038 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 50 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
[Attached by Bolts]
6. Calculation of flange actual stresses Assume t Factor L =
te + 1 t ^ 3 + d T
Where t = flange thickness factor e = F/ ho (for integral type flanges) e = FL/ ho (for loose type flanges) F = factor for integral type flanges T = factor involving K d = (U/V) ho go2
[Appendix 2-3] [Appendix 2-3] [Appendix 2-3] [Fig. 2-7.2] [Fig. 2-7.1] [Appendix 2-3]
For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)] 1. a. Longitudinal hub stress, operating SH = f Mo / L g12 B (6) [Appendix 2-7(a)] b. Longitudinal hub stress, seating SH = f Mo2 / L g12 B (6) [Appendix 2-7(a)]
1.59449 1.15857
INCH
0.26353 INCH-1 NA 0.81225 1.60851 14.7067 INCH3
40.5
MM
-1 0.01038 MM
241000
MM3
24708.2
PSIG
2 1739.46 Kg/CM G
24708.2
PSIG
2 1739.46 Kg/CM G
2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2 B (7) [Appendix 2-7(a 14785.2
PSIG
2 1040.88 Kg/CM G
SR = (1.33 t e +1) Mo2 / L t2 B (7) [Appendix 2-7(a 14785.2
PSIG
2 1040.88 Kg/CM G
3. a. Tangential flange stress, operating ST = (Y Mo / t2 B) - Z SR (8) [Appendix 2-7(a)] 11004.8
PSIG
2 774.737 Kg/CM G
ST = (Y Mo2 / t2 B) - Z SR (8) [Appendix 2-7(a)11004.8
PSIG
2 774.737 Kg/CM G
b. Radial flange stress, seating
b. Tangential flange stress, seating 4. a. Flange stress, operating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19746.7
PSIG
2 1390.17 Kg/CM G
b. Flange stress, seating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19746.7
PSIG
2 1390.17 Kg/CM G
5. a. Flange stress, operating
0.5 (SH + ST)
[Appendix 2-8(a)(4)]
17856.5
PSIG
1257.1
Kg/CM2G
b. Flange stress, seating 0.5 (SH + ST) 6. a. Bolt stress, operating = Wm1 / Ab b. Bolt stress, seating = Wm2 / Ab 7. a. Shear stress carried by the fillet weld
[Appendix 2-8(a)(4)]
17856.5 12357.6 10079.2 0
PSIG PSIG PSIG PSIG
1257.1 869.979 709.573 0
Kg/CM2G
7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8] 7.a. For Operating Condition : Allowable design stress of flange at operating condiotion, Sf 20000 PSIG Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG Assume flange thickness (without C.A), toperating 1.59449 INCH Allowable stresses PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable
Kg/CM2
Kg/CM2G Kg/CM2G Kg/CM2G
Kg/CM2G 1408 1203.84 Kg/CM2G 40.5 MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
24708.2
20000
>
14785.2
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 51 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
20000
Subjected to internal pressure > 11004.8
0.5(SH + SR) = Sf < Allowable stress
20000
>
19746.7
0.5(SH + ST) = Sf < Allowable stress
20000
>
17856.5
25000
>
12357.6
Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The calculated (actual) stress
The calculated (actual) stress Bolt stress = Wm1 / Ab The calculated (actual) stress
< Allowable stress
7.b. For Gasket Seating : 20000 PSIG 17100 PSIG 1.59449 INCH
Allowable design stress of flange at gasket seating, Sf Allowable design stress of nozzle/vessel at gasket seating, Sn
Assume flange thickness (without C.A), tgasket
Allowable stresses PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable
Kg/CM2
Kg/CM2G 1408 1203.84 Kg/CM2G 40.5 MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
24708.2
20000
>
14785.2
20000
>
11004.8
20000
>
19746.7
The calculated (actual) stress
0.5(SH + SR) = Sf < Allowable stress 0.5(SH + ST) = Sf < Allowable stress
20000
>
17856.5
The calculated (actual) stress Bolt stress = Wm2 / Ab The calculated (actual) stress
25000
>
10079.2
< Allowable stress
Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The min. flange thickness, t = Max. (toperating, tgasket)
1.59449 INCH
40.5
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 52 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 7 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure Since all actual stresses are less than the allowable stresses, the selection of t = 4.5 inch, is adequate. If an optimum min. thickness of flange is desired, calculations must be operated with a smaller value of t until one of the actual stresses or stress combination is approximately equal to the allowable stress even though other actual stresses are less than the allowable stress for that actual stress. Flange thickness with C.A & RF = t + 2*corrosion all. + raised face
1.98819
INCH
50.5
MM
Use flange thickness for construction
2.04724
INCH
52
MM
BOLT SUMMARY Factor K = A/B Gasket width, N Total required cross-sectional area of bolts Actual bolt cross-sectional area, Ab Nominal bolt dia., dB
1.74057 0.59055 INCH INCH2 8.7156 INCH2 17.632 1 INCH
15 5622.96 11375.5 25.4
MM MM2 MM2 MM
1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.22047 INCH Min. Edge distance, E (for bolt size 0.75") 0.8125 INCH Min. Edge distance, E (for bolt size 7/8") 0.9375 INCH Min. Edge distance, E (for bolt size 1") 1.0625 INCH Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 INCH Min. Edge distance, E (for bolt size 1-1/4") 1.25 INCH 2. Actual Bolt spacing, B from drawing 3.00226 INCH Min. Bolt spacing, B (for bolt size 0.75") 1.75 INCH Min. Bolt spacing, B (for bolt size 7/8") 2.0625 INCH Min. Bolt spacing, B (for bolt size 1") 2.25 INCH Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 INCH Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 INCH Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-11.224.25104 INCH 3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 4.61811 INCH Min. Radial distance, Rh (for bolt size 0.75") 1.125 INCH Min. Radial distance, Rh (for bolt size 7/8") 1.25 INCH Min. Radial distance, Rh (for bolt size 1") 1.375 INCH Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 INCH Min. Radial distance, Rh (for bolt size 1-1/4") 1.75 INCH
31 20.6375 23.8125 26.9875 28.575 31.75 76.2573 44.45 52.3875 57.15 63.5 71.4375 107.976 117.3 28.575 31.75 34.925 38.1 44.45
MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 53 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 8 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.) FLANGE FACTORS (a) For Integral Flanges E F = (1 + A ) C Factor F per Fig. 2-7.2 is then solved by [ ]
Sheet : 6
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
6
3
1/ 4
2.7 3
Factor V per Fig. 2-7.3 is then solved by
V =
0.81225
C
E4 2.73 1/ 4 [ ] (1 + A ) 3 C
0.21166
h/SQRT(BGo 0.562026971 f = C36 / (1 + A) 1.02557 The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho
Factor f per Fig. 2-7.6 is then solved by
as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved. (b) For Loose Hub Flanges Factor FL per Fig. 2-7.4 is solved by
FL =
⎛ 1 C 18 ⎜ + ⎝ 2
11A ⎞ A⎞ A ⎞ A ⎞ ⎛ 1 ⎛ 1 ⎛ 1 + + − ⎟ + C 21 ⎜ ⎟ + C 24 ⎜ ⎟ − ⎜ ⎟ ⎝ 4 ⎝ 70 ⎝ 40 6 ⎠ 84 ⎠ 105⎠ 72 ⎠ 1/ 4 (1 + A ) 3 ⎛ C ⎞ ⎜ ⎟ ⎝ 2 .7 3 ⎠ C
Factor VL per Fig. 2-7.5 is solved by
VL
1 3C 21 C − 24 − − C18 4 5 2 = 1/ 4 ⎛ 2.73 ⎞ (1 + A ) 3 ⎜ ⎟ ⎝ C ⎠
1.435
0.66229
Factor f per Fig. 2-7.6 is set equal to 1. f=1 1 The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12), (14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3. go
0.5
INCH
12.7
MM
g1 h ho = SQRT(B go), Effective hub length B
1 1.73228 3.08221 19
INCH INCH INCH INCH
25.4 44 78.2881 482.6
MM MM MM MM
(1) (2) (3)
A = (g1/go) - 1 C = 43.68(h/ho)4 C1 = 1/3 + A/12
1 4.35824 0.41667
(4)
C2 = 5/42 + 17 A / 336
0.16964
(5)
C3 = 1/210 + A/360
0.00754
(6)
C4 = 11/360 + 59 A/5040 + (1+3 A)/C
0.96006
(7)
C5 = 1/90 + 5 A/1008 - (1+ A)3/C
-1.81953
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 54 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 9 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.) FLANGE FACTORS (CONT.) (8) C6 = 1/120 + 17 A/5040 +1 /C
0.24116
(9)
C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2/7 + 5 A3/2)/C
8.80529
(10)
C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2/7 + 5 A3/11)/C
1.19331
(11)
C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2/28 + 25 A3/84)/C
1.06991
(12)
C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2/28 + 13 A3/12)/C
-1.55598
(13)
C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2/28 + 5 A3/42)/C
0.46941
(14)
C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2/385 + 6 A3/55)/C 0.28903 C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2/70 + 3 A3/70)/0.09326
(15)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
(17)
C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2/70 + A3/10)/C -0.12378 C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2/14 + 2 A3/105)/C 0.04744
(18)
C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C32C7 + C82C1 + C22C12)
0.46133
(19)
C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C82C4 + C12C2C9)] / C16
2.2676
(20) (21)
C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C82C5 + C12C2C10)] / C16 -4.32293 C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C82C6 + C12C2C11)] / C16 0.55926
(22)
C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C32C9 + C13C8 C1 + C12C4C2)] / C16
(16)
(C32C10 (C32C11
(23)
C21 = [C1C10C12 + C5C8C3 + C3C14C2 -
(24)
C22 = [C1C11C12 + C6C8C3 + C3C15C2 -
(25)
C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C22C13)] / C16
0.0956
+ C14C8 C1 + C12C5C2)] / C16 -0.11503 + C15C8 C1 + C12C6C2)] / C16 0.05056
(26)
C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 +
(27)
C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 +
C22C14)] C22C15)]
-0.13119
/ C16
0.15946
/ C16
-0.05919
1/4
(28)
C26 = - (C/4)
-1.02168
(29)
C27 = C20 - C17 - 5/12 + C17C26
-4.90543
(30)
C28 = C22 - C19 - 1/12 + C19C26
-1.16343
(31)
1/2
C29 = - (C/4)
-1.04382
(32)
C30 = - (C/4)3/4
-1.06644
(33)
C31 = 3 A/2 - C17 C30
3.91827
(34)
C32 = 1/2 - C19 C30
1.09642
(35)
C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29)
-2.03619
(36)
C34 = 1/12 + C18 - C21 - C18C26
-8.54118
(37)
C35 = - C18 (C/4)3/4
4.61016
(38)
C36 = (C28C35C29 - C32C34C29)/C33
2.05114
(39)
C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33
-2.16975
(40)
E1 = C17C36 + C18 + C19C37
-0.88522
(41)
E2 = C20C36 + C21 + C22C37
-0.02864
(42)
E3 = C23C36 + C24 + C25C37
0.01881
(43)
E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1
1.50639
(44)
E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105)
-0.60061
(45)
E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C)
-1.67593
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 55 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 10 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 6
Item : E-323A/B & E-514C/D
N1. Integral Type (W.N.) Main Shell Flange Thickness, item no. 3 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure APPENDIX 2-3 When B < 20 g1, it will be optional for the designer to substitute B1 in the formula stress SH = f * Mo /( L * g12 * B). 20 * g1 B
20 19
INCH INCH
508 482.6
MM MM
B1 = B + g1 for loose & integral type flanges have f 1
20 19.5
INCH INCH
508 495.3
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 56 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R N2. Integral Type (WN) Main Shell Flange Thickness (item no. 12) Flange Material, [Attached by Bolts] Design Temperature (shell side) Min. Design Metal Temperature, MDMT Bolt-up and Gasket Seating Temperature Assume no corrosion, C [UG-25] Operating Pressure (shell side) Internal Design Pressure, P (MAWP) Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB :
Sheet : 7
Date : 4.7.2003 Location : Alex. Client : APRC Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
ASME SA266 Class2 o F 302 o F 53.6 o F 86 0.19685 INCH 241.4773 PSIG 284.7764 PSIG
Subjected to internal press.
25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
20000
PSIG
1408
Kg/CM2G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) : * at design temp.(operating condition), SnH 17100 * or at atmospheric temp./bolt-up temp.(gasket seating), SnC 17100
PSIG
1408
Kg/CM2G
PSIG
1203.84
Kg/CM2G
PSIG
1203.84
Kg/CM2G
INCH
25.4
MM
28 840 635.46 775.62 12.7
MM MM MM MM MM
25.4 38 40 44
MM MM MM MM
6.35 6 5 32.19
MM MM MM MM
* at design temp.(operating condition), Sb * or at atmospheric temp./bolt-up temp. (gasket seating), Sa Allowable Stress of Flange Material (ASME SA266 Class 2) : * at design temp.(operating condition), SfH
o C 150 o C 12 o C 30 5 MM Kg/CM2G 17 20.04826 Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
FIG. 2-4, Sketch (6a) Figure (3)
Nominal bolt dia., dB
No. of bolts
32 1
Bolt Hole, d Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] Hup thickness at small end, go = Shell Thickness t
1.102362 33.07087 25.01811 30.53622 0.5
INCH INCH INCH INCH
Hup thickness at back of flange, g1 (assume g1 = 2 go) 1 R must not less than 1.5 the bolt hole (see TEMA Table D-5) 1.5 Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] 1.574803 Use max. slope 1:3, h = 3.5 g0 1.732283 Slope angle, Y = arc Tan [(g1-go)/h] 16.10006 Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a]0.25 Use r 0.23622 h1 = r * Tan (45-Y/2) 0.177682 E = (A-C)/2 1.267323
INCH
(Check D292 )
INCH INCH INCH INCH
Degree INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 57 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 2 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.) [Attached by Bolts] Nominal shell (pipe) size Pipe Schedule No. of bolts Nominal bolt dia., dB Bolt diameter at root of thread
32 1 0.88189
Actual cross-sectional area of each bolt, Total actual cross-sectional area of bolts, Ab
0.551 17.632
[TEMA Table D-5]
Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C Gasket Details: - Flat metal, jacketed asbestos filled, iron or soft steel - Outside diameter = (B.C.D - d) - 2*13 - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 Since bo > 1/4 inch (6.35 MM), [Table 2-5.2] Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] Gasket Factor, m [Table 2-5.1] Min. Seating Stress, y [Table 2-5.1] Facing Sketch [Table 2-5.1] Diameter at location of gasket load reaction, G When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure 26"
INCH INCH2 INCH2
MM MM
2 355.4832 MM 2 11375.46 MM
840 635.46 775.62
MM MM MM
27.95276 INCH 26.77165 INCH 0.590551 INCH
710 680 15
MM MM MM
0.295276 INCH
7.5
MM
0.271696 INCH 3.75 7600 PSIG (1a); Column II
6.901087 MM
27.40936 INCH
[Table 2-5.2]
N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO)
25.4 22.4
33.07087 INCH 25.01811 INCH 30.53622 INCH
[ Appendix 2-3]
N.B. When b < 1/4", the effective gasket seating width, b = bo
INCH
[Table 2-5.2]
535.04
Kg/CM2G
696.1978 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 58 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal pressure
1. Bolt loading and size of bolts: [Appendix 2-5(c)] (a) Total hydrostatic end force, H = 0.785 G2 P [Appendix 2-3] (b) Total joint-contact surface compression load, Hp =2b*3.14GmP
167946.7 lb 49943.35 lb
76179.45 Kg 22653.95 Kg
217890.1 lb 177715.8 lb
98833.4 Kg 80610.61 Kg
25000 25000
1760 1760
[Appendix 2-3]
(c) Min. required bolt load for operating conditions, Wm1 = H + Hp Min. required bolt load for gasket seating, Wm2 = 3.14 b G y Allowable Bolt Stress at atmospheric temp., Sa Allowable Bolt Stress at design temp., Sb
PSIG PSIG
Kg/CM2G Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
(d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = Wm1 / Sb - Gasket seating, Am2 = Wm2 / Sa
2 8.715603 INCH 2 7.108631 INCH
2 5622.959 MM 2 4586.204 MM
2 8.715603 INCH INCH2 17.632 OK
2 5622.959 MM 2 11375.46 MM
217890.1 lb 329345 lb
98833.4 Kg 149388.6 Kg
139920.9 lb
63467.14 Kg
49943.35 lb
22653.95 Kg
[Appendix 2-3] Total required cross-sectional of bolts, Am = the greater of Am1 & Am2
Actual bolt area Ab Since area Ab > area Am, the bolts are adequately enough. (e) Flange design bolt load, W : - For operating conditions, Wo = Wm1 [Appendix 2-5(d)] - For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 2. Total flange moment for design condition: [Appendix 2-5(c)] Flange Loads: Hydrostatic end force on area inside flange, HD = 0.785 B2 P Gasket load (flange design bolt load - total hydrostatic end force), HG
Gasket seating force
H G = Wm1 - H
Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT
HT = H - HD
28025.81 lb
12712.31 Kg
[Table 2-6]
2.177682 INCH
55.31312 MM
hG = (C - G) / 2
[Table 2-6]
1.563429 INCH
39.71109 MM
hT = (R' + g1 + hG) / 2
[Table 2-6]
2.120555 INCH
53.8621
1.677682 INCH
42.61312 MM
Lever arms: hD = R' + 0.5 g1
Where R' = R + h1
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 59 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal presure
Flange Moments: Component of moment due to HD, MD = HD hD
[Appendix 2-3]
304703.2 lb-in
3510.565 Kg-M
Component of moment due to HG, MG = HG hG
[Appendix 2-3] 78082.86 lb-in
899.6129 Kg-M
Component of moment due to HT, MT = HT hT
[Appendix 2-3] 59430.27 lb-in
684.7116 Kg-M
Total moment acting upon the flange, Mo: - For operating condition
[Appendix 2-6]
MO1 = MD + MG + MT
442216.4 lb-in 36851.36 lb-ft
5094.89
Kg-M
329345
149388.6 Kg
3. Total flange moment for bolt-up condition (Gasket condition): [Appendix 2-6]
Flange Load:
HG = W A = 0.5 (Am + Ab) * Sa
Lever Arm., hG = (C - G) / 2 Flange Moment for gasket condition, M O2 = HG hG = W A (C - G) / 2
(5)
Mo2 * (SfH / SfC ) 4. MO = The greater of MO1 or MO2 (SfH/SfC)
lb
1.563429 INCH
39.71109 MM
514907.5 lb-in
5932.383 Kg-M
514907.5 lb-in 514907.5 lb-in 42908.96 lb-ft
5932.383 Kg-M 5932.383 Kg-M
5. Shape constants for flange: K =
From Appendix 2, FIG. 2-7.1: T = Z=
A
B
K (1 + 8.55246 Log10 k ) − 1 (1.04720 + 1.9448 k 2 )( k − 1)
1.321877
2
K
2
+1
K2 − 1
⎡ K 2 Log10 K ⎤ 0.66845 + 5.71690 Y = ⎢ K −1 ⎣ K2 −1 ⎥ ⎦ 2 K (1 + 8.55246 Log K ) − 1 10 U = 1.36136 ( K 2 − 1)( K − 1)
1.78802 3.67609
1
From Appendix 2, FIG. 2-7.2: From Appendix 2, FIG. 2-7.3: From Appendix 2, FIG. 2-7.6:
g1/go ho = SQRT(B go) h/ho F V f
d = (U/V) ho go2 (for integral type flanges) [APPENDIX 2-3] e = F / ho (for integral type flanges) [APPENDIX 2-3]
7.109344 7.812448 2 3.536814 0.489786 0.82792 0.230119 1.261692 30.01842 INCH3 0.234086 INCH-1
3 491913.7 MM -1 0.009216 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 60 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
[Attached by Bolts]
6. Calculation of flange actual stresses Assume t Factor L =
te + 1 t ^ 3 + T d
Where t = flange thickness factor e = F/ ho (for integral type flanges) e = FL/ ho (for loose type flanges) F = factor for integral type flanges T = factor involving K d = (U/V) ho go2
[Appendix 2-3] [Appendix 2-3] [Appendix 2-3] [Fig. 2-7.2] [Fig. 2-7.1] [Appendix 2-3]
1.692913 INCH 0.942541
43
0.234086 INCH-1 NA 0.82792 1.78802 30.01842 INCH3
-1 0.009216 MM
For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)] 1. a. Longitudinal hub stress, operating SH = f Mo / L g12 B (6) [Appendix 2-7(a) 27550.39 PSIG b. Longitudinal hub stress, seating SH = f Mo2 / L g12 B (6) [Appendix 2-7(a)]27550.39 PSIG
MM
3 491913.7 MM
2 1939.547 Kg/CM G 2 1939.547 Kg/CM G
2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2 B (7) [Appendix 2- 11644.84 PSIG b. Radial flange stress, seating SR = (1.33 t e +1) Mo2 / L t2 B (7) [Appendix 2 11644.84 PSIG
2 819.7971 Kg/CM G
3. a. Tangential flange stress, operating ST = (Y Mo / t2 B) - Z SR (8) [Appendix 2-7 8247.083 PSIG b. Tangential flange stress, seating ST = (Y Mo2 / t2 B) - Z SR (8) [Appendix 2- 8247.083 PSIG
2 580.5946 Kg/CM G
4. a. Flange stress, operating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19597.61 PSIG
2 1379.672 Kg/CM G
b. Flange stress, seating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19597.61 PSIG
2 1379.672 Kg/CM G
5. a. Flange stress, operating
0.5 (SH + ST)
[Appendix 2-8(a)(4)]
17898.73 PSIG
2 1260.071 Kg/CM G
b. Flange stress, seating 0.5 (SH + ST) 6. a. Bolt stress, operating = Wm1 / Ab b. Bolt stress, seating = Wm2 / Ab 7. a. Shear stress carried by the fillet weld
[Appendix 2-8(a)(4)]
17898.73 12357.65 10079.16 0
1260.071 869.9786 709.573 0
Kg/CM2G
1408 1203.84 43
Kg/CM2G Kg/CM2G
PSIG PSIG PSIG PSIG
7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8] 7.a. For Operating Condition : Allowable design stress of flange at operating condiotion, Sf 20000 PSIG Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG Assume flange thickness (without C.A), toperating 1.692913 INCH Allowable stresses Kg/CM2
PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable
2 819.7971 Kg/CM G
2 580.5946 Kg/CM G
Kg/CM2G Kg/CM2G Kg/CM2G
MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
27550.39
20000
>
11644.84
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 61 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
20000
Subjected to internal pressure > 8247.083
0.5(SH + SR) = Sf < Allowable stress
20000
>
19597.61
0.5(SH + ST) = Sf < Allowable stress
20000
>
17898.73
25000
>
12357.65
Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The calculated (actual) stress
The calculated (actual) stress Bolt stress = Wm1 / Ab The calculated (actual) stress
< Allowable stress
7.b. For Gasket Seating : 20000 PSIG 17100 PSIG 1.692913 INCH
Allowable design stress of flange at gasket seating, Sf Allowable design stress of nozzle/vessel at gasket seating, Sn
Assume flange thickness (without C.A), tgasket
Allowable stresses Kg/CM2
PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable
1408 1203.84 43
>
27550.39
20000
>
11644.84
20000
>
8247.083
20000
>
19597.61
The calculated (actual) stress
0.5(SH + SR) = Sf < Allowable stress 0.5(SH + ST) = Sf < Allowable stress
20000
>
17898.73
The calculated (actual) stress Bolt stress = Wm2 / Ab The calculated (actual) stress
25000
>
10079.16
< Allowable stress
[Appendix 2-8(a)(2)]
MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
Radial Flange Stress SR = Sf
Kg/CM2G Kg/CM2G
The calculated (actual) radial stress S R < SR allowable Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The min. flange thickness, t = Max. (toperating, tgasket)
1.692913 INCH
43
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 62 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 7 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Item : E-323A/B & E-514C/D
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure Since all actual stresses are less than the allowable stresses, the selection of t = 4.5 inch, is adequate. If an optimum min. thickness of flange is desired, calculations must be operated with a smaller value of t until one of the actual stresses or stress combination is approximately equal to the allowable stress even though other actual stresses are less than the allowable stress for that actual stress. Flange thickness with C.A & RF = t + 2*corrosion all. + raised face
2.086614 INCH
53
MM
Use flange thickness for construction
2.125984 INCH
54
MM
BOLT SUMMARY Factor K = A/B Gasket width, N Total required cross-sectional area of bolts Actual bolt cross-sectional area, Ab Nominal bolt dia., dB
1.321877 0.590551 8.715603 17.632 1
INCH2 INCH
15 5622.959 11375.46 25.4
MM MM2 MM2 MM
1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.267323 Min. Edge distance, E (for bolt size 0.75") 0.8125 Min. Edge distance, E (for bolt size 7/8") 0.9375 Min. Edge distance, E (for bolt size 1") 1.0625 Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 Min. Edge distance, E (for bolt size 1-1/4") 1.25 2. Actual Bolt spacing, B from drawing 2.993073 Min. Bolt spacing, B (for bolt size 0.75") 1.75 Min. Bolt spacing, B (for bolt size 7/8") 2.0625 Min. Bolt spacing, B (for bolt size 1") 2.25 Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-114.389995 3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 1.562205 Min. Radial distance, Rh (for bolt size 0.75") 1.125 Min. Radial distance, Rh (for bolt size 7/8") 1.25 Min. Radial distance, Rh (for bolt size 1") 1.375 Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 Min. Radial distance, Rh (for bolt size 1-1/4") 1.75
INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH
32.19 20.6375 23.8125 26.9875 28.575 31.75 76.02405 44.45 52.3875 57.15 63.5 71.4375 111.5059 39.68 28.575 31.75 34.925 38.1 44.45
MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM
INCH INCH2
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 63 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 8 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.) FLANGE FACTORS (a) For Integral Flanges E F = Factor F per Fig. 2-7.2 is then solved by (1 + A ) C 6
3
[
Factor V per Fig. 2-7.3 is then solved by
V =
2.7 3
]1/ 4
Sheet : 7
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure 0.82792
C
E4 2.73 1/ 4 [ ] (1 + A ) 3 C
0.230119
h/SQRT(BGo) 0.48978638 f = C36 / (1 + A) 1.261692 The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho
Factor f per Fig. 2-7.6 is then solved by
as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved. (b) For Loose Hub Flanges Factor FL per Fig. 2-7.4 is solved by
FL =
⎛ 1 C 18 ⎜ + ⎝ 2
11A ⎞ A⎞ A ⎞ A ⎞ ⎛ 1 ⎛ 1 ⎛ 1 + + − ⎟ + C 21 ⎜ ⎟ + C 24 ⎜ ⎟ − ⎜ ⎟ ⎝ 4 ⎝ 70 ⎝ 40 6 ⎠ 84 ⎠ 105⎠ 72 ⎠ 1/ 4 3 ( 1 ) C A + ⎛ ⎞ ⎜ ⎟ ⎝ 2 .7 3 ⎠ C
Factor VL per Fig. 2-7.5 is solved by
VL
C 1 3C 21 − 24 − − C18 4 5 2 = 1/ 4 ⎛ 2.73 ⎞ (1 + A ) 3 ⎜ ⎟ ⎝ C ⎠
1.641051
0.973065
Factor f per Fig. 2-7.6 is set equal to 1. f=1 1 The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12), (14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3. go
0.5
INCH
12.7
MM
g1 h ho = SQRT(B go), Effective hub length B
1 1.732283 3.536814 25.01811
INCH INCH INCH INCH
25.4 44 89.83508 635.46
MM MM MM MM
(1) (2) (3)
A = (g1/go) - 1 C = 43.68(h/ho)4 C1 = 1/3 + A/12
1 2.513677 0.416667
(4)
C2 = 5/42 + 17 A / 336
0.169643
(5)
C3 = 1/210 + A/360
0.00754
(6)
C4 = 11/360 + 59 A/5040 + (1+3 A)/C
1.633556
(7)
C5 = 1/90 + 5 A/1008 - (1+ A)3/C
-3.166517
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 64 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 9 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.) FLANGE FACTORS (CONT.) (8) C6 = 1/120 + 17 A/5040 +1 /C (9)
C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2/7 + 5 A3/2)/C
(10)
C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2/7 + 5 A3/11)/C
Sheet : 7
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure 0.40953 15.17942
(11)
2.063598 C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2/28 + 25 A3/84)/C1.83561
(12)
C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2/28 + 13 A3/12)/C
(14)
-2.706528 C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2/28 + 5 A3/42)/C 0.808159 C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2/385 + 6 A3/55)/C0.500699
(15)
C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2/70 + 3 A3/70.160608
(16)
C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2/70 + A3/10)/-0.215178
(17)
C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2/14 + 2 A3/105)/0.081914
(18)
C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C32C7 + C82C1 + C22C12)
(13)
(19)
1.382461 C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C82C4 + C12C2C9)] / C16 3.884126
(20)
C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C82C5 + C12C2C10)] / C -7.555421
(21)
C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C82C6 + C12C2C11)] / C 0.963379
(22)
C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C32C9 + C13C8 C1 + C12C4C2)] / C16 0.095208 C21 = [C1C10C12 + C5C8C3 + C3C14C2 - (C32C10 + C14C8 C1 + C12C5C2)] / C1-0.115776
(23) (24) (25)
C22 = [C1C11C12 + C6C8C3 + C3C15C2 - (C32C11 + C15C8 C1 + C12C6C2)] / C10.0505 C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C22C13)] / C16 -0.130112
(27)
C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 + C22C14)] / C16 0.161181 C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 + C22C15)] / C16 -0.05904
(28)
C26 = - (C/4)1/4
-0.890353
(29)
C27 = C20 - C17 - 5/12 + C17C26
-7.66383
(30)
C28 = C22 - C19 - 1/12 + C19C26
-1.853961
(26)
(31)
1/2
C29 = - (C/4)
-0.792729
(32)
C30 = - (C/4)3/4
-0.705809
(33)
C31 = 3 A/2 - C17 C30
4.241451
(34)
C32 = 1/2 - C19 C30
1.179962
(35)
C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29)
-2.114621
(36)
C34 = 1/12 + C18 - C21 - C18C26
-14.0833
(37)
C35 = - C18 (C/4)3/4
5.332683
(38)
C36 = (C28C35C29 - C32C34C29)/C33
2.523383
(39)
C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33
-3.599076
(40)
E1 = C17C36 + C18 + C19C37
-1.221557
(41)
E2 = C20C36 + C21 + C22C37
-0.057285
(42)
E3 = C23C36 + C24 + C25C37
0.045348
(43)
E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1
1.879338
(44)
E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105)
(45)
-0.835114 E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C) -2.581105
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 65 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 10 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
N2. Integral Type (W.N.) Main Shell Flange Thickness, item no. 12 (cont.)
Sheet : 7
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure APPENDIX 2-3 When B < 20 g1, it will be optional for the designer to substitute B1 in the formula stress SH = f * Mo /( L * g12 * B). 20 * g1 B
20 INCH 25.01811 INCH
508 635.46
MM MM
B1 = B + g1 for loose & integral type flanges have f 1 25.51811 INCH
660.86 648.16
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 66 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
O. Integral Type (WN) Main Channel Flanges Thickness (items no. 18) Flange Material, [Attached by Bolts] Design Temperature (tube side) Min. Design Metal Temperature, MDMT Bolt-up and Gasket Seating Temperature Assume no corrosion, C [UG-25] Operating Pressure (tube side) Internal Design Pressure, P (MAWP) Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB :
Sheet : 9
Item : E-323A/B & E-514C/D [Appendix 2] [FIG. 2-4, Sketch (6a)]
ASME SA266 Class2+ SB171 C63000 o o F C 60 140 o o F C 53.6 12 o o F C 86 30 0.19685 INCH 5 MM Kg/CM2G 42.61364 PSIG 3 71.70824 PSIG 5.04826 Kg/CM2G 25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
20000
PSIG
1408
Kg/CM2G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) : * at design temp.(operating condition), SnH 17100 * or at atmospheric temp./bolt-up temp.(gasket seating), SnC 17100
PSIG
1408
Kg/CM2G
PSIG
1203.84
Kg/CM2G
PSIG
1203.84
Kg/CM2G
INCH
25.4
MM
28 685 482.6 623 12.7
MM MM MM MM MM
25.4 38 40 44
MM MM MM MM
6.35 6 5 31
MM MM MM MM
* at design temp.(operating condition), Sb * or at atmospheric temp./bolt-up temp. (gasket seating), Sa Allowable Stress of Flange Material (ASME SA266 Class 2) : * at design temp.(operating condition), SfH
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
FIG. 2-4, Sketch (6a) Figure (4)
Nominal bolt dia., dB
No. of bolts
28 1
Bolt Hole, d Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] Hup thickness at small end, go = Shell Thickness t
1.102362 26.9685 19 24.52756 0.5
INCH INCH INCH INCH
Hup thickness at back of flange, g1 (assume g1 = 2 go) 1 R must not less than 1.5 the bolt hole (see TEMA Table D-5) 1.5 Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] 1.574803 Use max. slope 1:3, h = 3.5 g0 1.732283 Slope angle, Y = arc Tan [(g1-go)/h] 16.10006 Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a 0.25 Use r 0.23622 h1 = r * Tan (45-Y/2) 0.177682 E = (A-C)/2 1.220472
INCH
(Check D292 )
INCH INCH INCH INCH
Degree INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 67 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 2 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.) [Attached by Bolts] Nominal shell size Pipe Schedule No. of bolts Nominal bolt dia., dB Bolt diameter at root of thread
20" 30 28 1 0.88189
Actual cross-sectional area of each bolt, Total actual cross-sectional area of bolts, Ab
0.551 15.428
[TEMA Table D-5]
Flange outside diameter, A Flange inside diameter, B Bolt circut diameter (B.C.D.), C Gasket Details: - Flat metal, jacketed asbestos filled, soft copp[er or brass - Outside diameter = (B.C.D - d) - 2*13 - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 Since bo > 1/4 inch (6.35 MM), [Table 2-5.2] Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] Gasket Factor, m [Table 2-5.1] Min. Seating Stress, y [Table 2-5.1] Facing Sketch [Table 2-5.1] Diameter at location of gasket load reaction, G When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
INCH INCH2 INCH2
MM MM
2 355.4832 MM 2 9953.528 MM
685 482.6 623
MM MM MM
22.04724 INCH 20.86614 INCH 0.590551 INCH
560 530 15
MM MM MM
0.295276 INCH
7.5
MM
0.271696 INCH 3.5 6500 PSIG (1a); Column II
6.901087 MM
21.50385 INCH
[Table 2-5.2]
N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO)
25.4 22.4
26.9685 INCH 19 INCH 24.52756 INCH
[ Appendix 2-3]
N.B. When b < 1/4", the effective gasket seating width, b = bo
INCH
[Table 2-5.2]
457.6
Kg/CM2G
546.1978 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 68 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal pressure
1. Bolt loading and size of bolts: [Appendix 2-5(c)] (a) Total hydrostatic end force, H = 0.785 G2 P [Appendix 2-3] (b) Total joint-contact surface compression load, Hp =2b*3.14GmP
26029.82 lb 9208.667 lb
11806.94 Kg 4176.986 Kg
35238.49 lb 119245.8 lb
15983.93 Kg 54089.04 Kg
25000 25000
1760 1760
[Appendix 2-3]
(c) Min. required bolt load for operating conditions, Wm1 = H + Hp Min. required bolt load for gasket seating, Wm2 = 3.14 b G y Allowable Bolt Stress at atmospheric temp., Sa Allowable Bolt Stress at design temp., Sb
PSIG PSIG
Kg/CM2G Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
(d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = Wm1 / Sb - Gasket seating, Am2 = Wm2 / Sa
2 1.40954 INCH 2 4.769831 INCH
2 909.3785 MM 2 3077.304 MM
2 4.769831 INCH INCH2 15.428 OK
2 3077.304 MM 2 9953.528 MM
35238.49 lb 252472.9 lb
15983.93 Kg 114519.9 Kg
20321.04 lb
9217.479 Kg
9208.667 lb
4176.986 Kg
[Appendix 2-3] Total required cross-sectional of bolts, Am = the greater of Am1 & Am2
Actual bolt area Ab Since area Ab > area Am, the bolts are adequately enough. (e) Flange design bolt load, W : - For operating conditions, Wo = Wm1 [Appendix 2-5(d)] - For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 2. Total flange moment for design condition: [Appendix 2-5(c)] Flange Loads: Hydrostatic end force on area inside flange, HD = 0.785 B2 P Gasket load (flange design bolt load - total hydrostatic end force), HG
Gasket seating force
H G = Wm1 - H
Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT
HT = H - HD
5708.784 lb
2589.464 Kg
[Table 2-6]
2.177682 INCH
55.31312 MM
hG = (C - G) / 2
[Table 2-6]
1.511854 INCH
38.40109 MM
hT = (R' + g1 + hG) / 2
[Table 2-6]
2.094768 INCH
53.2071
1.677682 INCH
42.61312 MM
Lever arms: hD = R' + 0.5 g1
Where R' = R + h1
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 69 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts]
Subjected to internal presure
Flange Moments: Component of moment due to HD, MD = HD hD
[Appendix 2-3] 44252.75 lb-in
509.8475 Kg-M
Component of moment due to HG, MG = HG hG
[Appendix 2-3] 13922.16 lb-in
160.4008 Kg-M
Component of moment due to HT, MT = HT hT
[Appendix 2-3] 11958.58 lb-in
137.7779 Kg-M
Total moment acting upon the flange, Mo: - For operating condition
[Appendix 2-6]
MO1 = MD + MG + MT
70133.49 lb-in 5844.457 lb-ft
808.0261 Kg-M
252472.9 lb
114519.9 Kg
3. Total flange moment for bolt-up condition (Gasket condition): [Appendix 2-6]
Flange Load:
HG = W A = 0.5 (Am + Ab) * Sa
Lever Arm., hG = (C - G) / 2 Flange Moment for gasket condition, M O2 = HG hG = W A (C - G) / 2 Mo2 * (SfH / SfC ) 4. MO = The greater of MO1 or MO2 (SfH/SfC)
(5)
1.511854 INCH
38.40109 MM
381702.1 lb-in
4397.689 Kg-M
381702.1 lb-in 381702.1 lb-in 31808.51 lb-ft
4397.689 Kg-M 4397.689 Kg-M
5. Shape constants for flange: K =
From Appendix 2, FIG. 2-7.1: T = Z=
A
1.419395
B
K 2 (1 + 8.55246 Log10 k ) − 1 (1.04720 + 1.9448 k 2 )( k − 1)
K2 + 1
2.971061
K2 − 1
⎡ K Log10 K ⎤ 1 0.66845 + 5.71690 K −1 ⎢ K2 −1 ⎥ ⎣ ⎦ 2 K (1 + 8.55246 Log K ) − 1 10 U = 1.36136( K 2 − 1)( K − 1)
Y =
From Appendix 2, FIG. 2-7.2: From Appendix 2, FIG. 2-7.3: From Appendix 2, FIG. 2-7.6:
1.745783
2
g1/go ho = SQRT(B go) h/ho F V f
d = (U/V) ho go2 (for integral type flanges) [APPENDIX 2-3] e = F / ho (for integral type flanges) [APPENDIX 2-3]
5.710574 6.275343 2 3.082207 0.562027 0.812252 0.211658 1.02557 22.84569 INCH3 0.263529 INCH-1
3 374373.9 MM -1 0.010375 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 70 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
[Attached by Bolts]
6. Calculation of flange actual stresses Assume t Factor L =
te + 1 t ^ 3 [Appendix 2-3] + T d
Where t = flange thickness factor e = F/ ho (for integral type flanges) e = FL/ ho (for loose type flanges) F = factor for integral type flanges T = factor involving K d = (U/V) ho go2
[Appendix 2-3] [Appendix 2-3] [Fig. 2-7.2] [Fig. 2-7.1] [Appendix 2-3]
1.397638 INCH 0.903288
35.5
0.263529 INCH-1 NA 0.812252 1.745783 22.84569 INCH3
-1 0.010375 MM
For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)] 1. a. Longitudinal hub stress, operating SH = f Mo / L g12 B (6) [Appendix 2-7(a)22809.2 b. Longitudinal hub stress, seating SH = f Mo2 / L g12 B (6) [Appendix 2-7(a) 22809.2
MM
3 374373.9 MM
PSIG
2 1605.768 Kg/CM G
PSIG
2 1605.768 Kg/CM G
2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2 B (7) [Appendix 2 16976.81 PSIG b. Radial flange stress, seating SR = (1.33 t e +1) Mo2 / L t2 B (7) [Appendix 2 16976.81 PSIG
2 1195.167 Kg/CM G
3. a. Tangential flange stress, operating ST = (Y Mo / t2 B) - Z SR (8) [Appendix 2-78291.077 PSIG b. Tangential flange stress, seating ST = (Y Mo2 / t2 B) - Z SR (8) [Appendix 2- 8291.077 PSIG
2 583.6918 Kg/CM G
4. a. Flange stress, operating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19893
PSIG
2 1400.467 Kg/CM G
b. Flange stress, seating
0.5 (SH + SR)
[Appendix 2-8(a)(4)]
19893
PSIG
2 1400.467 Kg/CM G
5. a. Flange stress, operating
0.5 (SH + ST)
[Appendix 2-8(a)(4)]
15550.14 PSIG
1094.73
Kg/CM2G
b. Flange stress, seating 0.5 (SH + ST) 6. a. Bolt stress, operating = Wm1 / Ab b. Bolt stress, seating = Wm2 / Ab 7. a. Shear stress carried by the fillet weld
[Appendix 2-8(a)(4)]
15550.14 2284.061 7729.18 0
1094.73 160.7979 544.1343 0
Kg/CM2G
1408 1203.84 35.5
Kg/CM2G Kg/CM2G
PSIG PSIG PSIG PSIG
7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8] 7.a. For Operating Condition : Allowable design stress of flange at operating condiotion, Sf 20000 PSIG Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG Assume flange thickness (without C.A), toperating 1.397638 INCH Allowable stresses Kg/CM2
PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable Radial Flange Stress SR = Sf
[Appendix 2-8(a)(2)]
The calculated (actual) radial stress S R < SR allowable
2 1195.167 Kg/CM G
2 583.6918 Kg/CM G
Kg/CM2G Kg/CM2G Kg/CM2G
MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
>
22809.2
20000
>
16976.81
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 71 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
20000
Subjected to internal pressure > 8291.077
0.5(SH + SR) = Sf < Allowable stress
20000
>
19893
0.5(SH + ST) = Sf < Allowable stress
20000
>
15550.14
25000
>
2284.061
Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The calculated (actual) stress
The calculated (actual) stress Bolt stress = Wm1 / Ab The calculated (actual) stress
< Allowable stress
7.b. For Gasket Seating : 20000 PSIG 17100 PSIG 1.397638 INCH
Allowable design stress of flange at gasket seating, Sf Allowable design stress of nozzle/vessel at gasket seating, Sn
Assume flange thickness (without C.A), tgasket
Allowable stresses Kg/CM2
PSIG
Longitudinal Hub Stress SH1 = 1.5 Sf
[Appendix 2-8(a)(1)(b)]
30000
Longitudinal Hub Stress SH2 = 2 Sn
[Appendix 2-8(a)(1)(b)]
34200
The calculated (actual) hub stress S H < SH (min.) allowable
1408 1203.84 35.5
>
22809.2
20000
>
16976.81
20000
>
8291.077
20000
>
19893
The calculated (actual) stress
0.5(SH + SR) = Sf < Allowable stress 0.5(SH + ST) = Sf < Allowable stress
20000
>
15550.14
The calculated (actual) stress Bolt stress = Wm2 / Ab The calculated (actual) stress
25000
>
7729.18
< Allowable stress
[Appendix 2-8(a)(2)]
MM
Actual stresses (Calculated ) Kg/CM2 PSIG
30000
Radial Flange Stress SR = Sf
Kg/CM2G Kg/CM2G
The calculated (actual) radial stress S R < SR allowable Tangential Flange Stress ST = Sf
[Appendix 2-8(a)(3)]
The calculated (actual) tangential stress S T < ST allowable
The min. flange thickness, t = Max. (toperating, tgasket)
1.397638 INCH
35.5
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 72 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 7 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure Since all actual stresses are less than the allowable stresses, the selection of t = 4.5 inch, is adequate. If an optimum min. thickness of flange is desired, calculations must be operated with a smaller value of t until one of the actual stresses or stress combination is approximately equal to the allowable stress even though other actual stresses are less than the allowable stress for that actual stress. Flange thickness with C.A & RF = t + 2*corrosion all. + raised face
1.791339 INCH
45.5
MM
Use flange thickness for construction
1.850394 INCH
47
MM
BOLT SUMMARY Factor K = A/B Gasket width, N Total required cross-sectional area of bolts Actual bolt cross-sectional area, Ab Nominal bolt dia., dB
1.419395 0.590551 4.769831 15.428 1
INCH2 INCH
15 3077.304 9953.528 25.4
MM MM2 MM2 MM
1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.220472 Min. Edge distance, E (for bolt size 0.75") 0.8125 Min. Edge distance, E (for bolt size 7/8") 0.9375 Min. Edge distance, E (for bolt size 1") 1.0625 Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 Min. Edge distance, E (for bolt size 1-1/4") 1.25 2. Actual Bolt spacing, B from drawing 2.746215 Min. Bolt spacing, B (for bolt size 0.75") 1.75 Min. Bolt spacing, B (for bolt size 7/8") 2.0625 Min. Bolt spacing, B (for bolt size 1") 2.25 Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-1 4.096457 3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 1.566929 Min. Radial distance, Rh (for bolt size 0.75") 1.125 Min. Radial distance, Rh (for bolt size 7/8") 1.25 Min. Radial distance, Rh (for bolt size 1") 1.375 Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 Min. Radial distance, Rh (for bolt size 1-1/4") 1.75
INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH
31 20.6375 23.8125 26.9875 28.575 31.75 69.75387 44.45 52.3875 57.15 63.5 71.4375 104.05 39.8 28.575 31.75 34.925 38.1 44.45
MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM MM
INCH INCH2
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 73 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 8 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] FLANGE FACTORS Subjected to internal pressure (a) For Integral Flanges E F = Factor F per Fig. 2-7.2 is then solved by 0.812252 (1 + A ) C 6
3
[
V =
Factor V per Fig. 2-7.3 is then solved by
2.7 3
]1/ 4
C
E4 2.73 1/ 4 [ ] (1 + A ) 3 C
0.211658
h/SQRT(BGo) 0.56202697 f = C36 / (1 + A) 1.02557 The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho
Factor f per Fig. 2-7.6 is then solved by
as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved. (b) For Loose Hub Flanges Factor FL per Fig. 2-7.4 is solved by
FL =
⎛ 1 C 18 ⎜ + ⎝ 2
11A ⎞ A⎞ A ⎞ A ⎞ ⎛ 1 ⎛ 1 ⎛ 1 + + − ⎟ + C 21 ⎜ ⎟ + C 24 ⎜ ⎟ − ⎜ ⎟ ⎝ 4 ⎝ 70 ⎝ 40 6 ⎠ 84 ⎠ 105⎠ 72 ⎠ 1/ 4 3 (1 + A ) ⎛ C ⎞ ⎜ ⎟ ⎝ 2 .7 3 ⎠ C
Factor VL per Fig. 2-7.5 is solved by
VL
1 3C 21 C − 24 − − C18 4 5 2 = 1/ 4 ⎛ 2.73 ⎞ (1 + A ) 3 ⎜ ⎟ ⎝ C ⎠
1.435003
0.66229
Factor f per Fig. 2-7.6 is set equal to 1. f=1 1 The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12), (14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3. go
0.5
INCH
12.7
MM
g1 h ho = SQRT(B go), Effective hub length B
1 1.732283 3.082207 19
INCH INCH INCH INCH
25.4 44 78.28806 482.6
MM MM MM MM
(1) (2) (3)
A = (g1/go) - 1 C = 43.68(h/ho)4 C1 = 1/3 + A/12
1 4.358241 0.416667
(4)
C2 = 5/42 + 17 A / 336
0.169643
(5)
C3 = 1/210 + A/360
0.00754
(6)
C4 = 11/360 + 59 A/5040 + (1+3 A)/C
0.960063
(7)
C5 = 1/90 + 5 A/1008 - (1+ A)3/C
-1.819531
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 74 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 9 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] FLANGE FACTORS (CONT.) Subjected to internal pressure (8) C6 = 1/120 + 17 A/5040 +1 /C 0.241157 (9) C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2/7 + 5 A3/2)/C 8.805292 (10)
C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2/7 + 5 A3/11)/C
(11)
1.193305 C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2/28 + 25 A3/84)/C1.069912
(12)
C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2/28 + 13 A3/12)/C
(14)
-1.555977 C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2/28 + 5 A3/42)/C 0.469408 C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2/385 + 6 A3/55)/ 0.28903
(15)
C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2/70 + 3 A3/ 0.093259
(16)
C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2/70 + A3/10) -0.123775
(17)
C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2/14 + 2 A3/105) 0.047438
(18)
C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C32C7 + C82C1 + C22C12)
(13)
(19)
0.461325 C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C82C4 + C12C2C9)] / C162.267604
(20)
C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C82C5 + C12C2C10)] / C-4.322926
(21)
C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C82C6 + C12C2C11)] / C0.559263
(22)
C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C32C9 + C13C8 C1 + C12C4C2)] / C16 0.095599
(23)
C21 = [C1C10C12 + C5C8C3 + C3C14C2 - (C32C10 + C14C8 C1 + C12C5C2)] / C -0.115034
(24)
C22 = [C1C11C12 + C6C8C3 + C3C15C2 - (C32C11 + C15C8 C1 + C12C6C2)] / C 0.050557
(25) (26)
C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C22C13)] / C16 -0.131187 C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 + C22C14)] / C16 0.159461
(27)
C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 + C22C15)] / C16 -0.059193
(28)
C26 = - (C/4)1/4
-1.021675
(29)
C27 = C20 - C17 - 5/12 + C17C26
-4.905425
(30)
C28 = C22 - C19 - 1/12 + C19C26
-1.163425
1/2
(31)
C29 = - (C/4)
-1.04382
(32)
C30 = - (C/4)3/4
-1.066445
(33)
C31 = 3 A/2 - C17 C30
3.918274
(34)
C32 = 1/2 - C19 C30
1.096424
(35)
C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29)
-2.036188
(36)
C34 = 1/12 + C18 - C21 - C18C26
-8.541184
(37)
C35 = - C18 (C/4)3/4
4.610162
(38)
C36 = (C28C35C29 - C32C34C29)/C33
2.051141
(39)
C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33
-2.169755
(40)
E1 = C17C36 + C18 + C19C37
-0.885216
(41)
E2 = C20C36 + C21 + C22C37
-0.028644
(42)
E3 = C23C36 + C24 + C25C37
0.018814
(43)
E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1
1.506391
(44)
E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105) -0.600608 E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C) -1.675933
(45)
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 75 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 10 of 10 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 9
Item : E-323A/B & E-514C/D
O. Integral Type (WN) Main Channel Flanges Thickness (item no. 18) (cont.)
[Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure APPENDIX 2-3 When B < 20 g1, it will be optional for the designer to substitute B1 in the formula stress SH = f * Mo /( L * g12 * B). 20 * g1 B
20 19
B1 = B + g1 for loose & integral type flanges have f 1 19.5
INCH INCH
508 482.6
MM MM
INCH INCH
508 495.3
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 76 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange(Channel Cover) Thickness (item no. 22) [Attached by Bolts]
[UG-34 & Fig. UG-34 Sketch (j)]
Subjected to internal pressure
Blind Cover Material, Clad Metal : SB171 UNS No. C63000 Stud bolt material Design Temperature Min. Design Metal Temperature, MDMT Bolt-up and Gasket Seating Temperature Assume corrosion allowance, C [UG-25] Operating Pressure (tube side) Internal Design Pressure, P (MAWP) Allowable Stress of Bolt Material, SB :
ASME SA266 Class 2 SA 193 Grade B7 o F 140 60 o F 53.6 12 o F 86 30 0.19685 INCH 5 56.8182 PSIG 4 71.7082 PSIG 5.04826
* at design temp.(operating condition), Sb * or at atmospheric temp./bolt-up temp. (gasket seating), Sa Allowable Stress of Flange Material : * at design temp.(operating condition), SfH
25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
20000
PSIG
1408
Kg/CM2G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC
20000
PSIG
1408
Kg/CM2G
INCH INCH INCH
28 685 623
MM MM MM
28 1
INCH
25.4
MM
0.551 15.428 22.1654 19
INCH2 INCH2 INCH INCH
355.4832 9953.528 563 482.6
MM2 MM2
o
C C o C MM o
Kg/CM2G Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
Joint efficiency, E
1
Bolt Hole, Flange outside diameter, A Bolt circut diameter (B.C.D.),
1.10236 26.9685 24.5276
Fig. UG-34, Sketch (j) Figure (5)
No. of bolts Nominal bolt dia., dB Actual cross-sectional area of each bolt, Total actual cross-sectional area of bolts, Ab Flange face outer diameter Flange face inner diameter
[TEMA Table D-5]
MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 77 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 2 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange (Channel Cover) Thickness (item no. 22) (cont.) [Attached by Bolts]
[UG-34 & Fig. UG-34 Sketch (j)]
Gasket Details: - Flat metal, jacketed asbestos filled, soft copp[er or brass - Outside diameter - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 [Table Since bo > 1/4 ", Effective gasket seating width, b = 0.5 SQRT(bO) Gasket Factor, m [Table 2-5.1] Min. Seating Stress, y [Table 2-5.1] Facing Sketch [Table 2-5.1]
0.125 22.0472 20.8661 0.59055
INCH INCH INCH INCH
3.175 560 530 15
MM MM MM MM
0.29528
INCH
7.5
MM
0.2717 INCH 3.5 6500 PSIG (1a); Column II
6.901087 MM
21.5039
INCH
546.1978 MM
Factor depending upon method of attachment of head, C [Fig. UG-34, Sketch (j)] 0.3 [Table 2-5.2] Gasket moment arm, hG = (B.C.D - d)/2 = (C-G)/2 1.51185
INCH
38.40109 MM
Diameter at location of gasket load reaction, d ( d represnts G ) When bo is larger than 1/4", d = O.D.of gasket contact face - 2 b
457.6
Kg/CM2G
[Appendix 2-3]
Calculating the Min. required Thickness of Blind Flange, t: t = d CP/SE +1.9W hG /SEd3
[UG-34(c)(2)]
When using this formula, the thickness t shall be calculated for both operating conditions, and gasket seating, and the greater of the two values shall be used.
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 78 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange (Channel Cover) Thickness (item no. 22) (cont.) [Attached by Bolts]
[UG-34 & Fig. UG-34 Sketch (j)]
Calculating the total bolt load, W (for circular heads): 1. For operating conditions, the value of P shall be the design pressure, and the value of S at the design temperature and W from Formula (3) of 2-5(e) shall be used. Flange Design Bolt Load for circular heads, W [Appendix 2-5(e)] For operating conditions, W = Wm1 (3) 2 Wm1 = H + Hp = 0.785 G P + (2b x 3.14 GmP) (1) [Appendix 2-5(e35243.2
lb
15986.05 Kg
Flange thickness
0.85602
INCH
21.74301 MM
0 20000
PSIG PSIG
0 1408
lb
54089.04 Kg
t = d CP / SE + 1.9Wh G / SEd^ 3
2. For gasket seating, P equals zero, and the values of S at atmospheric and W from Formula (4) of 2-5(e) shall be used. [UG-34(c)(2)]
P S Flange Design Bolt Load for circular heads, W [Appendix 2-5(e)] For gasket seating, W = 0.5(Am + Ab) Sa (4)
Kg/CM2G Kg/CM2G
Total required cross-sectional area of bolts, Am = Max (Am1,Am2) Required bolt load under atmospheric temp.conditions, Wm2 = 3.14bGy
(2) 119246
* Total cross-sectional area of bolts at root of thread requiired at operating conditions , Am1 = Wm1/ Sb
1.40973
INCH2
909.4991 MM2
* Total cross-sectional area of bolts at root of thread required gasket seating, Am2 = Wm2/ Sa
4.76983
INCH2
3077.304 MM2
4.76983
INCH2
3077.304 MM2
252473
lb
114519.9 Kg
1.29857
INCH
32.98372 MM
1.29857 1.29921 2.00787
INCH INCH INCH
32.98372 MM 33 MM 51 MM
2.48031
INCH
63
Total required cross-sectional area of bolts, Am = Max (Am1,Am2) For gasket seating,
W = 0.5(Am + Ab) Sa
(4)
t = d CP / SE + 1.9Wh G / SEd^ 3
t = max. of t of operating and gasket seating Use t without corrosion allowance Use t for construction including R.F. N.B. Check which the deflection is considered a governing thickness or not. The deflection is ehe governing thickness
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 79 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange (Channel Cover) Thickness (item no. 22) (cont.) [Attached by Bolts]
[UG-34 & Fig. UG-34 Sketch (j)]
CONCLUSION: FLANGE SUMMARY Flange thickness (without C.A.) Use t for construction including R.F. For a proper design of flange : 1. You have to make a check for flange deflection.
1.29857 2.04724
INCH INCH
32.98372 MM 52 MM
GASKET SUMMARY Gasket width, N Required cross-sectional of bolts, Am Actual cross-sectional area of bolts, Ab
0.59055 4.76983 15.428
INCH INCH2 INCH2
15 MM 3077.304 MM2 9953.528 MM2
BOLT SUMMARY No. of bolts Size of bolt (the bolt size is represented by its actual cross-sectional area) Bolt hole dia. Total required cross-sectional area of bolts, Am Total actual cross-sectional area of bolts, Ab Actual cross-sectional area of bolt, [TEMA TABLE D-5]
28 1 1.125 4.76983 15.428 0.551
INCH INCH INCH2 INCH2 INCH2
25.4 28.575 3077.304 9953.528 355.4832
0.75 4.76983 8.456 0.302
INCH INCH2 INCH2 INCH2
NA
1.22047 0.8125 1.0625 1.125 1.25
INCH INCH INCH INCH INCH
31 20.6375 26.9875 28.575 31.75
Bolt MM MM MM2 MM2 MM2
Since the actual bolt area Ab > The required bolt area Am, the bolts are adequately enough. N.B. When using bolt with size Total required cross-sectional area of bolts, Am Total ctual cross-sectional area of bolts, Ab Actual cross-sectional area of bolt, [TEMA TABLE D-5] Since the actual bolt area Ab < The required bolt area Am, the bolts are inadequately enough. Edge distance, E from drawing = 1/2 (A - C) Min. Edge distance, E (for bolt size 0.75") Min. Edge distance, E (for bolt size 1") Min. edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] Min. Edge distance, E (for bolt size 1.25")
MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 80 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange (Channel Cover) Thickness (item no. 22) (cont.) [Attached by Bolts]
[UG-34 & Fig. UG-34 Sketch (j)]
Actual Bolt spacing, B (c/c) from drawing 2.74622 Min. Bolt spacing, B (for bolt size 0.75") 1.75 [TEMA Table D-5] Min. Bolt spacing, B (for bolt size 7/8") 2.0625 Min. Bolt spacing, B (for bolt size 1") 2.25 Min. Bolt spacing, B (for bolt size 1-1/8") 2.5 Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB 3.94882 Check for Flat Channel Cover Deflection
G Y = 0.0435G 3 P+0.5S B A B h G ET 3
Where
69.75387 44.45 52.3875 57.15 63.5 71.4375 100.3
MM MM MM MM MM MM MM
INCH INCH INCH
0.762 0.635 508
MM MM MM
[TEMA RCB-9.21]
The effective thickness of a flat channel cover shall be the thickness at the bottom of the pass partition groove (or the face if there is no groove) minus corrosion allowance in excess of groove depth. The thickness is to be at least that required by the appropriate Code formula and thicker if required to meet proper deflection criteria. The recommended limit for channel cover deflection is: 0.03" for nominal diameters thru 24" 0.125% of nominal diameters (nominal diameter/800) for larger sizes Nominal diameter = Shell ID + 2 ts A method for calculating of channel cover deflection at the center, Y is:
(
INCH INCH INCH INCH INCH INCH
INCH
0.03 0.025 20
)
G = Gasket load reaction diameter as defined by the Code 21.5039 E = Modulus of elasticity at design temperature [ASME Sec.II,Part D, TM 31460000 T = Thickness under consideration (minus groove and C.A.) 1.29921 P = Design pressure 71.7082 SB = Allowable bolting stress at design temperature (Wm1) 25000 AB =Actual total cross-sectional root area of bolts 15.428 hG = Radial distance from diameter G to bolt circle 1.51185
If the calculated deflection is greater than the recommended limit, the deflection may be reduced by acceptance methods such as: (a) Increase channel cover thickness by the cube root of the ratio of calculated deflection to the recommended limit. (b) Use of strong backs. (c) Change type of construction. Note: For single pass channels, or others in which there is no pass partition gasket seal against the channel cover, no deflection criteria need be considered.
INCH PSI INCH PSIG PSIG INCH2 INCH
546.1978 MM 2
2214784.07 Kg/CM G
33 5.04826 25000 9953.528 38.40109
MM Kg/CM2G Kg/CM2G
MM2 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 81 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 6 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 14
Item : E-323A/B & E-514C/D
P. Flat Unstayed Circular Blind Flange (Channel Cover) Thickness (item no. 22) (cont.) [Attached by Bolts] Y =
The calculated deflection is
G E T3
(0.0435 G
[UG-34 & Fig. UG-34 Sketch (j)] P + 0.5 S B AB hG
)
0.10054
INCH
2.553795 MM
0.03
INCH
0.762
2.88948
INCH
73.39285 MM
0.00914
INCH
0.232149 MM
1.88283
INCH
47.824
0.03303
INCH
0.839054 MM
3. Recommended deflection limit
0.03
INCH
0.762
MM
4. Compare the calculated deflection with the recommended deflection
OK
The minimum thickness of channel cover at bottom of pass partition is The thickness neglecting corrosion allowance is
1.88283 1.88976
INCH INCH
47.824 48
MM MM
Conclusion : Checking of Deflection The min. thickness of channel cover to resist the internal pressure is Where the min. thickness of channel cover to avoid deflection is The min. thickness of channel cover as derived from drawings is The flange thickness increased by
1.33858 1.88976 1.9685 0.07874
INCH INCH INCH INCH
34 48 50 2
MM MM MM MM
Tthickness including groove depth ( 5 MM) Overall thickness including raised faces & groove depth
2.08661 2.48031
INCH INCH
53 63
MM MM
Max. Working Pressure, MWP at New (cold) & Operating (corroded) at New (cold) P = SE t2 /d2 c - 1.9 W h G / d3 c
104.094
PSIG
2 7.328196 Kg/CM G
104.094
PSIG
2 7.328196 Kg/CM G
3
The recommended deflection limit
MM
Since the calculated deflection exceeds the recommended deflection, we have to increase the flange tickness by the cubic root of the ratio of deflections, Tassumed = T +
Y =
3
Ycalculated [TEMA RCB-9.21] Yrecommended
(
G 0.0435 G 3 P + 0.5 S B AB hG E T3
)
Easier approach : 1. Assume T, 2. Find Calculated deflection
Y =
at Operating (corroded)
(
G 0.0435 G 3 P + 0.5 S B AB hG E T3
P = SE t2 /d2 c - 1.9 W h G / d3 c
)
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 82 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 2 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 4 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Q. TEMA Stationary Tubesheet Thickness Formula-Bending (item No.36) Tubesheet material,
ASME SB171 UNS No. 63000
Carbon Steel
Effective tubesheet thickness, T
[TEMA RCB-7.132]
T=
F
G 3
P n'
S
Where F = 1.25 For unsupported tubesheet (e.g. U-tube tubesheets) gasketed both sides. F = 1 For supported tubesheet (e.g. fixed tubesheets & floating type tubesheets) gasketed both sides. * For unsupported tubesheet (e.g. U-tube tubesheets) integral with either or both sides, F shall be the value as determined by the curve U in Figure RCB-7.132. * For supported tubesheet (e.g. fixed tubesheets and floating type tubesheets) integral with either or both sides, F shall be the value as determined by the curve H in Figure RCB-7.132.
1.25 1
G shall be either in the corroded or uncorrded condition, dependent upon which condition is under consideration. G = shell ID for fixed tubesheet exchangers. * For any floating tubesheet (except divided), G shall be the G used for the stationary tubesheets using the P as defined for other type exchanger. * Type T tubesheets shall also be checked using the pressure P defined above with bolting and using the actual gasket G of the floating tubesheet. G = 1.41(s) For divided floating tubesheet where s is the length of the shortest span measured over centerlines of gaskets. * For other type exchangers, G shall be the diameter over which the pressure under consideration is acting. (e.g. pressure acting on the gasketed side of a tubesheet, G = the diameter at the 21.50385 INCH location of the gasket load reaction as defined in the Code. Pressure acting on an integral side of a tubesheet, G = the inside diameter of the integral pressure part.) S = Code allowable stress in tension for tubesheet at design metal temp. 20996 PSIG o F Design temperature 302 n' = 1 −
0.785 2
⎡ Pitch ⎤ ⎢ Tube OD ⎥ ⎦ ⎣ 0.907 n' = 1 − 2 ⎡ Pitch ⎤ For triangular or rotated triangular tube patterns, n' ⎢ Tube OD ⎥ ⎣ ⎦
For square or rotated square tube patterns, n'
0.520874
0.446411
NA
546.1978 MM
1478.118 Kg/CM2G o C 150
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 83 of 136 Sheet : 2 of 2 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 4 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q. TEMA Stationary Tubesheet Thickness Formula-Bending (item No.36) No of tubes 146 Tube OD 0.984252 Tube length 236.2205 Tube pitch 1.259843 Tube BWG 13 Tube wall thickness [TEMA Table D-7] 0.098425 o 30o Tube pattern ( equal angles triangle 60 ) * For other type exchangers, P shall be the design pressure, shell side or tube side, corrected for vacuum when present on the opposite side, or differential pressure when specified by the purchaser. Internal Design Pressure, P (MAWP) [Shell Side] 284.7764 * For floating tubesheets (Type T), where the tubesheet is extended for bolting to heads with ring type gaskets, the effect of the moment acting upon the extension is defined in Paragraph RCB-7.162 in terms of equivalent tube side and shell side bolting pressure except G shall be the gasket G of the floating tubesheet. P is given by the greatest absolute value of the following: P = Pt + P Bt or P = Ps + P Bt or P = Pt 71.70824 or P = Ps 284.7764 F G P Effective tubesheet thickness, T 1.561785 T= 3 n ' S Ttubesheet thickness with CA 1.811024 Tubesheet raised face (2 x 5) 0.551181 Use tubesheet thickness for construction 2.362205 Tubesheet OD 22.04724 TUBESHEET THICKNESS FORMULA-SHEAR [TEMA RCB-7.132]
Date : 4.7.2003 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[TEMA RCB-7.132]
INCH INCH INCH
25 6000 32
MM MM MM
INCH
2.5
MM
PSIG
20.04826 Kg/CM2G
PSIG PSIG INCH INCH INCH INCH INCH
5.04826 20.04826 39.66934 46 14 60 560
(square rotated)
T =
Effective tubesheet thickness, T
P S
Note : Shear will not control when
Kg/CM2G Kg/CM2G
MM MM MM MM MM
0.31 DL ⎛ P ⎞ ⎜ ⎟ do ⎤ ⎝ S ⎠ ⎡ ⎢⎣1 − Pitch ⎥⎦
do ⎤ ⎡ < 16 . ⎢1 − Pitch ⎥⎦ ⎣
P/S
2
0.013563
do ⎤ ⎡ 16 . ⎢1 − Pitch ⎥⎦ ⎣
2
0.076563 Perimeter Area Max. Working pressure MWP : Pressure at tube-side is th most severe condition MWP, New & cold P = n' S (3 T / F G)2 626.9255 MWP, Operating & corroded P = n' S (3 T / F G)2 598.3149
INCH 2 INCH PSIG PSIG
MM MM2 44.13556 Kg/CM2G 42.12137 Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 84 of 136 Sheet : 1 of 2 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Sheet : 6
Date : 4.7.2003 Location : Alex. Client : APRC Item : E-323A/B & E-514C/D
Q1. TEMA Floating Tubesheet Thickness Formula-Bending (item No.37) Tubesheet material,
ASME SB171 UNS No. 63000
Carbon Steel
Effective tubesheet thickness, T
[TEMA RCB-7.132]
T=
F
G 3
P n'
S
Where F = 1.25 For unsupported tubesheet (e.g. U-tube tubesheets) gasketed both sides. F = 1 For supported tubesheet (e.g. fixed tubesheets & floating type tubesheets) gasketed both sides. * For unsupported tubesheet (e.g. U-tube tubesheets) integral with either or both sides, F shall be the value as determined by the curve U in Figure RCB-7.132. * For supported tubesheet (e.g. fixed tubesheets and floating type tubesheets) integral with either or both sides, F shall be the value as determined by the curve H in Figure RCB-7.132.
1.25 1
G shall be either in the corroded or uncorrded condition, dependent upon which condition is under consideration. G = shell ID for fixed tubesheet exchangers. * For any floating tubesheet (except divided), G shall be the G used for the stationary tubesheets using the P as defined for other type exchanger. * Type T tubesheets shall also be checked using the pressure P defined above with bolting and using the actual gasket G of the floating tubesheet. G = 1.41(s) For divided floating tubesheet where s is the length of the shortest span measured over centerlines of gaskets. * For other type exchangers, G shall be the diameter over which the pressure under consideration is acting. (e.g. pressure acting on the gasketed side of a tubesheet, G = the diameter at the 18.18898 INCH location of the gasket load reaction as defined in the Code. Pressure acting on an integral side of a tubesheet, G = the inside diameter of the integral pressure part.) S = Code allowable stress in tension for tubesheet at design metal temp. 20996 PSIG o F Design temperature 302 For square or rotated square tube patterns, n'
n' = 1 −
0.785 ⎡ Pitch ⎤ ⎢ ⎥ ⎣ Tube OD ⎦
For triangular or rotated triangular tube patterns, n'n' = 1 −
2
0.520874
0.907 ⎡ Pitch ⎤ ⎢ Tube OD ⎥ ⎦ ⎣
2
0.446411
NA
462
MM
1478.118 Kg/CM2G o C 150
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 85 of 136 Sheet : 2 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q1. TEMA Floating Tubesheet Thickness Formula-Bending (item No.37) No of tubes Tube OD Tube length Tube pitch Tube BWG Tube wall thickness [TEMA Table D-7] Tube pattern ( equal angles triangle 60o) * For other type exchangers, P shall be the design pressure, shell side or tube side, corrected for vacuum when present on the opposite side, or differential pressure when specified by the purchaser. Internal Design Pressure, P (MAWP) [Shell Side] * For floating tubesheets (Type T), where the tubesheet is extended for bolting to heads with ring type gaskets, the effect of the moment acting upon the extension is defined in Paragraph RCB-7.162 in terms of equivalent tube side and shell side bolting pressure except G shall be the gasket G of the floating tubesheet. P is given by the greatest absolute value of the following: P = Pt + P Bt or P = Ps + P Bt or P = Pt or P = Ps (square rotated)
F
G
Note : Shear will not control when
[TEMA RCB-7.132]
146 0.984252 236.2205 1.259843 13 0.098425 30o
INCH INCH INCH
25 6000 32
MM MM MM
INCH
2.5
MM
284.7764 PSIG
20.04826 Kg/CM2G
71.70824 PSIG 284.7764 PSIG
5.04826 Kg/CM2G 20.04826 Kg/CM2G
1.321032 1.535433 0.393701 1.929134 2.362205 18.58268
33.5542 39 10 49 60 472
P
T= Effective tubesheet thickness, T 3 n' S Ttubesheet thickness with CA Tubesheet raised face (2 x 5) Use tubesheet thickness Use tubesheet thickness for construction (not less than thk of st. tubesheet) Tubesheet OD [TEMA RCB-7.132] TUBESHEET THICKNESS FORMULA-SHEAR 0.31 DL ⎛ P ⎞ T = ⎜ ⎟ Effective tubesheet thickness, T do ⎤ ⎝ S ⎠ ⎡ 1 − ⎢⎣ Pitch ⎥⎦
P S
Sheet : 6
Date : 4.7.2003 Location : Alex. Client : APRC Item : E-323A/B & E-514C/D
do ⎤ ⎡ < 16 . ⎢1 − Pitch ⎥⎦ ⎣
P/S
INCH INCH INCH INCH INCH INCH
MM MM MM MM MM MM
2
0.013563
do ⎤ ⎡ 16 . ⎢1 − Pitch ⎥⎦ ⎣
2
0.076563 Perimeter Area Max. Working pressure MWP : Pressure at tube-side is th most severe condition MWP, New & cold P = n' S (3 T / F G)2 629.8621 MWP, Operating & corroded P = n' S (3 T / F G)2 601.1175
INCH INCH2 PSIG PSIG
MM MM2 44.34229 Kg/CM2G 42.31867 Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 86 of 136 Sheet : 1 of 1 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Sheet : 7
Items : E-323A/B & E-514C/D
Q2. TEMA Pass Partition Plate Thickness Calculation (item No.23) Pass partition plate material
Min. calculated pass partition plate thickness,
[TEMA RCB-9.13]
ASME SB171 UNS No. 63000 t calculated = b
qB 15 . S
0.193711 INCH
4.920265 MM
23.62205 INCH 19 INCH 1.243266 0.467662 7 PSIG
600 482.6
MM MM
0.4928
Kg/CM2G
[TEMA Table RCB-9.132]
Where Plate dimension, a Plate dimension, b [TEMA Table RCB-9.132] Ratio a/b (long side case) Table value B, to be found from Table RCB-9.132 versus a/b Pressure drop across plate, q
S = Code allowable stress in tension for pass partition plate at design metal tem 20996
PSIG F
2 1478.118 Kg/CM G o C 150
508
Design temperature
302
o
Exchanger Nominal Size
20
INCH
TEMA Table RCB 9-131
Carbon Steel INCH MM 0.375 9.525 0.5 12.7
Nominal pass partition plate thickness for Nominal size < 24" Nominal pass partition plate thickness for Nominal size 24" to 60"
MM
Alloy Material INCH MM 0.25 6.35 0.375 9.525
Nominal tabulated plate thickness, ttabulated Recommended plate thickness, trecom. = Max. (tcalculated, ttabulated)
0.25 0.25
INCH INCH
6.35 6.35
MM MM
Corrosion allowance, C
0
INCH
0
MM
[UG-25]
Thickness of pass partition including corrosion allowance, Assume adopted thickness of pass partition, t
0.25 INCH 0.511811 INCH
6.35 13
MM MM
Fillet weld leg size, 3/4 t
0.383858 INCH
9.75
MM
[TEMA RCB-9.133]
RCB-9.133 Pass Partition Weld Size The pass partition plate shall be attached with fillet welds on each side with a min. leg of 0.75 t. Other types of attachments are allowed but shall be of equivalent strength.
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 87 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex. Client : APRC
Q3. FLOATING HEAD & ITS FLANGE
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
Q3a. Min Required Thickness of Floating Head
Floating head type : Spherical-dished cover Corrosion Allowance (for carbon steel), CA 0.19685 INCH 5 MM No Joint Efficiency is Required Backing Ring Material ASME SA266 Class 2 Head & Flange Material ASME SB171 UNS No. C63000 o o F C Design Temperature : Shell Side 302 150 o o F C Tube Side 140 60 o o F C Min. Design Metal Temperature, MDMT 53.6 12 2 Kg/CM G Internal Design Pressure, P (MAWP) (Tube Side) 71.02273 PSIG 5 2 Use Design Pressure, P (MAWP) 71.70824 PSIG 5.04826 Kg/CM G Design Pressure, (Shell Side) 284.7763 PSIG 20.0483 Kg/CM2G External Design Pressure, Pe 284.7763 PSIG 20.0483 Kg/CM2G o Max. Allowable Stress for Head Material @ Design Temp. 140&302 F,S 22896 PSIG 1611.88 Kg/CM2G Max. Allowable Stress for Head Material @ Test Temp.,St 24000 PSIG 1689.6 Kg/CM2G o Max. Allowable Stress for Flange Material @ Design Temp. 140&302 F, SH 22896 PSIG 1611.88 Kg/CM2G Max. Allowable Stress for Flange Material @ Test Temp., SC 24000 PSIG 1689.6 Kg/CM2G o Kg/CM2G Max. Allowable Stress for Backing Ring Material @ Design Temp. 140&302 F,S20000 PSIG 1408 Kg/CM2G Max. Allowable Stress for Backing Ring Material @ Test Temp.,St 20000 PSIG 1408 [ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
Figure (6)
No. of bolts Nominal bolt dia., dB Actual Root area of each bolt Bolt hole dia., d Flange & Backing ring outside diameter, A Flange & Backing ring inside diameter, B Bolt circut diameter (B.C.D.), C
24 1 [TEMA Table D-5]
0.551 1.102362 23.0315 17.71654 20.66929
INCH2
25.4
MM
INCH2
355.483 28 585 450 525
MM2 MM MM MM MM
INCH
INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 88 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88.
Sheet : 2 of 12
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.)
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
Q3a. Min Required Thickness of Floating Head (cont.)
Gasket Details : - Gasket Type : Flat metal, jacketed asbestos filled (soft copper - Outside diameter = (B.C.D - d) - 10 - Inside diameter = O.D - 2N - Width, N Gasket Dimensions: [Table 2-5.2] Basic gasket seating width, bO = N/2 Since bo is less than 1/4 inch, Effective gasket seating width, b = bO [Table 2-5.2] N.B. When bo > 1/4 inch,
b = 0.5*SQRT(bO)
Gasket Factor, m Min. Seating Stress, y Facing Sketch
or brass) 18.58268 INCH 17.79528 INCH 0.393701 INCH
472 452 10
MM MM MM
0.19685
INCH
5
MM
0.19685
INCH
5
MM
[Table 2-5.2]
0.221839 INCH
5.63471 MM
[TABLE 2-5.1] [TABLE 2-5.1] [TABLE 2-5.1]
3.5 6500 PSIG (1a); Column II
457.6
Kg/CM2G
462
MM
5 0
MM MM
10
MM
Diameter at location of gasket load reaction, G When bo is less than 1/4", G = Mean dia. of gasket contact face = (ID + OD) / 2 18.18898 INCH [APPENDIX 2-3]
Corrosion allowance, C (for carbon steel) Corrosion allowance, C (for copper)
0.19685 0
Fillet weld size, h1
0.393701 INCH
INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 89 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 3 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) Q3a. Min Required Thickness of Floating Head (cont.) Dish radius for spherical segment, L ( 0.9-0.82 I.D = 0.9 * B approx.) The governing radius depends on the total cross-overbypass area Q3a.1. For pressure on concave side (internal pressure)
Date : 4.7.2003 Location : Alex.
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
13.77953 INCH
350
5PL [1] 0.035964 6S (CA from outside only, inside there is cla 0.035964
0.51181
INCH INCH INCH
0.91347 MM 0.91347 MM 13 MM
[Appendix 1-6(e)(1)(b)] & [UG-33(c)]
Step 1. Assume thickness t without corrosion allowance Outside radius of spherical head segment, Ro = L + t A=
MM
[Appendix 1-6(e)(1)(a)]
t=
Thickness t including C.A Use t for construction Q3a.2. For pressure on convex side (external pressure)
Client : APRC
Sheet : 15
0. 125 (Ro / t )
0.51181 INCH 14.29134 INCH
13 363
MM MM
774.4
Kg/CM2G
0.004477
Step 2 & 3. Enter Figure NFA-6 of ASME Sec.II, Part D at A value and move vertically to material line for 302 oF. Move horizontally to the right and read B value of
11000
Step 4. The max. allowable external working pressure for the assumed head thickness : Pa =
393.9386 PSIG
27.7333 Kg/CM2G
284.7763 PSIG OK
20.0483 Kg/CM2G
B (Ro / t )
External design pressure, Pe Since Pa > Pe, the assumed head thickness is satisfactory.
0.004477 PSIG
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 90 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 4 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) B1 = arc sin
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
[Fig. 1-6(d)]
Q3b. Min Required Thickness of Ring Flange
Head-to-ring angle
Date : 4.7.2003 Location : Alex.
B 2L + t
1. Bolt loading and size of bolts: (a) Total hydrostatic end force, H = 0.785 G2 P
[Appendix 1-6(b)]
39.13399 Degree
[Appendix 2-5(c)]
18445.21 lb
8366.61 Kg
(b) Total joint-contact surface compression load, Hp =2b*3.14GmP 5589.456 lb [ Appendix 2-3] (Gasket seating load)
2535.34 Kg
(c) Min. required bolt load for operating conditions, W m1 = H + Hp 24034.66 lb Use W m1 = Max (W m1 Floating head flange , W m1 Backing ring) [Appendix 2-3 25021.21 lb
10902 Kg 11349.4 Kg
Min. required bolt load for gasket seating, W m2 = 3.14 b G y 73078.15 lb Use W m2 = Max (W m2 Floating head flange , W m2 Backing ring) [APPENDIX 2- 86187.58 lb
33147.7 Kg 39094.1 Kg
[Appendix 2-3]
Allowable Bolt Stress at atmospheric temp., Sa Allowable Bolt Stress at design temp., Sb
25000 25000
PSIG PSIG
1760 1760
Kg/CM2G Kg/CM2G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
(d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = W m1 / Sb [Appendix 2-3] - Gasket seating, Am2 = W m2 / Sa [Appendix 2-3]
2 1.000849 INCH 2 3.447503 INCH
2 645.707 MM 2 2224.19 MM
(e) Total required cross-sectional of bolts, Am = the greater of Am1 & Am2 Actual bolt area, Ab
2 3.447503 INCH INCH2 13.224
2 2224.19 MM 2 8531.6 MM
25021.21 lb 208393.8 lb
11349.4 Kg 94525.9 Kg
Since the actual bolt area Ab > The required bolt area Am, the bolts are adequately enough. (f) Flange design bolt load, W : - For operating conditions, Wo = Wm1 - For gasket seating, Wa = 0.5(Am + Ab) * Sa
(3) [Appendix 2-5(d)] (4) [Appendix 2-5(d)]
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 91 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 5 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.)
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
[Fig. 1-6(d)]
Q3b. Min Required Thickness of Ring Flange (cont.)
2. Total flange moment for design condition: [APPENDIX 2-5(c)] - Flange Loads: The same as in welding neck flange calculation plus an additional load from the horizontal component, Hr, due to the internal pressure load on the spherical head. (a) Total hydrostatic end force due to pressure, H = 0.785 G2 P [APPENDIX 18445.21 lb (b) Hydrostatic end force on area inside flange, HD =0.785 B2 P 17668.36 lb (c) Gasket load (flange design bolt load - total hydrostatic end force), HG HG1 = Wo - H = Wm1 - H (design condition) 6576.009 lb HG2 = Wa - H = 0.5 (Am + Ab) Sa - H (gasket seating) 189948.6 lb (d) Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT = H - HD 776.8437 lb (e) Floating head load, Lever arms:
HR = HD cot B1
[Jim Far 21714.58
hD = (C - B) / 2 hG = (C - G) / 2 hT = (hD + hG) / 2
[TABLE 2-6]
lb
8366.6 Kg 8014.23 Kg 2982.83 Kg 86159.2 Kg 352.37
Kg
9849.57 Kg
1.476378 INCH
37.5
MM
1.240157 INCH
31.5
MM
1.358268 INCH
34.5
MM
[BY : A.H.Galala & Jim Farr] Calculating hR : hR is obtained by trail using the assumed flange thickness and the perpendicular head thickness at the head-to-ring intersection. Assuming thickness of flange, T 3.267717 INCH L1 = t (thk. of floating head)/cos B1 0.659828 INCH hR = 0.5 (Tassumed - L1) 1.303944 INCH
83 MM 16.7596 MM 33.1202 MM
B1
t= L1
Figure (7)
MM 13
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 92 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 6 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) Q3b. Min Required Thickness of Ring Flange (cont.) Flange Moments due to : End pressure HD
MG = HG hG
Face pressure HT
MT = HT hT
Floating head load H R
MR = HR hR
[Appendix 28155.287
lb-in.
1055.162 lb-in. [Jim Farr] 28314.61
lb-in.
300.534 Kg-M 93.959
Kg-M
12.1568 Kg-M 326.22
Kg-M
80.43 80.43
Kg-M Kg-M
[Appendix 2-6]
MO1 = MD + MG + MT - MR
[Jim Farr] 6981.021
lb-in. 6981.021 lb-in.
Mo1
[APPENDIX 2-6]
hG = (C - G) / 2
Flange Moment for gasket condition, MO2 = HG hG = Wa (C - G) / 2 Use
[Appendix 1-6]
[Fig. 1-6(d)]
3. Total flange moment for bolt-up condition (Gasket condition) : Flange Load HG = Wa = (Am + Ab) Sa / 2 Lever Arm
Item : E-323A/B & E-514C/D
26085.18 lb-in.
Total moment acting upon the flange, Mo : - For operating condition Use
Client : APRC
Sheet : 15
[Attached by Bolts]
MD = HD hD
Gasket load HG
Date : 4.7.2003 Location : Alex.
208393.8 lb
94525.8 Kg
1.240157 INCH
31.5
(5) 258441.1 lb-in.
MO2 = MO2(SH/SC)
246552.8 lb-in.
MM
2977.56 Kg-M 2840.6
Kg-M
9.9453
MM
[Appendix 1-6(g)(2)] 4. The min. flange thickness 4.1. The min. flange thickness for operating condition : F =
PB 4 L2 − B 2 8 S (A − B )
⎛ M ⎞⎛ A + B⎞ J = ⎜ 01 ⎟ ⎜ ⎟ ⎝ SB ⎠ ⎝ A − B ⎠ T = F +
F
2
+ J
4.2. The min. flange thickness for gasket seating : F ⎛ M ⎞ ⎛ A + B⎞ J = ⎜ 02 ⎟ ⎜ ⎟ ⎝ SB ⎠ ⎝ A − B ⎠ T = F +
F
2
+ J
0.027284 0.131943 0.391547 INCH
0 4.659917 2.158684 INCH
54.8306 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 93 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 7 of 12 Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D
Q3. FLOATING HEAD & ITS FLANGE (cont.) [Attached by Bolts] Q3b. Min Required Thickness of Ring Flange (cont.) [Fig. 1-6(d)] 5. Required thickness for backing ring in case of internal pressure, [Appendix 2-7(b)(9)] Momenmts for backing ring (1split ring - 2 halfs, lap-type flange) [Fig. 2-4 Sketches (1) ] Lever arms: hD = (C -B) / 2 1.476378 INCH [Table 2-6] hG = (C - G) / 2 1.259843 INCH hT = (C - G) / 2 Backing ring OD contact = Gasket OD Backing ring mid point of contact G = (OD of contact End pressure, HD = 0.785 B2 P Face pressure, HT = H - HD Total hydrostatic, H = 0.785 G2 P Floating head load, HR = HD cot B1 HP = 2 b * 3.14 G m P To find Am : Gasket seating width, N = (OD - B ) / 2 Basic gasket seating width, bO = N/2 N.B. When bo > 1/4 inch, Effective gasket seating width, b = 0.5 * SQRT (bO)
1.259843 INCH
+B)/2 (11b) (11c) (11d)
18.58268 INCH INCH 17499.46 lb 865.9855 lb 18365.44 lb [A. Galala] 21507 lb [Fig. 2-4, Sk 18.14961
[Appendix 1-6]
37.5
MM
32
MM
32
MM
472 461 7937.62 392.804 8330.42 9755.41
MM MM Kg Kg Kg Kg
6655.772 lb 0.433071 INCH 0.216535 INCH
3019.01 Kg 11 MM 5.5 MM
[Table 2-5.2] 0.232667 INCH
5.90974 MM
[Table 2-5.2]
W m1 = H + HP 25021.21 Use W m1 = Max (W m1 Floating head flange , W m1 Backing ring) [Appendix 2-3] 25021.21 W m2 = 3.14 b G y 86187.58 Use W m2 = Max (W m2 Floating head flange , W m2 Backing ring) [Appendix 2-5(c) 86187.58 Am1 = W m1 / Sb 1.000849 Am2 = W m2 / Sa 3.447503 Am = Max. (Am1 , Am2) 3.447503 To find HG1(Gasket load for design condition) HG1 = W O - H = W m1 - H 6655.772 5.1. Backing ring min. thickness for operating condition : Moment, Mo3 = MD + MG + MT = HD hD + HG1 hG + HT hT 35312.04 Tring = SQRT ( 2 * Mo3 * Y / S * B ) [Appendix 2-8(c)] 1.226426 K = A/B 1.3
lb lb lb lb INCH2 INCH2 INCH2 lb
11349.4 11349.4 39094 39094 645.707 2224.19 2224.19 3019.01
lb-in. INCH
406.839 Kg-M 31.1512 MM
5.2. Backing ring min. thickness for gasket seating : Moment, Mo4 = Flange bolt load HG2 * Arm hG = Wa * hG = [(Am + Ab) Sa/2]* hG262543.4 lb-in. Tring = SQRT ( 2 * Mo4 * Y / S * B ) [Appendix 2-8(c)] 3.34411 INCH K = A/B 1.3 2
3024.83 Kg-M 84.9404 MM
Factor
Y =
⎡ K 2 Log10 K ⎤ 0.66845 + 5.71690 ⎢ K −1⎣ K2 −1 ⎥ ⎦ 1
Y =
Factor
⎡ K Log10 K ⎤ 1 0.66845 + 5.71690 K −1 ⎢ K2 −1 ⎥ ⎣ ⎦
Kg Kg Kg Kg MM2 MM2 MM2 Kg
7.546382
7.546382
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 94 of 136 Sheet : 8 of 12 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) Q3b. Min Required Thickness of Ring Flange (cont.)
To find Am2 :
Item : E-323A/B & E-514C/D
[Appendix 1-6]
[Fig. 1-6(d)] [Appendix 1-6(g)(2)] & [Appendix 2-11]
[Table 2-6]
Gasket seating load, W = (Am2 + Ab) Sa /2 End pressure, HD = 0.785 B2 Pe Face pressure, HT = H - HD Total hydrostatic, H = 0.785 G2 Pe Floating head load, HR = HD cot B1
Client : APRC
Sheet : 15
[Attached by Bolts]
6. In case of flange subjected to external pressure only Lever arms: hD = (C -B) / 2 hG = (C - G) / 2 hT = (hD + hG) / 2
Date : 4.7.2003 Location : Alex.
1.476378 INCH
37.5
MM
1.240157 INCH 1.358268 INCH
31.5 34.5
MM MM
94525.8 31827.1 1720.08 33547.2 39115.8
Kg Kg Kg Kg Kg
(11a) (11b) (11c) (11d)
208393.8 70166.7 3792.12 73958.82 [A. Galala & Jim F86235.53
HP = 2 b * 3.14 G m Pe
lb lb lb lb lb
22411.76 lb
10165.8 Kg
W m1 = H + HP 96370.58 lb Use W m1 = Max (W m1 Floating head flange, W m1 Backing ring) [Appendix 2-3] 100071.2 lb
43713 Kg 45391.5 Kg
W m2 = 3.14 b G y 73078.15 lb Use W m2 = Max (W m2 Floating head flange, W m2 Backing ring) [Appendix 2-5(c) 86187.58 lb
33147.7 Kg 39094 Kg
Am1 = W m1 / Sb Am2 = W m2 / Sa Am = Max. (Am1 , Am2) 6.1.The min. flange thickness for operating condition : Moment, Mo1 = HD(hD - hG) + HT(hT - hG) - HR hR [Appendix 2-11] (10) PB 4 L − B 8 S (A − B ) 2
F =
2 2582.48 MM 2 2224.19 MM 2 2582.48 MM
95423.64 lb-in.
1099.4
Kg-M
2
0.1094
⎛ M 01 ⎞ ⎛ A + B ⎞ J = ⎜ ⎟⎜ ⎟ ⎝ SB ⎠ ⎝ A − B ⎠
1.803533
T = F +
1.456806 INCH
37.0029 MM
246552.8 lb-in. 0
2840.6
F
2
+ J
6.2. The min. flange thickness for gasket seating : Moment, Mo2 = W h G * (SH/SC) = [(Am2+Ab)*Sa/2]*hG ? F ⎛ M ⎞ ⎛ A + B⎞ J = ⎜ 02 ⎟ ⎜ ⎟ ⎝ SB ⎠ ⎝ A − B ⎠
T = F +
2 4.002848 INCH 2 3.447503 INCH 2 4.002848 INCH
F2 + J
Kg-M
4.659917 2.158684 INCH
54.8306 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 95 of 136 Sheet : 9 of 12 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) Q3b. Min Required Thickness of Ring Flange (cont.) 7. Required thickness for backing ring in case of external pressure, Momenmts for backing ring (ones split ring, lap-type flange : Lever arms: hD = (C - B) / 2
Date : 4.7.2003 Location : Alex.
Item : E-323A/B & E-514C/D [Attached by Bolts]
[APPENDIX 2-7(b)(9)] [Fig. 2-4 Sketch (1)]
1.476378 INCH
W m1 = H + HP 100071.2 Use W m1 = Max (W m1 Floating head flange , W m1 Backing ring) [Appendix 2-3] 100071.2 W m2 = 3.14 b G y 86187.58 Use W m2 = Max (W m2 Floating head flange , W m2 Backing ring) [Appendix 2-5(c86187.58
Factor
Y =
⎡ K 2 Log10 K ⎤ 1 0.66845 + 5.71690 K −1⎢ K2 −1 ⎥ ⎣ ⎦
7.2. Backing ring min. thickness for gasket seating : Flange bolt load HG = Wa = 0.5(Am2 + Ab) Sa Moment, Mo4 = HG hG * (SH/SC) Tring = SQRT ( 2 * Mo4 * Y / S * B ) [Appendix. 2-8(c)] K = A/B 2 Y =
Factor
⎡ K Log10 K ⎤ 1 0.66845 + 5.71690 K −1⎢ K2 −1 ⎥ ⎣ ⎦
[Appendix 1-6]
[Fig. 1-6(d)]
[Table 2-6] hG = (C - G) / 2 1.259843 hT = (C - G) / 2 1.259843 Backing ring OD contact 18.58268 Backing ring mid point of contact G = (OD of contact + B ) / 2 [Fig. 2-4, Sk 18.14961 (11b) End pressure, HD = 0.785 B2 Pe 70166.7 (11c) Face pressure, HT = H - HD 3472.299 (11d) Total hydrostatic, H = 0.785 G2 Pe 73639 [A. Galala &J 86235.53 Floating head load, HR = HD cot B1 To find Am : HP = 2 b * 3.14 G m Pe 26432.19 Gasket seating width, N = (OD - B ) / 2 0.433071 [Table 2-5.2] 0.216535 Basic gasket seating width, bO = N/2 N.B. When bo > 1/4 inch, Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] 0.232667
Am1 = W m1 / Sb Am2 = W m2 / Sa Am = Max. (Am1, Am2) To find HG1(Gasket load for design condition) HG1 = W O - H = Wm1 - H 7.1.Backing ring min. thickness for operating condition : Moment, Mo3 = HD (hD - hG) + HT (hT - hG) Tring = SQRT ( 2 * Mo3 * Y / S * B ) [Appendix 2-8(c)] K = A/B
Client : APRC
Sheet : 15
4.002848 3.447503 4.002848 26432.19
37.5
MM
INCH
32
MM
INCH INCH INCH lb lb lb lb lb INCH INCH
32 472 461 31827.1 1575.01 33402.1 39115.8 11989.4 11 5.5
MM MM MM Kg Kg Kg Kg Kg MM MM
INCH
5.90974 MM
lb lb lb lb
45391.5 45391.5 39094 39094
Kg Kg Kg Kg
INCH2 INCH2 INCH2 lb
2582.48 2224.19 2582.48 11989.4
MM2 MM2 MM2 Kg
15193.58 lb-in. 0.80447 INCH 1.3
175.049 Kg-M 20.4335 MM
7.546382
208393.8 lb 250466.4 lb-in. 3.26629 INCH 1.3 7.546382
94525.8 Kg 2885.68 Kg-M 82.9638 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 96 of 136 Sheet : 10 of 12 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.)
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
0.51181 393.9386 3.267717 3.267717
13 284.776 83 83
MM PSI MM MM
3.464567 INCH
88
MM
0.659828 INCH
16.7596 MM
8.2. GASKET SUMMARY Gasket width, N Required cross-sectional of bolts, Am Actual cross-sectional area of bolts, Ab
0.393701 INCH 2 3.447503 INCH INCH2 13.224
10 MM 2 2224.19 MM 2 8531.6 MM
8.3. BOLT SUMMARY No. of bolts Size of bolt
24 1
INCH
25.4
MM
8.4. Bolting Information for TEMA Thread Series : 1. Actual edge distance, E (from drawing) E = 1/2 (A - C) Min. edge distance, E (for bolt size 3/4") Min. edge distance, E (for bolt size 7/8") Min. edge distance, E (for bolt size 1") [TEMA Table D-5] Min. edge distance, E (for bolt size 1-1/8")
1.181102 0.8125 0.9375 1.0625 1.125
INCH INCH INCH INCH INCH
30 20.6375 23.8125 26.9875 28.575
MM MM MM MM MM
2. Actual Bolt spacing, B (c/c) from drawing 2.697884 Min. bolt spacing, B (for bolt size 3/4") 1.75 Min. bolt spacing, B (for bolt size 7/8") 2.0625 Min. bolt spacing, B (for bolt size 1") [TEMA Table D-5] 2.25 Min. bolt spacing, B (for bolt size 1-1/8") 2.5 Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-16.901575
INCH INCH INCH INCH INCH INCH
68.5263 44.45 52.3875 57.15 63.5 175.3
MM MM MM MM MM MM
3. Actual radial distance, Rr (from drawing) Rr = (C-B)/2 Min. radial distance, Rr (for bolt size 3/4") Min. radial distance, Rr (for bolt size 7/8") Min. radial distance, Rr (for bolt size 1") Min. radial distance, Rr (for bolt size 1-1/8")
INCH INCH INCH INCH INCH
37.5 20.6375 23.8125 26.9875 28.575
MM MM MM MM MM
8. CONCLUSION: 8.1. FLOATING HEAD SUMMARY Floating head thickness for internal pressure: OK Floating head thickness for external pressure: OK For calculating hr, assume thickness of flange, T Calculated flange thickness, T For a proper design of flange : 1. Adopted thickness of floating head flange 2. The centeline of floating head intersects the inside surface of flange at distance L1/2
1.476378 0.8125 0.9375 [TEMA Table D-5] 1.0625 1.125
INCH PSI > INCH INCH
Bolt
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 97 of 136 Sheet : 11 of 12 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) 8.5. Moments Summary, Mo (in lb-in.) :
a. Internal Pressure b. External Pressure 8.6. Summary of rerquired thicknesses (in MMS) : Tubeside (internal pressure), operating condition Shellside (external pressure), operating condition Tubeside (internal pressure) gasket seating load Shellside (external pressure) gasketing load Raised face Max. thickness + Corrosion allowance (without raised face) 8.7. Summary of rerquired thicknesses (in INCHES) : Tubeside (internal pressure), operating condition Shellside (external pressure), operating condition Tubeside (internal pressure) gasket seating load Shellside (external pressure) gasket seating load Raised face Max. thickness + Corrosion allowance + raised face
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D
[Appendix 1-6]
[Attached by Bolts]
Floating head Bcking ring Flange Operating Gasket Operating Gasket Mo1 Mo2 Mo3 Mo4 6981.021 246552.8 35312 262543 95423.64 246552.8 15193.6 250466 Floating Flange Head 0.913474 9.945304 13 37.00286 54.83057 54.83057 5 13 83
Bcking ring 31.1512 20.4335 84.9404 82.9638 5 92
MM MM MM MM MM MM
Floating Flange Head 0.035964 0.391547 0.51181 1.456806 2.158684 2.158684 0.19685 0.511811 3.267717
Bcking ring 1.22643 0.80447 3.34411 3.26629 0.19685 3.62205
INCH INCH INCH INCH INCH INCH
Assumed T = 70 MM is O.K. Thickness of flange incluiding C .A + 5 mm (raised face) Use flange adopted thickness T for construction
3.464567 INCH 3.464567 INCH
8.8. Comparison of rerquired thicknesses of floating head flange :
88 88
MM MM
Differ erence
Ready
INCH
2
-1.608452608
2
-0.543194295
-13.7971351
2
0.158684028
4.030574308
2
0.158684028
8.9. Comparison of rerquired thicknesses of backing ring :
MM
-40.85469624
4.030574308
Differ erence
Ready
INCH
MM
4
-2.773573783
-70.44877408
4
-3.195529701
-81.1664544
4
-0.655890236
-16.65961201
4
-0.733710226
-18.63623975
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 98 of 136 Sheet : 12 of 12 Rev. : 0
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 0 Exchanger : Residue Cooler, Type : AES, TEMA class : R Q3. FLOATING HEAD & ITS FLANGE (cont.) 9. Check for the min. inside depth of floating head cover
Date : 4.7.2003 Location : Alex.
Client : APRC
Sheet : 15
Item : E-323A/B & E-514C/D [Attached by Bolts]
[Appendix 1-6]
[TEMA R-5.11]
9.1. Calculation of flow area through the tubes of one pass, Apass Tube OD, do Tube wall thickness (BWG 12) [TEMA Table D-7] Tube ID, di Total No. of tubes located in tubesheet, N No. of passes No. of tubes per one pass, N1 Internal area of one tube, A = PI( )/4*(di)2 Flow area through the tubes per one pass, Apass = N1 * A
1 0.098425 0.80315 146 2 73 0.506621 36.98333
INCH INCH INCH
25.4 2.5 20.4
INCH2 INCH2
2 326.852 MM 2 23860.2 MM
13.77953 27.55906 Depth of floating head, h = L - SQRT [L2 - (B/2)2] 3.224601 Ratio, h / D 0.117007 Parameter, C [TEMA Table D-14] 0.016842 Min. cross-over area, A1 = C * D2 [TEMA Table D-14 12.79117
INCH INCH INCH
350 MM 700 MM 81.9049 MM
INCH2
2 8252.35 MM
INCH2
9.2. Calculation of cross-over area of flow, A1 Inside Radius of spherical floating head, L Inside Diameter of spherical floating head, D = 2 L
9.3. Calculation of cross-over area, A2 = B * H Flange interference (raised face), R1 = 3/16" Tubesheet interference (raised face), R4 = 3/16" Tube projection from tubesheet, R6 Coorosion allowance, CA
MM MM MM
MM2 MM MM MM MM
37.13524 0.1875 0.1875 0.11811 0
INCH INCH INCH INCH
23958.2 5 3 3 0
9.4. Calculation of total available cross-over area, A = A1 + A2
49.9264
INCH2
2 32210.5 MM
9.5. Calculation of min. cross-over area = 1.3 Apass
2 48.07834 INCH
2 31018.2 MM
9.6. Compare (A1 + A2) & 1.3 Apass Change radius L untill (A1 + A2) > 1.3 Apass
[TEMA Figure F-3] [TEMA Figure F-3]
[TEMA R-5.11]
[TEMA R-5.11]
OK
N.B. Any change in L shall have an effect in the thickness of floating head t, and may be have an effect in thickness of floating head flange T. 9.7. Total depth of floating head : Distance from surface of floating tubesheet to inside wall of head = h + T - [h1+ L1 + R1 + R4] Cylindrical clear depth, H = T - (h1+L1+R1+R4) Total clear depth of head at middle of inside wall = T+ h -(h1+L1) Head thickness of construction, t Fillet weld leg, h1
5.320679 2.096078 5.635639 0.511811 0.393701
INCH INCH INCH INCH INCH
135.145 53.2404 143.145 13 10
MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Page : 99 of 136 Sheet : 1 of 7 Rev. : 1 Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports. The design of saddle supports for horizontal cylindrical pressure vessel shall include the required plate thicknesses calculations for the following saddle components : I. Top flange (reinforcement/wear) thickness , tf. II. Web (saddle plate) thickness , tw. III. Stiffener (rip plates) thickness , ts. IV. Base plate thickness , tb. The Design Data is as Follows : Vessel type & position Design pressure , P Design temperature Radiography (only for pressure parts, BW) Vessel inside dia., I.D. Vessel outside dia., O.D. Vessel outside radius, Ro Vessel wall thickness, t Corrosion allowance, C Material : shell heads saddles saddle plate (piece of pipe) Min. tensile stress : shell heads saddles Min. yield stress, sy : shell & heads saddles Allowable tensile stress: shell heads saddles Vessel weight , empty , W liquid (water), Wc Vessel total weight , Wt Number of saddles used Load per saddle , Q Saddle angle of contact , B Saddle width, b Ring stiffeners adjacent to saddle
Cylindrical & Horizontal 284.776 PSI 20.04826 o F 302 150 85% 19 INCH 482.6 INCH 508 20 INCH 254 10 INCH 12.7 0.5 5 0.19685 INCH ASME SA106 Grade B ASME SA234 Grade WPB Steel 37 ASME SA106 Grade B 75000 PSIG 5280 75000 PSIG 5280 55000 PSIG 3872 45000 PSIG 3168 30000 PSIG 2112 17100 PSIG 1203.84 17100 PSIG 1203.84 15700 PSIG 1105.28 9156.34 lb 4152.911 1685.22 lb 764.3392 10841.6 lb 4917.25 2 5420.78 lb 2458.625 Degree 120 130 5.11811 INCH N.A.
Kg/CM2G o
C
MM MM MM MM MM
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg Kg Kg Kg MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 100 of 136 Sheet : 2 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports (cont.) Exchanger Layout :
Figure (8)
Shell Inside Diameter, D Shell wall thickness, ts Head wall thickness, th Distance from tangent line-to-saddle support, A Head depth - to - tangent line , Ho = ID / 4 + th Shell length from Tangent - to - tangent (T/T) , L Distance from tangent line - to - welding line (Skirt), l Shell length from Welding - to - welding (W/W) , L' Saddle - to - saddle distance (S/S) , L" = L - 2 A
22.8921 0.5 0.56181 47.2441 6.28484 254.843 4.13386 246.575 165.354
INCH INCH INCH INCH INCH INCH INCH INCH INCH
581.46 12.7 14.27 1200 159.635 6473 105 6263 4200
MM MM MM MM MM MM MM MM MM
Total Ellipsoidal Head depth (external depth), H = Ho + l Total vessel overall length = L + 2 Ho
10.4187 INCH 267.412 INCH
264.635 6792.27
MM MM
9156.34 lb 1685.22 lb 10841.6 lb
4152.911 Kg 764.3392 Kg 4917.25 Kg
Vessel weight ,
empty , W liquid (water), Wc Vessel total weight (water), Wt
Figure (9)
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 101 of 136 Sheet : 3 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports (cont.) (a)Determining the number of stiffeners (rip plates) and its thickness,t *An approximate approach for determining the number of stiffeners, N is : N = m/24 + 1 (impircal formula) where m = total length of base plate , in. = 0.8 x vessel O.D. , in. N Use 4 stiffeners, n
16 INCH 1.66667
406
MM
4
* Total length of base plate m' , can also be calculated in accordance with saddle angle of contact ,B: m' = 2 (Ro + tf) sin B Use m
17.3205 INCH 20.5512 INCH
439.9409 MM 522 MM
* The stiffener (rip plate) thickness (ts) is 3/8" (9.5 mm) min. for vessels up to 6 ft (1830 mm) in diameter , Therefore use 4 stiffeners with thickness , ts
0.59055 INCH
15
MM
Baseplate-Stiffeners' fillet weld clearance, cl = Min. (ts , tb)
0.59055 INCH
15
MM
The stiffeners are equaly spaced by, Ss = [m-2(0.5ts+cl)]/(n-1) Use equally spaced stiffeners, Ss
6.85039 INCH 6.85039 INCH
174 174
MM MM
5.11811 INCH 1.67323 INCH 6.82283 INCH
130 42.5 173.3
MM MM MM
Use b Use rip plate width, Rw = 1/2[b - (2*cl + tw)] Use distance, c
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 102 of 136 Sheet : 4 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports (cont.) (b) Calculation of top flange (reinforcement) thickness , tf : Flange thickness , tf = SQRT(6*Mb / Sb) Where , Mb = Bending Moment , lb-in. Sb = Allowable design bending stress = 0.66 Sy ( per AISC Spesificatiuons) P b b M b = ----II x ---- x ---- = P b 2 4
II
Kg/CM2G
19800
PSIG
1393.92
5420.78 10 120 120
lb INCH Degree Degree
2458.625 Kg 254 MM
b ----8
Pll = Linear load per unit lengh , lb/in.
Q 1 + cos B P = ---- [ -------------------------II Ro II - B + cos B * sin B Q = load per one saddle , lb Ro = Vessel outside radius , in. 0 = Angle of contact , deg. B
= 180 - 0 /2
. . PI
441.298 lb/in
7880.703 Kg/M
. . Bending moment , Mb
282.327 lb-in
3.25276
Flange thickness , tf = SQRT(6*Mb / Sb) Use top flange plate thickness , tf
0.2925 0.5
7.429384 MM 12.7 MM
Use top flange plate width, B = 2* Rip width + 2*(15+25) + tw
7.08661 INCH
INCH INCH
180
Kg-M
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 103 of 136 Sheet : 5 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports (cont.) (c) Calculation of web (saddle) plate thickness , tw : Use 0.5" thick plate min. ( i.e. assume tw = 0.5" ) Calculate the max. allowable height h of a 1" wide strip column 0.5" thick under PII . Area , a = 1 x 0.5 IN.2 Min. radius of gyration , k = 0.289 tw
0.57874 INCH
15
We get h = tw * SQRT [(1500/PII)(18000 tw - PII )] where c Since c < h
106.572 INCH 6.82283 INCH OK
2706.921 MM 173.3 MM
Use web ( saddle ) with thickness , tw
0.59055 INCH
15
tb = SQRT [(Q * b) / 26400 * m]
0.22613 INCH
5.743795 MM
Use base plate with thickness , tb
0.59055 INCH
15
51.5365 PSIG 750 PSIG 0.06872 < 1
3.628171 Kg/CM2G Kg/CM2G 52.8 Passed
From
P
----= a
MM
18000 ---------------------------] 1 h 1+ -------[ ---] 2 18000
k
MM
(d) Calculation of base plate thickness , tb :
(e) Check for the bearing pressure : Calculated (actual) bearing pressure, Pact. = Q / (b*m) Allowable bearing pressure, Pallow. Bearing pressure ratio = Pact. / Pallow.
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 104 of 136 Sheet : 6 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R R. Design of Saddle Supports (cont.) (f) Stresses in Shell Due to Temperature Expansion : Expansion dl = a * l * dT Where dl = a = Thermal expansion coefficent l = Tangent - to - tangent distance (T/T) , in. dT = Difference in temp. = 302-70 o (consider ambient temp. 70 F ) Expansion , dl
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
7.1E-06 o
111.1111 C o 21.11111 C 10.66233 MM
lb
245.8625 210.0563 201 173.3 455 940 1395
Kg MM MM MM MM MM MM
522 130 180 100
MM MM MM MM
F 232 o F 70 0.41978 INCH
o
Therefore use slots for anchor bolts located in the sliding saddle with distance c/c 65 MM , and provide lubrite plates underneath the sliding saddle . Friction coefficient , fo Shear force at the saddle base , fo * Q Centroid of saddle arc , xo = ro * sin 60 / rad. 60 Use Saddle height under vessel, l = c + tf + tb Distance, c Elevation for 1st cooler, Z =Ro + tf + c + tb Height between coolers' centerlines, Z1 Elevation for 2nd cooler, Z2 = Z + Z1 (g) Support Saddle Detail :
0.1 542.078 8.26993 0.65945 6.82283 17.9134 37.0079 54.9213
INCH ft. INCH INCH INCH INCH
Figure (10)
m b B Width of outside stiffeners, Sw = 2 Rw + tw
20.5512 5.11811 7.08661 3.93701
INCH INCH INCH INCH
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 105 of 136 Sheet : 7 of 7 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
R. Design of Saddle Supports (cont.) Bending moment = fo * Q ( Z - xo )
5227.5
lb-in
This bending moment is counteracted by the weight of the vessel, Q * b/2 . i.e fo * Q ( Z - xo ) = Q * b/2 Therefore, the min. calculated value for b = 2 * BM /Q Tthe actual value used for b Since the actual value of b > the calculated value
1.92869 INCH 5.11811 INCH OK
93352.64 Kg-M
48.98874 MM 130 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 106 of 136 Sheet : 1 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
S. Lowest MDMT Without Impact Test.
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
Min. Design Metal Temperature, MDMT
28
o
F
Thickness
1. Pressure Parts Materials a. Main Shell (Smls. Pipe 20" NPS, Sch. 30) : ASME SA106 Grade B Shell Cover Course ASME SA516 Grade 70 : ASME SA516 Grade 70 Channel plate
o
C
-2 P No Gr No
Curve
INCH
MM
0.5 0.5 0.8
12.7 12.7 20
1 1 1
1 2 2
B D D
b. Formed Heads (Cap) : (26" NPS, Thk 14.27 mm) : ASME SA234 Grade WPB Floating Head (sphere sector) : ASME SB171 UNS No. C63000
0.6 0.5
14.27 13
1 1
1 2
B B
c. Nozzle Necks : (Seamless Pipe) ASME SA106 Grade B N3 & N4, NPS 6", Sch. 80 N1 & N2, NPS 6", Sch. 80
0.4 0.4
10.9728 10.9728
1 1
1 1
B B
2.16535 2.16535 2.16535 2.95276 3.8189 2.2 2.2
55 55 55 75 97 55 55
1 1 1 1 1 1 1 1
2 2 2 2 2 2 1 1
B B B B B B B B
1 1 1 1 1
1 2 2 2 1
B B B B B
1 1
1 2
B D
(NA)
(Smls. Pipe 20" NPS, Sch. 30)
d. Flanges :
Standards ASME SA105 (ASME B16.5) Non-standard : Shell flanges ASME SA266 Class 2 Channel flanges ASME SA266 Class 2 Channel cover (blind flange) ASME SA266 Class 2 Floating Head Flange ASME SA266 Class 2 Backing Ring ASME SA266 Class 2 e. Tubesheets : Stationary Tubesheet, ASME SB171 UNS No. C63000 Floating Tubesheet, ASME SB171 UNS No. C63000 f. Pass Partition Plate : g. Tubes : h. Fittings :
i. Stud Bolts :
ASME SB171 UNS No. C63000
ASME SB111 UNS No. C68700 (Seamless) Half Coupling, ASME AS105, N1, 1" NPTF, 3000# ASME SA105, N2, 1/2" NPTF, 3000# ASME SA105, N2, 3/4" NPTF, 3000# Elbows, 6" Sch. 80, ASME SA234 Grade WPB ASME SA193 Grade B7, Galvanized
Size of Stud Bolts connecting shell-to-channel Size of Stud Bolts connecting shell-to-shell cover Size of Stud Bolts connecting channel-to-channel cover Size of Stud Bolts connecting floating head-to-backing ring j. Nuts :
0.09843 2.50012 0.3 7.25 0.3 7.25 0.3 7.25 0.432 10.9728 1 1 1 1
25.4 25.4 25.4 25.4
0.5 0.8
12.7 20
ASME SA194 Grade 2H, Heavy & Galvaanized
2. Non-Pressure Parts Materials a. Saddle Plate : ASME SA106 Grade B b. Lifting Lug Reinf. Plate : ASME SA516 Grade 70 (normalized)
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 107 of 136 Sheet : 2 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) a. For Cylindrical Main Shell (Smls. Pipe 20" NPS, Sch. 30) Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.2] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing Impact testing required ? For Shell Cover Course Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing Impact testing required ?
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SA106 Grade B B 28 0.5
o
F INCH
-2 12.7
o
C MM
Below, so we have to check ratio tr.F/(tn-c)
0.13809 INCH 0.126 INCH 0.85 o F -7 0.31383 < 0.35 o F 135 o F -142 No
3.507406 MM 5 MM o
-21.66667 C [Fig. UCS-66-1] o 57.22222 C o -96.66667 C
(NA)
ASME SA516 Grade 70 Normalized D o o F C 28.4 -2 0.5 INCH 12.7 MM Below, we have to check ratio tr.F/(tn-c) 0.22088 INCH 5.610261 MM 0.19685 INCH 5 MM 0.85 o o F -48.33333 C -55 0.61931 > 0.35 [Fig. UCS-66-1] o o F C 95 35 o o F -101.1111 C -150 No
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 108 of 136 Sheet : 3 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) For Channel plate Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.2] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing Impact testing required ?
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
(Smls. Pipe 20" NPS, Sch. 30)
b. For formed heads (cap NPS 26", Thk. 14.27 mm) Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing Impact testing required ?
ASME SA516 Grade 70 Normalized D o F 28 -2 0.7874 INCH 20
o
C MM
Below, so we have to check ratio tr.F/(tn-c)
0.04829 0 0.85 -39.6063 0.05213 135 -174.606 No
INCH INCH
1.226577 MM 0 MM
o
-39.78128 C [Fig. UCS-66-1] o 57.22222 C o -114.7813 C
F < 0.35 o F o F
o
ASME SA 234 WPB Normalized B o F -2 28 0.56181 INCH 14.27
o
C MM
Below, we have to check ratio tr.F/(tn-c)
0.22088 0.19685 0.85 -1.06614 0.51443 135 -136.066 No
INCH INCH
5.610261 MM 5 MM
o
-18.37008 C [Fig. UCS-66-1] o 57.22222 C o -93.37008 C
F < 0.35 o F o F
o
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 109 of 136 Sheet : 4 of 10 Sheet : 3 of 3
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) For Floating Head (sphere sector) Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing (for thickness 0.551") Ratio = tr . E / (tn -c) [Fig. UCS-66.2] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing Impact testing required ? For Backing Ring Flange : - Item (6) : Material ASME/ANSI Condition Curve MDMT Blind thickness, tA
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SB171 UNS No. C63000 Normalized B o o F C 28 -2 0.51181 INCH 13 MM Below, so we have to check ratio tr.F/(tn-c)
0.375 0 0.85 -5.86614 0.62279 35 -40.8661 No
INCH INCH
9.525 0
o
-21.03675 C [Fig. UCS-66-1] o 1.666667 C o -40.48119 C
F > 0.35 o F o F
MM MM o
ASME SA266 Class 2 Non-Standard B 28 3.8189
Governing thickness, tg1 = tA/4
0.95472
[Fig. UCS-66.3(c)] MDMT without impact testing
28.1024
o
F INCH
o
F
-2 97
o
24.25
MM
C MM
o -2.165354 C
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.)
c. For pipe nozzle at shell-side, S1 & S2 6" Sch. 80 : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing [UCS-66(b)] Impact testing required ? For pipe nozzle in tube-side, T1 & T2 6" 300# WNRF : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] [UCS-66(b)] Adjusted MDMT w/o impact testing Impact testing required ?
Page : 110 of 136 Sheet : 5 of 10 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SA 106 Grade B
B o o F C -2 28 0.432 INCH 10.9728 MM Below, we have to check ratio tr.F/(tn-c) 0.03419 INCH 0.868379 MM 0.126 INCH 5 MM 0.85 o o -25.34222 C -13.616 F 0.09497 < 0.35 [Fig. UCS-66-1] o o F 135 57.22222 C o o -148.616 F -100.3422 C No
ASME SA 106 Grade B B o o F C 28 -2 0.432 INCH 10.9728 MM Below, we have to check ratio tr.F/(tn-c) 0.03419 INCH 0.868379 MM 0.126 INCH 0 MM 0.85 o -25.34222 -13.616 F 0.09497 < 0.35 [Fig. UCS-66-1] o o F 135 57.22222 C o o -148.616 F -100.3422 C No
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 111 of 136 Sheet : 6 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) d. For Flanges : For Standard B16.5 flanges : Material ASME/ANSI Condition Curve MDMT Impact testing exemption temp.
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SA105 B16.5
[UCS-66(c)(1)]
MM 28 -20
o
F F
o
Ferritic Steel
-2 -29
o
C C
o
Note. The same condition apply for flanges B16.47, split loose flanges of SA216 Grade WCB and LWN flanges. [UCS-66(c)(2),(3)&(4)] The governing thickness id the thickness of nozzle attached to the flange. For Channel Blind Flange : - Item (6) : Material ASME/ANSI Condition Curve MDMT Blind thickness, tA
ASME SA266 Class 2 Non-Standard Cladded B o F -2 28 2.16535 INCH 55
Governing thickness, tg1 = tA/4
0.54134 INCH
[Fig. UCS-66.3(c)] MDMT without impact testing
-3.0315
: For Floating Head Flange - Item (None) : Material ASME/ANSI Condition Curve MDMT Tube Sheet thickness, tA
o
F
13.75
o
C MM
MM
o -19.46194 C
(NA)
Governing thickness, tg1 = tA/4
ASME SA266 Class 2 Non-Standard B o F 28 2.95276 INCH
-2 75
o
0.73819
18.75
MM
C MM
[Fig. UCS-66.3(c)] MDMT without impact testing
14.0551
o
F
o
-9.969379 C
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 112 of 136 Sheet : 7 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.)
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
e. For Stationary Tubesheet : Item No. (4) Material ASME/ANSI Condition Curve MDMT Tubesheet thickness, tA
ASME SB171 UNS No. C63000
Governing thickness, tg1 = tA/4
B o F 28 2.16535 INCH
-2 55
o
0.54134
13.75
MM
C MM
[Fig. UCS-66.3(c)]
MDMT without impact testing
For Floating Tubesheet : Item No. (None) Material ASME/ANSI Condition Curve MDMT Tubesheet thickness, tA
-3.0315
o
F
o -19.46194 C
(NA)
Governing thickness, tg1 = tA/4
ASME Sb171UNS No. C63000
B o F 28 2.16535 INCH
-2 55
o
0.54134
13.75
MM
C MM
[Fig. UCS-66.3(c)] MDMT without impact testing (for thickness 2.9374016")
-3.0315
o
F
o -19.46194 C
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 113 of 136 Sheet : 8 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.)
f. For heat exchanger tubes 1" , BWG 12 : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] [UCS-66(b)] Adjusted MDMT w/o impact testing Impact testing required ?
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SB111 UNS No. C68700-061 B o o F C -2 28 0.09843 INCH 2.500122 MM Below, we have to check ratio tr.F/(tn-c) 0.0062 INCH 0.157561 MM 0 INCH 0 MM 1 o o F -28.88889 C -20 0.06302 < 0.35 [Fig. UCS-66-1] o o F 135 57.22222 C o o F -155 -103.8889 C No
g. Fittings : For half coupling in nozzles, N1 1", NPTF, 3000# : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] [UCS-66(b)] Adjusted MDMT w/o impact testing Impact testing required ?
B o o F C 28 -2 0.28543 INCH 7.25 MM Below, we have to check ratio tr.F/(tn-c) 0.03419 INCH 0.868379 MM 0.126 INCH 3.2 MM 0.85 o o F -28.88889 C -20 0.18227 < 0.35 [Fig. UCS-66-1] o o F 135 57.22222 C o o F -155 -103.8889 C No
Fittings : For 6" NPS, 90o LR Elbows, Sch. 80 :
ASME SA234 Grade WPB
ASME SA105
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 114 of 136 Sheet : 9 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) Fittings : For half coupling in nozzles, N2 1/2", NPTF, 3000# : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] [UCS-66(b)] Adjusted MDMT w/o impact testing Impact testing required ? h. Stud bolts : Material Curve Size MDMT Impact testing exemption
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
ASME SA105 B o o F C 28 -2 0.28543 INCH 7.25 MM Below, we have to check ratio tr.F/(tn-c) 0.03419 INCH 0.868379 MM 0.126 INCH 3.2 MM 0.85 o o F -28.88889 C -20 0.18227 < 0.35 [Fig. UCS-66-1] o o F 135 57.22222 C o o F -155 -103.8889 C No
ASME SA193 Grade B7
[Fig. UCS-66, Bolting] [Size 1.125" < 2.5"]
1 28 -55
INCH F o F o
25.4 -2 -48
MM C o C o
i. Nuts : Material Curve Size MDMT Impact testing exemption
ASME SA 194 Grade 2H
[Fig. UCS-66, Bolting] [Size 1.125" < 2.5"]
1 28 -55
INCH F o F o
25.4 -2 -48
MM C o C o
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 115 of 136 Sheet : 10 of 10 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R S. Lowest MDMT Without Impact Test (cont.) 2. For Non-Pressure Parts :
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
[UG-20(f)] , [UCS-66] & [Fig.UCS-66]
a. Saddle Plate (tf) : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) (tf) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] Adjusted MDMT w/o impact testing [UCS-66(b)] Impact testing required ?
B o o F C 28 -2 0.5 INCH 12.7 MM Below, we have to check ratio tr.F/(tn-c) 0.2925 INCH 7.429384 MM 0 INCH 0 MM 1 o o F -21.66667 C -7 0.58499 > 0.35 [Fig. UCS-66-1] o o F 42 5.555556 C o o F C -49 -45 No
b. Lifting Lug Reinf. Plate : Material Condition Curve MDMT Nominal thickness, tn (adopted thickness) Point of combination of MDMT & thkickness Required thickness, tr Corrosion allowance, C Joint efficiency, E = E* MDMT without impact testing Ratio = tr . E / (tn -c) [Fig. UCS-66.1] Reduction in MDMT [Temp. versus ratio in Fig. UCS-66.1] [UCS-66(b)] Adjusted MDMT w/o impact testing Impact testing required ?
ASME SA516 Grade 70 Normalized D o o F C 28 -2 0.7874 INCH 20 MM Below, we have to check ratio tr.F/(tn-c) 0.3937 INCH 10 MM 0 INCH 0 MM 1 o o -39.78128 C -39.6063 F > 0.35 [Fig. UCS-66-1] 0.5 o o F 57 13.88889 C o o -96.6063 F -71.44794 C No
MDMT without Impact Testing for Shell Side MDMT without Impact Testing for Tube Side
29 29
ASME SA106 Grade B
o
F F
o
-2 -2
o
C C
o
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 116 of 136 Sheet : 1 of 1 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
T. Radiography.
U. Hydrostatic Test Pressure. Design Temperature :
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Spot
[UG-99(b)]
[ Refer to
Shell-Side Tube-Side
Test Temperature Internal Design Pressure, P (MAWP) : Shell-Side Tube-Side Max. Allowable Stress @ Design Temperature, S
Max. Allowable Stress @ Test Temperature, St
10%
Page : 15 of 136
]
o F 302 o F 140 o F 104 284.776 PSIG 71.7082 PSIG
o C 150 o C 60 o C 40 20.04826 Kg/CM2G 5.04826 Kg/CM2G
17100
17100
PSIG
PSIG
1203.840039
1203.840039
2 Kg/CM G
2 Kg/CM G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
a. Hydrostatic Test Pressure as per ASME Code Requirements, Ph = 1.3 * MAWP * (St/S) Shell-Side 370.209 PSIG Tube-Side 93.2207 PSIG
MAWP = Design Press.
26.06274 Kg/CM2G 2 6.562738 Kg/CM G
b. Hydrostatic Test Pressure as per Client Request, Ph = 1.5 * MAWP * (St/S)
Shell-Side
427.164617
PSIG
30.07239
Tube-Side
107.5623545
PSIG
7.57239
Shell-Side
637.8835023
PSIG
44.907
Tube-Side
427.4999863
PSIG
30.096
Kg/CM2G
Kg/CM2G
c. Hydrostatic Test Pressure as a Client Request for new & cold, Ph = 1.5 * MWP
d. Hydrostatic Test Pressure for operating & corroded, Ph = 1.3 * MWP Shell-Side Tube-Side
V. Post Weld Heat Treatment (PWHT). Shell Material P- No. Gr. No. Max. Welded Nominal Thickness According to UW-40 & UCS-56(f), the material is exempted from PWHT
436.017 PSIG 338 PSIG
30.6956 23.7952
[UW-40 & Table UCS-56] ASME SA 106 Grade B 1 1 0.562 INCH 12.7
Kg/CM2G
Kg/CM2G
Kg/CM2G Kg/CM2G
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 117 of 136 Sheet : 1 of 4 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
W. Calculation of Exchanger Weight. 1. Volume of vessel : Shell volume = 3.14 (D/2)2 * L' Head volume = 3.14 (D/2)2 * (2*KD/3 + Skirt)
358041 INCH2 9.40505 INCH2
4212.74 lb 267.412 INCH 2894.77 lb 3 490.059 lb/ft
1313.032 Kg Kg/M3 7850
147.05
66.7
( where KD = Depth of head ), K =
Head skirt Total volume of vessel Tangent - to - Tangent distance (T/T) , L Welding - to - Welding distance (W/W) , L' 2. Weight of liquid water , Wc Total Oveall Length = L + 2 H0 3. Weight of vessel empty , W : a. weight of shell = II *(Ro^2 - Ri^2 ) * L' * $ ( where $ = steel density ) b.weight of ellipsoidal heads = (II/4) * (D^2) * (4/3) * KD *$ = (II/3)*K*(Do^3 -Di^3)*$ = 8*(II/3)*K*(Ro^3 -Ri^3)*$ + weight of 2 skirts Weight of skirt of two ellipsoidal heads = II *(Ro^2 - Ri^2 ) * 2 Skirt* $ c. weight of saddles : - Base plate, (12+1472+12)x305x20 Saddle plate length - Saddle plate , 1896x320x15 Web plate ( saddle plate ) height, h = Z - (Ro+tf) cos(B/2) Web plate ( saddle plate ) width, Lw = m - 2*(ts + cl) angle b = B/2 where h1 = height of segment y = m - m' = (m-2 cl) - 2 (Ro+tf) sin(B/2) 2 Area of segment, As = (Ro+tf) [(3.14 * b)/180 - Sin b* Cos b] Area of web plate excluding segment, A = (m -2cl) * h - As - 2y2/SQRT(3) - Weight of web plate (457x349.5x14) = A * tw * $ Rip plates weights (per saddle) : Rip plates, thickness, ts Rip plates # 1 width, Rw Rip plates # 1 , height Weight of rip plates # 1 (no. off 4 ), 372x95x10 Rip plates # 2 width, Sw Rip plates # 2 height, h Rip plates # 2 (no. off 2 ), 349.5x100x10 - rip plates ( per one saddle ) - Weight of one saddle - Weight of two ( 2 ) saddles
M3 M3
1.803618 0.053615 0.25 105 1.910848 6473 6263 1910.848 6792.27
4.13386 INCH 425772 INCH2 254.843 INCH
lb
MM M3 MM MM Kg MM
Kg
97.0624 lb
44.02631 Kg
18.4262 25.3937 25.5179 12.6634 18.189 60 5.84055 8.87008 67.7139
lb MM lb INCH INCH Degree
8.357895 645 11.57459 321.65 462
INCH INCH INCH2
148.35 MM 225.3 MM 2 0.043686 M
Kg MM Kg MM MM
86.727 INCH2 14.5252 lb
2 0.055953 M 6.588443 Kg
0.59055 1.67323 7.39721 8.29183 3.93701 12.6634 16.6999 24.9917 83.4609 166.922
15 42.5 187.8891 3.761071 100 321.65 7.574858 11.33593 37.85686 75.71371
INCH INCH INCH lb INCH INCH lb. lb lb lb
MM MM MM Kg MM MM Kg Kg Kg Kg
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 118 of 136 Sheet : 2 of 4 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
W. Calculation of Exchanger Weight (cont.) d. Weight of Nozzle - Weight of Nozzle, S1& S2 6" Sch. 80, WNRF 300# : - weight of WN flange - weight of nozzle pipe (145 MM) - weight of Blind Flange - weight of Stud Bolts
83.7765 14.2702 0 13.6512
lb lb lb lb
38 6.4728 0 6.192
Kg Kg Kg Kg
- Weight of Nozzle, T1 & T2 6" Sch. 80, WNRF 150# : - weight of WN flange - weight of nozzle pipe (145 MM) - weight of Blind Flange - weight of Stud Bolts
47.6203 14.2702 0 13.6512
lb lb lb lb
21.6 6.4728 0 6.192
Kg Kg Kg Kg
0 0
lb lb
0 0
Kg Kg
- Weight of Nozzle, A X" Sch. 160, WNRF 150# : - weight of WN flange - weight of nozzle pipe (1490 MM)
0 0
lb lb
0 0
Kg Kg
- Weight of Nozzle, D X" Sch. 80, WNRF 150# : - weight of WN flange - weight of nozzle pipe (61 MM) o - weight of 90 elbow, LR - Weight of Nozzle, N4 1", half coupling 3000# : - Weight of Nozzle, N5 1/2", half coupling 3000# :
0 0 0 2.20465 1.76372
lb lb lb lb lb
0 0 0 1 0.8
Kg Kg Kg Kg Kg
191.208 lb
86.7296
Kg
288.097 lb 97.0044 lb
130.6775 Kg 44 Kg
576.195 0 722.276 97.0044
261.3549 0 327.6157 44
- Weight of Nozzle, B&C X" Sch. 160, WNRF 150# : - weight of WN flange - weight of nozzle pipe (175 MM)
Total weight of nozzles e. Weight of Shell Flanges = (3.14/4) (Do2 - Di2) T p - Weight of Stud Bolts, dia. 1-1/8", 270 LG, Q'ty 20 (including weight of hex. nuts)
f. Weight of Channel - Weight of Channel Flanges =2 (3.14/4) (Do2 - Di2) T p - Weight of Channel Course (incl. in weight of shell) 2 - Weight of Channel Blind Flange = (3.14/4) Do T p - Weight of Stud Bolts, dia. 1-1/8", Heavy, Q'ty 40
lb lb lb lb
Kg Kg Kg Kg
(including weight of hex. nuts)
- Weight of Pass Partition, Total Weight of items e and f
44.0929 lb 1824.67 lb
20 Kg 827.6481 Kg
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 119 of 136 Sheet : 3 of 4 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R W. Calculation of Exchanger Weight (cont.) g. Weight of Bundlel - Weight of tubes, BWG 13, No. of Tubes, n Tube OD Tube Length, L Tube Wall Thickness, tt Tube ID
Date : 11.4.2004 Location : Alex.
Client : APRC Items : E-323A/B & E-514C/D
2726.82 lb 1 0.23622 0.09843 0.80314
INCH INCH INCH INCH
Kg
Kg MM MM
MM M MM MM
- Weight of Floating Tubesheet, Tubesheet OD Tubesheet Thickness No. of Holes Hole Diameter
55.998
INCH
44.5679 475 55 146 25.4
- Weight of Floating Head Flange Floating Head Flange OD Floating Head Flange ID Floating Head Flange Thickness
139.679 1289.72 998.704 165.348
lb INCH INCH INCH
63.35663 585 453 75
Kg MM MM MM
- Weight of Floating Head Backing Ring Floating Head Backing Ring OD Floating Head Backing Ring ID Floating Head Backing Ring Thickness
180.651 1289.72 998.704 213.851
lb. INCH INCH INCH
81.94124 585 453 97
Kg MM MM MM
- Weight of Floating Head Sperical Segment =(3.14/6)[(Di+90.8997 Spherical Segment Thickness, t 0.51181 Spherical Sector, Sphere Diameter, Di 1543.25 Spherical Segment Height, h 189.048
lb INCH INCH INCH
41.23097 13 700 85.75
Kg MM MM MM
39.36 25.4 24 240 1.64
Kg MM
74.39984 560 55 146 25.4
Kg MM MM
- Stud Bolts & Hex Nuts (floating head) - Stud Bolt Size - No. of Stud Bolts (with 2 nuts) - Stud Bolt Length - Weight of Stud Bolt + 2 Nuts - Weight of Stationary Tubesheet Tubesheet OD Tubesheet Thickness No. of Holes Hole Diameter
98.2564 lb 1047.21 INCH 121.255 INCH
1236.853 146 25.4 6 2.500122 20.39976
86.7748 lb 1 INCH 9.44882 INCH 3.61562 lb 164.025 lb 22.0472 INCH 2.16535 INCH 1
INCH
MM
MM Kg
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 120 of 136 Sheet : 4 of 4 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
W. Calculation of Exchanger Weight (cont.) - Weight of Baffels : No. off Baffels Baffel OD Baffel Thickness Cut Ratio
134.403 lb. 18.7008 INCH 0.19685 INCH
60.96364 Kg 24 475 MM 5 MM 0.4
- Weight of Tube Support : Tube Support OD Tube Support Thickness Tube Support Inside Hole (rectangular)
57.6416 18.7008 0.3937 200
lb. INCH INCH x
26.14553 475 10 200
- Weight of Tie-Rods, OD 1/2", 3650 LG No. of Tie Rods Tie Rod OD Tie Rod Length
13.154
lb
0.5 236.22
INCH INCH
5.966481 Kg 4 12.7 MM 6 M
- Weight of Spacers, OD 1", 3600 LG - Weight of Impengment Plate, 150 x 150 x 6 thk - Weight of Seal Strip 30, 5600x60x6 thk, Q'ty 2 - Weight of Seal Strip 31, 5600x60x6 thk., Q'ty 2
92.5951 6.61394 69.7797 69.7797
lb lb lb lb
42 3 31.6512 31.6512
Total weight of bundle
Kg MM MM MM
Kg Kg Kg Kg
3931.08 lb
1783.087 Kg
Weight of exchanger, empty (erection), W Weight of contents, Wc
9155.7 1685.1
4152.911 Kg 764.3392 Kg
Total weight of exchanger and contents, Wt
10840.2 lb
lb lb
4917
Kg
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 121 of 136 Sheet : 1 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Project : Design & Fabrication of Heat Exchanger for APRC Refinery Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method. Shell material Heads material Saddles material Heads type Design temperature Vessel internal pressure, P Allowable stress in shell, Sts Allowable stress in heads, Sth Allowable stress in web, Sw Shell compression yield point, Y Saddle & anchor bolt compression yield point, Re Outer shell diameter, Do Wall nominal thickness of shell, ts Wall nominal thickness of heads, th Corrosion allowance for shell & heads, CA Shell joint efficiency, Es Head joint efficiency, Eh
ASME SA106 Grade B ASME SA234 Grade WPB ASME SA106 Grade B Ellipsoidal 2:1 o F 150 302 284.776 PSIG 20.04826 17100 PSIG 1203.84 17100 PSIG 1203.84 15700 PSIG 1105.28 45000 PSIG 3168 30000 PSIG 2112 20 INCH 508 INCH 12.7 0.5 0.5 INCH 12.7 0.197 INCH 5 0.85 0.85
Head internal depth, h Head depth -to- tangent line (external depth), Ho Insulation thickness, tis Wear (reinf./top flange) plate width, B Wear (reinf./top flange) plate thickness, tf Wall corroded thickness of shell Wall corroded thickness of heads Wall corroded thickness of shell + reinf. plate Outer shell radius, Ro = Do / 2 Shell length from Tangent - to - tangent (T/T) , L Saddle - to - saddle distance (S/S) , L" Transverse distance between anchor bolts, Y
5.785 6.285 0 7.087 0.5 0.366 0.366 0.866 10 254.843 165.354 21.6535
INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH INCH
146.935 159.635 0 180 12.7 9.28625 9.28625 21.98625 254 6473 4200 550
MM MM MM MM MM MM MM MM MM MM MM MM
Distance from tangent line -to- center of saddle support , A Saddle contact angle, B Longitudinal width of saddle at shell, b Transverse width of saddle at shell (baseplate length), m Height of saddle to vessel center line, Z Web width of saddle, hs = m - 2 cl Web thickness of saddle, tw Equivalent diameter of vessel, Deq = 1.5 (Do + 2 * tis) Equivalent length of vessel, Leq = L + 2Ho + 2 tis
47.244 120 7.087 20.551 17.913 19.37 0.591 30 267.412
INCH Degree INCH INCH INCH INCH INCH INCH INCH
1200
MM
180 522 455 492 15 762 6792.27
MM MM MM MM MM MM MM
o
C
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 122 of 136 Sheet : 2 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method (cont.) 1. Seismic & wind forces on vessel a. Seismic force UBC-1997 Total design force or shear at the base, F = z . I . C . Wt / Rw 1490.53 lb Seismic Zone 2A : For zone 2A : z = Seismic zone factor [Table No. 23-I] 0.15 I = Importance factor [Table No. 23-L] 1 C = Numerical coefficient [Table No. 23-P] 2.75 Max. Rw = Numerical coefficient [TableS NoS. 23-O & 23-Q] 3
676.0875 Kg
= 3 ( horizontal vessel on pier)
Total vessel dead weight, Wt
10840.2 lb
b. Wind force F = Cf . Gh . qz . Af 2 qz = 0.00256 . kz . (I V) For exposure C : h = Height kz = Velocity pressure exposure coefficient Wind Velocity, V = Basic wind speed Gh = Gust response factor Cf = Force coefficient
ANSI A58.1
4917
Kg
27.0848 PSF
13.49792 N/M2
0-15 0.8 115 1.32 0.8
51.399
M/Sec.
676.0875 0.574721 80.25607 676.0875
Kg M2 Kg Kg
ft MPH
c. Forces in longitudinal direction
Figure (11)
Seismic longitudinal force, Fls = z . I . C . Wt / Rw Wind longitudinal exposed area, Afl = (pi/8*Deq + Z) * Deq Wind longitudinal force, Flw = Cf . Gh . qz . Afl Fl = Greater value of Fls & Flw
1490.53 6.18624 176.936 1490.53
lb 2 ft lb lb
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 123 of 136 Sheet : 3 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method (cont.) d. Forces in transverse direction
Figure (12)
Seismic transverse force, Fts = 0.5 Fls = 0.5 x z x I x C x Wt / Rw Wind transvere exposed area, Aft = Deq * Leq Wind transverse force, Ftw = 0.5 x Cf x Gh x x qz x Aft Ft = Greater value of Fts & Ftw
338.0438 5.175706 361.377 361.377
Kg M2 Kg Kg
5420.12 lb
2458.5
Kg
161.471 lb
73.24138 Kg
4166.64 lb
1889.936 Kg
d. Max. reaction due to earthquake & wind, Qmax. = Max. (Ql , Qt)
4166.64 lb
1889.936 Kg
e. Total reaction due to full vessel weight, earthquake and wind, Q Total longitudinal reaction, Qlt = Qo + Ql Total transverse reaction, Qtt = Qo + Qt Q = Greater value of Qlt & Qtt
5581.59 lb 9586.76 lb 9586.76 lb
2531.741 Kg 4348.436 Kg 4348.436 Kg
3. Modified stresses at saddles : Ratio (Qo + Qmax.) / Qo
1.76874
2. Reaction force per saddle support a. Reaction due to full vessel weight, Qo = Wt/2 b. Reaction in longitudinal direction due to earthquake & wind : By taking moments about saddle support : Fl . Z = Ql . L" Ql = Fl . Z / L" c. Reaction in transverse direction due to earthquake & wind : By taking moments about saddle support : Ft . Z = Qt . (m/2) Qt = 3 ( 2 . Ft . Z / m)
a. Modified circumferential stresses, SIG 5' = Ratio .
745.267 55.7108 796.708 796.708
lb 2 Ft lb lb
<
OK
SIG 5' = Ratio .
<
OK
SIG 4' = Ratio .
<
OK
SIG 4' = Ratio .
<
OK
b. Modified tangential stresses,
SIG 2' = Ratio .
<
OK
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 124 of 136 Sheet : 4 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method (cont.) a. Stresses in longitudinal direction Longitudinal force, Fl 1490.53 lb Max. moment, Mmax. = Fl . Z 26699.9 lb-in.
676.0953 Kg 307.6167 Kg-M
Figure (13)
Cross-sectional Area, A = Lw * tw + 2 Sw * ts+ 2(n-2) Rw * ts Moment of inertia, Ix-x = Lw*tw3/12 + 2ts*Sw3/12+ (n-2) ts(Sw3-tw3)/12 Section modulus, Wx-x = Lw*tw2/6+2ts*Sw2/6+2ts(Sw3-tw3)/(6 Sw) Dimension, X1 = Ix-x / Wx-x Bending stress, Sb = Mmax. / Wx-x Allowable bending stress, S' = 1.2 . S Shear stress, T = Fl / A Allowable shear stress, S' = 0.5 . S b. Stresses in transverse direction Transverse force, Ft Max. moment, Mmax. = Ft . Z
15.3915 12.3045 7.14931 1.72107 3734.61 18840 OK 96.8411 7850 OK
INCH2 INCH4 INCH3 INCH PSI PSI
9930 5121500 117156.3 43.71512 262.9168 1326.336
PSIG PSIG
6.817615 Kg/CM2G Kg/CM2G 552.64
796.708 lb 14271.4 lb-in.
MM2 MM4 MM3 MM Kg/CM2G Kg/CM2G
361.3811 Kg 164.4249 Kg-M
Figure (14)
Cross-sectional Area, A 15.3915 Moment of inertia, Iy-y = tw*Lw3/12+Sw[(Lw+2ts)3-Lw3]/12+2Rw((Ss(n-1-2)+ts727.502 Section modulus, Wy-y =tw*Lw2/6+Sw*[(Lw+2ts)3-Lw3]/6(Lw+2ts)+2Rw[(Ss+ts87.4027 Dimension Y1 = Iy-y / Wy-y 8.32357 Bending stress, Sb = Mmax. / Wy-y 163.284 Allowable bending stress, S' = 1.2 . S 18840 OK Shear stress, T = Ft / A 51.7628 Allowable shear stress, S' = 0.5 . S 7850 OK
INCH2 INCH4 INCH3 INCH PSIG PSIG
9930 3.03E+08 1432273 211.4187 11.49517 1326.336
MM2 MM4 MM3 MM
PSIG PSIG
3.644098 Kg/CM2G Kg/CM2G 552.64
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 125 of 136 Sheet : 5 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method (cont.) 1. Bending moment & bending stress at saddles Bending moment at saddle in tension & compression, M 1
M
1
⎛ R 2 −H A ⎜ 1− + L 2A L ⎜ = Q A ⎜ 1− 4H ⎜ 1+ ⎜ 3L ⎝
2
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
452744
lb-in
5216.177 Kg-M
2 Longitudinal bending stress in tension, S1 = M1 / K1 R ts
2883.72 PSIG
2 203.0137 Kg/CM G
Longitudinal bending stress in compression, S1 = - M1 / K8 R2 ts
-15016.4 PSIG
2 -1057.153 Kg/CM G
558078
6429.767 Kg-M
2. Bending moment & bending stress at midspan Bending moment at midspan, M2 ⎛ ⎞ R 2 − H2 ⎜ 1+ 2 ⎟ 2 4 A⎟ ' L ⎜ M1 = Q L − 4H ⎜ L ⎟ 1+ ⎜ ⎟ 3L ⎝ ⎠
lb-in
2 Longitudinal bending stress at midspan, S1' = - M1' / 3.14 R ts
-3552.84 PSIG
2 -250.1198 Kg/CM G
3. Stress in the shell due to internal pressure, S = P R / (2 Es ts)
3350.31 PSIG
235.8619 Kg/CM2G
4. Sum of tensile stress Value of S1 + S
6234.03 PSIG
2 438.8756 Kg/CM G
Value of S1' + S
-202.527 PSIG
-14.2579
Greater value of (S1 + S) & (S1' + S) Shell allowable tensile stress Stress ratio = Greater stress/Allowable stress
6234.03 PSIG 17100 PSIG 0.36456 < 1
Passed
1367.78 PSIG
96.29196 Kg/CM2G
13680 PSIG 0.09998 < 1
963.072
Kg/CM2G
2 438.8756 Kg/CM G 1203.84 Kg/CM2G
5.Tangential shear stress, S2 5.a. Tangential shear stress on shell, S 2 In case of A > R/2 and ring not used or rings are adjacent to the saddle. S2 =
⎛ ⎞ K2 Q ⎜L − 2 A⎟ ⎜ ⎟ 4 H⎟ R ts ⎜ ⎜L + ⎟ ⎝ 3 ⎠
Shell allowable tangential stress = 0.8 S Stress ratio = S2 / 0.8 S
Passed
Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 126 of 136 Sheet : 6 of 8 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method (cont.) 5.b. Tangential shear stress on shell, S 2 In case of A > R/2 and ring used in plane of saddle. ⎛ K 3Q ⎜ ⎜ L −2A 4H R ts ⎜ ⎜ L+ 3 ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
372.607 PSIG
26.23154 Kg/CM2G
13680 PSIG 0.02724 < 1
963.072 Passed
1367.78 PSIG
96.29196 Kg/CM2G
Head allowable tangential stress = 0.8 S Stress ratio = S2 / 0.8 S
13680 PSIG 0.09998 < 1
963.072
5.d. Tangential shear stress on shell In case of A R/2]
K6 (K6 depends on the ratio A/R, see chart in vessel handbook) K6 for A/R > 1.00
0.053
K6 for A/R < 0 0.5 A R A/R R/2 K7
0.013 47.244 10 4.7244 5 0.76
K8
0.603
K11
0.204
MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 129 of 136 Sheet : 1 of 1 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Y. Check for the Anchor Bolts Due to Seismic and Wind Loading. 1. For longitudinal forces, Fl
Figure (16)
Fl Max. moment, Mmax. = Fl . Z + Fl . Z2 [for 2 coolers] Assume anchor bolt size dn, 7/8" Cross-sectional area per anchor bolt, Ab No. of anchor bolts per saddle, nb Total cross-sectional area of anchor bolts, A = nb . Ab
1490.53 108562 0.875 0.419 4 1.676
lb. lb-in. INCH 2 INCH each 2 INCH
676.0875 1250.77 22.225 270.322
Shear stress, T = 2 * Fl / A Bending stress, Sb = 2 * Mmax. / (A . L") Resultant stress, Si = SQRT (Sb2 + 3 T2 ) Allowable stress, S' = 0.5 . Re
1778.68 0.73824 3080.76 15000 OK
PSIG PSIG PSIG PSIG
125.219 0.051972 216.8857 1056
[for 2 coolers] [for 2 coolers]
Kg Kg-M MM MM2
2 1081.288 MM
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
2. For transverse forces, Ft
Figure (17)
Ft Max. moment, Mmax. = Ft . Z + Ft . Z2 [for 2 coolers] Cross-sectional area per anchor bolt, Ab No. of anchor bolts per saddle, nb Total cross-sectional area of anchor bolts, A = nb . Ab
796.708 58027.6 0.419 4 1.676
lb. lb-in. INCH2 each 2 INCH
361.3811 Kg 668.5515 Kg-M 2 270.322 MM
Shear stress, T = 2 [Ft / A] Bending stress, Sb = 2 [2 Mmax. / (A . Y)] Resultant stress, Si = SQRT (T2 + 3 Sb2 ) Allowable stress, S' = 0.5 . Re
950.726 6395.76 11118.5 15000 OK 711.2
PSIG PSIG PSIG PSIG
66.93108 450.2613 782.7422 1056
Kg/CM2G Kg/CM2G
INCH
28
MM
[for 2 coolers] [for 2 coolers]
Use anchor bolt with size (add corrosion allowance)
2 1081.288 MM
Kg/CM2G Kg/CM2G
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 130 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Sheet : 1 of 1 Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Check for the Existing Anchor Bolts Due to Seismic and Wind Loading. 1. For longitudinal forces, Fl
Figure (16b)
Fl Max. moment, Mmax. = Fl . Z + Fl . Z2 [for 2 coolers] Assume anchor bolt size dn, 11/16" Cross-sectional area per anchor bolt, Ab No. of anchor bolts per saddle, nb Total cross-sectional area of anchor bolts, A = nb . Ab
1490.53 108562 0.6875 0.252 2 0.504
lb. lb-in. INCH 2 INCH each 2 INCH
676.0875 1250.77 17.4625 162.5803
Shear stress, T = 2* Fl / A Bending stress, Sb = Mmax. / (A . L") Resultant stress, Si = SQRT (Sb2 + 3 T2 ) Allowable stress, S' = 0.5 . Re
5914.81 0.111 10244.8 15000 OK
PSIG PSIG PSIG PSIG
416.4029 0.007814 721.231 1056
[for 2 coolers]
Kg Kg-M MM MM2
2 325.1606 MM
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G
2. For transverse forces, Ft
Figure (17b)
Ft Max. moment, Mmax. = Ft . Z + Ft . Z2 Cross-sectional area per anchor bolt, Ab No. of anchor bolts per saddle, nb Total cross-sectional area of anchor bolts, A = nb . Ab
796.708 58027.6 0.252 2 0.504
lb. lb-in. INCH2 each 2 INCH
361.3811 Kg 668.5515 Kg-M 2 162.5803 MM
Shear stress, T = 2 [Ft / A] Bending stress, Sb = 2 [2 Mmax. / (A .Y)] Resultant stress, Si = SQRT (T2 + 3 Sb2 ) Allowable stress, S' = 0.5 . Re
1580.77 3197.88 5760.04 15000 OK
PSIG PSIG PSIG PSIG
111.2862 225.1306 405.5071 1056
Use anchor bolt with size (add corrosion allowance)
[for 2 coolers] [for 2 coolers]
484.0224009
INCH
2 325.1606 MM
19.05600003
Kg/CM2G Kg/CM2G Kg/CM2G Kg/CM2G MM
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 131 of 136 Sheet : 1 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Z. Check for Bundle Pulling. Weight of empty vessel Weight of full vessel Reaction force full vessel Bundle weight Dimension l = c+ tf + tb
9155.7 10840.2 5420.12 3931.08 7.91339
lb lb lb lb INCH
4152.911 4917 2458.5 1783.087 201
Kg Kg Kg Kg MM
Figure (18)
Reaction force empty W / Reaction force full = Weight empty / Weight full
Reaction force empty W = (Weight empty / Weight full) x Rection force full Reaction force empty F = 1.5 x Bundle weight [API 660]
4577.85 lb 5896.61 lb
2076.456 Kg 2674.631 Kg
Figure (19)
Saddle cross-sectional area, A Moment of inertia, Ix-x
2 15.3915 INCH 4 12.3045 INCH
9930 5121500
MM2 MM4
Section modulus, Wx-x = Ix-x / X Max. moment, Mmax. = 0.5 F l
3 7.14931 INCH 23331.1 lb-in.
3 117156.3 MM 268.8004 Kg-M
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 132 of 136 Sheet : 2 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Z. Check for Bundle Pulling (cont.) Calculated Bending stress, Sb = Mmax. / Wx-x Allowable bending stress, S' = 0.9 . Re Stress ratio = Sb / S'
3263.4 PSIG 27000 PSIG 0.12087 < 1
229.7435 Kg/CM2G Kg/CM2G 1900.8 Passed
Calculated Shear stress, Allowable shear stress, Stress ratio = T / S'
383.108 PSIG 12000 PSIG 0.03193 < 1
26.97078 Kg/CM2G Kg/CM2G 844.8 Passed
T=F /A S' = 0.4 . Re
Figure (20)
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 133 of 136 Sheet : 1 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Z1. Lifting Lugs Thickness Calculations. (Reference : Pressure Vessel Handbook) Check of the thickness of lifting lugs : Material Allowable tensile strength, St Allowable shear strength, Sallow. = 0.49 St By neglecting the effect of both wind loads and pipe thrust, assume 2 (two) lifting lugs with dimensions shown in Figure (7). Leg of fillet weld, h = the thinner of thicknesses joined = 10 MM (0.394 INCH)
ASME SA 516 Grade 70 17100 PSIG 1203.84 Kg/CM2G 8379 PSIG 589.8816 Kg/CM2G
Figure (21)
Height of lifting lug, L Thickness of lifting lug, b Fillet weld, h Length of lifting lug, l F = Wt / (SQRT2) Vertical component of F, F1 = F/ SQRT2 Horizontal component of F, F2 = F1 Average unit stress = 0.707 * F1 / h * I
1.5748 0.7874 0.3937 3.93701 7665.21 5420.12 5420.12 2692.57
INCH INCH INCH INCH lb lb lb PSIG
2 2 Max. expected normal stress, Sexp. = F2 / (h*I *(b+h))*SQRT(2L +(b+h) )) 1174.44 PSIG Allowable shear strength, Sallow. 8379 PSIG Stress ratio = Sexp. / Sallow. 0.14016 < 1
40 20 10 100 3476.844 2458.5 2458.5 1.89557
MM MM MM MM Kg Kg Kg Kg/MM2
0.826805 Kg/MM2 589.8816 Kg/CM2G Passed
DESIGN CALCULATIONS OF HEAT EXCHANGER
Page : 134 of 136 Sheet : 2 of 2 Rev. : 1
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
Z1. Lifting Lugs Thickness Calculations (cont.) (Reference : Pressure Vessel Handbook)
Figure (22)
L b l R r
1.5748 0.7874 3.93701 1.37795 0.59055
INCH INCH INCH INCH INCH
40 20 100 35 15
MM MM MM MM MM
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Z2. References. The following references are used in the design calculations of saddles and lifting lugs of pressure vessel under considerations. 1. ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, Edition 1998, AddendA 2000. 2. TEMA Tubular Exchanger Manufacturer Association, 1988, 7th Edition, 25 North Broadway Tarrytown, New York 10591, Richard C. Byrne, Secretary 3. ASME Boiler and Pressure Vessel Code, Section II, Part A & Part D, Edition 1998, Addenda 2000. 4. "Pressure Vessel Design Handbook", Edition 1981, by Henry H. Bednar, P.E. published by Van Nostrand Reinhold Co. 135 west 50th. street, New York, N.Y. 10020, USA. 5. "Pressure Vessel Handbook", Fifth Edition January 1981, by Eugene F. Megyese, Publishing Inc., P.O. Box 35365, Tulsa, OK 74135, USA. 6. "Pressure Vessel Design Manual", Procedure 3-9, by Dennis R. Moss. 7. "Modern Welding Technology", Edition 1989, by Howard B. Carry, Prentice Hall, Englewood Cliffs, New Jersey 07632, USA..
Page : 135 of 136 Sheet : 1 of 1 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D
DESIGN CALCULATIONS OF HEAT EXCHANGER According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant)
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Job No. : 7443-33 Dwg. No. : 7443-33-1A, Rev. 1 Exchanger : Residue Cooler, Type : AES, TEMA class : R
Z3. Notes.
Page : 136 of 136 Sheet : 1 of 1 Rev. : 1 Date : 11.4.2004 Location : Alex. Client : APRC Items : E-323A/B & E-514C/D