72479938 Chapter 8 Infectious Diseases Robbins and Cotran Pathologic Basis of Disease
February 17, 2017 | Author: Arun Nayak | Category: N/A
Short Description
Download 72479938 Chapter 8 Infectious Diseases Robbins and Cotran Pathologic Basis of Disease...
Description
INFECTIOUS DISEASES Still an important cause of death among elderly & immunocompromised patients BIOTERRORISM AGENTS Category A Highest risk Readily disseminated Highly mortality Eg: anthrax, botulism, smallpox. plaque Category B Moderately easy to disseminate Moderately morbidity Low mortality Foodborne or waterborne Eg: brucelliosis, epsilon toxin, glandera, etc. Category C Can be engineered for mass dissemination Potential high morbidity & high mortality Emerging infectious disease threats Eg: nipah virus, hantavirus TABLE 8-4 -- Potential Agents of Bioterrorism Category A Diseases/Agents Anthrax (Bacillus anthracis) Botulism (Clostridium botulinum toxin) Plague (Yersinia pestis) Smallpox (Variola major virus) Tularemia (Francisella tularensis) Viral hemorrhagic fevers (filoviruses [e.g., Ebola, Marburg] and arenaviruses [e.g., Lassa, Machupo]) Category B Diseases/Agents Brucellosis (Brucella sp.) Epsilon toxin of Clostridium perfringens Food safety threats (e.g., Salmonella sp., Escherichia coli O157:H7, Shigella) Glanders (Burkholderia mallei) Melioidosis (Burkholderia pseudomallei) Psittacosis (Chlamydia psittaci) Q fever (Coxiella burnetti) Ricin toxin from Ricinus communis (castor beans) Staphylococcal enterotoxin B
Prepared by: EGBII w/ AFB; 09-17-11
Typhus fever (Rickettsia prowazekii) Viral encephalitis (alphaviruses [e.g., Venezuelan equine encephalitis, eastern equine encephalitis, western equine encephalitis]) Water safety threats (e.g., Vibrio cholerae, Cryptosporidium parvum) Category C Diseases/Agents Emerging infectious disease threats such as Nipah virus and Hantavirus
TABLE 8-1 -- Classes of Human Pathogens and Their Lifestyles Taxonomic
Site of Propagation
Prions
Intracellular
Viruses
Obligate intracellular Obligate intracellular Extracellular
Bacteria
Fungi
Facultative intracellular Extracellular
Protozoa
Facultative intracellular Extracellular
Helminths
Facultative intracellular Obligate intracellular Extracellular Intracellular
Disease/ causative agents CreutzfeldJacob disease Poliomyelitis Chlamydia Streptococcus pneumonia Mycobacterium tuberculosis Candida albicans Histoplasma capsulatum Trypanosoma gambiense Trypanosoma cruzi Leishmania donovani Wuchereria bancrofti Trichinella spiralis
CATEGORIES OF INFECTIOUS AGENTS Prion Viruses Bacteria o Chlamydiae o Ricketssiae o Mycoplasma Fungus Protozoa
Helminths Ectoparasites
PRION With prion protein (PrP) Normally found in neurons (+) disease in conformational changes protease resistance Spongiform encephalitis o Kuru (human cannibalism) o Creutzfeld Jacob Disease (corneal transplant) o Bovine Spongiform Encephalopathy (mad cow disease) o Variant CJD VIRUSES Obligate intracellular parasite 20-300 nm Nucleic acid genome surrounded by CAPSID Classified according to: o Nucleic acid genome o Shape & capsid o (+)/(-) of lipid envelope o Mode of replication o Tropism o Type of pathology (+) inclusion bodies o CMV o Herpesvirus o Smallpox & Rabies Transient, latent infection, tumor production BACTERIA Prokaryotes – have cell membrane but lack membrane-bound nuclei & organelles Cell wall with peptidoglycan o Thick (gram positive) o Thin (gram negative) Classified according to o Gram staining o Shape o Need for oxygen Some with flagella or pilli Colonize body parts of normal people
Synthesize their own DNA, RNA, & proteins but depend on hosts for favorable growth conditions
Obligate Intracellular Bacteria Chlamydia Rickettsia Cannot synthesize ATP Replicate inside membrane-bound vacuoles in epithelial cells
C.trachomatis – most common cause of female sterility & blindness
Depend on host cell for ATP Replicate inside membrane-bound vacuoles in endothelial cells hemorrhagic vasculitis Transmitted by arthropod vectors
Causes: -Q fever -RMSF Mycoplasma Extracellular bacteria; lacks cell wall Tiniest free living org.like ureaplasma Person to person Atypical pneumonia UREAPLASMA Sexually transmitted Nongonococcal urethritis
FUNGUS Eukaryote Chitin (+) cell wall Ergosterol – cell membrane Yeast cells or hyphae Some dimorphic o Hyphae @ room temp o Yeast @ body temp (+) sexual spores or asexual spores (conidia) Superficial (nails, hairs, skin, dermatophytes, tinea) Subcutaneous (tropical mycosis) Deep (coccidiodes) Opportunistic fungi (Candida, Aspergillus, Mucor, Cryptococcus Pneumocystis jiroveci in AIDS patients PROTOZOA Single cell eukaryotes Can replicate intracellularly or extracellularly
o o o o o o o
Trichomonas vaginalis Entamoeba histolytica Giardia lambia Plasmodium Trypanosoma Leishmania Toxoplasma gondii
TABLE 8-3 -- Some Recently Recognized Infectious Agents and Manifestations
1. 2. 3. 4. 5. 6.
HELMINTHS Highly differentiated Multicellular Complex life cycle o Sexual – definitive host o Asexual – intermediate host/vector Disease is due to reaction to eggs or larvae Disease is proportionate to number of organism
ADAPTIVE – mediated by T & B lymphos
o TRANSMISSION & DISSEMINATION OF MICROBES
Routes of entry of microbes Spread & dissemination of microbes Release of microbes from the body Sexually transmitted infections Healthcare-associated infections Host Defenses against infections
1. Routes of entry of microbes
Inhalation Ingestion Sexual transmission Insect or animal bites Injection
2. Spread & dissemination of microbes
ECTOPARASITE Insects or arachnids Direct effect or as vector Itching & excoriation Transmitted disease
SPECIAL TECHNIQUES FOR DIAGNOSING INFECTIOUS AGENTS
Initially, spreads LOCALLY (Cholera, dermatophytes) or INVADE & SPREAD thru blood (malaria), LYMPHATICS (staphylococcus), or NERVES (rabies) Placental fetal route (rubella & syhphilis), birth canal (gonococcal), milk (CMV, HBV) Major manifestations at distant sites (airway) o Chickenpox & Measles
3. Release of microbes from the body
TRANSMISSION & DISSEMINATION OF MICROBES
Prepared by: EGBII w/ AFB; 09-17-11
Need to infect before transmission Factors: infecting organism & host, virulaent factor Host barriers: o Prevent microbe’s entry o Innate or adaptive INNATE – physical barriers, phagocytic cells, NK cells, plasma proteins
o
Skin shedding Coughing Sneezing Urine or feces Insect vectors
TRANSMISSION OF MICROBES FROM PERSON TO PERSON Respiratory – virus & bacteria (*important) Fecal-Oral – water borne viruses Sexual – STDs, HBV, HIV, HSV, HPV Others o Skin penetration (hook worm)
Blood & blood products (drug abusers, needle sticks) Animals to humans
4. Sexually transmitted infections
Infection w/ one STI increases the risk with another STD Can be spread from pregnant mother to the fetus severe damage to fetus/child INITIAL SITE: urethra, vagina, cervix, rectum, oral, pharynx
TABLE 8-5 -- Classification of Important Sexually Transmitted Diseases
5. Healthcare-associated infections
“nosocomial” infections hospital acquired (usually after 5 days of admission) Transmitted through blood transfusions, organ transplant, invasive procedures Most common, hands of healthcare providers (wash hands after every patient) Hygiene & hand washing greatly reduce transmission of MRSA & VRE
6. Host Defenses against infections HOST DEFENSES AGAINST INFECTION: SKIN Keratin layer - *good factor Low pH (5.5) Fatty acids Microbes penetrate INTACT skin or thru breaks o Schistosoma – can enter intact the skin HOST DEFENSES AGAINST INFECTION: GIT Acidic gastric Secretions Mucus layer Pancreatic enzymes Bile Defensins Normal flora IgA Host defenses weakened by: o Low gastric acidity o Antibiotics o Disturbance in peristalsis o Obstruction Enterotoxins, exotoxins invasion & mucosal damage, systemic infection
Prepared by: EGBII w/ AFB; 09-17-11
BACTERIAL VIRULENCE Virulence genes in pathogenicity islands o *encode proteins for their ability to adhere, invade, or deliver toxins PLASMIDS or BACTERIOPHAGES – virulence factors PLASMIDS or TRANSPOSONS – antibiotic resistance QUORUM SENSING – expression of virulence Fs related to concentration (more bacteria = increase virulence) Secretion of autoinducer peptides – toxin production BIOFILMS – viscous layer of extracellular polysaccharides that adhere to host tissue or devices adherence, immune evasion, inc.antibiotic resistane o Ex: Pseudomonas aeruginosa
HOST DEFENSES AGAINST INFECTION: RESPIRATORY TRACT Mucociliary defense Alveolar macrophages Damage to mucocilliary defense by: o Smoking o Cystic fibrosis o Aspiration o Intubation *There are some bacteria that avoid phagocytosis (eg.pneumococcus TB) HOST DEFENSES AGAINST INFECTION: GENITOURINARY TRACT Urination Low vaginal pH (glycogen lactobacilli) Anatomy Obstruction Antibiotics (vaginal infection) – w/c destroyed by lactic bacilli o *Female – more prone to infection
HOW MICROORGANISMS CAUSE DISEASE Mechanisms of Injury 1. Enter host cells & directly cause disease 2. Release of toxins/ enzymes (during cell lysis) 3. Host cellular response MECHANISMS OF VIRAL INJURY Directly damage host cells by entering & replicating inside host cells Direct cytopathic effects, antiviral immune responses, & transformation of infected cells Has factors for tissue tropism, d/t: o Host cell receptor – for the virus o Cellular transcription Fs o Anatomic barriers (ex.polio) o Local temp.,pH & host defenses
MECHANISMS OF BACTERIAL INJURY Bacterial virulence Bacterial adherence to host cells Virulence of intracellular bacteria Bacterial toxins Injurious effect of host immunity
BACTERIAL ADHERENCE ADHESINS – adhere to host cells or ECM fibrillae (eg. S. pyogenes) o S. pyogenes adheres to host tissues by protein F and teichoic acid projecting from the bacterial cell wall PILI/ FIMBRIAE are filamentous proteins on the surface of bacteria o Eg. E. coli, N. gonorrhoeae VIRULENCE OF INTRACELLULAR BACTERIA Infect epithelial cell, macrophage, or both Escape immune response or facilitate spread Gain entry thru immune response o Eg.coating with Abs or C3b (opsonization) phagocytosis When inside the cell – inhibit host protein synthesis, replicate rapidly, & lyse host cell o *phagolysosome – kills most bacteria o MTB – prevent fusion of phagosome &lysosome
BACTERIAL TOXINS EDOTOXINS – component of bacterial cell o Eg.LPS (in gm (-) bacteria o Induce cytokines & chemokines o Plays a role in Septic shock, DIC, ARDS – d/t excessive cytokines EXOTOXINS – secreted by bacterium o Enzyme (proteases, hyaluronidases, coagulases, fibrinolysins) o Toxins that alter INTRAcellular signals or regular pathways (AB toxins) o Neurotoxins (C.botilinum/tetani) - paralysis o Superantigens – stimulate very large amounts of T lymphocytes cytokines capillary leak & shock Superantigens made by S. aureus and S. pyogenes cause toxic shock syndrome (TSS) INJURIOUS EFFECTS OF HOST IMMUNITY Tuberculosis – type IV hypersensitivity HBV & HBC – immune reponse Rheumatic Fever – cross reaction Post.Strep GN – type III hypersensitivity o Can develop infection – S.pyogenes *Chronic inflammation – provides fertile ground for the development of cancer
IMMUNE EVASION BY MICROBES Microorganisms have developed many means to resist and evade the immune system. Mechanisms:
(1) Growth in niches that remains inaccessible/ hidden to host immune response. Eg.intestinal lumen, gallbladder (2) Variation or shedding antigens
Prepared by: EGBII w/ AFB; 09-17-11
(3) Resistance to innate immune defenses – capsule, host proteins, protease can destroy host body (4) Impairment of effective T-cell antimicrobial responses by specific or nonspecific immunosuppression
*after viral infection = decrease immune response
INFECTIONS IN IMMUNOSUPPRESSED HOSTS
Inherited or acquired defects in immunity partial susceptible to specific types of infection X-linked agammaglobulinemia – severe bacterial infections o S.pneumoniae o H.influenzae o S.aureus T-cell defects – intracellular pathogens Complement protein deficiency – susceptible to o S.pneumonia o H.influenzae o N.meningitides AIDS (destroys CD4 T-helper cells), leukemia – opportunistic infections o Pneumocystis jirovecii – common opportunistic
5 PATTERNS of INFLAMMATORY RESPONSE Suppurative inflammation – pyogenic bacteria o d/t digestion of normal structures Mononuclear & Granulomatous inflammation – caused by: o Virus, intracellular bacteria, or intracellular parasites o *EXCEPT acute viral infection – by macrophage Cytopathic-Cytoproliferative inflammation o Usually, by a virus Tissue necrosis – without or few inflammatory cells but NO inflammation o C.perfringes, E.histolytica Chronic inflammation & Scarring – by HBV (cirrhosis)
VIRAL INFECTIONS Transient infections .Measles .Mumps .Poliovirus .West Nile Virus .Viral H’gic virus Chronic LATENT infections .HSV .VZV .CMV
Transforming infections .EBV .HPV
Chronic PRODUCTIVE infections .Hepa B
TRANSIENT INFECTIONS
1. Measles (Rubeola)
Single standed RNA Paramyxovirus family Only 1 strain Cell surface receptors: o CD46 – all nucleated cells o Signaling lymphocytic activation molecule (SLAM) – cells of immune systems a molecule involved in T-cell activation MOT: respiratory droplets
Characteristics/ Morphology: WARTHIN-FINKELDEY CELLS o Multinucleated giant cells w/eosinophilic nuclear & cytoplasmic inclusion bodies o Seen in lymphoid organs with follicular hyperplasia REDDISH BROWN RASH o Dilated vessels, edema, mononuclear perivascular infiltrates KOPLIK SPOT (pathognomonic) o Mucosal ulcerated lesions o Marked by: Necrosis, neutrophils, neovascularization o Appear during 4th day of fever; usually in 2nd molar Complications of measles Croup, pneumonia Diarrhea Keratitis (blindness), encephalitis (Subacute sclerosing panencephalitis) Hemorrhagic measles (“black measles”)
Prepared by: EGBII w/ AFB; 09-17-11
2. Mumps
4. West Nile Virus
Paramyxovirus 2 types of surface glycoproteins o Hemagglutinin (w/c enter the cell) & neuramidase (w/c exit the cell) activities o Cell fusion & cytolytic activities Inhalation of respiratory droplets regional LN replicate in lymphocytes blood tropisms: salivary glands & other tissues desquamation of involved cells, edema, & inflammation swelling (both side of parotid) & pain Other sites: CNS, testis, ovary, pancreas
Arthropod-borne virus Flavivirus (includes Dengue & Yellow fever) Mosquitoes to bird to mammals Humans – accidental host Transmitted by blood transfusion, transplanted organs, breast milk, & transplacental route Usually asymptomatic, 20% mild febrile illness DANGEROUS complicationsL o Meningitis o Encephalitis o Meningoencephalitis
Morphology Salivary gland pain & swelling o 70% bilateral o Mononuclear cells compress acini o PMN & debris – lumen (parotitis) Aseptic meningitis 0 most common extrasalivary complication (10%) Mumps orchitis – scar & atrophy – causing sterility Pancreatic parenchyman & fat necrosis, pmn-rich Mumps encephalitis – monos
5. Viral Hemorrhagic Fever
3. Polivirus
Spherical, unencapsulated RNA Enterovirus w/ 3 major stains, all included in vaccine it uses human CD155 to gain entry into cells Fecal-oral route Infects oropharynx secreted into saliva swallowed multiplies in intestinal mucosa & LN transient viremia & fever 1/100 invades CNS replicates in SPINAL motor neurons or BRAIN STEM (bulbar) POLIO
Enveloped RNAs of arena virus: o Filoviruses o Bunyaviruses o Flaviviruses Depend on animal or insect host for survival and transmission Transmitted on contact with infected hosts or insect vectors, humans NOT the natural reservoir Some can spread from person to person: Lassa, Ebola, Marburg Mild to acute disease to life-threatening disease with sudden hemodynamic deterioration & shock NO cure or vaccines Potential biologic weapons Pathogenesis NOT well-understood Manifestations: o d/t thrombocytopenia or severe platelet (as low as 500) or endothelial dysfunction increased vascular permeability Activates innate immune response *there are 4 serotypes of dengue
CHRONIC LATENT INFECTIONS 1. Herpes Simplex virus
Includes: HSV 1 & HSV 2 Differ serologically Genetically similar Acute & laten Replicate – skin & mucus membrane Vesicular lesions Spread thru sensory neurons Latency associated transcripts Repeated reactivations
HSV-1 – associated with CORNEAL blindness, FATAL sporadic encephalopathy Neonates & immunocompromissed, disseminated HSV infection Large, pink to purple intranuclear inclusions (Cowdry tupe A) o Also with halo
Manifestations Fever, blisters, cold sores (bilateral) Gingivostomatitis (HSV-1) Genital herpes (HSV 2>1) 2 types of corneal lesions: o Epithelial keratitis - virusinduced cytolysis of the superficial epithelium o stromal keratitis - is characterized by infiltrates of mononuclear cells KAPOSI varicelliform eruption eczema herpeticum is characterized by confluent, pustular, or hemorrhagic blisters esophagitis - superinfection with bacteria or fungi bronchopneumonia – d/t intubation o NOT a typical manifestation Herpes hepatitis
2. Varicella Zoster Virus
Chicken pox & shingles Mild in children Infects mucous membrane, skin, & neurons LATENT infections – sensory ganglia Transmitted thru AEROSOLA Spread hematogenously Spread vesicular lesions o Centrifugal = trunk to extremities
Chickenpox .2wks after respiratory infection .Rash (macule in torso to head & extremities) .Vesicles rupture, crusts, heal
Shingles .Chickenpox Latent REACTIVATION *Dorsal root ganglia
SHINGLES Vesicular lesions, intense itching, burning or sharp pain (radiculoneuritis) Facial paralysis (geniculate nucleus) o RAMSAY HUNT SYND Other VZV associated diseases: o Intestinal Pneumonia o Encephalitis o Tranverse Myelitis o Necrotizing Visceral lesions
3. Cytomegalovirus
Beta group herpesvirus Major envelop CHON binds with epidermal growth factor receptor Latent with WBCs Asymptomatic or mononucleosis like infection in healthy people Gigantism of cell & nucleus Inclusion body surrounded by HAL (OWL’s eye)
Mode of transmission Transplacental (congenital) Thru vaginal/ cervical secretions (neonatal) or milk (perinatal) Thru saliva – preschool Venereal – after 15 years – ONLY in U.S.
Prepared by: EGBII w/ AFB; 09-17-11
Iatrogenic/ blood transfusion – any age Respiratory secretions & fecal-oral o Intranuclear & cytoplasmic basophilic inclusions o Seropositive for life – already with antibody
High Risks Solid organ transplant patients allogenic BM transplant patients AIDS patient (most common opportunistic organism)
Manifestations of CMV: disseminated Pneumonitis, Colitis, Retinitis Diagnosis: Morphology Culture Antibody Antigens PCR (DNA)
1. Hepatitis B Virus
Serum hepatitis Hepadnavirus DNA virus Spread: percutaneously, perinatally, sexually Cell injury secondary to reponse to infected liver cells Envade immune defenses by inhibiting INF-B & down regulating viral gene expression o Infected hepatocytes destroyed by CTL o Replicating virus is eliminated o Infection is cleared If the rate of infection of hepatocytes outpaces the ability of CTLs to eliminate infected cells, a chronic infection is established. This may happen in about 5% of adults and up to 90% of children infected perinatally. In this setting the liver develops a chronic hepatitis, with
GRAM POSITIVE BACTERIAL DISEASES 1. Staphycoccal infections 2. Streptococcal & Enterococcal infections 3. Diptheria 4. Listeriosis 5. Anthrax 6. Nocardia
1. Staphylococcus
TRANSFORMING INFECTIONS 1. Epstein-Barr Virus
CHRONIC PRODUCTIVE INFECTION
lymphocytic inflammation, apoptotic hepatocytes resulting from CTLmediated killing, and progressive destruction of the liver parenchyma. Long-term viral replication and recurrent immune-mediated liver injury can lead to cirrhosis of the liver and an increased risk for hepatocellular carcinoma. CTL response is dormant, resulting in the establishment of a “carrier” state, without progressive liver dam
Causes infectious mononucleosis (IM) Associated with lymphomas (Burkitt) & nasopharyngeal carcinomas IM occurs in late adolescents & young adults Close contact (*saliva) “kissing virus”
EBV spread The major alterations involve the blood, lymph nodes, spleen, liver, CNS, and, occasionally, other organs Viral ingestion in normal person, it resolves in 4-6 weeks In immunosuppressed EBV targeted nasopharynx & oropharynx causing B-cell neoplasms IM diagnosis depends on: 90% lymphocytosis with atypical lymphocytes in PBS Positive heteophile antibody reaction Specific EBV antigens (viral capsid antigen, early antigen, EB nuclear antigen)
2. Human Papilloma virus
Non-enveloped DNA virus Papovavirus family >100 types Warts, benign tumors, squamous cell CA (cervix) Initially infect basal cells of epithelium Koilocytosis (perinuclear vacuolization)
Gram (+) cocci Grapelike clusters Skin lesions, TSS, respiratory infections, heart lesions, osteomyelitis, food poisoning S. epidermis, S. saprophyticus, S. aureus Toxins o Hemolytic toxins o Exfoliative toxins (bullous impetigo) o Superantigens (TSS & food poisoning) Pyogenic inflammation
Morphology Furuncle or boil Carbuncle Hidradenitis suppurativa - infection of apocrine glands, most often in the axilla Paronychia (nailbeds) Felons (fingertips) Staphylococcal scalded skin syndrome or ritter disease - infections of the nasopharynx or skin in children
2. Streptococcus
Facultative or obligate anaerobe Gram (+) cocci in pairs or chains S.pyogenes: pharyngitis, scarlet fever, erysipelas, impetigo, RF, TSS, GN S. agalactiae: neonatal sepsis, meningitis, chorioamnionitis S. Pneumoniae: community acquired pneumoniae S. mutans: dental caries
3. Diphtheria
Corynebacterium diptheriae Gm (+) rod MOT: person to person, aerosol or skin shedding Tough pharyngeal membrane Toxin mediated damage to tissues Phage encoded A-B toxin blocks CHON synthesis Immunization – protection against lethal effect of toxin
4. Anthrax
Bacillus antharcis Spore former Gm (+) rod Box-car shaped Spore – potent biological weapon Major anthrax syndromes: o Cutaneous o Inhalational o Gastrointestinal
CUTANEOUS Anthrax 95% Painless pruritic papule vesicle (2days) rupture black eschar Bacteremia, rare INHALATIONAL Anthrax Inhaled growth in LN spore germinates toxin release hemorrhagic GASTROINTESTINAL Anthrax Uncommon Eating undercooked meat Nausea, abdominal pain, vomiting Severe bloody diarrhea Mortality – 50%
5. Listeria
Gm (+) bacillus Intracellular Motile, facultative Food borne Exudative pattern of inflammation INTERNALIS – leucine rich proteins on surface bind E-cadherins Protection mediated by IFN-y
Prepared by: EGBII w/ AFB; 09-17-11
o
Activates macrophages
6. Nocardia
Aerobic Gram (+) (+) terminal spores “beaded” Branching N. asteroids – respiratory infection N. brasiliensis – skin infection Patients with defective T-cell mediated immunity Suppurative lesion with liquefaction, granulation & fibrosis
Gram Negative Bacterial infections 1. Neisserial infections 2. Whooping cough 3. Pseudomonas infection 4. Plaque 5. Chancroid (Soft chancre) 6. Granuloma Inguinale
1. Neisserial infections
Gm (-) diplococcic Coffee bean shaped Grow best in enriched media (lysed in sheeps’s blood agar, “chocolate” agar) N.meningitides & N.gonorrhea – clinically significant
N.meningitides 13 serotypes Bacterial meningitis in 5-19 years old Colonize oropharynx invade respiratory epithelium circulation capsule reduces opsonization & destruction by complement Spread by respiratory route Tx: antibiotics 10% death N.gonorrhea Causes of STD: o 1st – C.trachomatis o 2nd – N.gonorrhea Urethritis in men Asymptomatic in women PID sterility or ectopic pregnancy
Disseminated infection in those lacking complement proteins (MAC) septic arthritis + hemorrhagic papules & pustules Neonatal gonorrhea blindness (conjunctivitis), rarely, sepsis o Tx: silver nitrate or antibiotics
Pathogenesis Use antigenic variation to escape immune response: o Pili proteins are altered by genetic recombination o Has three or four genes for OPA proteins OPA-ability to change their antigen; They increase binding of Neisseria organisms to epithelial cells and promote entry of bacteria into cells Has multiple serotypes disease with new strain Adhere to pili+CD46) & invade (OPA proteins) non ciliated epithelial cells at site of entry (nasopharynx, urethra, or cervix)
2. Whooping cough
Bordatella pertussis Gm (-) coccobacillus Acute, highly communicable Paroxysms of violent coughing followed by “whoop” Vaccine available but high rate due to antigenic divergence & waning immunity Dx: PCR, culture (less sensitive) Pathogenesis: o Colonizes brush border of bronchial epithelium & invades macrophages Bortedella virulence gene (bvg) – regulates transcription of adhesins & toxins Hemaglutinin adhesins binds with CHON on surface of cells EXOTOXINS – paralyze cilia Cause: LARYNGOTRACHEOBRONCHITIS o Bronchial mucosal erosions
o Hyperemia o Copious mucopurulent exudate Peripheral lymphocytosis (90%) o Hypercellularity & enlargement of mucosal lymph follicales & peribronchial LN
3. Pseudomonas infection
P.aeruginosa o Common cause of hospital acquired Opportunistic, aerobic, gm (-) bacillus o a frequent, deadly pathogen of people with cystic fibrosis, severe burns, or neutropenia d/t sepsis Resistant to antibiotics Hospital acquired infection, corneal keratitis (contact lenses), endocarditis & osteomyelitis (IV abuses), otitis media (swimmers/diabetics)
Virulence factors PILI & adherence proteins binds to epithelial cells & lung mucin ENDOTOXIN – symptoms & signs of gm (-) sepsis ALGINATE – slimy biofilm, protects bacteria from antibody, complement, phagocytes, antibiotics EXOTOXIN – inhibits protein synthesis PHOSPHOLIPASE C – lyze rbc & degrades pulmonary surfactant ELASTASE – degrades IgG & ECM Iron containing compounds – toxic to E.C. causing vasculitis Manifestations Necrotizing pneumonia – terminal airways in a fleur-de-lis pattern Gram (-) vasculitis + thrombosis + hemorrhage – highly suggestive Bronchial obstruction in CF + P.aeruginosa bronchiectasis & pulmonary fibrosis Skin burns Ecthyma gangrenosum Bacteremia DIC
4. Plague
5. Chancroid (Soft Chancre)
Yersinia pestis, gm (-) facultative intracellular bacterium Transmitted from rodents to humans by fleabites or human to humans by aerosols Causes invasive, frequently fatal infection (black death) Y.enterocolitica & Y.pseudotuberculosis: o Cause fecal-oral transmitted ileiteis & mesenteric lymphadenitis Proliferative within lymphoid cells Yop virulon genes proteins assemble into type 3 secretion system binds & injects bacterial toxins (Yops) to host cells kill host phagocytes & block phagocytosis & production of cytokines
Histologic features Massive proliferation of organism Appearance of protein rich & polysaccharide rich effusion Necrosis of tissues & blood vessels with hemorrhage & thrombosis Neutrophilic infiltrates Manifestations BUBONIC PLAQUE – fleabite on legs with pustule or ulceration draining LN enlarges become soft, pulpy & plum-colored (buboes) may infarct or rupture thru skin PNEUMONIC PLAQUE – severe, confluent, hemorrhagic & necrotizing bronchopneumonia with fibrinous pleuritis SEPTICEMIC PLAQUE – LN & REC all throughout the body develop foci of necrosis + neutrophilia FULMINANT BACTEREMIAS – DIC with hemorrhages & thrombosis
Chancroid Irregular ulcer: o neutrophil debris and fibrin o granulation tissue with necrosis & thrombosed vessels o dense lymphoplasmatic infiltrates Gram or silver stain – coccobacilli
6. Granuloma Inguinale (Donovanosis)
Prepared by: EGBII w/ AFB; 09-17-11
Versus Syphilis (Hard chancre) Hemophilus ducreyi, coccobacilli Acute, sexually transmitted, ulcerative infection 4-7 days after inoculation tender, erythematous papule Males – lesion in penis; females – vagina and periurethral area Erodes irregular ulcer enlargement of regional lymph nodes (buboes) erodes overlying skin chronic, draining ulcers Must be cultured in special conditions; PCR
Klebsiella granulomatosis (formerly Calymmatobacterium donovani) minute, encapsulated, coccobacillus Sexually transmitted Untreated entensive scarring asst’d with lymphatic obst’n & lymphadema (elephantiasis) of external genetalia Dx: microscopy of smears or ulcer biopsy Raised papule ulceration granulation tissue disfiguring scars pseudoepitheliomatous hyperplasia neutrophils and monos in ulcer base Donovan bodies (bacteria in macrophage on Giemsa stain/silver stain smears of exudates)
MYCOBACTERIA 1. 2.
Tuberculosis Mycobacterium aviumintracellulare complex 3. Leprosy Slender, aerobic rods that grow in straight or branching chain Waxy cell wall composed of mycolic acid Acid fast Weakly gram (+)
1.
Tuberculosis
M. tuberculosis, M. bovis Infection thru airborne droplets Organism may be dormant for years within macrophages Reactivation occurs with depressed immune status Delayed hypersensitivity to antigen Tuberculin (mantoux) test
NOT specific! (+) means there is exposure or immunization received induration that peaks in 48 to 72 hours
Macrophages - 1° cells infected Replicate w/ phagosomes Bacteremia NRAMP1 gene – gen. of anti-microbial oxygen radicals TH1 response in 3 wks makes macrophages bactericidal Other roles of TH1: INF-y – for competence of macrophages iNOS – for oxidative destruction formation of granulomas and caseous necrosis
Non-specific signs: early dse: malaise, anorexia, wt. loss low grade fever, night sweats hemoptysis, pleuritic pain AFB. culture, PCR
2.
1° TB – ghon (parenchyma) occurs in prev. unexposed (usually in children), unsensitized person usually w/ latent dse some progressive pneumonia like,hillar adenopathy, pleural effusion Ghon complex: o parenchymal lung lesion o nodal involvement Ranke complex: o radiologically detectable o calcification 2° TB @ apex seen in prev. sensitized host shortly after primary or reactivation or exogenous reinfection @ apex of upper lobes cavitation is common initial lesion may heal progressive pulmonary TB in elderly & immunocompromised Miliary pulmonary dse o organism drain through lymphatics into ducts or thru the pulmonary artery microscopic/visible (2mm) Systemic military TB o liver,BM,spleen,adrenals,menig es,kidneys,FT,epididymis isolated-organ TB (mostly systemic, EXCEPT this!) o TB meningitis, renal TB,adrenals,osteomylelitis,salpi ngitis,scrofula,GIT TB
* FIGURE 8-28 The natural history and spectrum of tuberculosis. (at the back)
MYCOBACTERIUM AVIUM – INTRACELLULARE COMPLEX
MAC Uncommon except in AIDS & low levels of CD4 lymphocytes (
View more...
Comments