5b. Konsep Aliran Air (Hidrodinamika)1
Short Description
hr...
Description
KONSEP ALIRAN KONSEP ALIRAN AIR (HIDRODINAMIKA HIDRODINAMIKA))
Persamaan Aliran Ada tiga persamaan dasar dalam Hidrolika yang berkaitan dengan pengaliran air (aliran tertutup maupun terbuka), yaitu: Persamaan Kontinyuitas Persamaan Momentum Persamaan Energi Bernoulli • • •
The Continuity Equation Why does a hose with a nozzle shoot water further? Conservation of Mass: In a confined system, all of the mass that enters the system, must also exit the system at the same time. Flow rate = Q = Area x Velocity r1 A 1 V1(mass
V1
inflow rate) =
r2 A 2 V2(
A 1
A 2 V2
Q2 = A 2 V2 Q1 = A 1 V1
A 1 V1 = A 2 V2
mass outflow rate)
If the fluid at both points is the same, then the density drops out, and you get the continuity equation: A 1 V1 =A 2 V2 Therefore If A 2 < A 1 then V2 > V1 Thus, water exiting a nozzle has a higher velocity
Persamaan Kontinyuitas Q A1.V 1
A2 .V 2
konstan
Q : debit aliran
A : luas penampang aliran V : kecepatan rerata aliran pada
penampang tersebut. Indeks 1 dan 2 menunjukan titik penampang aliran yang ditinjau
Persamaan Momentum F
r .Q(V 2
V 1 )
F : gaya yang ditimbulkan oleh aliran
zat cair r : rapat massa aliran
Persamaan Bernoulli z 1
P 1
g
gz 1
2
P 1 r
V 1
2 g
z 2
P 2
2
gz 2
g
2
V 1
2
P 2 r
V 2
2 g 2
V 2
2
P/ =pressure head, V 2/2g=velocity head, z=elevation P/r as flow energy, V 2/2 as kinetic energy, and gz as potential energy
The Energy Line and the Hydraulic Grade Line Lets first understand this drawing: Measures the Static Pressure
Measures the Total Head
12
12 EL
V 2/2g
HGL
1: Static Pressure Tap Measures the sum of the elevation head and the pressure Head. 2: Pilot Tube Measures the Total Head EL : Energy Line
Q
P/γ
Total Head along a system HGL : Hydraulic Grade line
Z
Sum of the elevation and the pressure heads along a system
The Energy Line and the Hydraulic Grade Line Understanding the graphical approach of Energy Line and the Hydraulic Grade line is key to understanding what forces are supplying the energy that water holds.
V 2/2g
EL V 2/2g
2
P/γ
Q Z
1
Z
Majority of energy stored in the water is in the Pressure Head Point 2:
HGL
P/γ
Point 1:
Majority of energy stored in the water is in the elevation head If the tube was symmetrical, then the velocity would be constant, and the HGL would be level
Contoh Soal
Dengan Q konstan = 1,5 L/det, diameter pipa 1 = 50 mm, diameter pipa 2 = 40 mm, dan P1= 0,5 bar, hitunglah tekanan di titik 2 (P2) hitunglah gaya akibat aliran dari titik 1 ke titik 2
THE COMPLETE EXAMPLE Solve for the Pressure Head, Velocity Head, and Elevation Head at each point, and then plot the Energy Line and the Hydraulic Grade Line Assumptions and Hints: P1 and P4 = 0 --- V 3 = V 4 same diameter tube We must work backwards to solve this problem γH2O= 62.4 lbs/ft3
1 4’
R = .5’ R = .25’
2
3 DATUM
4
1’
POINT 1: Pressure Head : Only atmospheric Velocity Head : In a large tank , V 1 = 0
P1/γ = 0 V 12/2g = 0
Elevation Head : Z1 = 4’
γH2O= 62.4 lbs/ft3
1
R = .5’ R = .25’
4’
2 DATUM
3
4
1’
POINT 4: Apply the Bernoulli equation between 1 and 4 0 + 0 + 4 = 0 + V 42/2(32.2) + 1 V 4 = 13.9 ft/s Pressure Head : Only atmospheric
P4/γ = 0
Velocity Head : V 42/2g = 3’ Elevation Head : Z4 = 1’ γH2O= 62.4 lbs/ft3
1 4’
R = .5’
R = .25’
2 DATUM
3
4
1’
POINT 3: Apply the Bernoulli equation between 3 and 4 (V 3=V 4) P3/62.4 + 3 + 1 = 0 + 3 + 1 P3 = 0 Pressure Head : P3/γ = 0 Velocity Head : V 32/2g = 3’ Elevation Head : Z3 = 1’ γH2O= 62.4 lbs/ft3
1 4’
R = .5’
R = .25’
2
3
4
1’
POINT 2: Apply the Bernoulli equation between 2 and 3 P2/62.4 + V 22/2(32.2) + 1 = 0 + 3 + 1 Apply the Continuity Equation (Π.52)V 2 = (Π.252)x13.9
V 2 = 3.475 ft/s
P2/62.4 + 3.4752/2(32.2) + 1 = 4
γH2O= 62.4 lbs/ft3
1 4’
P2 = 175.5 lbs/ft2
R = .5’
Pressure Head : P2/γ = 2.81’ Velocity Head : V 22/2g = .19’
R = .25’
2 3 DATUM
4
1’
Elevation Head : Z2 = 1’
Plotting the EL and HGL Energy Line = Sum of the Pressure, Velocity and Elevation heads Hydraulic Grade Line = Sum of the Pressure and Elevation heads V 2/2g=.19’ EL
P/γ =2.81’
V 2/2g=3’ V 2/2g=3’
Z=4’
HGL Z=1’
Z=1’
Z=1’
DATUM
POLA ALIRAN
Ada dua pola aliran dari fluida, yaitu: aliran laminer aliran turbulen
ALIRAN LAMINER Dalam aliran laminer partikel-partikel fluidanya bergerak di sepanjang lintasan-lintasan lurus, sejajar dalam lapisan-lapisan atau laminae.
ALIRAN TURBULEN Dalam
aliran turbulen partikel-partikel
fluidanya bergerak secara acak ke semua arah.
BILANGAN REYNOLDS
Bilangan Reynold digunakan untuk menyatakan pola aliran (laminer atau turbulen).
Laminer
Turbulen
Bilangan Reynold dapat dihitung dengan formula:
Re < 2000 Re > 2000
Bilangan Reynolds Re
V * d * r
V :
kecepatan rata-rata, m/det d : diameter pipa, m : viskositas kinematik fluida, m2 /dtk : rapat massa fluida, kg/m3 : viskositas mutlak, Pa dtk
atau
V * d
View more...
Comments