5G Overview Aand Knowledge Sharing V2.0

April 4, 2019 | Author: Hakeem Mohsin Saif | Category: Duplex (Telecommunications), Antenna (Radio), 4 G, Broadcasting, Computer Networking
Share Embed Donate


Short Description

5g overview...

Description

Nokia 5G

5G Overview And Knowledge Sharing

Date:03-05-2018

2

1

© Nokia 20 2 018

 5G

Overview  LTE and 5G Comparison  5G Peak Throughput  Performance : NR @ sub 6 GHz  Performance : NR @ mmWave  5G Architecture With Nokia Components  5G18A Site solution

2

© Nokia 20 2 018

5G Overview

2

3

© Nokia 20 2 018

• Enhanced Mobile Broadband (eMBB) • Massive Machine-Type Communications (IoT) • Ultra-Reliable Low Latency Communication (URLLC)

(Source: Qualcomm) 4

© Nokia 20 2 018

Nokia Internal Use

5

© Nokia 20 2 018

Source: 3GPP 6

© Nokia 20 2 018

5G Frequency Bands

3.5 GHz

400 MHz 

3 GHz

3.7 GHz

28 GHz GHz 10 GHz

6 GHz

continuous coverage, high mobility and reliability, interference limitation

Carrier BW Duplexing Cell size

n*

cmWave

© Nokia 20 2 018

90 GHz

30 GHz

mmWave

higher capacity and massive throughput, noise limitation 

n * 100 MHz

1-2GHz

*

TDD Macro

Small

Ultra small

* - not support supported ed in 5G18A 5G18A 8

39

Nokia Internal Use

Different band Work Cases

* - not support supported ed in 5G18A 5G18A 9

© Nokia 20 2 018

LTE and 5G Comparison

2

10

© No Nokia 2018

11

© No Nokia 2018

12

© No Nokia 2018

13

© No Nokia 2018

Simulation from Some Assumptions

Some Reasons of 5G having higher Spectral Efficiency  LTE PDCCH exist in every subframe, 5G introduce slot aggregation concept and it is not mandatory to have PDCCH in all TTI’s.  4G uses guard band of 10% where as in 5G use enhance technique F-OFDM which let 5G use more BW.  4G has 1 TBS where as in 5G use concept of CBG (code block group) which divide TBS in to small groups, as 5G use huge TBS and BLER is 10% which means with this TBS around 10% of data will be re transmitted where as with this technique techn ique in 5G UE will send NACK only for discarded group. 14

© No Nokia 2018

In 4G CRS is used to estimate channel and it is transmitted always in 4G whereas 5G tries to eliminate the use of CRS.  In 5G user specific DMRS used which mean each use will have its own RS within its allocation, if there is no allocation there is no RS. In 5G SSB(PSS/SSS.PBCH) block is always transmitted and this always has its own RS which can be used for cell selection..later UE will use its own RS and will have no issue 

15

© No Nokia 2018

16

© No Nokia 2018

17

© No Nokia 2018

18

© No Nokia 2018

5G Throughput

2

19

© No Nokia 2018

Overview Duplex scheme: TDD Large areas of unpaired spectrum easier to be found

Both uplink and downlink use OFDM • Simplified RF design • Eases selfbackhauling and device-to-device communication

20

© No Nokia 2018

Every subframe can be dynamically selected to carry UL or DL data. Flexible adaptation to DL/UL throughput requirements

Possibility to have control signals in every subframe for low latency scheduling. Support for selfcontained subframes

Nokia Internal Use

FDD as well, frequency but later on

Resource grid

12 subcarriers

Resource Element (RE) Resource Block (RB): 12 subcarriers x 1 symbol

14 OFDM symbols 1 slot (basic scheduling scheduling unit)

time

Multiple numerologies The most outstanding NR feature, when compared com pared to LTE, is the suport of multiple numerologies – multiple subcarrier subcarrier spacings

Subcarrier spacing is based on common 15 kHz base. Subcarrier spacing: f = 2 * 15 kHz where  (mju) defines the numerology. numerology.

=0 =1 =2 =3 =4 21

f = 15 kHz f = 30 kHz f = 60 kHz f = 120 kHz f = 240 kHz

© Nokia 2018

=0 =1 =2 =3 =4 Nokia Internal Use

1 PRB = 180 kHz 1 PRB = 360 kHz 1 PRB = 720 kHz 1 PRB = 1.44 MHz 1 PRB = 2.88 MHz

LTE subcarrier spacing (15 kHz) is a subset of numerologies supported by NR ( = 0) – for compati compatibili bility ty

Multiple Multip le numerologies numerologies – slot duration 15 kHz

1 frame (10 ms) =10 subframes = 10 slots

60 kHz

1 subframe (1 ms) = 1 slot =14 OFDM symbols

30 kHz

1 frame (10 ms) =10 subframes = 20 slots

1 subframe subframe (1 ms) = 2 slots = 28 OFDM symbols

22

© Nokia 2018

Nokia Internal Use

1 frame (10 ms) =10 subframes s ubframes = 40 slots

1 subframe (1 ms) = 4 slots =56 OFDM symbols

120 kHz

1 frame (10 ms) =10 subframes = 80 slots

1 subframe (1 ms) = 8 slots =112 OFDM symbols

23

© No Nokia 2018

D : Downlink, U : Uplink, X : Flexible

24

© No Nokia 2018

Multiple numerologies – PRBs and carrier carrier frequency span

3GPP specifies the minimum and maximum bandwidth (limit: 400 MHz carrier) Numerology min #PRBs max #PRBs

subc. spacing

min system BW

max system BW

Nokia: 273 PRBs (100 MHz)

25

© Nokia 2018

Nokia Internal Use

Single User Peak Throughput (SU-MIMO) DL Pattern 1

Frame Structure Nokia 0.5ms 256 PRBs Nokia 0.5ms 256 PRBs

26

DL #layer  

max DL TBS

SU-MIMO DL peak Tput (Gbps)

#slot of PRACH per 20ms

UL #layer  

PUCCH format

max UL TBS

SU-MIMO UL peak Tput (Mbps)

Ud #slot (%)

2

409616

0.5529816

1

2

short

303240

166.782

0.27027027

4

819256

1.1469584

1

2

short

303240

166.782

0.27027027

Requirement Description

Requirement Description

Single UE DL peak >= 1.3Gpbs, 4 layers, 70% DL, 100MHz

Single UE UL peak >=175Mbps, 2 layers, 30% UL, 100MHz

© No Nokia 2018

DL Pattern 1 MU-MIMO DL peak Tput (Gbps)

#slot of PRACH per 40ms

UL #layer 

PUCCH format

max UL TBS

MU-MIMO UL peak Tput (Mbps)

Dd:Ud (slot number)

Frame Structure

DL #layer  

max DL TBS

Nokia 0.5ms* 256 PRBs

2

409616

4.4238528

1

2

short

303240

667.128

0.27027027

Nokia 0.5ms* 256 PRBs

4

819256

4.4239824

1

2

short

303240

667.128

0.27027027

Requirement Description

Requirement Description

Cell DL peak >= 4Gbps, 70% DL, 1 00MHz

Cell UL peak >= 700Mbps, 30% UL, 100MHz

*256QAM assumed, if 64QAM due to MUI, 75% of DL throughput is achieved in the best case

27

© No Nokia 2018

Confidential

Performance : NR @ sub 6 GHz

2

28

© No Nokia 2018

MIMO in 3GPP

7

29Nokia © No N2017 okia 2018 ©

• Conventional BS → remote radio head (RRH) → active antenna systems (AAS)

30

© No Nokia 2018

Note: TRXU is also name as TRX

31

• Conventional passive antenna array:

• 2D antenna array:

• 64 physical antenna elements

• 64 physical antenna elements

• 4 columns, 8 transceiver units

• 4 columns, 64 transceiver units

© No Nokia 2018

• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff 

Physical Antenna Array

Sub-Array Virtualization

Full-Connection Virtualization

64 physical antennas 4 columns 8 rows 2 polarizations 32

© No Nokia 2018

Virtualization weights are phase-only array-response vectors, wideband, and assumed static

• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff  Physical Antenna Array

Sub-Array Virtualization

Elevation Pattern of Virtualization Weights

Logical Port Arrangement

5

0

-5

-10        B        d

16 transceiver units / logical antenna ports

-15

-20

-30 0

20

40

60

80

100

120

140

160

ZOD

64 physical antennas 4 columns 8 rows 2 polarizations 33

© No Nokia 2018

8 rows of physical antennas  2 rows of logical antenna ports 

-25

Virtualization weight weight vectors are phase-only array-response vectors applied at RF

180

Virtualization weights are phase-only array-response vectors, wideband, and all aimed in the same direction

• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff  Physical Antenna Array

Sub-Array Virtualization

Elevation Pattern of Virtualization Weights

Logical Port Arrangement

5

0

-5

-10        B        d

16 transceiver units / logical antenna ports

-15

-20

-30 0

20

40

60

80

100

120

140

160

ZOD

64 physical antennas 4 columns 8 rows 2 polarizations 34

© No Nokia 2018

8 rows of physical antennas  2 rows of logical antenna ports  4 transceivers per column 

-25

Virtualization weight weight vectors are phase-only array-response vectors applied at RF

180

Virtualization weights create the vertical sectors: top row points up (high sector), bottom row points down (low sector)

Antenna Array: Physical Array Configurations Array Configurations: • 8 rows rows of cro crossss-po poll elemen elements ts in all cases • 2, 4 or or 8 co colu lumn mns s • Colu Column mn spac spacing ing:: 0.5 0.5 wav wavelen elength gth • Row spa spacin cing: g: 0.8 0.8 wav wavele eleng ngth th

8 columns (8,8,2)

4 columns

128

(8,4,2)

2 columns

64

(8,2,2)

32

Physical Antenna Elements: • Azi Azimut muth h Be Beamw amwid idth= th=65 65de degre grees es • Ele lev vati tion on Beamwidth=65degrees • El Elem emen entt gai gain n = 8d 8dBi Bi • Fr Fron ont2 t2Ba Back ck = 30d 30dB B TXRU mapping: • Sub Sub-a -arra rray y met metho hodo dolo logy gy • With Within in a colu column: mn: sta static ticall ally y aggregate (e.g., at RF) disjoint selections of adjacent co-pol elements • Agg Aggrega regate te for for a fixed fixed elec electric trical al downtilt • Con Consid sider er 1,2, 1,2,4,8 4,8 Row Rows s of of 35 TXRUs per column © Nokia 2017 Nokia Confidential

16 Ports: 1 Row of TXRUs 32 Ports: 2 Rows of TXRUs

16 Ports: 2 Rows of TXRUs 32 Ports: 4 Rows of TXRUs

16 Ports: 4 Rows of TXRUs 32 Ports: 8 Rows of TXRUs

Antenna Array: TXRU (Logical) Configurations 8-Column Ph Physical Ar Array

4-Column Ph Physical Ar Array

2-C 2Column Ph Physical Array

(1,8,2)

(2,4,2)

(4,2,2)

(2,8,2)

(4,4,2)

(8,2,2)

16 Ports

32 Ports

36 © Nokia 2017 Nokia Confidential

Massive MIMO Techniques Techniques for the Downlink Dow nlink  Antenna arrays with 16 and 32 TXRUs • LTE: Class A Codebooks - Rel-13 Codebook • 16 Ports and 32 Ports, Maximum Rank = 8 • (32 ports=Rel-13 extension CB approved in Rel-14)

- Rel-14 codebook • 16 Ports and 32 Ports, Maximum Rank = 2

• NR: Class-A-st Class-A-style yle Codebooks - NR Codebook Type I • 16 Ports and 32 Ports, Maximum Rank = 8

- NR Codebook Type II • 16 Ports and 32 Ports, Maximum Rank = 2

• Transmission Schemes: - SU-MIMO •

Rank adaptation

- MU-MIMO •

Rank adaptation: Rank 1 per UE preferred over max Rank 2 per UE

• Scenarios: 2GHz - 3D-UMi: ISD=200m - 3D-UMa: ISD=750m, 1500m - (Performance in B66 and B25 should be similar)

37 © Nokia 2017 Nokia Confidential

3GPP Scena Scenarios rios:: UMa vs. UMi UMi • In 3D chann channel el model, model, TR3 TR36.87 6.873, 3, UEs are are located located on floo floors rs 1-8 • In UM UMa, a, BS heig height ht is 25m ----- hig higher her than than UEs in any floo floors rs (3m for each each floo floor) r) • In UM UMi, i, BS he heig ight ht is 10 10m m --- can be lo lowe werr than than som some e UEs UEs • Th The e angu angula larr separ separati ation on in in UMi UMi is bet better ter tha than n UMa UMa

UMa

38 © Nokia 2017 Nokia Confidential

UMi

Geometrical considerations: 200m vs 750m • UE density density is uniform uniform in the horizont horizontal al plane but non-unifo non-uniform rm in the (elevati (elevation) on) angular angular domain • UEs closer closer to the eNB provid provide e better better angular angular separ separation ation in the the elevation elevation dimen dimension sion

39 © Nokia 2017 Nokia Confidential

Outline of Downlink Results

• Ca Case ses s Eval Evalua uated ted:: - 750m (UMa), 1500m (UMa) - Array configurations at at base: 8 column, 4 column, 2 -

column 16 ports and 32 ports at base 2RX and 4RX at UEs Class A codebook-based SU-MIMO and MU-MIMO w/ZF Full buffer traffic, traffic, 10 active UEs per sector 

40 © Nokia 2017 Nokia Confidential

Best of NR vs Best of LTE, UE UEs wi with 2R 2RX & 4RX – 1500m ISD – Full Bu Buffer  16 TXRUs MEAN

Cell Edge

2RX

LTE

13

41Nokia © No N2017 okia 2018 ©

2RX

4RX

NR

LTE

NR

LTE

4RX

NR

LTE

• Gain Gain of NR ov over er LTE is ro roug ughl hly y 19 19-3 -34% 4% in Me Mean an SE SE,, 14 14%%-28 28% % in ce cell ll ed edge ge in Fu Full ll Bu Buff ffer  er  • Ga Gain ins s in bu burs rsty ty tr traf affi fic c wil willl be hi high gher  er 

NR

Best Be st of NR vs Be Best st of LTE (16 16--por ortt ant nten enna na ar arra ray y con onffig igur urat atio ions ns)) Cell Edge

Mean SE 2GHz, ISD=750, UE=2RX, Mean SE BS(1,8,2 BS( 1,8,2)) BS( BS(2,4,2 2,4,2)) BS( BS(4,2,2 4,2,2)) (bps/Hz) Best LTE 3.83 3.29 2.52

      0 Best NR 5.17 4.35 3.17       5 Gain of NR over LTE 35% 32% 26%       7      =       D2GHz, ISD=750, UE=4RX, Mean SE BS(1,8,2 BS(1 ,8,2)) BS(2 BS(2,4,2 ,4,2)) BS( BS(4,2,2 4,2,2))       S (bps/Hz) Best LTE 5.12 4.29 3.28       I Best NR Gain of NR over LTE

6.44 26%

5.45 27%

3.99 21%

2GHz, ISD=1500, UE=2RX, Mean SE SE (bps/H (bps/Hz) z) BS(1 BS(1,8,2 ,8,2)) BS(2 BS(2,4,2 ,4,2)) BS(4 BS(4,2,2) ,2,2) Best LTE 2.93 2 .4 9 1.86 Best NR 3.93 3.24 2.27       0       0 34% 30% 22% Gain of NR over LTE

      5       1      =2GHz, ISD=1500, UE=4RX, Mean SE (bps/H (bps/Hz) z) BS( BS(1,8,2 1,8,2)) BS(2 BS(2,4,2 ,4,2)) BS( BS(4,2,2 4,2,2))       D Best LTE 3.96 3.32 2 .4 1       S       I Best NR Gain of NR over LTE

14

42Nokia © No N2017 okia 2018 ©

4.99 26%

4.14 25%

2.88 19%

2GHz, ISD=750, UE=2RX, Cell Edge SE (1,8,2 (1, 8,2)) (2, (2,4,2 4,2)) (4, (4,2,2 2,2)) (bps/Hz) Best LTE 1.49 1.26 0.93 Best NR Gain of NR over LTE

1.89 27%

1.54 23%

1.10 19%

2GHz, ISD=750, UE=4RX, Cell Edge SE (1,8,2 (1, 8,2)) (2, (2,4,2 4,2)) (4, (4,2,2 2,2)) (bps/Hz) Best LTE 1.95 1.70 1.28 Best NR Gain of NR over LTE

2.45 25%

2.06 21%

1.47 15%

2GHz, ISD=1500, UE=2RX, Cell Edge SE (1,8,2) (1,8 ,2) (2,4 (2,4,2) ,2) (4,2 (4,2,2) ,2) (bps/Hz) Best LTE 0.79 0.83 0.63 Best NR Gain of NR over LTE

1.01 28%

0.99 19%

0.72 14%

2GHz, ISD=1500, UE=4RX, Cell Edge SE (1,8,2) (1,8 ,2) (2,4 (2,4,2) ,2) (4,2 (4,2,2) ,2) (bps/Hz) Best LLT TE 1.03 1.10 0.84 Best NR 1.27 1.32 0.96 Gain of NR over LTE 23% 20% 14%

• Full Full Bu Buff ffer er:: Ga Gain in of NR ov over er LTE is be betwe tween en 19 19% % an and d 35 35% % in Me Mean an SE SE,, 14 14-2 -28% 8% in ce cell ll ed edge ge.. • Ga Gain ins s in bu burs rsty ty tr traf affi fic c wil willl be hi high gher  er 

5G vs. 4G 2GHz

2GHz

G

20MHz 5.12 bps/Hz

20MHz

bps

1.5 x

102 Mbps cell

5G 3500 with throughput40 L cell massive MIMOTE2600 with 2x 2 MIMO beamforming

LTE 2GHz 750m ISD 16x4 eNB=(1,8,2)

15

43Nokia © No N2017 okia 2018 ©

x 7.73 bps/Hz * Hz

155 Mbps cell throu4g0h0p8u0t 0 cell thr 

In Full Buffer, NR Codebooks show significant gains gain s over LTE LTE Codebooks Codeboo ks -

Mean UE throughput: 26%

-

Cell edge: 25%

5G 3500 with

NmRassive MIMO

2bGeaHmzo frmn ig 750m ISD 16x4 gNB = (1,8,2) * Includes 20% improvement due to lean carrier in NR

Performance : NR @ mmWave

19

44

© No Nokia 2018

Antenna Array Comparisons - Number of Elements Constant vs. Frequency 5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale 28 GHz 256 elements (8x16x2)

39 GHz 256 elements (8x16x2)

73 GHz 256 elements (8x16x2) 8 8 16

8

AP

2 TX TXRU RUss 16

Max EIRP ≈ 60.2 dBm 15% area relative to 28GHz 16

Max EIRP ≈ 60.2 dBm 52% area relative to 28GHz

Max EIRP ≈ 60.2 dBm

2 8 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 )

3 9 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 )

7 3 G H z , 3 2 e le me nt s , ( 4 x 4 x 2 ) 4

UE

4

4

2 TXRUs 4 4

24

45Nokia © No N2017 okia 2018 ©

Max EIRP ≈ 36.1 dBm

Max EIRP ≈ 36.1 dBm 52% area relative to 28GHz

4

Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz

System Simulation Results for the Suburban Micro Environment Constantt Number Constan Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz Cell Edge Throughput

Mean UE Throughput DOWNLINK DOWNLIN K - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

DOWNLINK DOWNLIN K - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)

565

270

560 561

560

561

250

256 250

555

Downlink

     )     s     p      b550     M      (     t 545    u     p      h     g    u 540     o     r      h     T

554

553 551

543 540

535

     )     s230     p      b     M      (     t 210    u     p      h     g    u     o     r190      h     T

250

227 224

222 216 205

189

170 530 529

525

30

40 ISD=100m

50 ISD=200m

60

30

50 ISD=200m

60

70

ISD=300m

UPLINK - CELL EDGE THROUGHPUT (Outdoor, (Outdoor, No Foliage, UE=32) 260

265

262 256

560

240 554

Uplink

40 ISD=100m

ISD=300m

UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

540      )     s     p      b 520     M      (     t    u     p      h500     g    u     o     r      h     T480

150

70

553

549

547

220

540

513

509

488

     )     s     p      b 200     M      (     t    u     p180      h     g    u     o     r160      h     T

216 205

184

183

162

140

460

120 124

440

25

100 430

420

46Nokia © No N2017 ok17 ia 2018 © 20

30

40 ISD=100m

50 ISD=200m

ISD=300m

60

70

30

40 ISD=100m

50 ISD=200m

ISD=300m

60

70

Antenna Array Comparisons - Number of Elements Not Constant vs. Frequency 5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale 28 GHz 256 elements (8x16x2)

39 GHz 512 elements (16x16x2)

73 GHz 1024 elements (16x32x2)

16 8

AP

16 32

2 TX TXRU RUss

Max EIRP ≈ 72.2 dBm 59% area relative to 28GHz

16

Max EIRP ≈ 60.2 dBm 16

Max EIRP ≈ 66.2 dBm 103% area relative to 28GHz

28 GH z , 32 element s, ( 4 x 4x 2)

39 GHz, 32 elements, (4x4x2)

Room to grow…normalized array size is ~4.5dBm more than above 

7 3 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 ) 4

UE

4

4

2 TXRUs 4

27

47Nokia © No N2017 okia 2018 ©

4

Max EIRP ≈ 36.1 dBm

Max EIRP ≈ 36.1 dBm 52% area relative to 28GHz

4

Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz

System Simulation Results for the Suburban Micro Environment Cons Co nsta tant nt An Ante tenn nna a Ap Aper ertu ture re fo forr 28 28 GH GHz, z, 39 GH GHz z an and d 73 73 GHz GHz Cell Edge Throughput

Mean UE Throughput DOWNLINK DOWNLIN K - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

DOWNLINK DOWNLIN K - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32) 280

570 270 565

Downlink

     )     s     p      b560     M      (     t    u     p      h555     g    u     o     r      h     T

267

566 564 561

562 560

554

554

550

260

     )     s     p      b 250     M      (     t    u     p      h240     g    u     o     r      h     T230

261

250

250

249

244 237

550

220

545

222 216

543

210

30

540

30

40 ISD=100m

50 ISD=200m

60

70

70

270 260

555 555

554

545

505

60

ISD=300m

UPLINK - CELL EDGE THROUGHPUT (Outdoor, (Outdoor, No Foliage, UE=32)

565

Uplink

50 ISD=200m

ISD=300m

UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

     )     s     p535      b     M      (     t 525    u     p      h     g    u515     o     r      h     T

40 ISD=100m

555

267

265

267

250

550 547

240

546

     )     s     p      b230     M      (     t 220    u     p      h     g210    u     o     r      h200     T

513 509

233 227

216

190 190

495 495

485

28

48Nokia © No N2017 ok17 ia 2018 © 20

30

40 ISD=100m

50 ISD=200m

ISD=300m

60

70

180 170

183

183

30

40 ISD=100m

50 ISD=200m

ISD=300m

60

70

5G Architecture With Nokia Components

19

49

© No Nokia 2018

Next eneration ode •

3GPP defines gNB functionality: gNB

• •

A logical NG-RAN node providing NR user plane and control plane protocol terminations towards the UE (source 3GPP TS 38.300), gNB is divided into following logical entities:

gNB-CU

gNB-CU gNB -CU (CU – Cen Centra trall Unit) Unit) 

• •

A logical node hosting RRC, SDAP and PDCP pr otocols, and which controls the operation of one or more gNB-DUs



The gNB-CU also terminates F1 interface connected with the gNB-DU (source 3GPP TS 38.401)

gNB-DU (DU – Distr Distributed ibuted Unit) 



50

gNB

A logical node hosting RLC, MAC and PHY layers, and its operation, that is partly controlled by gNB-CU



One gNB-DU supports one or multiple cells. One cell is supported by only one g NB-DU



The gNB-DU terminates F1 interface connected with the gNB-CU (source 3GPP TS 38.401)

Nokia Internal Use

F1 1 .. n

gNB-DU



© No Nokia 2018

1

F1 3GPP based interface for gNB-DUgNB-CU connection NG-RAN  Next Generation Radio Access Network NR  New Radio

HW building blocks Physical Entities

Logical Entities gNB

Product Name

RAC NCIR

gNB-CU RAU gNB-DU

AirScale System Module

RU RAP

AirScale MAA*

(*) AirScale MAA  AirScale Massive MIMO Adaptive Antenna 51

© No Nokia 2018

Nokia Internal Use

AirSCale MAA (RU) (RF part of gNB-DU)    e    m    a    N    t    c   u    d    o   r    P

   l    a    t    n    o   e   z   g    i   r    a   r    o   e    h   v   r    o    c    o    t    c    e    S

AirScale System Module (RAU) (gNB-DU excl. RF part)

NCIR (RAC) (gNB-CU)

10GE

CPRI** CPRI One beam

NCIR AirScale System Module ASIK+ABIL

   n    o    i    t    c    n   u    F

• •

Adaptive antenna RF processing

  y    l    i   r    a    m    i   r    h    t    p   i    s   w    e    l    a    c    S

• • • •

Number of cells Cell TX/RX antennas SU/MU-MIMO gNB-DU Peak L1 Throughput

ToR switch

Real Time Baseband • L1 • L2 RLC • L3 Control Plane Real Time (see Notes) • Transport • O&M Agent

Low Latency Fronthaul

AirFrame HW

Non-Real Time Baseband • L2 PDCP • L3 Control Plane • Transport • Central O&M

• • • •

Average cell throughput Number of cells Number of Active Users Number of Control Plane events per second

F1 High Latency Fronthaul F1- 3GPP based interface for gNB-DUgNB-CU connection connection

52

© No Nokia 2018

Nokia Internal Use

Backhaul

5G18A Site Solution

19

53

© No Nokia 2018

Cloud BTS

5G Classical BTS Non-Real Time Baseband

Non-Real Time Baseband

Non-Real Time Baseband

Real Time Baseband

Real Time Baseband

Real Time Baseband

RF Adaptive antenna

RF Adaptive antenna

RF Adaptive antenna

Scalability for high performance HetNets

Non cloud or virtualized 

Cost efficient standalone solution for 5G

NSA – Non StandA StandAlone lone mode mode,, SA – Sta StandA ndAlo lone ne mod mode e 54

© No Nokia 2018

Cloud optimized BTS with Ethernet Radio

Nokia Internal Use

Radios connected directly to radio cloud. Capacity layer under LTE and indoor solution

Full Cloud BTS Real Time enabled Edge Cloud

RF Adaptive antenna

Small Cell BTS for 5G

Baseline 3GPP Rel15 March 18

NetAct

Rel-15 F1 option 2-1 PDCP-RLC 3.5 GHz R) 3GPP AEQA

CU AirFrame

EPC (CMM, CMG) (CMM 18.5)

NCIR

DU

DU 5G VNF

(Nokia 1H/18)

CPRI 9.8Gbps 28 GHz RU 3GPP AEUA

S1-U

(AirScale)

Rel-15 X2

4G eNodeB

55

© No Nokia 2018

Confidential

S1-MME

Introduction 5G18A Radio Units

ANALOG Beamforming

DIGITAL Beamforming

5GC000515 5GC000515 AEUA 28GHz Radio Unit 5GC000562 5GC000562 AEQA 3.5GHz Radio Unit

5GC000664 5GC000664 AEQD 3.7GHz Radio Unit

5GC000514 5GC000514 AEWA 39GHz Radio Unit

• UL/DL 2x2 SU-

MIMO • UL/DL 2x2 SU-MIMO • DL: 4x4 SU-MIMO / UL: 2x2 SU-

MIMO • 16UL/16DL MU-MIMO

3.5 GHz

400 MHz 

3 GHz

3.7 GHz

28 GHz GHz 10 GHz

6 GHz

continuous coverage, high mobility and reliability, interference limitation

Carrier BW Duplexing Cell size

n*

cmWave

© No Nokia 2018

90 GHz

30 GHz

mmWave

higher capacity and massive throughput, noise limitation 

n * 100 MHz

1-2GHz

*

TDD Macro

Small

Ultra small

* - not support supported ed in 5G18A 5G18A 56

39

Nokia Internal Use

5GC000275 ASIK, 5GC000276 ABIL, 5GC000623 AMIA ASIK & ABIL high capacity introduction • AirScale SM Indoor consist of  • 1 AirScale Subrack AMIA • Common with 2G/3G/4G • 8 Slots • 1 …6 AirScale Capacity ABIL • Capacity Unit • 8x 100MHz MIMO layers depending on configurations • 2x QSFP+: 8x9.8 Gbps for CPRI fronthaul • 1…2 AirScale Common ASIK • Common Unit • 2x SFP10: for Backhaul interface • Sync IN and OUT, External Alarms and Controls, LMT • DC 48 V input • Installation options: 19 inch, pole and wall, outdoor cabinet [mm] • Dimensions 19” 3 U : H 128 x W 447 x D 400 [mm] • Weight: 10.1 kg minimum 23.5 kg maximum • Ingress protection IP20 temperature range -5 °C to 55 °C • Operational temperature

57

© No Nokia 2018

ABIL

AMIA

ASIK

58

© Nok ia ia 2018

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF