7 Flat Slabs

Share Embed Donate


Short Description

Download 7 Flat Slabs...

Description

CE 551 5510 0 - 20 2004 04

Advanced Structural Concrete Design

CE 551 5510 0 - 20 2004 04

Flat Slab System • Column Heads • Division of Panels • Deflection • Crack Control • Shear • Arrangement of Reinforcement

CE 551 5510 0 - 20 2004 04

Flat Slab System • Column Heads • Division of Panels • Deflection • Crack Control • Shear • Arrangement of Reinforcement

CE 551 5510 0 - 20 2004 04

Class Objectives •Identify the types of slab construction, summarizing the advantages and disadvantages of each •Explain the methods of analysis of slabs •Determine the design moments of one-way and two way slabs •Design of flat slabs covering: division into strips, edge and corner columns, punching shear and provision of shear reinforcement

CE 5510 - 2004

Recommended Reading • James G. MacGregor, “REINFORCED CONCRETE:

Mechanics and Design”, 3rd Ed., Prentice-Hall, 1997, Ch. 13 and 14.

• Allen, A. H., “REINFORCED CONCRETE DESIGN TO BS8110 SIMPLY EXPLAINED”, E&FN Spon, London 1988, Ch. 14

•The next few slides are from the Reinforced Concrete Council

CE 5510 - 2004

Types of slabs

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

Flat Slab

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

Analysis of Slabs

course

CE 5510 - 2004

One-way spanning slab

CE 5510 - 2004

Simplified

CE 5510 - 2004

Two way action – A rectangular panel supported on all four side •

Curvature more severe along l x 



Moment is short span higher



Evaluation of moment is complex as behaviour is highly indeterminate

CE 5510 - 2004

Consider two strips AB and ED at mid-span. Deflection at central point C is the same. Deflection of udl beam =

5wl 4 384 EI 

∆=

kwl

4

CE 5510 - 2004

∆AB

= k nAB l y 4 

∆DE

= k nDE l x 4 

nAB and nDE are portions of total load intensity transferred to AB and DE respectively. Since ∆AB = ∆DE ,

n AB

=

4  x

wl 4  y

l

+l

4 x

n DE  =

4  y

wl 4  y

l

+l

4 x

CE 5510 - 2004

nDE > nAB Shorter span strip, DE, supports heavier portion of load and is subject to larger moment. Assumption – supports are unyielding If the supports of the single panel is flexible, e.g. beams, columns, etc. the distribution of moment is more complex. Degree of stiffness of yielding support determines the intensity of the steepness of the curvature contours in the lx and ly direction and redistribution of moments.

CE 5510 - 2004

Two-way spanning slab

CE 5510 - 2004

CE 5510 - 2004

Mid Span Moments - corner supported

CE 5510 - 2004

Approximate moment in one direction in slabs supported on columns at corners

CE 5510 - 2004

Midspan moment - edge supported

CE 5510 - 2004

Approximate distribution of  moment in one direction in slabs with symmetrical supports on four sides

CE 551 5510 0 - 20 2004 04

Moment

CE 551 5510 0 - 20 2004 04

Restrained Corners

CE 551 5510 0 - 20 2004 04

Table of Values

CE 5510 - 2004

Table of Coefficients

CE 5510 - 2004

Adjusted

CE 5510 - 2004

Flat Slabs

CE 5510 - 2004

Flat Slabs - Analysis

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

Flat Slab - Moments

CE 5510 - 2004

Widths

CE 5510 - 2004

Distribution

CE 5510 - 2004

Flat Slab – Moment Transfer

CE 5510 - 2004

U-Bars

CE 5510 - 2004

Flat Slab – Moment Transfer

CE 5510 - 2004

What does it depend on?

CE 5510 - 2004

CE 5510 - 2004

Edge Beams

CE 5510 - 2004

Flat Slab - Shear

CE 5510 - 2004

CE 5510 - 2004

Effective Shear Force

CE 5510 - 2004

Deflection

CE 5510 - 2004

Shear Reinforcement

CE 5510 - 2004

Due to the limited depth special reinforcement are required involving the use of shear heads and anchor bars and wires.

CE 5510 - 2004

CE 5510  2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510  2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

CE 5510 - 2004

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF