51629872 Problemas Disenos Factoriales
Short Description
Download 51629872 Problemas Disenos Factoriales...
Description
https://www.youtube.com/watch?v=bMU8oDYKOhM 19. Se corre un diseño factorial de 3*2 con 10 réplicas para investigar el hinchamiento del catalizador después de la extrusión den la fábrica de botellas de polietileno de alta densidad. El catalizador se utiliza en la obtención de dicho polietileno. Los factores investigados son: molde (con dos niveles) y B: catalizador (con tres niveles). Los datos obtenidos se muestran en la siguiente tabla. Catalizador 93 92 90 91 88 88 87 87
Molde
92 91 90 91 88 87 87 87
93 90
92 94 90 91 90 88 88 88
87 88
90 91 92 92 89 90 89 88
92 91
95 94 94 94 91 90 92 90
88 89
94 97 95 96 97 89 90 91
94 96
91 91
a) Plantee la hipótesis de interés en este problema y el modelo estadístico correspondiente. b) Construya una tabla de análisis de varianza y determine cuales efectos están activos. c) Dibuje las tablas de medias para los dos efectos principales con los métodos LSD y de Tukey. Compare los resultados de ambos métodos. d) Haga una gráfica de interacción con intervalos de confianza sobrepuestos. e) Determine cuál es el mejor tratamiento. ¿Cuál es el hinchamiento predicho en el mejor tratamiento? f) Verifique los supuestos de normalidad y varianza constante. g) Utilice la gráfica de residuos contra los factores para detectar los posibles efectos sobre la dispersión del hinchamiento. ¿En cuál molde parece que es menor la dispersión? Suma total Y= 5450
d=2
(
)
(
b=3
)
(
( (
)
(
)
)
(
)
)
n=10
( (
) )
( (
) )
( (
)
) (
)
(
)
Fv Efecto A Efecto B Efecto AB Error Total
SC 180.2666 153.0333 3.4343 87.6 424.333333
GL
CM 1 2 2 54 59
180.267 76.517 1.717 1.622
111.12 47.17 1.06
valor – p 0.000 0.000 0.0354
22. En una fábrica de aceites vegetales comestibles la calidad resulta afectada por la cantidad de impurezas dentro del aceite, ya que estas causan oxidación, y ello repercute a su vez en las características de sabor y color del producto final. El proceso de “blanqueo” es el responsable de eliminar las impurezas, y una forma de medir su eficacia es midiendo el color del aceite para generar una primera aproximación a la solución del problema se decide estudiar el efecto de la temperatura y el porcentaje de arcilla en el color del aceite inicialmente a nivel laboratorio. El diseño y los datos de las pruebas experimentales se muestran a continuación. Porcentaje de arcilla Temperatura 90 100 110
.8
1.1
5.8 5.0 4.7
5.9 4.9 4.6
5.4 4.8 4.4
5.5 4.7 4.4
4.9 4.6 4.1
5.1 4.4 4.0
4.5 4.1 3.7
4.4 4.3 3.6
a) Construya el modelo estadístico y formule la hipótesis pertinente ( ) ; i= 1, 2,…,a; j=1,2,…,b; k= 1,2,…,n H0:efecto A =0 HA:efecto A 0
H0:efecto B=0 HA:efecto B 0
H0:efecto AxB=0 HA:efecto AxB 0
b) ¿Cuál es el nombre del diseño utilizado? - Diseño factorial por dos factores. c) Por lo general, a condiciones reales se utiliza el 1.1% de arcilla y 100 grados de temperatura. ¿Por qué cree que se eligieron precisamente esos niveles de prueba para el experimento? Porque estos niveles de prueba han funcionado hasta el momento. d) Realice un análisis de varianza para probar las hipótesis y obtenga conclusiones. Y= 111.8
a=3
b=4
n=2
(
)
(
)
(
)
(
(
)
(
)
(
)
(
( (
) )
) )
(
)
Fv Efecto A Efecto B Efecto AB Error Total
SC
GL 4.04083 3.70166 0.235843 0.1 8.07833
CM 2 3 6 12 23
2.020415 1.233886 0.039307 0.008333
242.4498 148.0663 4.71685
valor – p 0.000 0.000 0.011
Análisis de varianza para Resp, utilizando SC ajustada para pruebas Fuente A B A*B Error Total
GL 2 3 6 12 23
SC sec. 4.04083 3.70167 0.23583 0.10000 8.07833
SC ajust. 4.04083 3.70167 0.23583 0.10000
MC ajust. 2.02042 1.23389 0.03931 0.00833
F 242.45 148.07 4.72
P 0.000 0.000 0.011
Los tres efectos están activos, comprobado por medio de los valores-p, los tres son menores que 0.05. e) Apoyándose en las gráficas de efectos, ¿Cuál es la relación general entre el color y los factores controlados en su rango de experimentación? La nitidez del color según las gráficas de efectos es menor cuando los niveles en ambos factores son altos y es menor en su nivel mas bajo.
f)
A partir de las gráficas de interacciones, ¿cree que haya un efecto no lineal? No, el efecto se considera lineal
g) Considerando el nivel mínimo aceptable de blancura es de 4.8, ¿qué tratamiento utilizaría? Factor B en nivel 1 y factor A en nivel 3. h) ¿Vale la pena plantear el estudio en condiciones reales? Si, para ver resultados más notorios. i)
¿Qué cambio le haría al experimento si lo corre en condiciones reales? Añadir más replicas para obtener un resultado mas confiable.
26. Los siguientes datos corresponden a diseño de 3*3 con tres réplicas. Interesa investigar el efecto de ambos factores sobre Y, para encontrar las condiciones adecuadas para maximizar. B A 10 60 44
6 73 35
14 79 28
3 88 38
5 70 22
1 76 26
1 71 29
2 71 20
1 69 22
a) Especifique el modelo estadístico para el problema y las hipótesis pertinentes. ( ) ; i= 1, 2,…,a; j=1,2,…,b; k= 1,2,…,n H0: efecto A=0 HA: efecto A 0
H0: efecto B=0 HA: efecto B 0
H0: efecto AB=0 HA: efecto AB 0
b) Haga un análisis de varianza y obtenga conclusiones. Y= 964 n=3 a=3 b=3 (
)
( (
)
(
)
( )
(
( )
( (
Fx Efecto A Efecto B Efecto AB Error Total
)
( )
( )
) (
(
( )
)
(
) (
)
)
( )
(
)
(
)
) )
SC 21492.07403 230.2962967 227.2593029 712 22661.62963
GL 2 2 4 18 26
CM 10746.03702 115.1481484 56.814825 39.555
F0 271.6698 2.9110 1.43633
Análisis de varianza para respuesta, utilizando SC ajustada para pruebas Fuente A B A*B Error Total
GL 2 2 4 18 26
S = 6.28932
SC sec. 21492.1 230.3 227.3 712.0 22661.6
SC ajust. 21492.1 230.3 227.3 712.0
R-cuad. = 96.86%
MC ajust. 10746.0 115.1 56.8 39.6
F 271.67 2.91 1.44
P 0.000 0.080 0.263
R-cuad.(ajustado) = 95.46%
valor – p 0.000 0.080 0.263
En el ANOVA podemos observar que el único efecto activo es el de A, el efecto B y el de interacción no influye en la respuesta del experimento. c) Interprete con detalle el efecto de interacción, si es significativo
No tiene caso sacar conclusiones analizando la gráfica de interacción debido a que no es un efecto activo sobre la variable de respuesta. d) Verifique supuestos
Podemos notar que se cumple el supuesto de normalidad y el de varianza constante.
e) ¿Hay un tratamiento mejor? Argumente con pruebas estadísticas.
No, ninguna combinación de niveles de los factores es significativo ante el ANOVA por lo tanto no se puede determinar un tratamiento que sea mejor.
28. Se cree que la adhesividad de un pegamento depende de la presión y de la temperatura al ser aplicado. Se realiza un experimento factorial con ambos factores fijos. (
)
25250
120 130 140 150
Temperatura 260
9.60 9.69 8.43 9.98
270
11.28 10.10 11.01 10.44
9.00 9.57 9.03 9.80
a) Formule las hipótesis y el modelo estadístico que desea probar. ( ) ; i= 1, 2,…,a; j=1,2,…,b; k= 1,2,…,n H0: efecto A=0 HA: efecto A 0
H0: efecto B=0 HA: efecto B 0
H0: efecto AB=0 HA: efecto AB 0
b) Analice los datos y obtenga las conclusiones apropiadas No podemos completar la tabla ANOVA, debido a que en el experimento solo se tiene una réplica, cuando mínimo deben ser dos, ya que los grados de libertad para el error son ab(n-1), por lo tanto no podemos obtener el cuadrado medio del error y tampoco el estadístico de prueba, Fisher. c) ¿Se puede analizar si hay interacción entre los dos factores controlados? No se puede analizar ningún efecto en el ANOVA. d) Verifique residuos Es imposible. Y=117.93
a=4 ( (
) )
b=3 (
)
(
)
( (
( (
n=1
) )
) )
( (
N=12 )
)
(
)
View more...
Comments