500 MW VOLUME 1
Short Description
Download 500 MW VOLUME 1...
Description
KORBA SIMULATOR
1
KORBA SIMULATOR
2
FOREWORD
Power is the most vital necessity for industrial and economical growth of any nation. Electricity can bring sea changes in quality of life of its society members. NTPC in its endeavour for becoming most significant entity once again after 30 years of untiring and relentless efforts, reaffirm its commitment towards making India a self-reliant nation in the field of power generation. Having proven excellence in Operation & Maintenance of 200 and 500MW units; for the first time we are going ahead with the commissioning of 660MW units at our Sipat Project. This is a major step towards technological advancement in power generation. In the present time, efficient and economical power generation is the only answer to realise our ambitious plan. It is the need of the hour that available human resources who are the at the whelm of the affairs managing the large thermal power plants having sophisticated technology and complex controls, is to be properly channelised and trained. NTPC management firmly believes that skill and expertise up-gradation is a continuous process. Therefore, training gets utmost priority in our company. Power Plant Simulators are the most effective tools ever created. This has computer based response, creation incorporating mathematical models to provide real time environment, improves retentivity and confidence level to an optimum level in a risk-free, cost and time effective way.To supplement the hands-on training on panel and make the training more effective an operation manual in two volumes has been brought out. The operation manual on 500MW plant provide the information comprehensively covering all the aspects of Power Plant Operation which can be useful for fresh as well as experienced engineers. It provides a direct appreciation of basics of thermal power plant operation and enables them to take on such responsibility far more sincerely and effectively. I am pleased to dedicate these manuals (volume- I & II), prepared by CSTI members which is a pioneer institute covering more than 7000 participants till date, to the fraternity of engineers engaged in their services to power plant. The volume-I deals with the Plant & system description and II covers the operating instruction in a lucid way. I sincerely hope that readers will find these manuals very useful and the best learning aid to them.
I believe that in spite of all sincere efforts and care of faculty members & staff, some area of improvement might have remained unnoticed. Hence, your valuable suggestions and comments will always be well received and acted upon.
( A. CHAUDHURI ) GENERAL MANAGER
KORBA SIMULATOR
3
KORBA SIMULATOR
4
CONTENTS CHAPTER NO. 1.
TOPIC PLANT SIMULATION AND DATA ACQUISITION SYSTEM
2.
BOILER AND AUXILIARIES CONDENSATE AND FEED
3.
4.
WATER SYSTEM CONDENSER AND EVACUATION SYSTEM
PAGE NO
7-17 19-120
121-174
175-188
5.
HP AND LP BYPASS SYSTEM
189-209
6.
STEAM TURBINE AND AUXILIARIES
211-244
7.
TURBINE GOVERNING SYSTEM
245-293
8.
AUTOMATIC TURBINE TEST
295-319
9.
TURBINE STRESS EVALUATOR
321-334
GENERATOR, ITS AUXILIARIES AND EXCITATION SYSTEM
335-393
10.
KORBA SIMULATOR
5
KORBA SIMULATOR
6
PLANT SIMULATION AND DATA ACQUISITION SYSTEM
KORBA SIMULATOR
7
KORBA SIMULATOR
8
PLANT SIMULATION AND DAS THE PLANT SIMULATION The 500MW-training simulator is a complete full scope replica of the 500MW coal-fired unit-6 of Singrauli plant of NTPC, which creates the real time effects of the plant operating conditions on the Unit Control Panel equipments. The actual plant, the equipments, the control systems - all are replaced by their mathematical models and made to run through a real -time execution process of a computer to represent the exact plant dynamics through its process parameters on the Unit Control Panel. THE SIMULATOR SYSTEM ARCHITECTURE THE HARDWARE: - The simulator system is having the hardware organisation as per fig.1
FIG-1 SIMULATOR HARDWARE ORGANISATION UPS System: - It is a 55KVA UPS with 100 % stand by capacity, consisting of Rectifiers, Inverters, Batteries, Stabilizer, Static By-pass Switch, AC distribution panels, etc. It provides regulated power supply to the complete Simulator equipments. The UPS is Supplied by M/S AEG , West Germany. Computer system and peripherals: - The computer systems supplied are 32 bit digital computers of Encore, USA. The supplied model 32 / 67 is ideally suited for the real time simulation applications. The system mainly comprises of •
Two computers for simulation of plant equipments (SIMULATION COMPUTER)
•
One computer for simulation of DAS tasks (DAS COMPUTER)
•
Shared memory systems (for coupling DAS and SIMULATION COMPUTERS) KORBA SIMULATOR
9
•
Various peripherals such as magnetic tape drives, disc drives, floppy drives, ‘system consoles, hard copy printers, line printers, Graphics systems (colour monitors /controllers) video colour printer etc.
•
Set of cables for interconnecting the system and peripherals.
•
The computer system is based on a high speed synchronous bus (called as SELBUS) , on which the CPU and / or IPU are residing . It supports upto 16 MB main memmory, Input Output Processor (IOP) and peripheral controllers. It offers 18 Selbus slots and four MPbus slots and peripheral space. This system accommodates 800 / 1600 / 3200 bpi streaming Mag tape units and over two Gigabytes of disk storage.
Control Panel: - a Simulator control panel with mounted instruments is replica of Unit -6 of Singrauli Power Plant and is the main hardware of this Simulator. It comprises of UCB section 1 to 3 and CSSAEP panels. Instruments mounted on these panels represent the operation of the real plant processes which are simulated by the computer systems and the computed information is transmitted to these instruments via Input / Output system. In addition to various monitoring and recording equipments, the panels are also equipped with control switches, indicating lamps, annunciation system and DAS system.
Interface (Input / Output) System: - The I/O sub-system forms the interface between the simulation computers and the UCB panels. The main function of the I/O sub system is to update the UCB output points with the current simulated value and to report the state of the UCB inputs to the simulation computer. I/O sub-system consists of four SIMTROLs catering the all sections of the UCB, associated Control Room Equipment (CRE) power supply and special device interface modules. Instructor Station: - Instructor station hardware comprises mainly of Instructor station console and peripherals such as two monitors with keyboards, one video hard copy printer, one remote control unit and one special function keyboard with back lighted push buttons for activation of desired function. With the help of remote control unit, certain functions can be initiated/stopped during training session without the notice of the trainee and training session transients can be hard copied on video printer for further analysis. Data Acquisition System (DAS): - DAS comprises of three color CRTs mounted on UCB-2 panel having assigned as Utility, Alarm and Operation CRT. One additional CRT is also provided on Operator‘s desk. For documentation purposes Hard Copy KORBA SIMULATOR
10
printers are provided for Alarm and Utility CRT and a Logging line printer for massive and fast documentation. Hard copy of the information from any of the DAS CRTs can also be obtained on video printer through selector switches. THE SOFTWARE: - The Simulator system is having the following software organisation as per Fig.2
FIG-2 SIMULATOR SOFTWARE ORGANISATION Computer operating System MPX-32: - The computers work on a Mapped Program Executive (MPX-32) disk-oriented, multiprogramming Operating system, that supports concurrent execution of multiple tasks in an interactive, batch and real time environment. MPX provides memory management, terminal support, muliple batch streams and intertask communication. It supports 16 MB physical memory address space. An intergrated CPU scheduler and a swap scheduler provide efficient use of main memory by balancing the task based on time distribution factors, software priorities and task state queues. Simulator Control & Executive System Software UNISYSTEM: - UNISYSTEM is a Software tool for use in the developement of large-scale real time application programs. It provides: •
A data base to record and describe the variables, arrays and subroutine used in a program.
•
A Modified FLECS compiler that is linked to the database to verify the legitimacy of variable, arrey and subroutine names encountered in the code being compiled.
KORBA SIMULATOR
11
•
A data base manager program to handle the declaration of new variable, arrey, and subroutine name. It also creats COMMON and EQUIVALENCE statements needed to use the variable, arrey and subroutine names in programs.
•
A real time program scheduler to execute users programs on a real time basis.
•
A plotting program to display results obtained from execution of user’s programs.
Application Software for Plant system Simulator: - The total power plant system is broadly divided into the following subsystems for math modeling purpose: 1. Boiler and Flue gas subsystem. 2. Boiler Water and Steam subsystem. 3. Fuel subsystem. 4. Condensate subsystem. 5. Feed Water subsystem. 6. Turbine subsystem. 7. Electrical subsystem. Each of this subsystem is subdivided into Process interlock and control models based on nature of the model function. These mathematical models are developed based on physical laws of conservation of mass, energy and momentum. The above mathematical models, converted in to the form of simulation software models, are then integrated in a sequential manner to represent the power plant dynamics in totality during all plant operating conditions including pre start-ups checks, preheating, start-up (cold, warm and hot), shut down, power maneuvering, normal operation and specified emergencies. The extent of plant simulation is thorough enough to support the plant operators (the trainees here) to fully participate in plant status evaluation, actual plant operation and control of unusual transients. Application Software for Data Acquisition System (DAS): - Plant computer functions provided by actual plant computers have been duplicated in the simulator. These are
KORBA SIMULATOR
12
• Alarm monitoring of analog and digital input signals and indication of abnormal plant operating conditions. •
Analog trend recording of operator selected analog inputs.
•
Logs such as hourly log, turbine run-up log etc.
•
CRT displays for analog, digital plant signals and group point displays, alarm displays, etc.
•
Performance calculations.
Simulator Instruction Station Software: - Instructor station software is provided with facility for monitoring, controlling simulator conditions and monitoring operator (trainee) actions. It has provision to select all initial conditions and malfunctions and the ability to manipulate external parameters. Interface (Input/Output) System Software: - The I/O system application software consists of tasks running on Simulation Computers and on SIMTROLs. The tasks running on Simulation Computers perform: 1. Input-Output Transmitting. 2. Misaligned switch checking. 3. Daily Operational Readiness Test. The tasks running on SIMTROLs perform: 1. SEL Interface. 2. Input Transmitting. 3. Analog Output Updating 4. Digital Output Updating 5. Table Management 6. Watch Dog 7. Digital Input Scanning 8. Analog Input Scanning
KORBA SIMULATOR
13
9. Analog/Digital Output Driving, etc,. TRAINING FEATURES The following features of the simulator facilitate a very effective training to the power plant operators: Initialisation: - The simulator can be initialised to any one of 60 plant conditions from where the training session can start. The instructor can choose the status / conditions of the running simulator (i.e., the plant) and save them as ICs (Initial Conditions) through a special utility software at Instructor Station . A maximum number of 60 such selected plant conditions can be kept stored. Later on , any one of these stored conditions can be retrieved as an Initial Condition and the training session can be started from that plant status . Thus the Initialisation facility provides the flexibility in training by starting the session from any one of the 60 stored plant conditions as per the requirement / level of the trainees and saves time by eliminating the repeated exercise to bring the plant to the required condition again to start with. Freeze/Run: - The FREEZE feature helps the instructor to “freeze” the plant simulation and thus to bring the plant dynamics to a standstill condition.The plant operation can be subsequently resumed from the last frozen status by using “RUN” command by the instructor. When the FREEZE command is issued from the Instructor Station, the simulation software under execution is stopped and the updation of the simulation variables are suspended thereby creating an effect of freezing of the dynamic plant condition. This facilitates the instructor detailed explanation on that particular stage of operation without allowing it to go unobserved by the trainees on the panel. Backtrack: - This facility enables the plant simulation status to traverse back all events of operation for the past 60 minutes. The simulation data is continuously saved for a period of 60 minutes at the interval of one minute each as 60 disc file records. Thus at any point of time, 60 data sets are available representing the plant status for the preceding sixty minutes. The instructor can bring the simulator to any of these last sixty plant conditions by BACKTRACKing to the desired problem time or by BACKTRACKing step-by-step from the present 1st record. Which is the current one saved. If required, simulation session can continue from this backtracked record status to facilitate repeated panel operation or to offer detail explanation to the trainees. Snapshot: - This feature enables the instructor to “SNAP” the plant status as a complete record of all the simulation variables that represent the plant dynamics at the time of snapping. These SNAPSHOT records, as disk files, can be saved with identifying title, date & time and can be retreived any time in future as Initial Conditions to commence the training session from that snapped plant condition. A total number of 60 SNAPSHOTs can be saved and stored as Initial Conditions providing wide range of flexibility in training. Slow Time Mode: - This features enables the Instructor to slow down the dynamic simulation to ten times slower than the real time. Thus in a SLOW MODE Simulation, a trainee can observe the fast transients or certain critical operations more precisely in KORBA SIMULATOR
14
order to analyse the dynamic behaviour and study the sequence of events thereby enhancing their knowledge and experience. Fast Time Mode: - In this mode of simulation, certain time consuming plant operations like turbine soaking, boiler heating, raising of condeser vacuum, furnace purging, etc. are made to run ten times faster than the real time. Thus the instructor can save the valuable panel time by attenuating the time taken in accomplishing lengthy plant operation stages and offer the saved time to the trainees for better utilisation on the panel. Malfunction: - This is the most valuable feature of the Simulator, which offers the trainees a unique scope for experiencing a large number of malfunctions that occur in a power plant. The instructor can introduce malfunctions in single number or in groups (the selection being dependent on the status of the plant) to simulate the real emergencies as faced by the operators on panel. The trainees are thus given opportunities to tackle those malfunctions by taking suitable corrective operation steps, which are, otherwise, rare events in an actual plant. A total number of 270 malfunctions are available characterised into two types: 1. The Event type malfunctions: These can set the equipment/component failure at an optional pre-selected time. 2. The Severity type malfunctions: These can be started at an optional pre-selected time with the degree of severity (0-100%) and the gradient (time to reach that severity effects) choosen by the instructor. The malfunctions available can be selected, activated and reset (cleared) by the instructor without any intimation to the trainees on the panel, which supports a realistic operational environment. Record & Replay: - The RECORD feature enables the instructor to record the training session under progress for a period of two (2) hours. All the changed inputs from the panel and the IS are recorded alongwith time on specified disk files. Maximum 4 nos of records, each of two hours duration, can be stored. The storage can be initiated at any instant of time. The REPLAY feature enables to replay the panel status as recorded earlier. Thus the trainees can observe their previous performance on panel alongwith the instructor’s explanation and analysis. Any of the four-recorded sessions can be selected for replay. Both RECORD & REPLAY functions can be paused and stopped in between. Remote Function: - This function facilitates the instructor to perform any remote (field/local) operations, which are not carried out from main control room. The manual operations of local equipments (e.g. F.O. pumps, valves, isolators, station supply breakers, etc) are simulated from the instructor station for providing necessary permissives and also for controlling process parameters. Crywolf Alarm: - This feature enables the instructor to create false alarms by flashing windows and by making audible cry wolf alarms even though such conditions do not KORBA SIMULATOR
15
exist in the plant under operation. With this facility trainees’ immediate response/reflexes can be tested. At a time, upto 16 numbers of alarms can be set and reset selectively by the instructor. Override Panel Device: - Any device on the control panel can be OVERRIDEN with a given value (for analog variables) or with a given status (for digital variables) by the instructor at an optional preselected activation time. The value/status of the overridden device remains constant until it is reset to normal operation or overriden with a new value/status. A total number of 32 devices can be selected for overide at a time. The instructor can thus create maloperation of the instruments on the panel to test the trainees undergoing session. External Parameters Manipulation: - This feature enables the instructor to change the values of certain parameters that are not simulated in the software but affect the plant performance. External parameters (inputs) like the grid voltage, grid frequency, calorific value of fuels, etc can be assigned new values. The change will be achieved gradually within one minute. These inputs change the plant dynamics and performance. Thus it offers the trainees scope of plant operation under different conditions on a single platform. Analog Output Reallocation: - Any analog output of the plant simulation can be reallocated to any other meter/recorder on the panel. This permits the instructor to continue the training in the event of some instrument failure on which some important parameters are displayed/recorded. Parameters Monitoring: - Trends of important plant parameters (simulated variables in engineering units) can be monitored on the instructor’s dedicated console to check the trainee’s performance on control panel for the duration selected. The instructor can also change the higher and lower limits of the parameters selected during trend display for better resolution in monitoring. A total number of 80 parameters can be selected, deleted, and stopped for monitoring by the instructor to match his requirements. Limits of the selected parameter can be modified for better analysis. Trainee Test: - This feature is the unique facility in simulator training by which proficiency of operation personnel can be evaluated by the computer. The instructor can assign the trainee a task on the panel and monitor his/her capacity to control important parameters of the plant with a final assessment printout result if opted for. At a time, maximum four nos. of tests can be conducted in parallel depending upon the plant conditions and the tests selected. Each test has the following facilities to be selected. •
Identification of the test by Instructor’s name, Trainee’s name & number/Title,
•
Monitoring or Evaluation type,
•
Duration of the test (Run time),
•
Displaying the test parameters with updation by every one second,
KORBA SIMULATOR
Exercise
16
•
Trending of test parameters,
•
Deleting test parameters already selected,
•
Changing of Hi & Lo limits of the test parameters to monitor within a narrow range.
•
Displaying of the test results on the Video Monitor.
•
Printing of the test results to get a hard copy.
•
Thus the trainees can get a feedback on themselves after completing the test program.
KORBA SIMULATOR
17
KORBA SIMULATOR
18
BOILER AND AUXILIARIES
KORBA SIMULATOR
19
KORBA SIMULATOR
20
BOILER AND AUXILIARIES SALIENT FEATURES OF 500 MW BOILER. With increase in demand of power in India, new power projects are being constructed with higher capacity and advanced technology for the better economy and reliability of operation. Compared to other lower capacity Boilers supplied by BHEL, these 500 MW capacity boiler have incorporated certain special technical features which are detailed here under: CONTROLLED CIRCULATION SYSTEM This is achieved by three numbers of glandless pump and wet motor installed in the downcomer line after the suction manifold. These pump motor assemblies have single suction and double discharge introduction of these pumps in the boiler system have led to the designing of a furnace with lesser diameter tubes and high parameters operating characteristics. The advantages of the controlled circulation boiler over natural circulation boiler are given below: •
Uniform drum cooling and heating. In controlled circulation boilers this is possible because of arrangement of relief tubes inlets to the drum and the internal baffles of the drum from both sides. The internal base plates are arranged in such a way that it guides the steam water mixture from the relief tubes along the whole circumference of the drum. The drum is therefore uniformly heated and cooled.
Whereas in Natural Circulation Boiler, the arrangement of relief tubes and baffle plates is only on one side of the drum and this imposes a constraint on uniform heating of drum. Similar arrangement of relief as in controlled circulation boiler does not exist in natural circulation (NC) boiler because in that case the relief required to be taken over the drum and fed from both sides. This shall increase the pressure losses in the riser tubes and also the hot static head requirement for start up. Since the available head in NC Boiler is very less; efforts are always made to reduce the pressure loss and improve the circulation. Second reason is to commence flow in the riser tubes immediately after light up hot static head is kept as minimum as possible. •
Rapid heating & cooling (start up & shut down): As mentioned in Para 1, the controlled circulation boiler does not impose any thermal constraints on the drum and hence rapid cooling and heating of the boiler is possible. In NC boiler, rise in saturation temperatures is limited to maximum of 110OC/hr. Hence, the controlled circulation boiler can be started at a rate two to three times faster than NC boilers.
KORBA SIMULATOR
21
•
Better cleaning of boiler: For effective acid washing, the acid has to be kept at certain temperature uniformly through the system. This is possible with the assistance of controlled circulation.
•
Uniform expansion of pressure part and lower metal temperature: This means lesser thermal stresses on the tubes. Because of controlled circulation, lower diameter tubes are used, which result in high mass flow rate thereby preventing departure from nucleate boiling (DNB) maintains a lower metal temperature.
USE OF RIFLE TUBES FOR FURNACE CONSTRUCTION This is one of the extraordinary features of 500 MW capacity boilers. Because of the excessive heat release in the burner zone of the furnace, the metal tubes constituting the furnace at that zone are exposed to the maximum temperature. This being a water-cooled furnace, the steam water mixture inside the tubes should effectively carry the heat from the burner zone of the furnace. In this zone, the tubes have an internally cut spiral like a rifle bore so that when water flows through the tubes, due to hot static heat, it takes a screwed path and attains a certain degree of spin by which the watness of the tube is always maintained. This prevents the tubes form departure from Nucleate boiling under all operating condition of the boiler and increases the circulation ratio. OVER FIRE AIR SYSTEM FOR NOX (OXIDES OF NITROGEN) CONTROL Industrial growth in the recent years has necessitated the need to have a cleaner and pollution free atmosphere, by controlling the production of industrial wastes with the application of improved technology. Power plants are the major sources of the industrial pollution by virture of the stanch emission in the atmosphere. These emissions contain mostly gases and dust particles, which have ill effect on the ecological system. In the 500 MW capacity boiler design, this aspect has been given due importance and certain technical improvements have been incorporated. These are tilting tangential firing and over fire air system. Tangential firing helps in keeping the temperature of the furnace low so that NOX emission is reduced considerably. In addition to the above the over fire air is provided which is used as combustion process adjustment technically for keeping the furnace temperature low and thereby low Nox formation. Each corner of the burner windbox is provided with two numbers of separate over fire air compartments, kept one above the other and the over fire air is admitted tangentially into the furnace.
KORBA SIMULATOR
22
The over fire air nozzles has got tilting arrangement and compartment flow control dampers for working in unison with the tilting tangential type burner system for effective control of Nox formation. AIR PRE-HEATER SYSTEM As compared to trisector air pre-heater in 200 MW units, 500 MW units have been incorporated with bisector air pre-heaters. This has been done for optimum utilisation of space and also improved system layout. This has resulted in the flexibility and efficient operation and maintenance of the air pre-heaters and the boiler as a whole. PRIMARY AIR SYSTEM The primary air system delivers air to the mills for coal drying and transportation of coal powder to furnace. The 500 MW units have two stage axial flow primary fans as compared to radial fans in 200 MW units. By introducing axial flow fans, the system efficiency has gone up as the axial flow fans consistently high efficiency at all operating loads. MILLING SYSTEM In the 500 MW units at SSTPS, Raymond’s Pressurised bowl mills have been installed. These are similar to the 200 MW mills except that 500 MW mills have vane wheel surrounding the bowl and external lubrication unit. Introduction of vane wheel has led to uniform distribution of primary air within the mill and less rejects. These mills are also supplied with weld overlay technology, which has increased the minimum wear life of grinding parts to 6000 hrs. I. D. FANS Unlike 200 MW units, the 500 MW units have been supplied with radial type I.D. fans. These fans have a lower speed and are less susceptible to wear and tear due to the abrasive flue gases. The control of the I.D. fans is achieved through a variable speed hydraulic coupling and motorised inlet damper. By introducing variable speed control through a hydraulic coupling the losses in the fan at various load has been minimised and efficiency of the fan has remained high at all operating conditions. ELECTROSTATIC PRECIPITATORS: Electro static precipitators are installed in the 500 MW units for minimising the particulate emission from the stack flue gases. There are four ESP passes for one unit of 500 MW and each is independently operated. The emitting electrodes are changed at high-ve voltage DC and the gas while crossing this charged path gets jonised. The ionised ash particles of the gas are attracted towards the collecting electrode, which is maintained at high +ve voltage. The ash collects at the collecting electrode and is periodically tapped to dislodge the accumulated ash. The ash falls into the hopper, which is evacuated by the ash handling system and taken out as slurry.
KORBA SIMULATOR
23
TECHNICAL SPECIFICATION OF 500 MW BOILER MAIN BOILER GENERAL SPECIFICATION Manufacturer
: M/s BHEL (C.E. Design)
Type
: Balanced
Draft,
Single
drum,
Dry
bottom,
Controlled
Circulation plus. Type of Firing
: Tilting Tangential
Minimum load at which the steam generator : 2 Mills at 50% can be operated continously with complete flame.
Minimum load at which the steam generator can be
: 20%
operated continuosly with complete flame. Stability with oil support (% MCR) Maximum
load
for
which
individual
mill : 50%
beyond which no oil support is required FURNACE SPECIFICATION Wall
:
Water Steam cooled
Bottom
:
Dry
Tube arrangement
:
Membrane
Explosion/Implosion withstand capacity
:
+ 660
:
3 second
(MWG) at 67% yields point. Residence time for fuel particles in the furnace. Effective
volume
used
to
calculate
the :
14770
:
63.65
Depth (M)
:
15.289
Width (M)
:
18.049
Furnace projected area (M2)
:
7610
residence time (M3) Height from furnace bottom ash hopper to furnace roof (M)
KORBA SIMULATOR
24
Furnace volume (M3)
:
14770
Number
:
283
OD (MM)
:
51.00
Design thickness (MM)
:
5.19
Pitch (MM)
:
63.5
Actual thickness used (MM)
:
5.6
Material
:
SA 210C
Total projected surface (M2)
:
1160
Method of joining long tube
:
Butt weld
Total wt. of tubes (kgs)
:
181000
Design pr. of tubes Kg/cm2 (ABS)
:
207.3
Max. pressure of tubes Kg/cm2 (ABS)
:
197.3
Design metal temp OC
:
416
SIDEWALLS, REAR WALLS Side walls
Rear walls
Roof
WATER WALLS FRONT WALLS
& ROOF Number
444
283
142
OD (MM)
51
51
57
Design thickness (MM)
5.19
5.19
5.54
Pitch (MM)
63.5
63.5
127
Actual thickness used
5.6
5.6
5.7
Total projected surface area
1430
930
220
Method of joining long tubes. BUTT WELD
BUTT WELD
BUTT WELD
Total wt. of tubes (Kgs)
277000
186000
45000
Design Pr. of tubes Kgs/cm2
207.3
207.3
204.9
193.3
197.3
192.3
417
417
416
of tubes (M2)
(ABS) Max pr. of tubes Kgs/cm2 (ABS) Design metal Temp o C
KORBA SIMULATOR
25
WATER WALL HEADERS
Lower drum
WW outlet
No. of headers
1
5
Outside Dia (Dia (MM)
914
273
Design thickness (MM)
86
38.5
Actual thickness (MM)
89
45
Total wt. of headers (Kgs.)
166000
37300
Design pressure of headers kg/cm2 (ABS)
207.3
204.9
HEADERS
Lower drum
WW outlet
Max working pressure of headers Kg/cm2
197.3
192.4
SA-299
SA-106 Gr-B
(ABS) Material specification DRUM Material specification
:
SA-299
Design pressure Kg/cm2 (ABS)
:
204.9
Design metal temp OC
:
366
Max operating pressure Kg/cm2 (ABS)
:
192.4
Actual thickness used for dished ends
:
152.4
Overall length of Drum (MM)
:
22070
OD of Drum (MM)
:
2130
Internal dia (MM)
:
1778
Corrosion allowance (MM)
:
0.75
Number of distribution headers
:
6
No. of Cyclone separator
:
96
No. Of Secondary driers
:
96
Shroud material
:
Carbon Steel
Max permissible temp differential between any
:
50
Water capacity at MCR conditions (in seconds) between :
10
two parts of the drum (oC). normal and lowest water level permitted (up to LL trip) Drum wt. with internals (tonnes)
:
237.00
Drum wt. without internals (tonnes)
:
215.00
KORBA SIMULATOR
26
BOILER WATER CIRCULATING PUMP Number of pumps
: (2 + 1)
CHARACTERISTICS Type
: Single suction double discharge
Design Pressure
: 207.55 Kg/cm2 (2965 lbf/in2)
Design temp
: 366.2oC(691oF)
NORMAL OPERATING DUTY Sunction Pressure
Kg/cm2
: 193.27
(2761
1bf/in2) Suction temp.
: 348.9oC(660oF)
Specific gravity at pump Suction
: 0.5993
at pumping temp. Qty. pumped
: 47994.2 lit/min (12679 u.s
gal/min) Differerential HEAD
: 28.65 M (94.00 ft)
Differential Pressure
: 1.708
Kg/cm2
(24.4
1bf/ in2) Minimumm NPSH required above
: 16.15 M (53 ft)
Vapour Pressure Pump efficiency
: 84% Hot duty
BHP absorbed
: 215 Hot duty-358 Cold duty
KORBA SIMULATOR
27
MOTOR CHARACTERISITICS : Wet Stator -Squirrel Cage
Type:
induction motor Output
: 400 H.P.
Service factor
: 1.0
Winding
: XLP
Motor case design temp.
: 343.34OC (650OF)
MOTOR CHARACTERISITICS
Hot duty
Cold duty
Motor efficiency
:
86%
88.6%
K.W. Input
:
187
302
Power factor
:
0.7
0.805
Overall efficiency
:
72.2%
74.3%
Full load speed
:
1450 rpm
Line current @ 6.6 KV
:
23.3 amps
Full load current
:
36 amps
Motor starting current
:
190 amps
Heat exchanger
32.8 amps
Hot duty
H.P. Inlet temp (max)
:
55oC (130oF)
Allowable pr. drop
:
0.7 kg/cm2 (10 1bf/in2)
Heat transfer - hot duty
:
28980 kcal/hr. (115000 B.T.U./hr)
Heat transfer - cold duty
:
30240 kcal/hr. (120000 B.T.U./hr)
H.P. cooling water flow
:
200.62 lit/min (534.5 gal/min)
Pump case
:
3541.2 kgs (7800 1bs)
Motor complete
:
9534 kgs (21000 1bs)
Total weight
:
13075.2 kgs (28800 1bs)
Weight (Approximate)
KORBA SIMULATOR
28
BOILER WATER CIRCULATION PUMPS Each Boiler Water Circulation pump consists of a single stage centrifugal pump on a wet stator induction motor mounted within a common pressure vessel. The vessel consists of three main parts a pump casing, motor housing and motor covers. The motor is suspended beneath pump casing and is filled with boiler water at full system pressure. No seal exists between the pump and motor, but provision is made to thermally isolate the pump from the motor in the following respect: •
Thermal Conduction. To minimise heat conduction, a simple restriction in the form of thermal neck is provided.
•
Hot Water Diffusion. To minimise diffusion of boiler water, a narrow annulus surrounds the rotor shaft, between the hot and cold regions. A baffle ring restricts solids entering the annulus.
•
Motor Cooling. The motor cavity is maintained at a low temperature by a heat exchanger and a closed loop water circulation system, thus extracting the heat conducted form the pump.
•
In addition, this water circulates through the stator and rotor bearings extracting the heat generated in the windings and also provide bearing lubrication. An internal filter is incorporated in the circulation system.
•
In emergency conditions, if low-pressure coolant to the heat exchanger fails, or is inadequate to cope with heat flow from pump case, a cold purge can be applied to the bottom of the motor to limit the temperature rise.
Pump The pump comprises a single suction and dual discharge branch casing. The case is welded into the boiler system pipework at the suction and discharge branches with the suction upper most. Within the pump cavity rotates a key driven, fully shrouded, mixed flow type impeller, mounted on the end of the extended motor shaft. Renewable wear rings are fitted to both the impeller and pump case. The impeller wear ring is the harder component to prevent galling. Motor The motor is a squirrel cage, wet stator, induction motor, the stator, wound with a special watertight insulated cable. The phase joints and lead connections are also moulded in an insulated material. The motor is joined to the pump casing by a pressure tight flange joint and a motor cover completes the pressure tight shell. KORBA SIMULATOR
29
• KORBA SIMULATOR
30
The motor shell contains all the moving parts, except for the impeller. Below the impeller is situated an integral heat baffle which reduces the heat flow, a combination of convection and conduction, down the unit. A baffle wear ring-cum sleeve above the baffle forms a labyrinth with the underside of the impeller to limit sediment penetration into the motor. Should foreign matter manage to pass the labyrinth device into the motor enclosure, a filter located at the base of the cover end bearing housing strains it out. AUXILIARY COOLING CIRCUIT The motor is provided with its own auxiliary cooling circuit, which besides cooling the motor lubricates the bearings. The water is continuously circulated through the bearings, motor windings and the external heat exchanger, (cooler), by an auxiliary impeller (thrust disc) at the thrust bearing end of the motor shaft. When the motor is stationary, thermo-syphonic circulation takes place to remove conducted heat from the pump end of the motor. BEARINGS The motor rotor shaft is supported by water lubricated tilting pad type radial and thrust bearings mounted on the stator shell, thus making the motor internals into a separated construction independent of the motor pressure vessel. INTER FILTER A stainless steel woven wire strainer, fitted at the base of the reverse thrust plate, filters the liquid in the motor before it is circulated through the bearings after passing through the heat exchanger (cooler). The filter should be cleaned at normal maintenance periods, removing any accumulation of foreign matter in the motor cover. HEAT EXCHANGER A heat exchanger (cooler) is fitted to dissipate the heat generated by the motor winding. Brackets are provided on the motor case to mount the heat exchanger.High-pressure outlet and inlet-raised facings are situated bottom and top of the motor case respectively for connection to high-pressure heat exchanger/motor case stub pipes. Inter - connecting pipework is short and direct with the heat exchanger mounted as high as possible to promote good thermo-syphonic circulation when the unit is on hot standby.
KORBA SIMULATOR
31
PURGE AND FILL PIPING The purge and fill piping is used in association with boiler water circulation pump submerged motors. Depending on valve positions it can be used for filling or emptying the motor cavity of water, or for emergency purging of the cavity to prevent the ingress of hot boiler water should a leak occur in the cooling water system, or a gasket failure between pump and motor occur. Allowing high temperature boiler water to enter the cavity will damage the plastic insulation on the motor windings. During normal operation water is taken from the S.H. & R.H. spray water system then fed via a strainer and cooler before splitting three ways to service each circulation pump. If the pumps are to be filled when the S.H. spray water is out of service, a temporary connection can be made to take low pressure water from the reserve feed water tank. The valves, which service each circulation pump, can be opened and closed to make the system operate in out modes. •
Circulation pump filling. Water will flow through the filter then have its pressure and flow reduced through an orifice plate at the pump inlet. Drain lines down stream of the filter and the orifice will be closed.
•
Circulation pumps emptying. The isolating valve upstream of the drain orifice will be closed and water from the motor cavity will drain through open valves in the drain line downstream of the orifice.
•
Piping blowdown. The isolating valve downstream of the filter will be closed and drain line at the filter outlet open. Water will flow into the open drain.
•
Circulation pumps purging. Water will flow as described in the filling mode but the orifice bypass line will be opened to augment the flow.
DRUM DESCRIPTION Connections at both ends to the chemical clean pipework, and at three points along its length to feed individual circulation pump suctions. Water will flow from the pumps through two discharge pipes into the front leg of the water wall inlet headers at the bottom of the furnace. Each discharge pipe is fitted with circulating pump discharge stop/check valves, which are controlled via sequence equipment to open and close as the pump is taken in and out of service. If, however all three pumps are out of service, all of the valves will open to enable thermosyphonic circulation to take place. Initiating any pump to restart will cause them all to close again then continue with the in and out of service regime. Controls for the pumps are located in the Contol room and comprise a SEQUENCE pushbutton, ammeter and a DUTY/STANDBY selector. Pump status is indicated on RUN/STOP lamps on the Firemen' s Aisle Panel. The operating regime for the boiler water circulation pumps is two-duty/one stanby.
KORBA SIMULATOR
32
KORBA SIMULATOR
33
KORBA SIMULATOR
34
From the Waterwall inlet headers, water travels upwards through furnace wall tubing via furnace upper front rear and side headers into riser tubes, which direct a saturated steam/water mixture in to the steam drum. Furnace wall tubing is manufactured from a combination of both smooth and rifled bore tubing which permits the use of lower tube flow rates whilst still retaining full tube protection. The required distribution of water to give the correct flow rates through the various furnace wall circuits is achieved and maintained by the use of suitably sized orifices installed inside the water wall inlet headers at the inlet to each furnace wall tube. Orifice size varies for different circuits or groups of circuits depending on the circuit legth, arrangement and heat absorption. Perforated panel strainers are also located inside the water wall inlet headers to prevent the orifices blicking and to ensure an even distribution of water around the other inlet headers. The saturated steam/water mixture enters the steam drum on both sides behind a watertight inner plate baffle which directs the mixture around the inside surface of the durm to provide uniform heating of the drum shell. This eliminates thermal stresses from temperature differences through the thick wall of the drum, between the submerged and unsubmerged protions. Having travelled around this baffle the mixture enters two rows of steam enter the outer edge of the separator where it is separated from the steam. Nearly dried steam leaves the separators and passes through four rows of corrugated plate baskets where by low velocity surface contact the remaining moisture is removed. SUPER HEATERS & REHEATERS SH LT
PANEL
PLATEN
PENDENT
STAGE-II
STAGE-III
Radiant
Radiant
Non- drainable
Non-
HORIZONTAL STAGE-1 Type
Convection
Platen (Drainable/Non-
---
drainable
drainable) Pendant
Drainable
---
---
(Drainable/NonDrainable) Horizontal Headers
Drainable
Drainable
Drainable
1660
1730
(Drainable/NonDrainable) Effective heating surface 12500 area (M2)
KORBA SIMULATOR
35
Gas flow path area (M2)
147
---
286
Max steam side
408
509
575
Max gas side metal temp 450
570
690
Parallel
Parallel
Metal temp (oC) (oC)
Type of flow (counter or Counter parallel) Mat of tube support
SS
SS
SS
OD (MM)
51.00
44.5
54.00
Total Number of tubes
708
444
408
Parallel to gas flow
101.6
54.00
63.5
Across gas flow
152.5
254.00
762
TUBE PITCH (MM)
Method
of
joining
long
tube Total wt. of tubes (T)
REHEATERS STAGE-1
STAGE-2
RH RADIANT
RH FINISHING PLATEN
WALL
RH INTER PENDENT RH REAR PENDENT
Total heating surface (M2)
275 (proj.)
6200
Max operating pressure
47.68
47.00
53.73
53.73
Max gas side metal temp oC
430
620
OD (MM)
63
63.5
(Kg/cm2) Design pressure Kg/cm2 (ABS)
Mean effecting length (perone 17,500
27,000
tube) MM (App)
Gross length (per one tube) MM 18300
38000
(App) KORBA SIMULATOR
36
Total number of tubes
248
Total Wt. (Kgs.)
644 423300
Method of Joining long tube
Headers Max. Operating pressure
192.3
47.68
204.9
53.73
Kg/cm2 (ABS) Design pressure (Kg/cm2) (ABS) Location (outside/inside gas Out side
Out side
path) Total Wt. (Kgs.)
2111300
67000
SUPERHEATER AND REHEATER The arrangement, tube size and spacing of the Superheater and Reheater elements are shown on the attached “Schematic Flow Arrangement Diagram of Superheater and Reheater”. SUPERHEATERS The Superheater is composed of three basic stages of section; a Finishing Pendant Platen section, a Division Panel Section and a Low Temperature Section including LTSH, the Backpass Wall and Roof Sections. The finishing Section is located in the horizontal gas path above the furnace rear arch tubes and consists of assemblies spaced on 76.2 centres across the furnace width. The Division Panel Section is located in the furnace between the front wall and Pendant Platen Section. It consists of six front and six rear panel assemblies. The Low Temperature Sections and are located in the furnace rear Backpass above the Economiser Section. They are composed of assemblies spaced on centres across the furnace width. The Backpass wall and Roof Section forms the side front and rear walls and roof of the vertical gas pass. REHEATER The reheater is composed of 3 stages or sections, the Finishing Section the Front Platen Section and the Radiant Wall Section
KORBA SIMULATOR
37
The Finishing Section is located above the furnace arch between the furnace screen tubes and the Superheater Finish. It consists of assemblies. The Reheater Front and side Radiant Wall is composed of tangent tubes on centers across the furnace width. STEAM FLOW The course taken by steam from the steam drum to the superheater finishing outlet header can be followed on the attached illustrations, the “Schematic Flow & Arrangement of Superheater & Reheater”. The elements, which make up the flow path are essentially numbered consecutively. Where parallel paths exist, first one and then the other circuit are numbered. The main steam flow is: Steam drum - SH connecting tube - (1) -Radiant roof inlet header (2) - First pass roof front (3)- Rear (4) - Radiant tube outlet header (5) - SH SCW inlet header side (6) Backpasss side wall tubes (7) & (8) - Backpass bottom headers (9), (10) & (11) Backpass Front, and rear (12) (21) - Backpass screen (13) Backpass roof (14)Backpass SH & Eco. supports (15) SH & Eco. support headers (16) - LTSH support tubes (17) - SH Rear Roof tubes (18) - SHSC Rear wall tubes (19)- LTSH inlet header (22) - LTSH banks (23) (24) - LTSH outlet headers (25) - SH DESH link (26) - SH DESH (27) - Division panel (30) - Division Panel outlet header (31) - SH Pendent assembly (34) - SH outlet header (35). After passing through the high-pressure stages of the turbine, steam is returned to the reheater via the cold reheat lines. The reheater desuperheaters are located in the cold reheat lines. The reheat flow is. Reheater radiant wall inlet header (38) (39) - radiant wall tubes (40) (41) reheater assemblies (46) (47) - reheater outlet header (48) - Reheater load (49). After being reheated to the design temperature, the reheated steam is returned to the intermediate pressure section of the turbine via the hot reheat line. PROTECTION AND CONTROL As long as there is a fire in the furnace, adequate protection must be provided for the Superheater and Reheater elements. This is especially important during periods when there is no demand for steam, such as when starting up and when shutting down. During these periods of no steam flow through the turbine, adequate flow through the superhteater is assured by means of drains and vents in the headers, links and main steam piping. Reheater drains and vents provide means to boil off residual water in the reheater elements during initial firing of the boiler.
KORBA SIMULATOR
38
ARRANGEMENT OF SUPERHEATER AND REHEATER
KORBA SIMULATOR
39
KORBA SIMULATOR
40
Safety valves on the superheater main steam lines set below the low set drum safety valve, provide another means of protection by assuring adequate flow through the superheater if the steam demand should suddenly and unexpectedly drop Reheter safely valves, located on the hot and cold reheat piping serve to protect the reheater if steam flow through the reheater is suddenly interrupted. A power control valve on the superheater main steam line set below the low set superheater safety valve is provided as a working valve to given an initial indication of excessive steam pressure. This valve is equipped with a shut off valve to permit isolation for maintenance. The relieving capacity of the Power Control Valve is not included in the total relieving capacity of the safety valves required by the Boiler Code. During all start-ups, care must be taken not to overheat the superheater or reheater elements. The firing rate must be controlled to keep the furnace exit gas temperature from exceeding 5400C. A thermocouple probe normally located the upper furnace sidewall should be used to measure the furnace exit gas temperatures. NOTE: •
Gas temperature measurements will be accurate only if a shielded, aspirated probe is used. If the probe consists of simple bare thermocouple, there will be an error, due to radiation, rustling in a low temperature indication. At 588OC actual gas temperature, the thermocouple reading will be approximately 10 degrees low. Unless very careful traverses are made to locate the point of maximum temperature, it is advisable to allow another 10 degrees tolerance, regardless what type of thermocouple probe is used.
•
The 540OC gas temperature limitation is based on normal start up conditions, when steam is admitted to the turbine at the minimum allowable pressure prescribed by the turbine manufacturer. Should turbine rolling be delayed and the steam pressure to permitted to build up the gas temperature limitation should be reduced to 510OC when the steam pressure exceeds two thirds of the design pressure before steam flow through the turbine is established.
Thermocouples are installed on various superheater and reheater terminals tubes, above the furnace roof, serve to give a continuous indication of element metal temperatures during start-ups (superheater) and when the unit is carrying load (Superheater and Reheater). In addition to the permanent thermocouples, on some units temporary thermocouples provide supplementary means of establishing temperature characteristics during initial operation. Steam temperature control for Superheater and Reheater outlet is provided by means of windbox nozzle tilts and desuperheaters. DESUPERHEATERS Super heater & Reheater temp Control KORBA SIMULATOR
41
SUPER HEATER ATTEMPRATOR Type Stage Position in steam circuit
: Spray : One : Between LT pendants and SH panels.
Specification of material.
: SA335 P12
Spray tube material
: SA-213 T11
Super heater steam temp range that can be : 540 oC maintained from 54.43% to 100% of Boiler MCR. Max spray water flow rate and corresponding steam : 92,800 at 1566, 000 Kgs./hr. output (Kgs./hr.) Min spray water flow rate and corresponding steam : 47,000 at 1550,000 Kg/hr. out put Kg/hr. Reheat Emergency temp control attemperator REHEATER ATTEMPERATOR TYPE : SPRAY No. of stages of attemperator
: One
Position in the steam circuit
: Before RH Radiant wal
Specification of the Material
: SA-106 Gr-B
Spray nozzle Material
: SA-213T & SS Tips
HEADERS Length mm
: 18,000
Design Pr. (Kg/Cm2) (abs)
: 209.8
Max Working Pressure (Kg/Cm2)(abs)
: 196
GENERAL Desuperheaters are provided in the superheater-connecting link and the reheater inlet leads to permit reduction of steam temperature when necessary and to maintain the temperatures at design values within the limits of the nozzle capacity. Temperature reduction is accomplished by spraying water into the path of the steam through a nozzle at the entering end of the desuperheater. The spray water comes from the boiler feedwater system. It is essential that the spray water be chemically pure and free of suspended and dissolved solids, containing only approved volatile organic treatment material, in order reheater and carry-over of solids to the turbine.
KORBA SIMULATOR
42
CAUTION: During start up of the unit, if desuperheating is used to match the outlet steam temperature to the turbine metal temperatures, care must be exercised so as not to spray down below a minimum of 100 C above the saturation temperature at the existing operating pressure. Desuperheating spray is not particularly effective at the low steam flows of start up. Spray water may not be completely evaporated but be carried through the heat absorbing sections to the turbine where it can be the source of considerable damage. During start up alternate methods of steam temperature control should be considered. The location of the desuperheaters helps to ensure against water carry - over to the turbine. It also eliminates the necessity for high temperature resisting materials in the desuperheater construction. SUPERHEATER DESUPERHEATERS Two spray desuperheaters are installed in the connecting link between the superheater low temperature pendant outlet header and the superheater division panel inlet headers. REHEATER DESUPERHEATERS Two spray type desuperheaters are installed in the reheater inlet lead near the reheater radiant wall front inlet header. ECONOMISER Type
:
Non Steaming
Water side effecting heating surface area (M2)
:
7810
Gas side effecting heating Surface area (M2)
:
10210
Gas flow path area (M2)
:
128
Design pressure of tubes Kg/cm2
:
209.8
OD of Tubes (MM)
:
51.00
Actual thickness tubes (MM)
:
5.6
Length of Tubes (MM) (App)
:
2,15,000
Pitch (MM)
:
101.6
Total Wt. of Tubes (Kgs.)
:
4,95,00
KORBA SIMULATOR
43
BARE TUBE ECONOMISER The function of the economiser is to preheat the boiler feedwater before it is introduced into the Steam drum by recovering some of the heat of the flue gas leaving the boiler. Refer the " Schematic Flow and Arrangement Diagram of Water & Saturated Steam Circuits". The economiser is located in the boiler backpass. It is composed of two banks of 156 parallel tube elemets (3) arragned in horizontal rows in such a manner that each row is in line with the row above and below. All tube circuits originate from the inlet header (2) and terminate at oulet headers (4) which are connected with the economiser outlet header (7) through three rows of hanger tubes (6). Feedwater is supplied to the economiser inlet head (1) (2) via feed stop and check valves. The feedwater flow is upward through the economiser, that is, counterflow to the hot flue gases. Most efficient heat transfer is, thereby, accomplished, while the possibility of steam generation within the economiser is minimised by the upward water flow. From the outlet header the feedwater is lead to the steam drum through the economiser outlet links (5) (6). The economiser recirculating lines, which connects the economiser inlet lead header (2) with the furnace lower rear drum (14), provide a means of ensuring a water flow through the economiser during startups. This helps prevent steaming. The valves in these lines must be open during unit startup until continuous feed water flow is established. WATER COOLED FURNACE WELDED WALL CONSTRUCTION The furnace walls are composd of 51.0D. Tubes on 63.5" centers. The space between the tubes is fusion welded to from a complete gas tight seal. Some of the tube ends are swaged to a smaller diameter while other tubes are bifurcated where they are welded to the outlet headers and lower drum nipples. The furnace arch is composed of 63.5 O.D. fusion welded tubes, 76.2 (typical) centers. The backpass walls and roof are composed of 63.5 O.D. fin welded tubes on 154.4 centers. The furnace extended sidewalls is composed on O.D. fin welded tubes on 127 centers.
KORBA SIMULATOR
44
KORBA SIMULATOR
45
KORBA SIMULATOR
46
The backpas front (furnace) roof is composed of 51.0. O.D. tubes, peg fin welded on 152.4 centers. The backpass rear roof is composed of 51.0 O.D tubes peg fin welded on 152.4 centers. All peg-finned tubes are normally backed with a plastic refractory and skin casing, which is seal, welded to form a gas tight envelope. Where tubes are spread out to permit passage of superheater elemets, hanger tubes, observation ports, soot blowers, etc., the spaces between the tubes and openings are closed with fin material so a completely metallic surface is exposed to the hot furnace gases. Poured insulation is used at each horizontal buckstay to form a continous band around the furnace thereby preventing flue action of gases between the casing and water walls. BOTTOM CONSTRUCTION Bottom designs used in these coal-fired units are of the open hopper type, often referred to as the dry bottom typ. In this type of bottom construction two furnace water walls, the front and rear walls, slope down toward the centre of the furnace to form the inclined sides of the bottom. Ash and/or slag from the furnace is discharged through the bottom opening into n ash hopper directly below it. A seal is used between the furnace and hopper to prevent ambient air being drawn into the furnace and disturbng combustion fuel/air rations. The seal is affected by dipping seal plates, which are attached around the bottom opening of boiler furnace, into a water trough around the top of the ash hopper. The depth of the trough and seal plates will accommodate maximum downward expansion of the boiler (predicated (320.3 mms). Feedwater enter the unit through the economizer elements (1) (2) (3) (4) (5) (6) and is mixed with boiler water in the steam drum (7). Water flows from the drum (7) through the downcomers (8) to the pump suction manofld (9). The boiler-circulating pump (10) takes water from the suction manifold and discharges it, via the pump discharge lines (12), into the furnace lower front inlet header (13). Furnace lower water wall right and left side headers (15) assure proper distribution to the rear heater (14). In the waterwall inlet headers the boiler water passes through strainers and then through orifices, which feed the furnace wall tubes, the economiser recirculating lines. The water rises through furnace wall tubes where it absorbs heat. The front wall tubes (16), rear tubes (17), rear wall hanger tubes (19), rear arch tubes (18), rear screen tubes (21), extended sidewall tubes (2) and sidewall tubes (22) from parallel flow paths. The resulting mixture of water and steam collects in the waterwall outlet headers (23) (24) (25) (26) and is discharged into the steam drum (7) through the riser tubes (27). In
KORBA SIMULATOR
47
the steam drum the steam and water are separated (see "Drun Internals"), the steam goes to the superheater (see "Supergeater and Reheater") and the water is reurned to the waterside of the steam drum to be recirculated. WATERWALL INLET HEADERS The waterwall inlet headers are rectangular ring shaped manifold at the bottom of the furnace. Downcoming pipes enter into the furnace lower front inlet header. Furnace lower waterwall right and left side headers assure proper distribution to the rear heads. In the waterwall inlet headers the boiler water passes through screen and then through orifices, which feed the furnace wall tubes. The screen consists of a number of panels with 2/16" perforations. The panels are secured in the inlet drums with clamps. The panels are made in sections to facilitate removal and replacement. Each orifice is installed on the orifice mount adapter tack welded to the drum interior wall. A marman clamp holds the orifice on the orifice mount. NOTES: 1. Initial boiling out and acid cleaning operation to be completed before installing orifices. 2. Screens however must be installed 3. Orifice and screen assemblies retained on subsequent acid cleaning operation and removed for inspection purposes only. H.P. CHEMICAL DOSING SYSTEM Intermittent H.P. Chemical dosing is used to inject Tri-sodium Phosphate (T.S.P.) into the boiler water so that a phosphate reserve is maintained. T.S.P will precipitate any undesirable hardness salts contained in the water into a form of free flowing sludge, which can be removed by blowdown. A solution of T.S.P. will be made ready in the mixing tank using a motor operated stirrer and make up water as necessary. When prepared, the solution will be transferred by gravity feed to the metering tank ready for injection into the boiler steam drum in quantities determined by chemical analysis.
KORBA SIMULATOR
48
The level of solution in the tanks can be observed through side mounted gauge glasses. Further monitoring is provided by level switches which initiate an alarm when the level in the metering tank is high / low. Drains from the gauge glasses and tank overflows empty into an open drains system. Solution is pumped from the metering tank by one of the two 100 % duty H.P. dosing pumps (one standby) into the steam drum. Both pump system are indentical and include a suction filter and a discharge pressure relie valve. Each relief valve discharges into the open drain system.
FUEL FIRING SYSTEM INTRODUCTION The information Contained in this chapter relates to the fuel (oil & coal) system and fuel / combustion equipment under supply of BHEL for 500 MW boilers. FUEL OIL SYSTEM The fuel oil system prepares any of the two designated fuel oil for use in oil burners (16 per boiler, 4 per elevation) to establish initial boiler light up of the main fuel (pulverised coal) and for sustaining boiler low load requirements upto 15 % MCR load. To achieve this, the system incorporates fuel oil pumps, oil heaters, filters, steam tracing lines which together ensure that the fuel oil is progressively filtered, raised in temperature, raised in pressure and delivered to the oil burners at the requisite atomising viscosity for optimum combustion efficiency in the furnace. COAL SYSTEM The coal system prepares the main fuel (pulverised coal) for main boiler furnace firing. To achieve this the raw coal from overhead hopper is fed through pressurised coal valve, SECOAL nuclear monitor, and gravimetric feeder and into mills where it is crushed and reduced to a pulverised state for optimum combustion efficiency. The pulverised coal is mixed with a primary airflow, which carries the coal air mixture to each of 4 corners of the furnace burner nozzles and into furnace. BURNER NOZZLES Both the oil and coal burner nozzles fire at a tangent to an imaginary circle at the furnace centre. The turbulent swirling action this produces, promotes the necessary mixing of the fuels and air to ensure complete combustion of the fuel. A vertical tilt facility of the burner nozzles, which is controlled by the automatic control system of boiler, ensures a constituent reheat outlet steam temperature at varying boiler loads.
KORBA SIMULATOR
49
TILTING TANGENTIAL FIRING SYSTEM GENERAL In the tangential firing system the furnace itself constitutes the burner. Fuel and air introduced to the furnace through four windbox assemblies located in the furnace corners. The fuel and air streams from the windbox nozzles are dissected to a firing circle in the centre of the furnace. The rotative or cyclonic action that is characteristic of this type of firing is most effective in turbulently mixing the burning fuel in a constantly changing air and gas atmosphere AIR AND FUEL NOZZLE TILTS The air and fuel stream are vertically adjustable by means of movable air deflectors and nozzle tips, which can be tilted upward or downward through a total of approx. 60 degrees. This movement is effected through connecting rods and tilting mechanism in each windbox compartment, all of which are connected to a drive unit at each corner operated by automatic control. Provision is given in UCB to know the position of nozzle tips during operation. The tilt drive units in all four corners operate in unison so that all nozzles have identical tilt positions. WINDBOX ASSEMBLY The fuel firing equipment consists of four windbox assemblies located in the furnace corners. Each windbox assembly is divided in its height into number of sections or compartments. The coal compartments (fuel air compartment) contain air (intermediate air compartments). Combustion air (secondary air) is admitted to the intermediate air compartment and each fuel compartment (around the fuel nozzle) through sets of louvre dampers. Each set of dampers is operated by a damper drive cylinders located at the side of the windbox. The drive cylinders at each elevation are operated either remote manually or automatically by the Secondary Air Damper Control System in conjunction with the Furnace Safeguard Supervisory System. Some of the (auxiliary) intermediate air compartments between coal nozzles contains oil gun. (Refer contract assembly drawing for details).Retractable High Energy Arc (HEA) ignitors are located adjacent to the retractable oil guns. These ignitors directly light up the oil guns. Optical flames scanners are installed in flame scanner guide pipe assemblies in the auxiliary are compartments. The scanners sense the ultraviolet (UV) radiation given off by the flame and thereby prove the flame. They are used by Furnace safeguard Supervisory System to initiate a master fuel top upon detection of flame failure in the furnace.
KORBA SIMULATOR
50
KORBA SIMULATOR
51
AIR FLOW CONTROL AND DISTRIBUTION Total airflow control is accomplished by regulating fan dampers or fan speed. Air distribution is accomplished by means of the individual compartment dampers. The airflow to the air boxes can be equalised by observing and equalising the reading of the flowmeters located in the hot air duct to windbox. TOTAL AIR FLOW In order to ensure safe light-off conditions, the pre-optional purge airflow (at least 30 % of full load volumetric air flow) is maintained during the entire warm-up period until the unit is on the line and the unit load has reached the point where the airflow must be increased to accommodate further load increase. To provide proper air distribution for purging and suitable air velocities for lighting off, all auxiliary air dampers should be open during the purge period, the lighting off and the warm-up period. After the unit is on the line, the total required amount of air (total air flow) is a function of the unit load. Proper airflow at a given load depends on the characteristics of the fuel fired and the amount of excess air required (see note) to satisfactorily burn the fuel. Excess air can be determined through flue gas analysis (Orsat measurements). The optimum excess air is normally defined as the O2 at the economiser outlet that produces the minimum opacity. Operation below the optimum excess air will result in high opacity due to unburned carbon where as operation above the optimum excess air will result in high capacity due to excessive H2 SO4 condensation. Operation below recommended range will result in excessive black smoke and operation above this range will result in excessive white smoke. NOTE: The most suitable amount of excess air for a particular unit, at a given load and with a given fuel must be determined by experience. This is best done form observation of furnace slagging conditions. Slagging tendency of a particular fuel may dicatate an increase of operating excess air. AIR FLOW DISTRIBUTION The function of the windbox compartment dampers is to proportion the amount of secondary air admitted to an elevation of fuel compartments in relationship to that admitted to adjacent elevation of auxiliary air compartments. Windbox compartment damper positioning affects the air distribution as follows: Opening up the fuel - air dampers or closing down the auxiliary air dampers increases KORBA SIMULATOR
52
the air flow around the fuel nozzle Closing down the fuel air dampers and opening the auxiliary air dampers decrease the air flow directly around the fuel stream. Proper distribution of secondary air is important for furnace stability when lighting off individual fuel nozzle, when firing at low rates and for achieving optimum combustion condition in the furnace at all loads. Proper distribution of secondary air also has an effect on the emission of pollutants form coal fired units. As the unit increases the quantity of Nitrogen Oxide (NO) Produces in a furnace (due to the oxidation of nitrogen in the fuel) increases and the upper elevations of fuel nozzles are placed in service. The quantity of NO produced can be reduced by limiting the amount of air admitted to the furnace adjacent to the fuel and increasing the quantity of air admitted above the fire (over fire air). When the unit has reached a predetermined load (app. 50 %) the over-fire air dampers should open and modulate as a function of unit load until, at maximum continuous rating (MCR) when upto 15 % of the total air is admitted to the furnace as over fire air. The optimum ratio of over fire air to fuel and auxiliary air, as well as the optimum tilt position of the over-fire air nozzles, to produce a minimum NO emission consitent with satisfactory furnace performance must be determined through flue gas testing (i.e. measurement of NO) during initial operation of the unit. The correct proportion of air between fuel compartment and auxiliary air compartments depends primarily on the burning characteristics of the fuel. It influences the degree of mixing, the rapidity of combustion and the flame pattern within the furnace. The optimum distribution of air for each individual installation and for the fuel used must be determined by experience. The wind-box compartments are normally provided with drive (except end air compartments) so they may be operated by a secondary air damper and over-fire air control system in conjuction with the furnace safeguard supervisory system. When on automatic controls the system should provide modulation of the auxiliary air dampers as required to maintain a pre-set windbox-to-furnace differential pressure. The fuel air dampers should be closed prior to and during light off. When the fuel elevation is proven in service, the associated fuel-air dampers should open and be positioned in proportion to the elevation-firing rate. Normally the end air compartments are [provided with manual adjustment, which can be kept in the required position during commissioning of the unit.
FUEL OIL FIRING SYSTEM FUELS A coal-fired unit incorporates oil burners also to minimum oil firing capacity of 15 % of boiler load for the reason of, 1. To provide necessary ignition energy to light-off coal burner 2. To stabilise the coal flame at low boiler/burner loads 3. As a safe start-up fuel and for controlled heat input during light-off. KORBA SIMULATOR
53
Auxiliary steam is utilised in boiler for following purposes: •
For atomising the HFO at the oil gun.
•
For tank heating, main heating and heat tracing of HFO.
•
To preheat the combustion air at the steam coil air heater and to warm up the main air heater (this reduces Sulphur-oxide condensation and thus cold end corrosion of main air heater)
With above provisions and with proper oil, steam and combustion air parameters at the burner, HFO is safely fired in a cold furnace BURNER ARRANGEMENT In a tangentially fired boiler, four tall windboxes (combustion air boxes) are arranged, one at each corner of the furnace. The coal burners or coal nozzles are located at different levels on elevations of the windboxes. The number of coal nozzle elevations are equivalent to the number of coal mills. The same elevation of coal nozzle at 4 corners is fed from a single coal mill. The coal nozzles are sandwitched between air nozzles or air compartments. That is, air nozzles are arranged between coal nozzles, one below the bottom coal nozzle and one above the top coal nozzle. If there are ‘n’ numbers of coal nozzles per corner there will be (n + 1) numbers of air nozzle per corner. The coal fuel and combustion air streams from these nozzles or compartments are directed tangential to an imaginary circle at the centre of the furnace. This creates a turbulent vortex motion of the fuel air and hot gases which promotes mixing ignition energy availability, combustion rate and combustion efficiency. The coal and air nozzles are tiltable ± 30 0 about horizontal, in unison, at all elevations and corners. This shifts the flame zone across the furnace height for the purpose of steam temperature control. The air nozzle in between coal nozzles is termed as Auxiliary Air Nozzles, and the top most and bottom most air nozzles as END Air Nozzles. The coal nozzle elevation are designated as A,B, C,D etc., from bottom to top, the bottom end air nozzle as AA and the top end air nozzles as XX. The auxiliary air nozzles are designated by the adjacent coal nozzles, like AB, BC, CD, DE ....... etc. The four furnace corners are designated as 1,2,3, and 4 in clockwise direction looking from top, and counting front water wall left corner as “1”.
KORBA SIMULATOR
54
Each pair of coal nozzle elevation is served by one elevation of oil burners located in between. For example in a boiler with 8 mills or 8 elevations of coal nozzles, there are 16 oil guns arranged in 4 elevations, at auxiliary air nozzles AB, CD, EF, & GH. Heavy fuel oil can be fired at the oil guns of all elevations. Each oil gun is associated with a high-energy arc ignitor. COMBUSTION AIR DISTRIBUTION Of the total combustion air, a portion is supplied by primary air fans, which go to coal mill for drying and pulverising the coal and carrying it to the coal nozzles. The Primary Air flow quantity is decided by coal mill load and the number of coal mills in service. The primary airflow rate is controlled at the air inlet to the individual mills by dampers. The balance of the combustion air, referred as ‘secondary air’ is provided by FD fans. A portion of secondary air (normally 30% to 40 %) called ‘Fuel Air’ is admitted immediately around the coal fuel nozzles (annular space around the casting insert) into the furnace. The rest of the secondary air called ‘Auxiliary Air’ is admitted through the auxiliary air nozzles and end air nozzles. The quantity of secondary air (fuel air + auxiliary air) is dictated by boiler load and controlled by FD fan blade pitch. The proportioning of air flow between the various coal fuel nozzles and auxiliary air nozzles is done based on boiler load, individual burner load, and the coal / oil burners in service, by a series of air dampers. Each of the coal fuel nozzles and auxiliary and end air nozzles is provided with a knock-knee type regulating dampers, at the air entry to individual nozzle or compartment. On a unit with 8 mills there will be 8 fuel air dampers, 7 auxiliary air dampers, 2 end air dampers and 2 over fire air dampers per corner. Each damper is driven by an air cylinder positioned set, which receives signal from ‘Secondary Air Control System’. The dampers regulate on elevation basis, in unison, at all corners. FURNACE PURGE Traces of unburnt fuel air mixture might have been left behind inside the furnace of some fuel or might have entered the furnace through passing valves during shutdown of the boiler. Lighting up a furnace with such fuel air accumulation leads to high rate of combustion, furnace pressurisation and to explosions at the worst. This is avoided by the ‘Furnace Purge’ operation during which 30 % of total air flow is maintained for above 6 minutes to clear off such fuel accumulations and fill the furnace with clean air, before lighting up.
KORBA SIMULATOR
55
During furnace purge, all the elevations of auxiliary and end air dampers are opened to have uniform and through purging across the furnace volume. BOILER LOW LOAD OPERATION During initial operations upto about 30 % boilers loading (and also during furnace purge) all the auxiliary and end air dampers modulate to maintain a predetermined (approx. 40 mm WC) set point differential pressure between the windbox and furnace. During this period also, 30-40 % of total airflow is maintained to have an air rich furnace and to avoid possible unhealthy furnace conditions. Again all the auxiliary and end air dampers are open to distribute the excessively admitted air away from the operating burners and to pass only the necessary air behind the operating burners at appropriate velocity, for successful burner light up and stable flames. Around 40 mm of windbox of furnace differential is the pressure estimated as required to admit 30-40 % of airflow with the entire auxiliary and end air dampers modulating with reasonable opening. Whenever one or more oil burners are put into service the associated elevation of auxiliary air dampers modulate as a function of oil header pressure, to provide required combustion air. The other auxiliary air dampers continue to maintain 40 mm windbox to furnace differential. At boiler load less than 30 % MCR, each elevation of oil burners shall not be loaded more than 10 % MCR (if high capacity provided), since no adequate combustion air will be available behind oil burners, under this operating conditions. If found necessary total airflow may be marginally increased for better flame conditions. BOILER LOAD ABOVE 30 % When the unit load exceeds 30 % MCR, the differential set point is changed to a higher setting (approx. 100 mm WC). Simultaneously, the auxiliary air dampers associated with the coal or oil elevations not in service close in timed sequence starting with the upper elevations of dampers and progressing to the lowest elevation. The above 100 mm WC differential is the predicted value required to admit the total secondary air at design air velocities with all dampers opened to reasonable percentage. When the unit load is reduced below 30 % loading, the auxiliary air dampers open in a timed sequence starting with the lowest elevation of dampers. Simultaneously, the differential set point change to its lower setting.
KORBA SIMULATOR
56
The auxiliary air dampers associated with the oil elevations modulate as a function of oil header pressure when oil is being fired and opens more and more with increased firing rate. Otherwise, they open and close with balance of the auxiliary air dampers. The bottom end air damper is normally kept open to a fixed predetermined position to reduce unburnt coal dust fall - out. All the auxiliary air dampers maintain the status quo upon a boiler trip and will open fully when both FD fans are off. FUEL AIR DAMPERS Its operation is independent of boiler load. All fuel air dampers are normally closed. They open fifty seconds after the associated feeder is started and a particular speed reached. It modulates as function of feeder speed. Fifty seconds after the feeder is removed from service, the associated fuel air dampers close. The fuel air dampers will open fully when both FD fans are off. FUEL OIL ATOMISATION Atomisation is the process of spraying the fuel oil into fine mist, for better mixing of the fuel with the combustion air. While passing through the spray nozzles of the oil gun, the pressure energy of the atomising steam breaks up the oil stream into fine particles. Poorly atomised furl oil would mean bigger spray particles. Which takes longer burning time, results in carryovers and makes the flame unstable due to low rate of heat liberation and incomplete combustion. Viscosity of the oil is another major parameter, which decides the atomisation, level. For satisfactory atomisation the viscosity shall be less than 28 centistokes. External mix type steam atomised oil guns suitable for both LFO and HFO have been provided. Atomisers of this type are widely known as J-tips. The atomiser assembly consist of nozzle body welded on to the gun body, back plate, spray plate and cap nut. HEAVY FUEL OIL RECIRCULATION The HFO heater sets are located at a considerable distance from the boiler-burner proper.Before putting in the first burner into service, it is necessary to warmup the long oil supply lines from the heater to the burners, so that the oil does not get cooled in the pipings and that the oil at correct atomising temperature is available at the KORBA SIMULATOR
57
burners. To achieve this the heater oil is circulated upto the burners and back to the oil tank through HFO return lines, till adequate temperature is reached near the burners. For the above purpose there are two HFO recirculation loops. One is called the long Recirculation, which is through the main trip valve, supply flow meter and flow control valve in the HFO supply line, supply ring header and HFO return lines. Long recirculation is the effective one, which circulates oil right upto the burner valve inlet, nears the corner risers. Long recirculation is not possible if no control power is available and during mater fuel trip. During such occasions the other partial recirculation loop called short recirculation is employed. This later loop bypasses the boiler area piping and connects the HFO return line to the HFO supply line before the HFO main trip valve and supply flow meter, short recirculation valve is opened when the main trip valve is closed, essentially for warming up the main lines. Before opening the main trip valve or the first burner trip valve, the short recirculation valve is closed. A HFO return trip valve (HORV) is installed in the long recirculation loop. With this valve open, large volumes of HFO can be circulated upto the burners and initial warming up of the pipings can be faster. When one or more burners are firing (i.e. when HORV is shut) still a small amount of hot oil is constantly recirculated through a restricting orifice arranged across HORV. This constant recirculation keeps the HFO return line always warm, prevents solidification of oil at dead ends and ensures uniform temperature in the piping. This orifice is sized for a circulation flow rate of about 7 - 10 % of maximum oil firing rate. During initial commissioning, this recirculation flow rate shall be checked and if found necessary orifice size be suitably changed or the regulating valve opening be adjusted. The HFO return flow meter is installed across the HORV in series with the constant recirculation orifice, rather than in the common return line, for better rangeability. The flow metering should be accounted only when HORV is closed. When the boiler is firing on coal or no oil burner is fired it is recommended to open Heavy Oil Main Trip Valve and Return Valve to circulate the oil continuously. This will enable the operator to cut in the oil gun immediately when required. The amount of oil circulation however is to be restricted to avoid shooting up of tank temperatures and hence the flow control valve may be throttled to reduce the return oil flow rate. OIL FLOW CONTROL This is remote manually done by varying oil flow control valve opening. The need for varying the oil burner load and the normally adopted practice is described in the following lines.
KORBA SIMULATOR
58
SYSTEM REQUIREMENT The maximum total output of oil burners is 30 % of the boiler MCR. This meets the turbine synchronisation needs before firing coal burners. Each oil burners capacity is about 2 % of boiler MCR. For coal burner ignition and coal flame stabilisation a minimum oil burner output, equivalent to 10-20 % of maximum coal burner capacity is required. This roughly corresponds to 40 to 50 % rating of an oil burner. For the exact capacities refer to performance data sheet (oil burners and ignitors) The oil burner output is a function of oil pressure at the oil gun and the normal turndown range of the oil burner is 3: 1. For steam atomised oil burner, the oil pressure at the oil gun shall not fall below 2.5 kg/sq cm2(g) to ensure good atomisation and stable flames. The oil burners have to be opted at loads, lower than the maximum rating for reasons mentioned below. 1. During cold start-ups of the boiler, to have a controlled and gradually increasing heat loading, to avoid temperature stresses on pressure part materials, as dictated by boiler start up curves. 2. To conserve fuel oil by operating the oil burners just at the “Coal flame stabilisation” requirements. Oil Flow Control Valve and Minimum Pressure Control Valve Function The oil header pressure is maintained constant at all loads, at the upstream of oil flow control valve by a relieving type backpressure control valve installed after the pump. The flow control valve essentially does the function of regulating the boiler fuel oil firing rate. The valve opening can be varied from the remote depending upon the no of burners firing and the firing rate. The minimum pressure control valve ensures a smooth starting up boiler. To start with, the Heavy Fuel Oil Heater Trip Valve and HORV are opened. Once the temperature at the boiler front is adequate, the heavy fuel oil flow control valve is kept at the predetermined minimum firing opening to restrict the firing rate. This can be done by setting the required header pressure and maintaining the same through the pneumatic pressure controller. The burner trip valves are then opened and burners are put into service. The burners are operated only by pair mode. KORBA SIMULATOR
59
KORBA SIMULATOR
60
When more no of burners are brought into service the heavy fuel oil header pressure will experience a sudden dip. The header pressure will be automatically maintained by the pressure control loop in the flow control valve. If this pressure control loop is not in service, it is always a good operator’s practice to increase the header pressure before additional burners are brought into service. The position transmitter or position limit switches mounted on the flow control valve serve to indicate the status of opening of control valve. An UCB display of control valve outlet pressure and the number of burners in service are the correct guidance for the operator. The fuel oil flow meter reading at panel could also be of equal assistance. OIL FIRING HEAVY FUEL OIL BURNERS Type Burner
:
Tilting Tangential, corner fired
Oil gun
:
Parallel pipe, auto retractable
Atomiser
:
External mix, constant pressure, Steam atomised
Air Nozzle
:
Suare to round
Atomiser designation
:
J 18
Atomiser spray angle
:
90o
fuel
:
Fuel oil to IS:1593, 1971, Grade LV-MVHV
Design capacity
:
7.5% MCH heat imput/4 guns
Number off
:
16.4 per elevation
Location
:
Elevation AB, CD, EF & GH
Oil Firing rate maximum
:
2250 Kg/hr/gun
Oil Firing rate minimum
:
750 Kg/hr/gun
Turn Down
:
3 to 1
Oil
pressure
at
maximum
rating :
13 Kg/cm2 (g) at gun
pressure Oil viscosity
:
Atomising steam flow at Maximum :
15-28 CST at gun 160 Kg/hr/gun
rating.
KORBA SIMULATOR
61
Atomising steam flow at minimum :
215 Kg/hr/gun
rating Atomising steam pressure
:
5.25 Kg/cm2 (q) at the gun; constant at all loads
Minimum allowable atomising steam :
4.5 kg/cm2 (g) at the gun
pressure Atomising steam quality
:
20 to 30oC superheated
Make
:
BORNEMAN
Type
:
Screw
no. off
:
3 (1 standbvy)
Rotation
:
Clockwise from Motor end
Capacity
:
800 lpm at 150 cst.
Pressure
:
30 Kg/cm2
Speed
:
1450 rpm
Pump KW
:
83 KW
Motor KW
:
90 KW
Suction Filter Mesh
:
500 Micron
Discharge Filter Mesh
:
250 Micron
Type
:
High Energy Arc Ignitor
Output 4 sparks/sec;
:
12 Joules/spark
Sparking Time
:
10 seconds
Rating
:
110 V AC 50 Hz.
FUEL OIL PUMP
IGNITORS
High Energy Arc type electrical ignitors are provided which can directly ignite the heavy fuel oil. The main features of this system are •
An exciter unit which stores up the electrical energy and releases the energy at a high voltage and short duration.
•
A spark rod tip which is designed to convert the electrical energy into an intensive spark.
KORBA SIMULATOR
62
•
A pneumatically operated retract mechanism which is used to position the spark rod in the firing position and retract to the non-firing position.
Each descrete spark provides a large burst of ignition energy as the current reaches a peak value of the order of 2000 amps. These sparks are effective in lighting of wellatomised oil spray and also capable of blasting off any coke particle or oil muck on the surface of the spark rod. For a reliable ignition of oil spray by the HEA ignitor, it is very much necessary to maintain the following conditions: 1. The atomisation is maintained at an optimum level. All the atomising parameters such as oil temperature, steam pressure, clean oil gun tips etc., are maintained without fail. The atomising steam shall be with 20-degree superheat minimum. 2. The cold legs are minimum. the burner fittings are well traced and insulated. 3. The spark rod tip is located correctly at the optimum location. 4. The oil gun location with respect to the diffuser and the diffuser location with respect to the air nozzle are maintained properly. 5. The control system is properly tuned with ignitor operation. The time of commencing of all the operational sequences is properly matched. 6. It may become necessary to close the air behind the ignitors, during the light off period for reliable ignition. This must be established during the commissioning of the equipment and proper sequence must be followed. The following facts must be born in mind to understand the ignitors and the system clearly : •
The spark rod life will be drastically reduced if left for long duration in the advanced condition when the furnace is hot.
•
Too much retraction of spark rod inside the guide tube will interfere with nozzle tilts and may spoil the guide tube.
•
A minimum discharge of 300 kg/hr of oil is essential for a reliable ignition.
•
A plugged oil gun tip may result in an unsuccessful start.
KORBA SIMULATOR
63
•
A cold oil gun and hoses cause quenching of oil temperatures and may lead to an unsuccessful start. In such cases warming up by Scavenging prior to start is necessary.
FUEL OIL GUN ADVANCE / RETRACT MECHANISM The atomiser assembly radiation by the flow of burner is stopped there required to withdraw the to over heating.
of an operating oil gun is protected for the hot furnace fuel out / steam which keeps it relatively cool. Once the is no further flow of oil/steam. Under such situation it is gun from firing position to save it from possible damage due
In the system provided, the oil gun is auto advance, auto retractable. It is diven by a pneumatic cylinder and a 4 way dual coil solenoid pilot control valve, with a stroke length of 330 mm. There are three position limit switches, one for, “gun engaged” position, another for “Gun advanced” and the third for “Gun retracted” position, which have been suitably interlocked into furnace safeguard supervisory. system logic’s for safe and sequenced operation. STEAM SCAVENGING OF FUEL OIL GUNS Before stopping the oil burner, the oil gun is scavenged with steam to keep the small intricate passages of the atomiser parts clean. •
In the autoprogrammed burner stop sequence, a planned shut down is followed by steam scavenging the oil side for quite sometime, to achieve this requirement.
•
During emergency tripping of the burners or boiler the oil gun is neither scavenged nor retracted automatically. Normally such emergency trip may last only for a shot while and the fuel oil guns shall be re-started or local manually scavenged immediately on resuming boiler operation.
BURNER NOZZLE VALVES The burner nozzle valves are of pneumatic diaphragm type. The oil valves are provided with facility to adjust the opening time. The opening is slow to avoid a pressure dip in the oil header. The closing of the valves are instantaneous. It is very important to check these valve periodically for any seat leakage. SYSTEM VENTS AND DRAINS Fuel oil heaters strainers and lines are provided with ventcocks or valves on oil and steam sides to get rid of air locks while charging the system.
KORBA SIMULATOR
64
In a heat exchanger air locks reduce the effective heat transfer area and thus the heater efficiency. The vapour locks may also lead to eratic performance of the equipment and severe vibration. Air venting also helps to avoid the chances of forming fuel vapour air mixtures inside the system. All oil lines are run with a slope of about 0.3 - 0.5 % towards drain. Each section of oil line is provided with a drain valve or plug at the lowest point. All drain valves are normally kept closed during operation. When the oil system is taken out of service for a long duration, then it is necessary to open the respective drain the valves and drain the fuel oil when hot. Portable drip trays are provided near the drain points. HEAT TRACING OF HFO LINES The HFO being high viscous and having high pour point, the HFO lines are steam traced by running a small bore steam pipe along side and lagging together by insulation. The equipment like strainers and pumps have steam heating casing. This prevents loss of heat and eventual solidification of HFO in any section of the HFO piping. The formed condensate is let out through steam traps at the end of each tracer or heat jacket. Warming of the HFO lines and equipment like strainers and pumps before charging with oil is essential for easy flow and melt any solidified oil traces left behind during the prior shutdown. Also during shutting down each line or equipment heating helps in draining the system effectively. Sometimes the trace heating is continued even during normal burner operation to make up for radiation heat loss from the heated HFO so that the oil temperature does not drop. This may have to be practised only during the winter days. HFO PUMPING SYSTEM: Pressure Maintaining cum Regulating Valve The screw pump is a constant quantity pump and when only a small quantity of oil is fired, the excess oil from the constant quantity pump should be by-passed. This is done automatically by pneumatic operated, pressure maintaining cum regulating valve by by-passing the excess quantity through the return oil line to storage tank. The delivery pressure of oil is maintained constant at the pump outlet, whatever be the quantity of oil fired. Set the pressure control valve for maintaining adequate and constant pressure at the upstream of the HFO flow control valve at maximum firing rate.
KORBA SIMULATOR
65
KORBA SIMULATOR
66
KORBA SIMULATOR
67
The flow control valve upstream pressure required is the sum of the following at maximum firing rate: •
Oil pressure at the gun inlet.
•
Static head between flow control valve and top level of burners, and frictional pressure drop in these lines.
•
Flow control valve pressure drop; for best turndown.
HFO SUCTION STRAINERS Oil suction strainers are essential to prevent mechanical impurities reaching the small clearances and intricate passages in the screw pump. Basket strainers of 500 micron filter mesh are provided, with vent valve and drain valve. The running pump will starve of oil if the pressure drop across the suction strainer exceeds the allowable limit, and will get damaged. When the pressure drop across the operating strainer reaches about 0.3 kg/sq. cm (corresponding to 50 % clogged status), operation is switched over to the standby section of the Duplex filter. The clogged filter element should be cleaned without delay. The strainers are provide with alarming switches to indicate the operator when the cleaning of the filter is due. HEAVY FUEL OIL HEATING SYSTEM H. F. O. STEAM HEAT EXCHANGER Type
U. Tube, Hair pin type, oil on shell side, condensing type.
No. off
3 Nos. (including 1 no. standby)
Heater Area
40 Sq.M
Oil flow rate
680 lpm
Oil temperature range
150OC (oil)
Design pressure
6 Kg/cm2 (g)
Hydraulic Test Pressure
24 Kg/cm2 (g)
Design Temperature
250OC
KORBA SIMULATOR
68
GENERAL ARRANGEMENT There 150 % duty steam-oil heat exchangers and three duplex strainers are provided for operation in combination. The HFO temperature control valve and the trap station for heaters, steam jackets of strainers and line tracers are provided in the system. All these equipment are laid out on the floor. The drain points are to be suitably piped upto the drain pit from the drain trays. STEAM HEATERS AND STRAINERS The steam heaters are of fixed tube sheet, U tube type, with oil on shell side and steam on the tube side. The oil space is protected against exceeding of allowable pressure by low lifting spring loaded safety valve. The exchanger is equipped with the valves needed for air release and draining. The duplex basket type discharge strainers are at the heater outlet, with fine mesh of 250-micron filtration. The fine filtering prevents chocking of lines, valves and burner atomisers. The burner trip wearing rate is also reduced. When the pressure drop across the strainer exceeds about 0.5 kg/sq. cm (corresponding to 60 % clogged status), the standby strainer section is put into service and it is taken for cleaning.
PULVERIZED COAL SYSTEM GENERAL The system for direct firing of pulverized coal utilizes pulverizers to pulverize the coal and a Tilting Tangential Firing System to admit the pulverized coal together with the air required for combustion (secondary air) to the furnace. As crushed coal is fed to each pulverizer by its feeder (at rate to suit the load demand) primary air is supplied from the primary air fans. The primary air dries the coal as it is being pulverized and transports the pulverized coal through the coal piping system to the cola nozzles in the windbox assemblies. A portion of the primary air is pre-heated in the bisector air heater. The hot and cold primary air are proportionally mixed, prior to admission to the pulverizer, to provide the required drying as indicated by the pulverizer outlet temperature. The total primary air flow is measured in the inlet duct and controlled to maintain the velocities required to transport the coal through the pulverizer and coal piping. the total
KORBA SIMULATOR
69
primary air flow may constitute from approximately 15 % to 25 % of the total unit combustion air requirement. The pulverized coal and air discharged from the coal nozzles is directed toward the centre of the furnace to form a firing circle. Fully preheated secondary air for combustion enters the furnace around the pulverized coal nozzles and through the auxiliary air compartments directly adjacent to the coal nozzle compartments. The pulverized coal and air streams entering the furnace are initially ignited by a suitable ignition source at the nozzle exit. Above a predictable minimum loading condition the ignition becomes self sustaining. Combustion is completed as the gases spiral up in the furnace. A large portion of the ash is carried out of the furnace with the fuel gas; the remainder is discharged through the furnace bottom into the ash pit. COAL FIRING SYSTEM COAL BURNERS Type
:
Tilting Tangential
Make
:
BHEL
No. of Coal Burners feed by each :
4
Pulveriser. No. of elevation of Burners
:
8
Total no. of Coal Burners
:
32
Temp. of Coal Air Mixture
:
66-77OC
Max allowable temp. of Burners
:
850OC
Turn down ratio
:
4:1
Type of pulveriser
:
1003 x RP
No. of Mills/Boiler
:
8
No. required for full load
:
6
Base capacity of Mill
:
68 Tonnes/hr for a pulverised fuel finess 70%
PULVERISERS
through
200
grindability.
mesh Index
with a 55
HGT
raw coal and
of
a total
moisture of not more than 8%.
KORBA SIMULATOR
70
COUPLING Type
:
Gear
type
flexible
coupling
with
spacer
assembly between mill & motor. Supplier
:
M/S FAST' s U.S.A.
Bearings
:
Antifriction bearings for main vertical shaft assembly journal shaft assembly and worm shaft assembly.
Cooling System
:
No. of Oil Coolers/Mill Cooling water requirement for oil
Immersed in oil bath Two
:
Clean,
colourless,
and
ammonia
contamination free cooling water of Qty given below for the respective temp. :
21OC
32OC
41OC
:
106
140
170
Qty. Liters/Min.
:
41 Litres/Min/Mill
Maximum Pressure
:
10 Kg/cm2
Oil
Temp. oC
Cooling water requirement for :
clean,
journal Hydraulic system
Contamination free cooling water at 43oC.
Wear Surface
:
colourless,
and
ammonia
Grinding rolls, bullring segment and liners made of High Quality Ni hard (Comb alloy-N) casting, venturi vanes and classified Cone inner surface are lined with ceramic liners.
Life of rolls/grinding in his rings
:
4000/8000
Speed of pulveriser (RPM)
:
42
Normal capacity with design coal
:
52.5(T/hr)
Max capacity with design coal.
:
61.00(T/hr)
Normal capacity with design coal
:
56.6 T/hr)
Max capacity with worst coal
:
60.00 T/hr)
Max crushed coal size the:
:
30.00(MM)
mill can accept. RAW COAL FEEDER
:
Type
:
SECO - 36" Gravimatric (with Mechanical Weighing
KORBA SIMULATOR
71
Capacity Supplier
: :
Nuclear Monitor
:
Minmum - 4300 kg/hr.
:
Maximum - 74800 kg/hr.
:
SECO. U.S.A.
:
2 in No. (Upper and Lower)
COAL VALVES TYPE
LOCATION
36" Pressurised Coal Valves limit torgue operated
:
At Raw Coal bunker outlet
CHAIN operated
:
At Raw Coal feeder inlet.
Manufacturer
:
Stock Equipment Co.
Type
:
Rack and pinion (pressurised)
Motor rating
:
0.5 KW
Material of gate
:
Stainless Steel/Besalt lined
BUNKER SHUT OFF GATES:
COMBUSTION OF PULVERIZED COAL IN TANGENTIALLY FIRED FURNACES The velocity of the primary air and coal mixture within the fuel nozzle tip exceeds the speed of flame propagation. Upon the nozzle tip the stream of coal and air rapidly spreads out with a corresponding decrease in velocity, especially at the outer fringes where eddies form as mixture occurs with the secondary air. Here flame propagation and fuel speeds equalize, resulting in ignition. As the stream advances in the furnace, ignition spreads until the entire mass is burning completely. The speed at which the air and coal mixture ignites after leaving the windbox nozzles depends largely on the amount of volatile matter in the fuel. Heat released by oxidizing the volatile components in the coal accelerates of the fixed carbon to its ignition temperature. The key to complete combustion consists of bringing a successive stream of oxygen molecules into contact with carbon particles, the smallest of which are relatively large by comparison with the oxygen molecules. As combustion of the carbon progresses it becomes increasingly difficult to bring about contact with the diminishing oxygen supply in the limited time available, which for this type of firing is in effect greater due to the longer travel taken by the gases. The cyclonic mixing action that is characteristic of this type of firing is most effective in turbulently mixing the burning coal particles in a constantly changing air and gas atmosphere. As the main part of the gases spiral upward in the furnace, the relatively dense solid particles are subjected to a sustained turbulence, which is effective in removing the products of combustion from the particles, and in assisting the natural diffusion of oxygen through the gas film that surrounds the particles. KORBA SIMULATOR
72
PULVERIZERS The pulverizer, exclusive of its feeder, consists essentially of a grinding chamber with a classifer mounted above it. the pulverizing takes place in a rotating bowl in which centrifugal force is utilized to move the coal, delivered by the feeder, outward against the grinding ring (bull ring). Rolls revolving on journals that are attached to the mill housing pulverize the coal sufficiently to enable the air stream through the pulverizer to pick it up. Heavy springs, acting through the journal saddles, provide the necessary pressure between the grinding surface and the coal. The rolls do not touch the grinding rings, even when the pulverizer is empty. Tramp iron and other foreign material discharged through a suitable spout. The air and coal mixture passes upward the classifier with its deflector blades where the direction of the flow is changed abruptly, causing the coarse particles to be returned to the bowl for further grinding. The fine particles, remaining in suspension, leave the classifier and pass on through the coal piping to the windbox nozzles. FEEDERS The raw crushed coal is delivered form the bunkers to the individual feeders, which, in turn feed the coal at a controlled rate to the pulverizers title “Gravimetric Feeders” given at the end of this chapter. In order to avoid overloading the pulverizer motor due to overfeeding, an interrupting circuit should be used to reduce the coal feed it the motor should become overloaded and to start the coal feed again when the motor load becomes normal. For details refer to Pulverizer instructions on its operation. PULVERIZED COAL DRYING For satisfactory performance, the temperature of the primary air and coal mixture leaving the classifier should be kept at approximately 77OC for our coals. Too low a temperature may not dry the coal sufficiently; too high temperature may lead to fires in the pulverizer. The outlet temperature must not exceed 90OC any case. The moisture content of coals varies considerably. Therefore the best operating conditions for an particular installation must be determined by experience. The location of dampers, shutoff gates and valves generally utilized. The hot air control damper and the cold air control damper regulate the temperature entering the pulverizer, by proportioning the air flow from the hot air and cold air supply ducts. These dampers also regulate the total primary airflow to the pulverizer. The hot air shutoff gate is used to shutoff the hot air to the pulverizer. The hot air gate drive must be interlocked with the pulverizer motor circuit so that the gate will closed any time the pulverizer is not in service. It must also be interlocked with the
KORBA SIMULATOR
73
temperature controller to effect closing of the hot air gate when the pulverizer outlet temperature exceeds 900C. The pulverizer discharge valves, the cold air shutoff gate and the seal air shutoff valves are always kept wide open. They are closed only when isolation of a pulverizer or feeder is required for maintenance. Pulverizer discharge valves are also closed on loaded, idle pulverizers when other pulverizers are being restarted after an emergency fuel trip. An adequate supply of clean seal air for the pulverizer trunnion shaft bearing, etc., normally is assured by installing two booster fans and a filter in the seal air system. One fan normally runs continuously, however it may be isolated for maintenance by closing its inlet shutoff damper. The filter in this system is an inertial separator type which discharges approximately 90 % of its input as clean air. A bleed off system, with a control valve, will control the amount of air being bled from the filter, so that the differential pressure between the filter air outlet and the filter bleed air outlet is zero. The control valve should be installed so the valve fails open with a loss of instrument air. The coal pipe seal air valve is utilized to admit seal air to the coal pipes for cooling when the pulverizer is isolated. The seal air valve is open whenever the pulverizer discharge valves are closed a vice versa. Primary air velocity requirements in the pulverizer and coal piping preclude wide variations in system airflows. Therefore a constant airflow is maintained over the entire pulverizer load range. The air flow should be low enough to avoid ignition instability and high enough at avoid setting and drifting in the pulverized coal piping or excessive supillage* of coal form the pulverizer through the trap iron spout. NOTE: Coal spillage may also be caused by overfeeding, insufficient heat inputs for drying, too low a hydraulic pressure on the rolls or excessive wear of the grinding elements. PULVERIZER COAL PIPING Each pulverizer supplies an entire elevation of windbox nozzles. By distributing the fuel in this fashion a balanced fire is maintained regardless of which pulverizers are out of service. Orifice plates are installed in the coal piping leaving the pulveriers, to compensate for unequal resistance to flow due to different lengths of piping to the windboxes.
KORBA SIMULATOR
74
GRAVIMETRIC FEEDERS MAIN FEEDER COMPONENT DESCRIPTION The STOCK Model 7736 gravimetric feeder is designed to supply 4366 to 76,408 Kgs. of coal to the pulverizer per hour while operating on a 415 volt, 3 - phase, 50 Hertz power supply. Operation of the principal feeder components is described in the text below. FEEDER BODY Feeder design exceeds NFPA Code 85F requirements and will withstand an explosion pressure of 35 KG/cm2. All parts in contact with active coal flow are fabricated of type 304 stainless steel. Side skirting is provided to contain the coal on the belt and a levelling bar near the feeder inlet shears the coal column to form a profile conductive to maximum weighing accuracy. Dust-tight doors are provided at both ends and each side of the feeder for access to critical components. Bullseye viewing ports in the doors permit observation of the feeder interior during operation. A work light mounted above each end door is designed to allow bulb changing from outside the feeder. BELT AND DRIVE SYSTEM The feeder belt is supported by a machined drive pulley near the outlet, a slotted takeup pulley at the inlet end, six-support roller beneath the feeder inlet, and a weighted idler in the middle of the feeder. A counter weighted scraper with replaceable rubber blade continuously cleans the carrying surface of the belt after the coal is delivered to the outlet. Proper belt tracking is accomplished by crowning the take-up pulley; in addition, all three pulley faces are grooved to accept the molded V-guide in the belt. The pulleys are easily removable for belt changing and bearing maintenance. Belt tension is applied through downward pressure exerted by the tensioning idler on the return strand of three belts. Proper tension is obtained when the round protrusion at the centre of the tension roll is in line with the centre indicator mark on the tension indicator plate. The tension roll indicator is found on the drive motor side of the feeder and is visible through the viewing port in the tension roll access door. Tension adjustments can be made with the feeder operating or at rest by turning the two belt take-up screws which protrude through the inlet end access door.
KORBA SIMULATOR
75
NOTE : CHANGES IN HUMIDITY OR TEMPERATURE MAY CAUSE VARIATIONS IN BELT LENGTH BELT TENSION SHOULD ALWAYS BE MAINTAINED WITHIN THE TWO EXTREME MARKS ON THE TENSION INDICATOR PLATE. WEIGHT SENSING AND CORRECTION SYSTEM COMPONENTS Coal weighing is performed on a span of belt downstream of the inlet, which is defined by 2 weigh span rollers. Located midway between these rollers is a weighing roller connected to a weigh lever. The weighing roller is free to move vertically, in order to sense the weight of coal on the weight of coal on the weigh span, but, is held in horizontal position by drag links on each side of the feeder. The weighing roller is equipped with levelling screws to adjust its height relative to the weigh span rollers. Coal is deposited on the belt beneath the inlet and formed into a profile conductive to accurate weighing by side skirts and by an adjustable levelling bar on the downstream end. In operation, the coal delivered to the feeder will vary in density, causing the weighing roller to move the weigh lever into an unbalanced position. If the coal is heavy, the overweight correction switch in the balance switch assembly will be activated, causing the weight correction motor to adjust the levelling bar downward. Coal height will be decreased to bring the weigh lever into balance. In an underweight condition, the levelling bar is adjusted upward to increase the coal height. The weight correction gearmotor is of the constant speed reversing type, and positions the levelling bar to maintain a constant weight of coal per unit length of belt. Operation is controlled by two electronics cards, the data conversion card and the balance switch card is energized whenever the weight correction motor is energized: DS3 during an under weight correction and DS5 during an overweigh correction. To avoid unnecessary weight corrections for momentary transients, a pulse must be received from the data conversion card once per turn of the drive pulley at the same time that the balance switch indicates that there is a weight discrepancy before a weight correction signal is transmitted to the weight correction motor. A weight correction timer determines the length of time allowed for weight correction. This time interval is a function of drive pulley speed: the system enters a 12-seconds correction mode for each drive pulley speed is greater than 5 rpm, the system will operate the levelling bar continuously for as long as a correction signal is received. The balance switch assembly, located in the weighing compartment, is responsible for generating the weight correction signal when the weigh lever connected to it is no longer in balance. The balance switch assembly consist of 3 optical switches attached to a printed circuit board and mounted in an enclosure with a clear plexiglass cover. When the weigh lever is in balance, all, 3 optical switches are covered by a shutter. Uncovering the outboard switch in either direction generates the underweight or overweight correction signal. Uncovering either outboard switch plus the centre switch indicates a serious weighing discrepancy has arisen and generates the alarm signal.
KORBA SIMULATOR
76
A second constant speed reversing-type gearmotor is supplied to calibre the feeder weighing system. When the feeder mode selector switch (SSF) is in the CALIBRATE position, this motor can be energized to drive the poise weight on the weigh lever in the direction necessary to return the weigh lever into balance. With the weigh lever balanced properly, the correct weight of coal will be delivered by each revolution of the drive pulley. CLEANOUT CONVEYOR Two 18" wide strands of malleable iron drag chain with alternately spaced wing links are used to automatically clean coal from the bottom span of the feeder. This prevents interference with the belt and removes stagnant coal, which may otherwise ignite spontaneously. The sources of coal in the cleanout area may be: coal falling from the belt scraper, coal dust setting out of the air, coal removed from the self-cleaning takeup pulley, or coal blown off the belt by an improperly - adjusted seal air flow. The cleanout conveyor is driven by a 1/4 horsepower, totally enclosed, non-ventilated General Electric drive motor with tropicalized insulation through a reduction gearbox to an operating speed of slightly greater than 2 feet per minute. The cleanout conveyor is operated continuously with feeder operation to keep the coal in the bottom pan of the feeder at a minimum, since this coal is not weighed and will introduce an error into the coal feedrate. Continuous operation also prevents a corrosive build up on the links, which may, after long idle periods, cause binding of the links and subsequent drive overload. ELECTRICAL CONTROLS Electrical controls for the gravimetric feeder are housed in a remote located power cabinet assembly and in a control cabinet assembly mounted to the feeder adjacent to the drive motors. Three principal components in each assembly are described in the following text. DIGITAL TACHOMETER SYSTEM DESCRIPTION The digital tachometer is a special-purpose instrument for use in the calibration and maintenance of gravimetric and volumetric feeders. It convers an input frequency generated by the tachogenerator in the feeder motor or the output of a 40-or 60- tooth wheel and reluctance pickup input to the feeder tachometer into a motor rpm reading. The instrument is fully protable, self-contained, and designed to withstand sever use. It is 100 % solid state and has no internal adjustments. The instrument consists of an input amplifier, a phase-lock loop, a universal counter I.C., and an LED display assembly. All I.C.s are CMOs and the counter is designed to operate up to 50 KHz. The input to the amplifier is protected by clamping diodes, which do not allow the input to the op amp to exceed the limits established by the power supply. The out put of this op amp is a square wave, which is connected to a KORBA SIMULATOR
77
Schmitt trigger gate which can be used wither as a direct input to the universal counter when the instrument is measuring frequency, or as an input to a phase-lock loop when the instrument is being used as a tachometer. The phase-lock loop is used to multiply the input frequency by either a factor of 50 or a factor of 15 to produce 600 pulses /revolution. The output of the phase-lock loop is then connected to the universal counter input when measuring rpm and, in this manner, ± .1 of an rpm resolution is obtained. The universal counter is a CMOs chip manufactured by Intersil, using a 10 MHZ crystal as a time base reference and containing all the circuitry necessary to do the counting, decoding, and driving of a 5-digit, 7-segment, multiplex display. The selector switch, utilizing an input from the digit select line, does location of the decimal point. Four AA nickel cadmium batteries provide power for the instrument supply. Charging power is provided from a standard AC/DC adapter charger with an output or 8 to 10 V @ 100 mA current. A diode is provided to protect the instrument in case a charger or reverse polarity is inserted into the battery-charging jack. CIRCUIT DESCRIPTION The instrument consists of a power supply, input amplifier, a pulse-to-rpm converter, frequency counter, a display, and a function selector switch. The function of the input amplifier is to accept data from the various input source and normalize the signal amplitude to make it compatible with the instrument logic. The pulse-to-rpm converter processes the data from the input amplifier by the use of a phase-lock loop and converters frequency counter measures the incoming frequency, utilizing a 10 MHz Crystal for a time base. The frequency counter also drives the displays, whose digits are 4.4 mms in height and are operated in the multiplex mode. The power supply consists of 4-nickel cadmium AA batteries and a diode-resistor circuit to prevent a change current. The function selector is a 4-position switch to select the operating mode of the instrument. PULSE-TO -RPM-CONVERTER The circuit consists of a phase-look loop, U4, and a divider, U5. The phase-lock loop (PLL) is a circuit element designed to lock the output of an internal frequency generator to the input frequency. If this frequency is divided down by a counter, the output of the voltage control oscillator (VCO) would be the input frequency times the divider of the counter. The phase -lock loop measures the difference between the incoming frequency and the output of the VCO divided by the counter and generates a signal proportional to the difference. This signal, or error, operates a voltage control oscillator. Resistors R11, R12 and C4 are a filter for the output of the phase comparator. The operational range of the voltage control oscillator is established by capacitor C%. The output of the VCO is connected to counter U5, whose outputs are used to divide the output frequency of the VCO by either 50 (when the switch is in the RPM/12 position) or 15 (when the switch is in the RPM/40 position). This, in effect, multiplies the input frequency into the PLL by either 50 or 15, depending on the selector switch position. Thus, in the RPM/12 position, a 320 Hz input will be KORBA SIMULATOR
78
displayed as 1800 rpm. With the selector switch in the RPM/40 position, an input of 1200 Hz will be displayed as 1800 rpm. Because the phase-lock loop increases the resolution of the instrument, a decimal point is added to the display and the shaft is indicated with a resolution of .1 rpm. If the input is 60 pulses per shaft resolution, the phase-lock loop is not used and the resolution of the instrument is in .1 rpm if measuring speed or 1 Hz measuring frequency. BUNKER OUTLET VALVE VALVE GATE The gate is fabricated in a winged “U” design to keep its supporting rollers, racks and pinions completely out of the coal stream. This design minimizes potential corrosion from moisture in the coal. To assure closure of the gate without cocking or binding, two pinions on the operating shaft engage ladder racks, which extend down each side of the gate. The pinions are located above the racks to provide positive tooth engagement. To keep maintenance at a minimum, the ladder racks and pinions are designed with self-cleaning capability; and the gate is supported in individually greasable roller assemblies to further ensure proper tracking. VALVE OPERATOR The valve is operated by a Limitorque Model SMB-00 valve operator, which includes a .497 KW, totally enclosed, non-ventilated motor wired for 425 volt, 3-phase, 50-Hertz operation. The motor is rated for a 15-minute duty cycle. A space heater is provided to dissipate moisture from the operator in damp locations. Between the Limitorque operator and the valve body, a 3:1 gear reducer is provided. The valve operator is equipped with a torque switch wired into the motor control circuit to stop the operator in a full open (ACWT) or full closed (CWT) position when a predetermined amount or torque output is developed. A limit switch is provided to energize the red OPEN and green CLOSED position indicators when the valve has reached its limits of travel. Valve controls include momentary OPEN and CLOSE pushbuttons, as well as a STOP pushbutton to de-energize the operator in intermediate positions. The indicators and pushbuttons are mounted to a NEMA 12 control station. In the event of a power failure, a pocket sheave-type handwheel with hand chain is provided for emergency manual override of the valve operator. The operator has an automatic handwheel declutching arrangement in which a declutch lever must be pulled down to mechanically disconnect the electric motor before manual operation takes place. The valve operator will then remain in manual operation indefinitely until the electric motor is energized, which causes tripper cams mounted on the worm shaft to release the clutch ring and keys from their manual positions and engages the motor. When
KORBA SIMULATOR
79
the handwheel is turned manually, the valve motor does not rotate; and when the motor is in operation, the handwheel does not turn. NOTE : DO NOT DPRESS THE DECLUTCH LEVER DURING VALVE MOTOR OPERATION TO STOP VALVE TRAVEL. USE THE STOP PUSHBUTTON FOR THIS PURPOSE. SECOAL NUCLEAR MONITOR: The SECOAL Double Nuclear Coal Monitor is designed specifically for application in central power generating stations and industrial boiler houses for early detection of coal voids in industrial boiler houses for early detection of coal voids in the downspout preceding the coal feeder. The basic physical principle used in the SECOAL system is that of detecting gamma radiation generated by a nuclear source when directed radially through the downspout. The radioactive source is located on one side of the downspout and the detector is located on the opposite side. When the downspout is full of coal, the detector will sense a certain level of radiation. When a partial void or pocket exists in the coal a greater level of gamma radiation will reach and the sensed by the detector. Electrical pulses are emitted by the detector unit in proportion to the radiation level sensed. These pulses are statistically analysed by the monitor’s electronic circuitry which can distinguish between these radiation level and thus determine that a void or pocket has occurred in the downspout. The double SECOAL nuclear utilizes two sources and detector assemblies: one located at the STOCK pressurised coal valve and the second located in the downspout above the feeder. When the upper unclear monitor detects a void, indicating a pluggage or an empty bunker, it activates a bunker vibrator in an attempt to restore coal flow. If the void remains, and is then detected by the lower nuclear monitor, the feeder is deenergized and an alarm condition is annunciated. The location of the lower nuclear monitor is critical in that the feeder must be deenergized in time to preserve the head seal above it during a loss of coal condition. Since the pulverizer operates at greater than atmospheric pressure, the feeder supply it becomes pressurised accordingly. And because the bunker outlet is essentially at atmospheric pressure, the head seal is necessary facilitate coal flow into the feeder. The head seal is the actual column of coal in the downspout, which, over its height, evenly dissipates the pressure in the feeder to atmospheric at the bunker outlet. It must be of sufficient height to prevent fluidization of the coal, caused by an excessive pressure drop over too small a portion of column. If coal flow in the downspout is re-established before the column is drawn down to the level of the lower nuclear monitor, the bunker vibrator is de-energized and the feeder will continue to operate normally pending a future loss of coal detection. When
KORBA SIMULATOR
80
properly calibrated, the SECOAL system can reliably sense a void and produce an alarm for the equivalent of a 6 inch loss of coal as viewed radially through the downspuot. SOURCE AND DETECTOR ASSEMBLIES The radioactive source material, Radium 226, is hermetically sealed in a multiple capsule and placed in a lead-shielded, heavy steel source containers mounted on one side of the valve or downspout at the eleveations at which void detection is required. The detector assemblies, mounted opposite the source containers at the same elevation, are Geiger - Muller tubes embedded in plastic inside an aluminium shell. A calibration handle at the base of the main frame is used to pivot each source and detector as a unit toward a series of three stationary calibration blocks. When rotated to the CALIBRATE position, the radioactive beams are directed through a set of steel plates having a known absorption rate, corresponding to the absorption rate of the downspout, considering its size and material of construction. Calibration consists of adjusting a potentiometer to effect the proper monitor sensitivity. Two additional sets of calibration blacks are provided for each detector to simulate an EMPTY and FULL downspout. Rotation of the source and detector in turn to these positions, through proper energization and sequencing of the READY and ALARM indicating lights, verifies the calibration procedure. Calibration can thus be performed with or without the feeder in operation, and without emptying coal form the downspout. NOTE : THE SECOAL NUCLEAR MONITOR CAN DETECT AND BE ACTIVATED BY STRAY RADIATION GREATER THAN 0.15 mR/hr. WHEN ANY KIND OF X-RAY WORK IS GOING ON AT THE PLANT WITH RESPECT TO PIPING OR CONSTRUCTION, PLACE THE CALIBRATION HANDLE IN THE CALIBRATE, POSITION, POSITION TO AVOID FALSE ALARM INDICATIONS. The belt drive system consist of a Louis -Allis, 5 HP variable speed DC shunt wound motor with a speed range of 100-1750 rpm, The motor is housed in a totally-enclosed, non-ventilated enclosure with class II epoxy coated insulation with-tropical protection, server duty house down provisions, and a 150 watt space heater wired for 240 V AC operation. The motor operates through a multiple reduction gearbox to a total reduction of 149.6 : 1. A reluctance type magnetic sensor is provided on the motor drive to detect motor speed. This data is used for motor speed control feedback information, for zero speed detection (i.e. motor speed less than 60 rpm), for derivation of a pulse signal for data logging, and for feeder weighing control information. One revolution of the
KORBA SIMULATOR
81
feeder belt drive pulley delivers a predetermined weight of coal, regardless of its density, to the outlet. A signal from the combustion control system, operating through the speed control, regulates the belt drive motor speed, and thereby regulates the coal federate. A paddle type alarm is mounted above the centre of the belt to detect the presence or absence of coal on belt. The alarm system consists of a stainless steel paddle mounted on one end of a horizontal shaft and a dust tight switch housing on the other end. Multiple single pole switches, depending on the number of functions requiring control, are mounted in the switch housing. The switches are actuated by adjustable cams mounted on the end of the shaft inside the switch housing; loss of coal on the belt results in a contact closure of limit switch LSFB. This switch can be used to stop the belt drive motor, start a bunker vibrator, or simply to indicate a loss of coal to the control room, as directed by the customer. This contact closure also prevents weight correction and operation of the total coal integrator when there is no coal on the belt and prevents calibration when there is coal on the belt. SCANNER AIR SYSTEM The scanner viewing heads are located in the burners and they are exposed to furnace radiation continuously. The scanner heads cannot with stand high temperatures that will arise due to this exposure. A constant cooling air is required around the scanner heat to cool it to a safe working temperature to ensure a reliable operation and long life. The scanner head cannot be exposed to a continuous temperature of 175° without cooling air. A continuous cooling air quantity of 80 mm3/hr per scanner is required for effective cooling. The cooling air temperature shall be below 650C. When the boiler is shut down it is necessary to keep the cooling air on until the furnace cools down to a safe temperature
The scanner air is supplied to the scanners from the header through the flexible hoses. It is important to ensure that no damage to the hoses are left unrepaired and ' all leakage are attended without fail. The scanner cooling air is supplied through a fine filter to clean out any suspended dust particles. The filter is provided with a switch to indicate the filter plugged condition. The filter "can be changed within a short time. The filter is made of a catridge construction, which can be pulled out easily. The spare filter element should be made available readily near the filter. During the filter changing period it is permitted to use unfiltered air. The filter assembly is also provided with a ' no filter element'alarm switch which will indicate the operator that the filter element is not in line.
KORBA SIMULATOR
82
The air pressure after the filter is monitored by a differential pressure switch which will give an alarm when the pressure difference goes below the safe level. Two scanner fans are provided to supply the cooling air. One fan will be operating with AC while the stand by fan can be operated by station DC power supply. The stand by DC powered fan starts automatically when there will be an AC power supply failure. Pneumatically operated dampers are provided at the outlet of the fans. One f~n is operated with AC and other by DC supply. The damper of the operating fan will be in closed condition. Two number hand operated dampers are also provided at the fan suctions. These are nornlally in open condition only and they are used to isolate the fans during the inspection or maintenance of the fan. The suction of the fans are taken from the cold air duct after the FD fans. When the FD fans trip the suction is taken from the atmosphere through a DC operated pneumatic operated shut off damper. SCANNER AIR FAN Nos.
2 No. one is A.C. driven Other.is D.C. driven 100% standby
Type of fans
Radial
Boosting pressure Design capacity of each fan Design temp. Motor rating Speed
254 mmwc 3600 M3/hr 50°C 5 KW 1500 rpm
KORBA SIMULATOR
83
KORBA SIMULATOR
84
AIR AND GAS PATH GENERAL Two forced draught fans and two primary air fans handle airflow to the boiler. The flue gas produced in the furnace is evacuated by three number of I.D. fans of which one ID fan is stand-by. This chapter contains descriptions of draught and air systems associated with the main steam generators, and of the major ancillary equipment’s used in these systems. SEAL AIR FAN Manufacturer
:
BHEL
Type
:
NDM-6
No. of Fans per Boiler
:
4
Mounting
:
Ground mounted
Arrangement
:
Horizontal Shaft
Flow rate at 100% MCR (NM3/hr)
:
10200
Flow rate at design point (NM3/hr)
:
12800
Max flow rate the fan can handle (NM3/hr)
:
13920
Pressure at 100% MCR (MMWC)
:
390
Pressure at design point (MMWC)
:
508
Source of air suply
:
PA Fan Discharge
Normal Speed (RPM)
:
2880
Power consumption at 100% MCR KW/Fan
:
20
Impeller Dia (MM)
:
670
CAPACITY
STATIC PRESSURE
PRIMARY AIR/MILL SEAL AIR SYSTEMS The primary air system supplies heated air to the coal mills to dry and convey pulverised coal to the furnace. Ambient air is drawn into the primary air ducting by two 50 % duty, motor driven axial reaction fans, each capable of providing sufficient air to support 60 % Boiler MCR. KORBA SIMULATOR
85
The inlet to each fan is silenced and includes pneumatically operated guide vanes to control fan output. The position of guide vanes is controlled by the ‘P.A. header pressure control loop’ to maintain air pressure in the P.A. bus duct at a pre-set level. Air discharging from each fan passes first through a steam coil air pre-heater then through a motor operated guillotine gate into the P.A. bus duct. The motor operated isolating gates are manually operated from separated OPEN/CLOSE push button stations in the unit control room (UCB). The P.A. bus duct has four outlets out of which two direct cold air through the primary air heaters into the hot air cross over duct; two take cold air to the seal air fans and the hot air duct prior to the mill air flow venture. The primary air heater air inlet and outlet ducts are fitted with motor operated, biplane dampers, which are, operated form push buttons in UCB. Both inlet and outlet dampers are operated from UCB through separate push buttons. The hot air cross over duct extends around to each side of the boiler to form the hot air to mills ducts, both of which are branched to supply hot air to four coal mills. Each branch is fitted with identical equipment. Hot air first passes through a pneumatically operated isolating gate, then on through a motor operated regulating damper, and a flow venture into the coal mill. The hot air isolating gates are operated through the FSSS interlocks. During tripping of a mill hot air gate and damper will close automatically and cold air damper will open fully to provide cooling air to mill. The hot air regulating dampers modulate under the automatic control loops to maintain the required airflow to the mill under varying load conditions. Flow transmitters located about the venture provide a measured mill P.A. flow signal to automatic control loops. Cold air taken direct form the P.A. bus duct, is routed to each side of the boiler to form three cold air bus. A branch of cold air bus connects to three hot air ducting upstream of the flow venture and includes a motor operated regulating damper which modulates in response to the mill outlet temperature control loop to maintain the mill outlet temperature at a pre-set level. Two branches from the cold air bus deliver air to the mill for sealing purposes. Each branch has 2x100 % duty parallel mounted strainers (duty/standby) further connected to two mill seal air fans which boost the air pressure to maintain sufficient differential between P.A. and seal air. Each strainer is fitted with hand operated inlet and outlet dampers. Seal air fans have hand operated inlet dampers and pneumatically operated outlet damper. One is standby in each branch.
KORBA SIMULATOR
86
KORBA SIMULATOR
87
SECONDARY AIR SYSTEM The secondary air draught plant supplies the balance of air required for pulverised coal combustion air for fuel oil combustion and over flow air to minimise NOX production. Ambient air is drawn into the secondary air system by two 50 % duty, motor driven axial reaction forced draft fans with variable pitch control, each capable of providing sufficient air to support 60 % BMCR. Silencer is provided at the suction. Air discharging from each fan passes first through a steam coal air preheater then through a motor operated isolating damper into the secondary air bust duct. The isolating dampers are operated from separate push button stations in UCB. Flow is measured across the venture provided in the discharge ducts, by two transmitters, which feed their signal to the automatic total air control loop. This signal is added to the coal mill P.A. Flow signals then compared with the airflow demanded by the boiler load control loop. Any difference will cause the pitch angle to modulate towards the demanded flow. The F.D. bus ducts direct air through the two secondary air heaters into the cross over duct. The secondary air heater inlet and outlet ducts are fitted with motor operated biplane dampers, which are controlled from separate push button stations in the UCB. One other outlet from F.D. bus duct directs air into the scanner air fans. The cross over duct extends around to each side of the boiler furnace to form two secondary air to burner ducts. At the sides of the furnace, the ducts split to supply air to two corners, then split again to supply air to each of the nineteen burner/air nozzle elevations in the burner box. Each elevation is fitted with a pneumatically operated regulating damper, which is controlled by the Secondary Air Damper Control system to maintain optimum secondary air distribution for combustion with varying fuels and firing conditions. Five basic types of burner box dampers are used: 1. Coal / air dampers which admit air immediately around the pulverised fuel nozzle and hence are constituent in the primary stages of combustion. 2. Secondary air dampers, which admit air around the coal/air and P.F. nozzles and hence are involved in the latter stages of combustion. These dampers will be controlled to maintain the desired differential pressure between the secondary air to burner and the furnace. 3. Oil/secondary air dampers, which generally fulfill the same requirements as but with additional requirement of providing air for oil burning. When oil KORBA SIMULATOR
88
burning is in progress, the associated damper will modulate according to oil header pressure. 4. Bottom tier secondary air dampers, which form part of the secondary air system, but utilised to maintain clear conditions in the lower furnace. 5. Over fire air damper, which direct air over the coal flame to minimise Nox production. FLUE GAS SYSTEM The flue gas draught plant draws hot flue gases from the furnace and discharges them to atmosphere through the chimney. During its passage to the chimney, flue gas is passed through an economiser and four air heaters to improve thermal efficiency, and through four electro-static precipitators to keep dust emission from the chimney within prescribed limits. The flue gas ducting starts from boiler down stream of the economiser and directs flow towards three primary and secondary air heaters. The primary and secondary air heaters gas inlet duct is fitted with biplane isolating dampers. The gas outlet ducts of all four air heaters are fitted with lower type regulating dampers. The outlet ducts of corresponding primary and secondary air heaters combine then discharge through a regulating damper, into the electrostatic precipitator common inlet duct which directs flue gas through four electrostatic precipitators into the ID fan common inlet duct. The inlet outlet ducts of each precipitator have motor operated guillotine gates. From the ID fan common duct, flue gas flows through two of three 50 % duty I.D. fans (one standby), each capable of supporting 60 % BMCR, into a common duct to the chimney. Each fan has a motor operated guillotine gate for isolation at the inlet. The outlet of two extreme fans has a similar gate whereas the outlet of middle fan, which bifurcates into two branches, is fitted with two guillotine gates. The fans are equipped with pneumatically operated inlet guide vanes and a variable speed control that are controlled by boiler furnace draught control loop to maintain furnace draught at a preset level. PRIMARY AIR FAN P.A. FAN MOTOR Manufacturer
:
M/S SIEMENS, West Germany/BHEL
Motor type
:
Direction of rotation as viewed from non :
SQ motor CCW
driving end Standard Continuous rating at 10oC ambient :
2300 KW
temp.
KORBA SIMULATOR
89
Rated voltage
:
6600 V
Rating for specified normal Condition i.e.,
:
2100 KW
Voltage
:
6600V ± 10%
Frequency
:
50 HZ ± 5%
Minimum permissible starting voltage
:
80%
Rated speed at rated voltage
:
1494 rpm
Full load current
:
212 A
No load current
:
58.5 A
Without fan
:
1.5 sec
With fan
:
13 sec
:
NU-232
50OC ambient temperature PERMISSIBLE VARIATION OF
At rate voltage and frequency
Starting
time
with
minimum
permissible
voltage of 80% of rated value:
For Bearings Type
NU 228
6232 C4 Weight of Motor stator
:
7500 kg
Motor rotor
:
2100 kg
Recommended lubricant
:
Grease-Servogem 3 of IOC
Tank capacity
:
400 litres
Type
:
A112 MA-4F
Output rating (motor)
:
4.00 KW
Supply (motor)
:
415V
Lub oil circulation system of P.A. fan
+
10%,
3
Ph,
Delta-
connection Full load speed
:
1500 rpm
Frequency
:
50 Hz + 5%
Make
:
BORNEMAINN
Type and Capacity
:
E4V 045 KIF 215/1.363 dm3/s
Speed
:
1450 rpm
Pump
KORBA SIMULATOR
90
Discharge pressure
:
16 bar
Quality
:
L-TD 68
Pour point
:
6OC or lower
Flash point
:
min 205OC
Water content
:
Less than 0.1g/100 lit. of oil
Contents/solid foreign matter
:
Less than 0.05 gm/100 lit. of oil
Viscosity at + 40oC
:
61.2-74.8 mm2/s
Viscosity at + 20oC
:
max. 200 mm2/s
Viscosity at + 15oC
:
max. 0.9 gm/cc
Lube oil properties
P. A. FANS There are two primary air fans per boiler. components:
The fan consists of the following
1. Suction bend, with an inlet and an outlet side pipe for volume measurements. 2. Fan housing with guide vanes (stage 1) 3. Main bearings (anti-friction bearings) 4. Rotor, consisting of shaft, two impellers with adjustable blades and pitch control mechanism. 5. Guide vane housing with guide vanes (stage 2) 6. Diffuser with an outlet -side pipe for pressure measurements. Suction bend, fan housing and diffuser are welded structural steel fabrications, reinforced by flanges and gusets, resting on the foundation on supporting feet. The supporting feet are fixed on the foundation in such a way that they slide and without clearance at the sliding supports of suction bend and diffuser. On its impeller side, the suction been is designed as an inlet nozzle. Guide vanes of axial flow type are installed in the fan and guide vane housings, in order to guide the flow. Further more, the guide vanes are connecting the core and jacketing of the housing.
KORBA SIMULATOR
91
Suction bend and diffuser are flexibly connected to the fan housing via expansion joints. Fan and guide vane housing are horizontally split, so that the rotor can be removed without having to dismount the servomotor. Those parts of the pitch control unit, which are arranged in the guide vane and diffuser cores, are accessible through assembly openings. The fan is driven from the inlet side. The shaft runs in antifriction bearings. The main bearings are accommodated in the core of the fan housing. The impellers are fitted to the shaft in overhung position. The centrifugal and the setting forces of the impeller blades are absorbed by the blade bearings. For this purpose the blade shaft is held in a combination of radial and axial antifriction bearings. Each blade bearing is sealed off by means of several seals, in both directions (towards the inside and the outside). PITCH CONTROL UNIT An oil-hydraulic servomotor flanged to the impeller and rotating with it adjusts the blades during operation. This results in a closed flux of force between adjusting forces and oil pressure, so that no forces are released to the outside (bearings, housing, foundation). The servomotor consists of piston, cylinder and control parts. At pitch control, the translational movement of the servomotor piston is converted into a rotational movement of the blade shafts via adjusting levers, so that the blade angles are variable. The restoring movement of the blades results from their rotating mass. Weights are fitted to the blade shafts, which partly compensate for the restoring moments. These weights produce moment acting against restoring moments. These weights produce moment acting against the restoring moment of the blading, so that the adjusting components are relieved. The oil pressure in the servomotor maintains equilibrium with the residual moment. The oil-hydraulic servomotor can be connected to any control system. It can also be operated by hand. To initiate pitch control, the non-rotating control slide is moved in axial direction, This requires but little force (a few N). The control slide is hydraulically, centred. preventing friction and wear.
KORBA SIMULATOR
It moves on a liquid film practically
92
The pitch control unit operated in accordance with the follow-up control principle. The control system outside of the machine initiates the actuating motion of the nonrotating control slide via rods (viz. the adjusting drive). The adjusting piston and, via the adjusting disc the blades, follow up each motion of the control slide. The control oil conveyed by the unit reaches the control slide at constant pressure. If the governor moves the control slide to the left and if the slide is kept in that position, the right control edge opens the admission to chamber 2. The pressure oil flows into this chamber and moves the adjusting piston to the left, until the control edges are in line again. Simultaneously, the oil out of chamber l flows via the control slide into the return piping to the oil reservoir. Analogously the same happens, if the governor moves the control slide to the right. The left control edge of the control slide will then open the admission to chamber 1 and the oil pressure will move the adjusting piston to the right, until a state of equilibrium is regained. The adjusting disc is firmly connected with the adjusting piston. It transfers the to and from movements of the adjusting piston via slide pads and levers as rotation movement to the blade shafts. Actuation of the second impeller blades is carried out in the same way synchronously via the adjusting bar. This hydraulic adjusting unit and the oil unit form one system. If the oil supply is interrupted, the blades will stay in their positions and there will be no interference with the pitch control. The pitch control impulse must through be interlocked via the control oil pressure. LOCK OUT Pitch control is feasible only if there is control oil pressure. This refers to hand and to automatic actuation. Blade positions are shown on graduated plate on machine. OIL SYSTEM The main bearings and the hydraulic servomotor are supplied with oil from a common oil reservoir. This has the advantage that for both the units the same oil can be used. It is recommended to useturbine oil with a viscosity of 61.2-74.8 mm sq./sat 40 deg. C.
KORBA SIMULATOR
93
Two oil pumps are mounted on the reservoir. One is operated as the main pump, whereas the other one is used as standby machine. The latter is started via the pressure switch, in the event the control oil pressure declines. Non-return valves prevent the pressure oil from flowing back to the reservoir through the pump being out of operation. The pressure in the system is set and maintained by the pressure limit valve. This valve causes the oil, which is supplied by the pumps, but is not required in the circuit (e.g. no adjustment is effected), to flow back to the reservoir without pressure. The return line must be let beyond the oil level in the reservoir. The oil supply system is also equipped with a pressure reservoir. It is mounted in the control oil piping in front of the oil cooler. The function of the pressure reservoir is to absorb pressure peaks occurring when starting and adjusting, as a result ot the response time of the pressure limit valve. It, thus serves as vibration damper. The oil is cooled in the oil cooler. The oil cooler is designed as double oil cooler. The thermometers-upstream and downstream of the cooler- indicate the cooling effect. In addition, a double resistance thermometer and a double contact thermometer are arranged downstream of the cooler. The oil filter is designed as a twin filter, which allows cleaning the filter insert during operation. The position of the reversing lever tells which filter chamber is in use. The filter has a differential pressure indicator which optically shows the degree of contamination and which releases an accoustic signal when a very high degree of contamination is reached. We would point to the fact that dirty filters are quite often the cause of the pressure decline of the lube and control oil. In most cases reversing the filter can stop the pressure decline. The disconnected filter chamber can be cleaned during operation. Behind the oil filter, the oil flow divides in a control and lube oil circuit. A throttle controls the oil pressure and the oil quantity in the lube oil circuit. Behind the throttle, the lube oil flows to the fan bearings. Local surveillance pressure gauges.
(at the oil supply unit) of the lube oil pressure is ensured by
The lube oil circuit and the main bearings are vented through the lube oil return line. therefore this line is not led below the oil level in the reservoir. The lube oil flowing back through the return line can be observed by means of a sight glass.
KORBA SIMULATOR
94
The control oil pressure is shown and monitored by contact pressure gauges. The control oil circuit is vented through the leakage oil return line. In this line as well as in the control oil return line sight glasses are installed allowing the observation of the returning oil. By means of the orifice a counter-pressure against the return flow is produced: pressure fluctuations in the system are thus largely reduced. FORCED DRAUGHT FAN F.D. FAN MOTOR Manufacturer
:
M/S
SIEMENS,
West
Germany/BHEL Motor type
:
Direction of rotation as viewed from non :
SQ motor CCW
driving end Standard conditions rating at 40OC ambient :
1670 KW
temp Rating for specified normal condition i.e. :
1400 KW
50OC Rated voltage
:
6600 V
Permissible variation of
:
6600 V±10%
Voltage (volts)
:
50 Hz ± 5%
Comined voltage and frequency
:
± 10%
Minimum permissible starting Voltage
:
80%
Rated speed at rated voltage and frequency
:
994 rpm
Full load current
:
147 A
No load current
:
42.5 A
Frequency (Hz)
At rated voltage and frequency
Starting time with Minimum permissible :
2 second
voltage of 80% of rated value Without driven equipment coupled
KORBA SIMULATOR
95
F.D. FAN Type
:
Axial reaction API-16/16
No. per Boiler
:
Two
Capacity
:
260.5 M3/sec
Medium Handled
:
Fresh air
Location
:
Ground level
Total head developed
:
391 mmwc
Temp. of medium
:
50OC
Specific wt. of medium
:
1.046 kg/m3
Fan speed
:
980 rpm
Type of coupling
:
Rigiflex form 11 size 2001
Fan wt.
:
27.5 tonnes
Fan lubrication
:
Forced oil circulation
Motor lubrication
:
Grease lubricated
Type of fan regulation
:
Blade pitch control
:
Cyl. roller Brg NU 248
Fan design rating
Lubrication equipment
Bearings Fixed bearings
C3,Ang.contact Ball Bearing 07248B Expension bearings
:
Cyl-Roller Brg. NU 248C3
Fan flow
:
36.7%
Fan pressure
:
45.3%
Recommended lubricant
:
OIL/52 lit/min per
Cyl-Roller Brg. NU 248C3 Fan reserve
motor/IOC Gr.Servo-prime 46 or equivalent Cooling water requirement for CACW motor Quantity required M3/hr
:
70.6 per motor
Max. permissible inlet water temp
:
38OC
KORBA SIMULATOR
96
Pressure of water at inlet to coolers
:
Upto 7.5 bars over pressure
Outlet temp. of water at full load (anticipated value) : 43OC Wt. of motor stator
:
5300 kgs.
Wt. of motor rotor
:
5100 kgs.
FORCED DRAUGHT FANS There are two forced draft fans per boiler. components :
Each fan consists of the following
1. Suction bend, with an inlet-side pipe for volume measurements. 2. Inlet housing 3. Fan housing, with a pipe for volume measurements 4. Main bearings (antifriction bearings) 5. Impeller with adjustable blades and pitch control mechanism. 6. Guide vane housing with guide vanes 7. Diffuser, with an inlet-side pipe for volume measurements. Suction bend, inlet housing and diffuser are of one-part, fan and guide vane housings of two-part design. Suction bend, fan housing and diffuser are structural steel fabrications, reinforced by flanges and gussets, resting on the foundation on supporting feed. Fan and inlet guide vane housings are split horizontally in such a way that the rotor can be removed while the servomotor remains in place. The impeller-side end of the suction bend is designed as inlet nozzle. The fan is driven from the inlet side. The shaft runs in the antifriction bearings. The main bearings are accommodated in the core of the fan housing. The impeller is fitted to the shaft in overhung position. The Fan shaft is designed in such a way that the maximum operating speed is below the critical speed. The centrifugal and the setting forces of the impeller blades are absorbed by the blade bearings. For this purpose, the blade shaft is held in a combination of radial and axial
KORBA SIMULATOR
97
antifriction bearings. Each blade bearing is sealed off by means of several seals, in both directions (towards the inside and the outside). Those parts of the pitch control unit, which are arranged in the guide vane and diffuser cores, are accessible through assembly openings. The sliding supports of the feet of suction bend and diffuser are fixed on the foundation in such a way that they slide without clearance. Bearings The rotor is accommodated in cylindrical roller bearings. In addition, an angular contact ball bearing is arranged at the driving side in order to absorb the axial thrust. Double contact tele-thermometers and double resistance thermometers are fitted to monitor the bearing temperature. These thermometers must be connected to signalling instruments on the site. Pitch Control Unit Details are same as given in Section 2.14 on Primary Air Fan. Oil System Details are same as given in Section 2.14 on Primary Air Fan. INDUCED DRAUGHT FAN I.D. FAN MOTOR Manufacturer
:
SIEMENS, West Germany, BHEL
Type
:
SQ-motor
Rated voltage
:
6600V
Direction of rotation as viewed from non driving :
CCW
end Rating
:
3400 KW
Water inlet temp.
:
38OC
:
6600V ±10%
Permissible variation of Voltage (volts)
KORBA SIMULATOR
98
Frequency (Hz)
:
50 Hz + 5%
Combined voltage and frequency
:
+ 10%
Voltage
:
80%
Rated speed
:
596 rpm
Full load current
:
379 A
No. load current
:
139 A
Without fan
:
1.7 second
With fan
:
2.5 second
Drive end
:
Sleeve air cooled
Non drive end
:
Sleeve ring
:
Radial fan double suction
Minimum permissible starting
At rated voltage and frequency
Starting time with minimum permissible voltage of 80% of rated
Bearings Type:
I.D. FAN Type
NDZV 45 sider Make
:
BHEL
Orientation
:
Suction at 45o delivery at bottom horizontal
Medium handled
:
Flue gas
Location
:
Ground level
:
2+1 standby
Capacity
:
533.8 M3/sec
Total head developed
:
409 mmwc
Temp. of medium
:
150OC
Sp. wt. of medium
:
0.796 kg/m3
Speed
:
550 rpm
:
No. off per Boiler Fan design rating
KORBA SIMULATOR
99
Reserve Fan flow
:
25.6%
Fan pressure
:
44%
Type of fan coupling
:
Hydraulic
Fan coupling (make)
:
M/s Voith, West Germany
Fan weight
:
100 tonnes
Fan lubrication
:
Stand oil lubrication
Motor lubrication
:
Stand oil lubrication
Type of fan regulation
:
Variable
Fan drive coupling
Lubrication
Hydraulic
speed
through
coupling
plus
damper control. Bearings Fixed bearing
:
Dodge sleeve oil RT-20 size-9"
Expansion bearing
:
Dodge sleeve oil RT-20 size -9"
INDUCED DRAUGHT FANS There are three induced draught fans per boiler, two operating and one standby. The induced draught fans are NDVZ type. NDZV fans are single -stage, double-inlet centrifugal fans. housing, inlet dampers, rotor with bearings and shaft seal.
Principal fan elements:
The box-section scroll with the inlets and the outlet is of two-part welded design. The supporting structure of the housing is formed by parallel lateral walls that are welded to the coating surfaces of the scroll and of the inlets. Special supporting bolts, ribs and reinforcements stiffen the welded structure. The inserts welded into the boxsection scroll and into the inlets guide the flow and moreover reinforce the components. Scroll housing, inlets and outlet consist of rectangular sections and are equipped with man-holes. The bottom part of the housing rests on claws on the foundation. The scroll skin is equipped with a wear protecting coating on the inside. The inlet dampers are accommodated in the inlet damper housing they are commonly adjustable externally.
KORBA SIMULATOR
100
The rotor consists of a centre disc and two cover discs that are reinforced by forged rings. The bent blades are welded into position between the impeller discs. The blades are protected by screwed-on wear plates. These are numbered from 1 to 11 to ensure mounting of replacement plates. The plates are screwed on according to the number order. Tightening torque for the screws : 245 Nm. The shaft is of hollow design. The fan shaft has been rated so that the max. operating speed is below the critical speed. Impeller and shaft are connected by means of a flange. This screwing is protected by wear plates. The fan housing is sealed at the shaft passage to the outside by means of two-part labyrinth seals. Bearings The rotor is placed between oil-lubricated sleeve bearings. The drive-side bearing is designed as thrust bearing which absorbs the axial thrust of the rotor. The bearing housing is sealed towards the outside at the shaft passage by means of auxiliary seal kit. The bearings are lubricated with oil Thermometers are fitted to monitor the bearings temperature. Shaft sealing The shaft seals are fitted to the bearing pedestals and connected with the box section scroll by means of flexible coverings. The individual labyrinth sealing rings and the distance rings are held together by screws in the sealing casing. Regulation The fan is adapted to changing operating conditions bymeans of varying the speed of fan and also by adjustable inlet dampers arranged in front of impeller on either side. According to the required capacity, the speed of the fan can be varied and / or the inlet dampers position can be adjusted. For achieving speed charges a hydraulic coupling is provided Variable speed Turbo Coupling The turbo coupling is an infinitely variable fluid coupling with plain bearings and silumin rotating parts.
KORBA SIMULATOR
101
The oil pump is flanged on below the housing of the turbo coupling. During operation the filling pump in the housing delivers the required quantity of working oil and lube oil. An auxiliary lube pump also installed in the housing, ensures that lube oil side delivered when the couplings starts up or run down. As standby, another aux lub pump is installed. The primary runner, comprising primary shaft, primary wheel and shell is supported in the bearing housing and the coupling housing. The secondary runner comprising secondary shaft and the secondary wheel is supported in the scoop tube housing. AIR PREHEATERS STEAM COIL AIR PREHEATER Supplier
:
M/S Patels air temp. Pvt Ltd., Ahmedabad
Nos
:
2/Boiler
Size of Steam Coil Air preheaters
:
4468 x 2990 x 336
Installed position
:
Horizontal Duct
Design Pressure
:
16.5 kg/cm2g
Hydraulic Test Pressure
:
25 kg/cm2 kg
Design temperature
:
230OC
Weight of Steam Coil air heater
:
1100 kg
Type
:
Modular Design type
The duty of steam air heater is to maintain the primary and secondary air heater average combined gas outlet and air inlet temperatures at pre-set values. The system description of one these circuits are given below. To achieve average primary air heater gas outlet and air inlet temperatures, the quantity of steam entering the steam air heater is regulated by a temperature control valve. For isolation purposes, four manually operated isolating valves along with steam traps are provided at inlet and outlet of each SCAPH. Condensate leaving the SCAPH passes through a isolating valve before entering the SCAPH drain vessel.
KORBA SIMULATOR
102
PRIMARY AIR PREHEATER Type:
:
Ljungstrom Bisector
Air Heater size
:
27 VI (M) 80"
Rotor Drive Motor
:
11KW GEC, 1450rpm, 415V, 3 phase, 50 Hz
Speed reducer
:
5, APC (APCO) 110:1
:
50 Litres
Coupling
:
11.5 FCU (Fluid Coupling)
Bushings
:
Taper lock Bush & Adopter
No. per Boiler
:
2
:
R.S.M. 400 (APCO) 1" x 1" NPT
App. oil Capacity
Auxiliary Drive Air Motor
CHICAGO Pneumatic Air Motor. Coupling
:
Bibby Coupling 124-A
Rotor Support Bearing:
:
SKF
Spherical
Roller
thrust
Bearing SKF - 294/500 Rotor Guide Brg
:
23060 Spherical Roller
RTD
:
Nether land Thermo Electric 1" NPT
Oil Capacity of support brg housing
:
150 litrses
Oil Capacity of guide brg housing
:
20 litres
:
0.75 KW, 1500 RPM, Frame 80
Oil Circulating System (Support BRG.) Motor (TEFC)
flange cum 415 V, 50 Hz, 3 Phase foot mounted GEC. Pump:
:
Delaval - 1" x 1" NPT (APCO)
Filter
:
John Fowler 1" x 1" BSP
Cooler
:
Universal Heat Exchanger
Coupling
:
Lovejoy L – 095
:
0.55 KW, 1000 RPM, 80 lange cum
Oil Circulating System Guide BRG. Motor (TEFC)
foot mounted 415 V 50 Hz, 3 phase GEC.
KORBA SIMULATOR
103
Pump
:
Delaval - 1" x 1" NPT (APCO)
Filter
:
John Fowler 1" BSP
Cooler
:
Universal Heat Exchanger
Coupling
:
Lovejoy L - 095
:
018 kW, 1450 RPM, GEC - 71, 415
Cleaning Devices Motor (TEFC)
V 50 Hz, 3 phase Reducer
:
All Royed 4900:1, 1 3/4
Coupling
:
Lovejoy flexible coupling L-075 & L-110
SECONDARY AIR PREHEATER Nos. per Boiler
:
Two
Heater size
:
30.5 VI (M) 62" (68")
Rotor Drive
:
Motor TEFC
:
15 KW, GEC, 180 M, 1400 RPM, 415 V, 3 PHASE, 50 Hz, 29.5 A (FL)
Speed Reducer
:
7 AP, Speed reducer (APCO) 130, 36:1
Oil capacity
:
98 Litres (approx.)
Couplings
:
11.5 FCU (Fluid coupling)
Bushing
:
Worthingdon Hub
Filter Lubricator
:
Velgan 256 Series 1" BSP
:
R.S.M.
Auxiliary Drive Air Motor
270
(APCO)
Chicaco
Pneaumatic Air Morot Coupling
:
Bibby Coupling - 124 C
Roto Support brg.
:
294/710 Spherical roller thurst brg.
RTD
:
1" NPT Nether land Thermo Electro
Oil capacity of support brg housing
:
250 litres
Oil capacity of Guide brg. housing
:
25 litres
:
0.75 KW, GEC, 1450 RPM, 415 V,
Oil Circulating System (Support BRG.) Motor TEFC
KORBA SIMULATOR
104
50 Hz, 3 ph Pump
:
DELAVAL (APCO) 1" x 1" NTP
FIlter
:
John fowler 1" x 1" BSP
Cooler
:
Universal Heat Exchanger
Coupling
:
Lovejoy, L-095
Motor TEFC
:
0.18 MW, NGEF, 750 RPM,
Coupling
:
Lovejoy - L - 075 & L - 110
Cleaning Devices
PRIMARY AND SECONDARY AIRHEATERS The Rotary Regenerative Air Preheaters are designed for use on plant where hot air is required for combustion or for fuel saving. The Air Preheaters contain in a small space, heating elements of a large surface area. In regenerative heat exchangers, the heat transfer surface is alternately heated by the flue gases passing through it and cooled by the air passing through it. The flue gases and the air flow through the same passages at different times so that unlike the recuperative heat exchanger where heat flows through the passage walls from the flue gases to the air, the heat is absorbed by the regenerative mass from the hot flue gases and then released to the cold air. This process can be periodic or if the regenerative mass rotates, as in this project, the process is continuous. In the Air Preheaters, flue gas flows through one side of the regenerator and through the other side flows the incoming air prior to entering the furnace. The regenerator is slowly revolved so that the heating elements pass alternately through the steam of the hot flue gases and through the stream of cold air. A portion of the heat in the flue gas side is transferred to the air when the elements pass through the airside, so heating the flow of air and thereby cooling the elements. Thus the heat in the flue gases is partly recovered and returned to the furnace via the airflow. The two streams, flue gas and air, which flow through diametrically opposite segments of the rotor, are separated form each other by a small blanking section with sealing plates to form a division between them. The two streams flow in opposite directions, i.e. in contra flow. In this particular plant the flow arrangement is gas down and air up. Basic Construction The rotor is the central part containing the heat transfer matrix. The rotor is radically divided into twelve sectors. The heating elements are arranged in these twelve sectors in two or more layers. The housing surrounding the rotor is provided with duct
KORBA SIMULATOR
105
connections at both ends, and is adequately sealed by radial and circumferential sealing members - forming an air passage through one half of the preheater and a gas passage through the other. The weight of the rotor is carried on the underside by a spherical roller thrust bearing whilst at the top a spherical roller guide bearing is provided to resist radial loads. The rotor revolves continuously absorbing heat from the flue gases and transferring it to the air for combustion. Each airheater is provided with a electric motor drive for normal operation and an air motor drive for emergency and also for use during off load water washing. Rotor Seals Seals are provided at both ends of the airheater to minimise leakage between the airside and the gas side of the preheater. The hot and cold end radial seals are attached to each diaphragm of the rotor and are set at a specified clearance from the sector plates which separate the air and gas streams. The hot end sector plates are automatically deflectable to provide leakage area reduction during transient as well as full load operation. The seals provided at rotor post are set to operate with minimum clearance with respect to the horizontal sealing surface of the sector plate centre section. The bypass seals provide sealing between the periphery of the rotor and sealing surface of the connecting plate and/or the preheater housing. Axial seals are provided vertically in the rotor shell in line with radial seals. Heating Surface Elements The heating surface elements in the cold end are manufactured from thin steel sheet adjacently, one being undulated and the other being thin sheet steel. The notches run parallel to the rotor axis and space the plates the correct distance apart. As the cold end, i.e. gas leaving - air entering end of the preheater, is most susceptible to corrosion due to temperature and fuel conditions, the elements are arranged in tiers. The lower or cold end tier of elements is manufactured from corten steel to combat corrosion and is termed “cold end elements”. The middle tier termed the “hot end elements” and are both made from carbon steel. All elements are packed into containers to facilitate removal and handling. The cold end packs are arranged such that they can be withdrawn from the rotor in a radial direction without disturbing the hot end and intermediate packs.
KORBA SIMULATOR
106
The ‘Hot’ and ‘Intermediate’ ends are provided with double undulated type heating elements. The undulations provide high turbulance to the gases and air passing through the preheater. Rotor Drive Assembly The driving force for turning the rotor is applied at its periphery. A pinion attached to the low speed shaft of a power driven speed reducer engages a pin rack mounted on the rotor shell. An air motor is provided as an auxiliary drive for the airheater. This drive ensures the continued operation of the preheater, even if power to the electric motor is interrupted. The air motor may also be used to control the speed of the rotor during water washing of the heating surfaces. Rotor Bearings A spherical roller thrust bearing supports the complete rotor. The load is transmitted to the thrust bearing by a trunnion, bolted to the lower end of the rotor post. To guide the upper end of the rotor a guide trunnion is bolted to the face of the rotor. Oil Circulating Systems Separate oil circulating systems are provided to supply support bearing and guide bearing with a bath of continuously cleaned oil at the proper viscosity. The bearing oil supply is circulated by means of a motor driven pump through an external filtering systems. A thermostat is used to limit the operation of the system to temperatures, which will ensure against overloading the pump or motor as a result of high oil viscosities. Soot Blowers Both primary and secondary airpreheaters are provided with twin nozzle swivelling arm type electric driven soot blowers for onload cleaning at gas outlet end only. Water washing and Fire fighting Two fixed multi-nozzle washing manifolds are fitted, one the hot end, the other on the cold end for off load water washing of airpreheaters. A deluge system, incorporating headers with special nozzles strategically located in the hot end and cold ends of the airpreheater is provided for use in case of a fire inside the airheater. KORBA SIMULATOR
107
Rotor Stop Alarm The airheater rotor should not be stopped when high temperatures gases are flowing through it. The rotor stop alarm system is provided to give immediate warning that the rotor has stopped so that action can be taken to prevent damage occurring from overheating. Fire Detection Equipment The fire detection equipment is provided to detect any hot spot in the airpreheater rotor during operations. The system consists of a sensing head; drive system to drive the scanning head across heating elements, compressed air provision for cleaning the head, and cooling water system for the sensing head. Two numbers of sensing heads are provided for primary and four Nos. of sensing heads are provided for secondary airheaters. These are located in the respective air inlet ducts. ELECTROSTATIC PRECIPITATOR Design condition Gas flow rate
:
980 M3/sec
Temperature
:
140OC
Dust Concentration
:
73.5 gm/NM3
Type
:
FAA - 7 x 36 - 4 x 48125 -2
No. of Precipitator offered per boiler
:
Four
No. of Gas path per boiler
:
Four
No. of fields in series in each gas path
:
Seven
Pressure drop across the precipitator for design condition
:
18 MMWC
Velocity of gas at electrode zone on total area
:
1.0 M/Sec
Treatment time
:
25.2 Sec
Collecting Electrodes No. of rows of colllecting Electrods per field (9 plates are :
65
arranged in each row) Total No. of Collecting plate per boiler
KORBA SIMULATOR
:
16380
108
Nominal height of Collecting plate
:
12.5 Meter
Nominal length of collecting plate
:
400 MM
Specified collecting area
:
164.57 M2/M3/sec
Type
:
Spiral with hooks.
Size
:
2.7 MM Dia
No. electrodes in the frame forming one row
:
54
No. of electrodes in each field
:
3456
Total No. of electrodes per boiler.
:
96768
Total Length of electrodes per boiler.
:
502226
Plate wire spacing
:
150 mm
Rectifier
:
Rating
:
70 kV (Peak) 800 MA
No of rectifier per Boiler
:
56
Type
:
Silicon
Emitting Electrodes
Dicde,
Full
wave bridge connection Location
:
Mounted on the top of precipitator.
Motor for Rapping Emitting Electrodes Qty
:
112 Nos.
Rating
:
Geared
Motor
H.P./2.5
0.33
RPM,
3
phase, 415 V, 50 Hz. Motor for Rapping of Collecting Electrodes Qty.
:
Rating
28 Nos. Geared
Motor
0.5
H.P./1/1/2/5 RPM, 3 phase, 415 V, 50 Hz Rappers For Collecting Electrodes No. and type of Rappers
:
One drop Rammer per row
of
electrodes
KORBA SIMULATOR
collecting having
109
a
collecting
surface
of
90.0 M2. Rapper Size
:
4.9 Kgs
Frequency of Rap.
:
Varying
from
10
raps/hr at the inlet field to 1 rap/hr at the exit
field.
The
frequency of rapping for
the
intermediate
field can be adjusted between 10 and 1 per hour
according
to
requirements. Drive
:
Geared electric Motor Controlled by synchronous programmer.
Location
:
On the bottom of side panel of EP casing.
Rappers for Emitting electrodes No. of type of rappers
:
One drop hammer per two rows of Electrodes
Rapper Size
:
3.0 Kgs.
Frequency of Rap
:
10 raps/hr
Drive
:
Geared Electric Motor Controlled by synchronous programmer
Location
:
On the top panel of E.P. Casing
Rapper for Gas Distribution System Qty.
:
4
Rating
:
Geared Motor 0.5 HP
KORBA SIMULATOR
110
1.1 RPM at 3 Phase 415 V, 50 Hz. Location
:
On the G.D. Housing side
panels
of
the
casing.
The gas cleaning plant consists of four BHEL make Electrostatic Precipitators type 4xFAA-7x36-4x48125-2. The units are designed to operate on the exhaust gases from each of the 500 MW Steam Generators. The exhaust gases to be treated pass along the inlet duct and enter the steel precipitator casing via an inlet funnel. To ensure the gases are evenly distributed across the full sectional area of the treatment zones, splitter plates within the inlet funnel and two rows of distribution screen at the inlet of stream are positioned. After treatment by successive zones within the precipitators the clean gases pass through the outlet funnel and flow along the outlet ductwork connected to the I.D. fans and are hence discharged to atmosphere via the chimney. In order to maintain the required standard of gas distribution within the precipitator, vertical outlet baffles are located immediately after the final treatment zone. Each precipitator is designed for two horizontal streams of gas flow. Each stream is having six treatment zones or fields. Each treatment zone consists of parallel rows of sheet type collecting electrodes suspended from the precipitator casing with wire type discharge electrodes arranged mid way between them, fixed to upper and lower frame assemblies. Each separate electrical zone, comprising of the discharge electrodes, is suspended from a discharge suspension arrangement mounted on the casing top plate. The transformer-rectifier sets, one per zone - seven total per stream, are arranged at top house access platform level adjacent to each relative zone. The respective control panels and L-T distribution equipment’s are located within the control room built at ground level immediate to each precipitator. Seven rapping gear motors for collecting electrodes and fourteen rapping gear motors for emitting electrodes are provided for each stream. The rapping gear operates continuously to dislodge the precipitated dust, which falls under gravity into the pyramid type hoppers, located directly beneath each treatment zone, for removal by the ash handling system. To assist the dust to remain in a free flowing state, electric heaters are provided externally at the bottom portion of each hopper.
KORBA SIMULATOR
111
Each pair of precipitators is served by an arrangement of access platforms and stairways from ground level for the top housing level. To facilitate removal and replacement of the transformer rectifier sets and other maintenance, a lifting beam arrangement is provided at the top house roof level on each casing of precipitator. A single hoist and geared trolley is provided to servo each lifting beam arrangement. For the safe operation of these precipitators a full safety interlock system is provided. SOOT BLOWING SYSTEM Introduction On load, gas side cleaning of boiler tubes and regenerative airheaters is achieved using 126 microprocessor controlled sootblowers which are disposed around the plant as follows : 1. 88 -Furnace Wall Blowers – Steam 2. 34 - Long Retractable Soot Blowers - Steam 3. 4 - Airheater Soot Blowers for Primary and Secondary Airheaters – Steam The boiler waterwall panels are provided with suitable wall boxes four for future accommodation of an extra sixteen furnace wall blowers and twenty-four long retractable sootblowers for upper furnace, arch and rear pass zone, if necessary. Soot Blower Piping Steam for sootblowing is taken from the division panel outlet header. To sootblow the regenerative airpreheaters during boiler start-up, however, a separate connection is also provided from the auxiliary steam system. The supply pipework from superheater of steam source (division panel outlet header) is fitted with a hand operated and motor operated isolating valves followed by a pressure control valve and a spring loaded safety valve as protection against steam over pressure. the safety valve vents via expansion chamber closed at determined by the operator in relation to boiler load via the sootblower control system. From the steam source after the pressure reduction the main line is split into six sootblowing sections.
KORBA SIMULATOR
112
KORBA SIMULATOR
113
Steam is fed through various Sections at the steam main pressure of 30 kg/cm2 (g). Further reductions to the blowing pressure are achieved by adjusting the setscrews of the individual soot blower valve heat at the time of soot blows system commissioning. Branches of the section pipelines supply steam to individual soot blowers. At various points on each section, pipeline connections are made via motor operated drain valves to the intermittent blowdown tank. These drain valves are all operated by the sootblower control system. On request to soot blow, the control system will open the sections drain valves and crack open the inlet steam main isolating valve in order to warm up the soot blower pipings and drain any condensate to the intermittent blowdown tank. Once the piping is proved to be warmed up, resulting in no condensate being produced, the control system will close the drain valve and fully open the inlet-isolating valve thus bringing the pressure control valve into operating and signally commencement of soot blowing sequence operation. The temperature control valves/drain valves automatically as per the setting maintain steam temperature in each section. SOOT BLOWER Source of steam for soot blowing
Tap off after divisional panel
Set pressure on pressure reducing valve
30 Kg/cm2
Set pressure on safety valve
39.5 Kg/cm2 (g)
Maximum flow rate
21000 Kg/hr
Steam pressure for soot flowing
26 Kg/cm2 TYPE OF BLOWER
WB IE
LRD II E
LRD II E
LRD II E
Blower Number
1 to 88
105 & 106
107 to 120
121 to 138
Travel in MM
305
9200
9200
9200
Dead Travel in MM
-
350
350
350
Nozzle in MM
26
32
25
25
Blowing pr, in Kg/cm2
12
12.5
12
9
1.5
11.87
11.87
11.87
(g)(2 Blowers) in Min. Operating time per group(2 Blowers) in Min.
KORBA SIMULATOR
114
Operating
time
per 66
11.87
83.09
106.83
293.33
176.66
143.3
3349.8
2017.45
1636.48
3349.8
14122
Cycle (All. Blowers) in Min. Blowing rate per group 83.3 in Kg/Minutes Consumption per group 116.62 in Kg. Steam consumption per 5131
14728
cycle in Kg. WBIE:
:
Wall De Slagger Electrically operated
LRD II E
:
Long Retractable Soot blower Electrically operated
Steam temp. for Soot Blowing
:
250oC
Steam Constumption rate per group of wall Blower
:
500 Kg/hr
Type of wall blower
:
RW 5E
Wall Blowers The blower assembly consist of a stationary body and rack gear housing and a rotary gearbox assembly to which the swivel tube assembly is attached. The swivel tube assembly is supported by bushings at each end of the body casting. The horizontal guide rods are used to assure proper alignment of the rotary gearbox assembly. A stationary electric motor is situated on the right side of the blower. This motor, through a rack gear housing assembly operates a pinion, which drives a horizontal rock assembly, the outer end of which is fastened to the rotary gearbox assembly. When the rotary gearbox approaches the fully extended position a ramp cam attached to the free end of the rack contacts a bearing surface, which is a part of the clevis bracket assembly and bushes the valve stream assembly addmitting steam to the swivel tube. When the blower is started the rack pinion moves the rack and rotary gearbox towards the boiler. Operation of the rack gear housing causes rotation of a shaft extending out from the rack gear housing into a switch box. Located in this switch box are two cam actuated limit switches. One can holds limit switch LSTE in
KORBA SIMULATOR
115
open position when the blower is fully retracted. Extending of the blower moves the cam allowing LSTE to close. the blower is then under its own control. Near the fully extended position, the ramp cam strikes the lever that opens the SBV head valve. The second limit switch cam strikes the LSTS limit switch, which opens the circuit to the traversae motor and closes the circuit to the rotary motor. The rotary motor is attached to the gearbox assembly. When LSTS closes, the motor rotates the swivel tube through a gear train. When the blowing sweep is finished, the cam assembly on the swivel tube contacts and rotates the arm on the limit switch LSTR. The traverse motor begins to retract the blower. Near the fully retracted position the cam again opens the switch LSTE to halt the blower. Long Retractable Sootblower The LRD -IIE model Soot Blower is a boiler cleaning device in which a rotating lance extends into and tetracts from the boiler to make sure that the cleaning medium steam-directed through the nozzles, removes the deposits form tube surfaces. The lance is attached to a carriage housing, which runs on tracks inside the blower housing. The carriage and lance are moved by means of a traversing chain operated by a electric power pack. Rotary motion is applied to the lance through the travelling carriage by a second chain driven by a separate electric power pack. Control movement is by a stop limit switch and a reverse limit switch. The unit can be supplied with different traversing and rotating speeds. Standard traversing speeds are available in various increments from 1.25 to 3.65 m. per minute. Standard rotating speeds are available in various increments from 4.25 rpm to 7.75 rpm. These speed variations are accomplished by changing the power pack and jackshaft drive sprockets. Other speeds are possible for special application by the use of special sprockets. Flow of blowing medium though the retractable soot blower is controlled by the valve mounted at the rear end of the blower. The feed pipe is attached to the outlet of this valve head. This feed pipe passes through packing gland in the travelling carriage and lies inside the lance tube extending to almost the entire length of the blower. The wheels on the travelling carriage run on tracks welded to the inside of the blower housing. A roller on each side of the carriage limits sideways motion, which use the housing sides as guides. The ends of traversing chain are connected to each end of the carriage. The rotary chain is continuous. It passes over sprockets on the carriage and causes rotation through a gear train.
KORBA SIMULATOR
116
The lance is flanged to the carriage and supported on the boiler end by bearing and yoke plate. The electric gearbox on the right side is for traversing and the electric gear box on the left side is for rotation when viewed from the rear end of the blower. Motion is transmitted from the gearboxes to jack shafts on each side of the blower. Tension on the internal chains is adjusted by adjusting the screws on chain tighteners, which hold the idler sprockets on the outboard end of the unit. The housing completely covers the blower except the traversing and rotating gearboxes. The housing is open at the bottom except for tie bars at intervals. A section of the top of the housing near the rear end of the blower is cut away to allow access to the travelling carriage. The access areas have removable cover. A shot section of the track at the rear is removable to permit removing the travelling carriage for major maintenance. The soot blow valve head is operated by a trip pin on the top of the travelling carriage which engage a trip cam and through the trip rod linkage and valve lever causes the head valve to open or closes. The length of the trip rod governs the stroke of the head valve. To change the valve stroke, loosen the join nuts where it screws into the rod connection and turn the rod. One end of the rod has a right hand thread, the other end in left hand. When the desired length is attained tighten the join nuts. The spring on the trip rod should be adjusted to eliminate all looseness in the assembly. Airheater Sootblower The cleaning device consists of an electric motor coupled to a gear driven crank mechanism, which oscillates the swivel header carrying the twin nozzle pipes. The cleaning medium is conveyed through the swivel heads and respective nozzle pipe, to the nozzle at the end. A rotary point in the supply line permits free motion of the swivel header while connected to the source of supply. The arc traversed by the nozzle and the rotation of the rotor subject the entire area of the rotor to the action of the cleaning jet. KORBA SIMULATOR
117
To maintain the desired steam pressure at nozzle an orifice plate is provided in the supply line. Drain connections are provided in the steam piping at suitable locations for removing condensate from the piping system while the device is idle, and just before it is placed in operation. The steam supply line to cleaning device has to be supported in such a way to avoid axial and side thrust being applied on to the rotary swivel joint. If care is not taken in this regard, heavy leak may occur in this joint. DA head valve is provided to reduce the inlet steam pressure to the required blowing pressure. PROGRAMMABLE SOOTBLOWER CONTROLLER Introduction The Programmable Soot Blower Controller, herein after referred to as the PSC, is essentially a mini computer programmed to carry out system logic decisions. The logic decisions are accomplished through a set of digital instructions, called the executive software, stored in the memory of the minicomputer. All permissive limits and interlocks are programmed into the executive software together with other system parameters, such as the number and types of soot blowers programmed to operate upon each program step are placed under software control into the memory system of the PSC by means of the program panel. The PSC is divided into four functional parts: the control panel, consisting of display and operator switch inputs; the controller input/output cabinet, containing the output drivers, receiving circuits and computer components, a program panel which is connected whenever a program change is desired; and other optional peripheral equipment as dictated by job application, such as data logging, analog to digital conversion equipment, and alarm annunciation. The PSC is capable of opening all soot blowers in the system, constrained within limits permitted by the executive software. It has an expansion capability of up to 510 soot blowers. With its emergency backup control system, complete display capability and remote manual soot blower operation is possible should the computer become disabled. These features and more provide a modern, versatile and reliable controller needed for efficient boiler cleaning. Component Description Display and Control Cabinet The display and Control cabinet, normally located in the control room for use by the PSC operators contains the panels for graphic display and for control of the soot blowers.
KORBA SIMULATOR
118
The graphic display panel, located in the half of the cabinet, shows individual soot blower operating status and the following general system indicators : • • • • • • • • •
Control Power Failure Controller Operating Low Header Pressure Motor Overload Soot Blower in Service Soot Blower Blowing No Blowing Medium Blower Start Failure Time Exceeded
And others as required by the job. The control switch panel, located in the lower half of the cabinet, contains the control pushbuttons. The functions of these controls are as follows: • • • • • • • • • • • • • •
Program Selection Program Start Cascade Start Program Stop Program Reset Program Cascade Program Operating Display Program Check Sequence Check Error Acknowledgement Soot Blower Manual Start Soot Blower Retract Soot Blower Status Check Soot Blower Enable/Disable
and others as required by the job. Normally, the control switch panel is separated into two parts; one for independent control of the retracts, and the other for independent control of the wall blowers. Both panels open from the front to reveal the interior circuitry and hardware. Located on the control switch panel cabinet are the emergency override key switch, power supplies, power supply monitoring meters, and program panel socket. Behind the graphics panel are contained the required unit light driver circuitry. The graphics display consists of a multicoloured film negative through which the light from replaceable L.E.D.S is illuminated. A light driver located on light driver cards drives each of the L.E.D.s. Each light driver card has the capability of energizing sixteen KORBA SIMULATOR
119
L.E.D.s. The card cage in which the light driver cards are located has the capacity for sixteen light driver cards; providing a total capability of 256 light drivers with each card cage. Each card cage contains one display decoder control card. The function of this card is to decode the unique blower address signal and energise the light driver for that blower. The control panel contains the necessary, push-button switches for starting, stopping, cascading, and resetting soot blowing programs; enabling, disabling, and starting of individual blowers; verification and status checks for both programs and blowers; and the Emergency Override keyswitch and Program Panel socket. The control switches are mounted to printed circuit cards located immediately behind the front panel. The cards condition the signals for input to the computer. Inside the display cabinet are the two power supplies required by the control and display panel plus and interface card cage that contains an array of multiplexing modules for sharing of the switch control signals. Also located on the card cage is power supply metering, and the multiplex control card, designated the DMC card. This card processes the graphics control information, energizes the switch multiplex array, and serves as the emergency control centre in the emergency override mode. Soot Blower Program Panel The Soot Blower Program Panel (or box) is used to create programs (soot blowing routines). Connected to the display and control panel via an umbilical card, the Program Panel in conjunction with the graphic display allows the PSC operator to set up the various programs.
KORBA SIMULATOR
120
CONDENSATE AND FEED WATER SYSTEM
KORBA SIMULATOR
121
KORBA SIMULATOR
122
CONDENSATE EXTRACTION PUMP SPECIFICATIONS Type of first impeller
:
Double Suction
Number of stages
:
5
Design flow rate
:
8,10,00 Kg/hr
Inlet – Temperature
:
43.1OC
Inlet - Specific Gravity
:
0.991
NPSH required
:
4.1 meter
Discharge pressure
:
30.4 ata
Total Dynamic Head
:
307 meters
Shut off Head
:
398 meters
Pump Speed
:
1480 rpm.
Power input at the motor
:
899.2 KW
Losses in the motor
:
41.4 KW
Power input to the pump
:
857.8 KW
Efficiency of the pump alone
:
79.0%
Overall efficiency of the pump motor
:
75.37%
Power Consumption at Design Condition
Guaranteed power consumption with a flow rate of :
776 KW.
605,000 kgs/hr. Sealing Water requirement Flow
:
10 litre/min
Pressure
:
2-4 ata
Temperature
:
30-50OC
Minimum flow for continuous stable operation
:
350 T/hr
Suction stainer size
:
350 microns
Radial Bearings lubrication with Water
:
4 Nos.
Output
:
1120 KW
Voltage
:
6.6 KV
Number of poles
:
4
Speed
:
1480 rpm
Motor Specification
Cooling water Requirement for one motor KORBA SIMULATOR
123
Motor upper Bearing-Thrust Bearing
:
Oil lubricated
Flow
:
30 litres/min
Pressure
:
2.0 to 7.0 Kg/cm2
Max. Inlet temp.
:
40OC
Motor inner bearing lubricated with
:
Grease
Coupling
:
Rigid Type
Rating
:
1500 HP
Size
:
360 mm
:
Twinnest,
Condenser Type
Double
pass,
Single shell Area of cooling surface
:
3253 M2
Number of xooling tubes
:
24710
Lenth of each tube
:
14730 mm
Size of tube-(OD x thickness in mm)
:
28.575 x 0.7112
Tube material - Stainless Steel tubes
:
SS.304
Weight of empty condenser
:
640 MT
Weight of tubes
:
180 MT
C.W. flow
:
55017 m3/hr
C.W. velocity
:
2.13 M/s
C.W. design temperature
:
28OC
C.W. Max. temperature
:
35OC
Back pressure at MCR
:
60.45 mm of
Temperature rise max.
:
10.56OC
Terminal temperature Difference
:
3.17OC
Head loss on C.W. side
:
6.3 MWC
Fouling factor
:
0.9
Name of the supplier
:
TAPROGGE
No. of Cleaning systems
:
2
No. of Balls
:
800 Nos.
Condenser tube cleaning system
Strainer Section
KORBA SIMULATOR
124
Quantity per TCS
:
2 Nos.
Slope of Screen
:
30OC
Width of Gap
:
10 mm
Cooling water
:
7.639 kg/s
Actuation
:
Motor operated
No.
:
1 per unit
Type
:
KWPK-80-250
Normal capacity
:
45 m3/hr
Normal discharge pressure
:
1.8 bar
Pump motor
:
Siemens
Operating voltage
:
415V/50 Hz
Rated output
:
5.5 KW
Full load speed
:
24
Ball recirculating pump
CONDENSATE EXTRACTION PUMP - DESCRIPTION Each condensate extraction pump which is driven by a 1120 KW induction motor, delivers 810,000 kg/hr of condensate water against 307m. Of total dynamic head at the rated condition. CONSTRUCTION OF C.E. PUMPS The pumps are of the direct driven by a constant speed motor through a rigid coupling, vertical barrel, double suction, multi stage, diffuser type. The pump consists of internal assembly, discharge assembly and suction barrel. The internal assembly comprises of 5 stage casing, a guide vane, five impellers, 2 column pipes, a suction bell and shaft and is submerged in water in the suction barrel. The discharge assembly comprises a discharge head with a stuffing box to seal the pump shaft and is installed on the suction barrel. The suction barrel is installed on the pump floor. Water is admitted into the casing from the suction barrel through the suction bell and first stage casing and discharged through the column pipes by the energy imparted by the impellers.
KORBA SIMULATOR
125
CONDENSATE SYSTEM KORBA SIMULATOR
126
Internal bearings (Leaded bronze bearings) installed in a column pipe and the top casing are provided for supporting the pump shaft against the radial load. Upper and lower bearings (leaded bronze) are installed in the stuffing box and suction bell. The weight of the pump rotor and the hydraulic thrust acting on the rotor in the axial directions are supported by the thrust bearing in the motor. The impellers are driven by a 1120 KW vertical shaft induction motor mounted on the discharge head. The coupling spacer is furnished between the pump and motor in order to remove the gland and seal ring seal without removing the motor. Adjustment nut is provided at the top of the drive shaft to facilitate adjustment of the axial location of the rotating part. Gland packings are used for shaft sealing. Start up Checks Check that there is no foreign material in pump. Check that the condenser is cleaned up. If the condenser is dirty, suction strainer of pump will be clogged frequently. Suction strainer shall be kept installed during initial operation and remove it after system gets cleaned. Open suction valve fully and fill pump with water. In this process air vent valves shall be fully opened to purge air completely. Ensure that the following valves are opened. 1. Suction valve 2. Sealing water inlet valve 3. Iso. Valves of respective coolers 4. Balance valve. 5. Pump’s Recirculation valve. Keep the pump’s disch valve closed. Check the water level in the condenser is adequate. Check that lub. oil is filled up to the mark. Turn on circuit breakers of respective equipment’s and auxiliary devices.
KORBA SIMULATOR
127
Once the pump is started and reaches full speed, trip the pump. Check that there is no abnormal noise etc. Restart the pump Check the condition of gland leakage. It should be just in continuous drips. CHECKS DURING OPERATION MECHANICAL 1. Do not operate the pump with the discharge valve closed for more than a few minutes. 2. Sufficient care shall be taken for abnormal noises. 3. Observe bearing temperatures, vibrations, discharge pressure etc. 4. Ascertain that all indicators show proper value under pump running condition. 5. Gland sealing water pressure
1 to 3 kg/cm2
6. Pump bearing temperature
Max. 80OC
ELECTRICAL 1. Motor input power shall be checked. 2. Over load conditions shall be checked which will badly effect motor service life. 3. Power source voltage fluctuation shall be checked. 4. Over current shall be carefully checked. 5. Motor winding temperature to be within limits. SHUT DOWN When the pump is shut down for standby duty, care shall be taken on the following : 1. Switch off the motor 2. Pump discharge valve will be completely closed and selected to auto. 3. Space heaters should remain switched on.
KORBA SIMULATOR
128
LONG PERIOD SHUT DOWN 1. When the pump is not used for more than one month, operate the pump for approximately 30 minutes, to keep the equipment in good condition. 2. Cooling water system should remain isolated. 3. Space heaters should be kept on. ISOLATION Isolate the motor electrically. Isolate the cooling water system and drain it. Pump Discharge and suction valves, balance valve, will be closed as the pump will be drained. Pump’s sealing water system will be isolated. CONDENSATE SYSTEM DESCRIPTION OF SYSTEM The purpose of this system is to store an adequate quantity of demineralized water to meet the make-up requirements for normal cycle fluctuations and for abnormal operating conditions when supply of demineralized water is interrupted. In addition, this system will transfer condensate to and from storage tanks as needed to satisfy main cycle requirements. The main cycle flow and thermodynamic requirement is maintained by transporting the condensate collected in the condenser hotwell through various stages of feedwater heating and other equipment to the deaerating feedwater heater. The condensate extraction pumps normally deliver the condensate through the three low pressure feedwater heaters, the deaerating feedwater heater to the deaerating storage tank, which is the beginning of the feedwater system. The low pressure feedwater heaters receive extraction steam from the turbine. The condensate absorbs heat from the extraction steam as it passes through the feedwater heater. The deaerating feedwater heater further preheats the condensate prior to its entry into the deaerating storage tank. The condensate in the deaerating feedwater heater is warmed by extraction steam during normal operation and auxiliary steam & cold reheat steam are utilised as the heat source during start-up & turbine shut down condition. The normal make up to the condenser is supplied from the demineralizing plant through the make up pumps. In case of fluctuations in the cycle, condensate will be transferred to and from the condensate storage tank as required. Normally, on low KORBA SIMULATOR
129
level in the condenser hotwell, condensate will flow from condensate storage tank to hotwell by static head in the tank and differential pressure due to condenser vacuum, however, should this flow be inadequate, the condensate, transfer pump will supplement the flow. This make up is sprayed into the steam space above the tube bundles. The condenser hotwell is condensate collection vessel, integral with the condenser shell, and located in a pit below the ground floor. Condensate collected in the hotwell is pumped by 3 x 50 % Condensate Extraction Pumps to the feed storage tank through feedwater heaters placed in series. Two lines from hotwell, make a common header where from three lines are connected at the suction of three Condensate Extraction pumps. A strainer is placed at the suction of each condensate Extraction pump to collect debris during commissioning. The suction piping to the pumps is vented back to the condenser, to insure that the non-operating pump(s) stays completely flooded. These vent lines include manual valves on the vent for each pump. A minimum flow (350 T/Hr) recirculation line for each pump is provided, returning to the condenser via a flow control valve and a locked open shut-off valve. The shaft seals of these pumps are the water-injected type fed from a header to prevent the suction of air, particularly the pump that is not operating while the condenser is under vacuum. One discharge line emerges out from each condensate extraction pump with one check valve and one motor operated stop valve placed in series. These lines from a common discharge line and enters the turbine gland steam condenser. SYSTEM CONTROL Three 50 % Condensate Extraction Pumps shall be controlled from the Central Control Room (UCB). The Condensate Extraction Pumps are protected by safety interlocks to prevent eventualities like dry running, low NPSH and minimum flow conditions. The pumps are provided with Auto starting feature. A three position selector switch inscribed with ‘LEAD-NORMAL-LAG’ has been provided to select the pump for Auto Starting. The first pump to be started on ‘Auto’ shall be selected in ‘Lead’ position and the second stand by pump shall be selected in ‘LAG’ position. Any pump can be selected for Auto start either in ‘Lead’ or ‘Lag’ position. The pump on standby duty is streamlined to automatically start in the event of decreasing discharge header pressure below 30 ata (approx.) through’ 0-15 secs. delay or if the CEP disch. Header flow exceeds one pump capacity (810 T/Hr. Approx.) through’ 0.5-5 secs delay or a trip of the running pump. Pressure switches provides actuating signal for stand by pump to start. Each condensate extraction pump’s suction strainer is provided with differential pressure switch. These switches actuate control Room alarm in the event of high differential pressure (0.1 kg/cm2 approx.).
KORBA SIMULATOR
130
The condensate extraction pumps are also provided with level switches that monitor condenser hotwell level. The level switch protects the Condensate pumps from operating under very low (-1290 mm) suction head conditions. One level switch provides a pre-alarm for a low level (-1140 mm) condition. Low suction conditions are usually encountered during start-up or transient plant operations. The condenser hotwell is normally maintained by the operation of two level control valves. Normal level is maintained by level control valve LCV 0508 sensed by flow transmitter LT 0508. In the event this level control valve is unable to maintain normal level, the emergency make up control valve LCV 0509 comes into action, sensing low level in the hotwell by flow transmitter LT 0509. Normally the emergency make up will flow from condensate storage tank to hotwell by gravity. But even with above flow the hotwell level becomes low (sensed by level switch) then the condensate transfer pump shall start and its discharge valve shall open automatically. When the hotwell level is restored to normal level the above valve shall close automatically. Full closing of this valve would cause auto stopping or associated condensate transfer pump. Condensate spill control valve is provided in the line that connects the discharge header (after gland steam condenser) to condensate storage tank. This level control valve is automatically positioned by the hotwell level controller when a high hotwell level condition develops. Condensate is then transferred to the condensate storage tank until the hotwell level returns to normal. The condensate spill control valve is also provided with a motor operated. Bypass valve which can be operated manually from UCB in the event of controller malfunction. Each condensate extraction pump is equipped with individual recirculation control valve which ensures minimum flow through condensate pump when individual pump discharge flow falls below 350 T/Hr. sensed by flow transmitters. Beside above, to ensure minimum flow through the gland steam condenser, a minimum flow recirculation line and control valve is connected from the discharge header before Deaerator level control block valve back to condenser. During normal operation, condensate passes through the LP heaters 1,2 & 3. However, in the event of very high level in individual heater the condensate is automatically bypassed by interlock action. For this reason motor operated. bypass valves are placed across LP Heater respectively. In the event of very high water level in each LP Heater, sensed by level switches, the individual bypass valve opens and inlet-outlet motor operated isolation valves in each heater gets closed. Restoration of the heater level to normal will not automatically restore the heater to service. The return to normal operation must be initiated by operator action. A three element (Deaerator level, Deaerator input flow & feed flow), control loop is employed to maintain Deaerator level. Deaerator level is sensed by level transmitter A & B. This input is fed to a controller where signal from feed flow as well as Deaerator input flow i.e. the sum total of condensate and Heater drain flow is fed. Either of the two 100% flow control valve, position automatically to maintain the Deaerator level, receiving input from the controller. KORBA SIMULATOR
131
In the event of high level in Deaerator, sensed but level switch, the level is restored by opening automatically the Deaerator high level drain valve. If the rise in level still persists and reaches very high level (+440 mm), sensed by level switches, then Deaerator level control block valves (on main condensate line) shall close automatically. On restoration of normal level above block valves have to be opened manually from remote. The drain valve shall close automatically when the Deaerator level falls below the high level. When conductivity at the outlet of each vessel of the condensate polishing unit becomes more than 0.1/us/cm, the unit regeneration shall be started by manual intervention.
KORBA SIMULATOR
132
BOILER FEED PUMP & AUXILIARIES Booster Pump for BFP
:
For Motor Driven BFP
For Turbine Driven BFP
Manufacturer
:
Weir Pumps Ltd
Weir Pumps Ltd
Type
:
FATE 64
FATE 64
Direction of rotation
:
Anticlockwise
Anticlockwise
:
The Glacier Metal Co. Ltd
The Glacier Metal
Anticlockwise(Viewed on drive end) Thrust Bearing Manufacturer
Co. Ltd Type
:
Size
:
Double thrust M8112/2P/2P
Mechanical Seal for Booseter Pump of BFP Type
:
4" Crane type 8B1. Spring loaded carbon face pressing against a silicaon carbon seat.
Seal Pressure
:
9.67 Bar
Temperature
:
164.6oC
Shaft speed
:
1494 rpm
Seal cooling
:
Closed loop recirculation via pumping ring through a heat exchanger.
Operating Detail
:
Specific gravity of Feed water :
Motor Driven
Turbine Driven
Runout
Design
Runout
Design
0.901
0.918
0.900
0.918
at suction temperature Suction temperature oC
:
164.6
148
164.6
148
Suction pressure bar
:
9.67
7.2
8.17
8.17
Discharge pressure bar
:
20.27
17.55
20.1
17.76
Differential pressure bar
:
10.60
10.35
11.93
12.06
Differential head m
:
120
115
135
134
NPSH above impeller eye-M
:
30.5
30.5
13.5
13.5
Flow rate m3/hr
:
1080.5
1242
1080.3
1242
KORBA SIMULATOR
133
Efficiency %
:
80.5
82
79.5
31
Speed rpm
:
1419
1494
1494
1515
Power KW
:
395
436
450
514
Boiler Feed Pump
Motor Driven
Manufacturer
:
Weir Pump Ltd
Type
:
FK 4 E 36
No. of stages
:
4+1 Kicker Stage
Direction of rotation viewed :
Turbine Driven
Anticlockwise
on drive end SG at suction temperature
:
0.901
0.901
Suction temperature oC
:
164.6
164.6
Suction pressure bar
:
20
19.83
Discharge pressure bar
:
205.82
204.32
Differential pr. bar
:
182.82
184.49
Differential Head m
:
2103
2088
NPSHA above impeller eye m
:
50.3
50.2
Flow rate m3/hr
:
1080.3
1080.3
Leak-off flow m3/hr
:
270
270
Efficiency %
:
81.4
81.6
Speed rpm
:
5705
5690
Power KW
:
6830
6765
Turbine of BFP Type
:
K 1401-2
Design output
:
5589 KW
Max. output
:
9123 KW
Normal Speed
:
5330 rpm
Speed range
:
2000-6030 rpm
Specified initial steam pressure
:
7.182 ata
Exhaust pressure
:
0.1 ata
Permissible
deviation
in
initial
Steam :
10.68 ata
pressure at No load Instantaneous deviation (12 Hrs/Annum)
:
12.02 ata
Max. wheel chamber pressure permissible at :
10.15 ata
KORBA SIMULATOR
134
full load Specified initial steam temperature
:
300.6OC
Deviation without limitation
:
322OC
Permissible deviation for longer period
:
336OC
Permissible deviation for 400 Hrs.per annum
:
336OC
:
350OC
Specified cooling water temperature
:
33OC
Start up time
:
38 minutes
No. of stages
:
14 Nos.
Type
:
Reaction
Axial thrust balance
:
By
for not more than 15 minutes at a time. Permissible deviation for 80 Hrs/annum for not more than 15 minutes at a time
balance
admission
piston side
at
and
steam thrust
bearing. No. of control valves
:
5 Nos.
No. of stop valve
:
1 No.
Aux. Control valve
:
1 No.
Hydraulic speed senser
:
Primary oil pump
Electric speed sensor
:
Hall probes
Rotor Support
:
2 Nos. Journal Bearing (Front & Rear) 1
No.
thrust
bearing.
(Front
Pedestal) Over speed trip speed
:
6330 rpm
Ist critical speed
:
7550 rpm
Direction of rotation of steam flow
:
Anticlockwise (from direcion of steam flow)
Turbine Auxiliaries Main oil tank capacity
:
6.3m3
Location
:
0 meter level
KORBA SIMULATOR
135
Auxiliary oil pump
:
2 Nos.
Discharge flow
:
60 m3/hr
Rated head
:
9 ata
Drive
:
Motor
Pump
:
+ve drive pump
Nos.
:
1 No.
Discharge flow
:
16.25 m3/hr
Rated head
:
2.5 ata
Type
:
Centrifugal pump
Jacking Oil Pumps
:
Nos.
:
1
Discharge flow
:
0.54 m3/hr
Head
:
100 ata
Drive
:
Motor
Pump
:
+ve drive pump
D.C. Oil Pump
Voith Variable Speed Geared Coupling for Motor Driven BFP BFP motor Speed
:
1419 rpm
Gear ratio – I
:
128/37
Gear ratio – II
:
63/51
Primary speed
:
4908 rpm
Full load slip
:
2.6%
Max. output speed of the variable speed :
5906 rpm
geared turbo coupling. Regulating range
:
4:1 downwards
Oil tank filling
:
2500 litres
Filling pump Centrifugal pump)and Lub. :
Together driven as gear tooth
pump (Gear pump)
system drive via the pump shaft.
Aux. lub. pump
:
Three phase motor D 180 M 600/415V 22 KW, 50 Hz 3000 rpm
Lub. oil flow
:
388 litres/min.
Boiler Feed Pump Drive Motor KORBA SIMULATOR
136
Specifications Type
:
Asynchroonous
motor
with
Squirrel cage rotor Rating
:
9800 KW
Speed
:
1493 rpm
Stator voltage
:
6.6 KV
Stator current
:
987 amps
Frequency
:
50 Hz
Limited Axial clearance (Max.)
:
+ 2 mm
Bearing Lubrication Type
:
Oil ring and oil circulation
Oil requirement for both
:
62 litres
Lubrication
TDBFP TECHNICAL DETAILS Turbine driven BFP uses a turbine of 14 stage connected to condenser Turbine is coupled with main pump having an engage/disengage unit called Power pack unit using oil pressure for above function. Between turbine and Booster pump gear assembly is there. In 500 MW unit there are two similar TDBFPS located on turbine floor. TDBFPS have a big LCP (Local control panel) having facility for all operations of TDBFP. Various system of TDBFP are discussed below : LUBE OIL SYSTEM Lub oil system of both TDBFPS are provided with one Main Oil Tank each in which oil level is separately maintained. It has two AC AOPs, one JOP AC and one DC AOP connected to tank. Lub oil pressure is maintained at 3.0 Kg/cm2 on throttling after the pump oil at discharge pressure which is 9.0 Kg/cm2 is called control oil which is used as governing oil. Lub oil after passing through coolers is led to various bearing of TDBFP system. DC AOP discharge oil is used on failure of AC AOPs bypass the coolers. During barring of TDBFP same lub oil at pr. 4.0 Kg/cm2 is used as power fluid in barring gear impellers. In the lub oil system provision is there to adjust the lub oil pr. by changing the recirculation flow.
KORBA SIMULATOR
137
SEAL INJECTION SYSTEM Mechanical seals are provided on BP side for which continuous cooling is done by CEP water. For BFP side constant seal injection pressure around 18 Kg/cm2 is maintained with the help of control valve. Filters are also provided in this line. From this line small pipe provides water in the exhaust steam as exhaust hood spray. Seals drain is collected as clean drain into drain tank and dirty drain flows into common drain header. In case of seal injection pr. low DC seal quench pump takes start and provides seal water from CST for safe coasting down of pump. Drain tank level is maintained separately with gland drain pumps. STEAM SYSTEM For TDBFP there are three sources for steam namely 1.Auxiliary steam 2.CRH 3.IPLP cross-over steam. Extraction steam parameters are maintained at 4.0 Kg/cm2 & 300OC. During cold start when CRH or IP/LP steam is not available, Aux. steam is used for rolling of TDBFP for initial boiler filling. Once steam is insufficient for increasing the speed beyond 3500 rpm, CRH steam is used for further speed pick up. After IP - LP cross over steam is sufficiently available then Aux. steam, CRH steam is a automatically cut off, after closure of ACV. FW SYSTEM Water from Dearator is taken to the Booster pump. The discharge of the Booster pump is fed to BFP suction. From the discharge of the BFP the feed water passes through two numbers of high-pressure heaters, economizer and finally reaches the boiler drum. Drains & vents are provided in FW system for initial charging and venting of BFP during rolling. GLAND SEALING OF TURBINE Downstream steam from main turbine gland sealing is used for TDBFP sealing. Before opening of Exhaust valve of TDBFP gland sealing should be done as this line is connected to condenser. GOVERNING SYSTEM For having the required flow through BFP, speed of Turbine has to be adjusted and for that we need perfectly efficient governing system. Governing system is using the control oil at 9.0 Kg/cm2 which in turn depending on the position of starting device and speeder gear, will develop Secondary oil and Aux. secondary oil pressure for operating the 4MCVs and one ACV thereby adjusting the steam flow speed change is effected. In the Governing system separate governing filter is used. Governing is achieved with the help of two governors namely Hydraulic and Electrohydraulic KORBA SIMULATOR
138
governors having EHG control and HG follows it up. On isolation of fluid line to EHG, Electro hydraulic Governor can be taken out of service. TDBFP speed control can be put on auto if EHG is selected. In this condition speed set point is automatically generated and feed water flow is maintained as per the requirement from Drum level controller. TDBFP speed Governing can be done either from UCB or from LCP or manually operating the Starting device or Speeder gear. TDBFP OPERATION Steps: 1.
FW line charging
2.
Recirculation valve lining up
3.
Seal injection, exhaust hood spray charging
4.
Gland sealing
5.
Charging of lub oil system, starting of AOPs & JOP.
6.
Barring valve Gearing. Barring speed is @ 200 rpm
7.
Line up extraction steam lines
8.
All drains provided in UCB and local to be opened.
9.
First TDBFP resetting is done by making starting device 0% and ensuring that no. turbine trip condition should persist.
10.
Speeder gear is made 100%
11.
Hydraulic Governor is selected from console of starting device positions,
12.
Starting device position is increased slowly at 42% stop valve opens & indicated on the console.
13.
At 56% MCV starts opening
14.
Speed refrence should be kept manual. Increase speed reference to 1000 rpm as soon as TDBFP picks up speed.
15.
Ensure that EHC output is less than HG. Hence EHC is active
16.
EHC is selected through key (key in released condition)
17.
Pump venting is done at 1000, 2000, 3000 rpm
18.
Ensure that the TDBFP is running normal.
KORBA SIMULATOR
139
19.
Further speed reference is increased to pressure requirement, & flow is monitored.
20.
By adjusting the feed water master output TDBFP speed can be put on auto with the help of key. Subsequently, Feed water master can also kept on Auto.
OIL SUPPLY Oil is supplied to the tripping device through a filter and a solenoid valve. Low vacuum protection, high pressure protection, low lube oil protection and over speed tester are incorporated between the solenoid valve and the tripping device. The solenoid valve allows the flow of oil through it in the normal condition as per the specific requirement. It can be kept in either normally open or normally closed condition. When the solenoid valve is actuated due to any fault condition this will obstruct the flow of oil to the system connecting the down stream at the same time to drain. In the event of low vacuum, low lube oil or high back / extraction pressure corresponding protection gets actuated and they prevent the flow of oil to the system at the same time connecting the downstream side to drain. Oil after passing through these protections will pass through the overspeed tester and reaches the tripping device. In the working condition tripping device allows the oil to flow through it. Pressure on the downstream side will keep the tripping device in operating condition. When the tripping device trips due to overspeed, high axial shift or by manual operation it blocks the oil flow to the system at the same device it is required to keep it lifted till pressure is build up on the down stream side. Reengaging of the tripping device is possible remotely by providing additional equipment. Then the oil is supplied to the starting device, amplifier (s) nonreturn extraction valve (if present). STARTING Turbine is started by operating the starting device which opens the stop valve first without opening the control valves. By further operating the starting device after opening the stop valve, control valves open thus starting the turbine. After attaining the rated speed and the speed governor has taken over starting device is taken to the extreme position. SPEED CONTROL The speed governor compares the set point of the speed with the actual value and give an output in the form of displacement of the lever which holds the sleeve of the amplifier. This movement will result in a change of secondary oil pressure. This change will result in the change of servomotor position and consequently governing valve opening. This will lead to change of speed and a new balance is reached between the set point of the speed governor and the actual speed.
KORBA SIMULATOR
140
GOVERNING SYSTEM OPERATION OPERATION Adjust reference value of speed governor to minimum turbine speed, moves pilot valve of starting device downwards until it comes to a stop, i.e., in this position the rectangular block “a” in the functional diagram is shifted such that it is situated across the oil ducts shown in the diagram. During this operation the sliding guide bush on the amplifier is displaced, thus preventing secondary oil pressure being build up. After the hydraulic protection devices provided in the control circuit have been switched into their respective free passage positions, the rectangular block “a” of the emergency trip gear will be shifted into the position opposite the oil connections. When the TDBFP is being put into operation, trip oil is allowed to flow through the starting device into the space behind the piston of the emergency stop valve where it is fulfils the function of pressure oil for starting up. The piston will be tightly pressed upon the piston disc without allowing any leakage of oil. If the handwheel is now being turned in counter clockwise direction, the pilot valve of the starting device will be moved slowly upwards as represented by position “C” of the functional diagram. In this way, the trip oil will be directed also to the space in front of the piston disc while the space behind the piston is connected to the oil drain. As soon as sufficient pressure has build up in front of the piston disc, the starting device will be moved further in the upward direction, so that the pressure behind piston is going to drop. The resulting pressure differential will push the piston disc together with the piston upon which it is being pressed onto the ultimate position to the right. INCREASING THE TURBINE SPEED If the pilot valve of the starting device is brought into position “d” the sliding guide bush of the amplifier will be lowered further. This brings about an increase in secondary oil pressure with the result that the steam control valves are opened correspondingly, and the turbine rotor is picking up speed. After having attained its set minimum speed, speed control of the turbine will be taken over by the speed governor. Before the turbine speed is increased further by means of the speed governor, raise the pilot valve of the starting device right to the ultimate position at the top and block it there. DEVICE FOR REMOTE OPERATION OF EMERGENCY TRIP GEAR FROM THE CONTROL ROOM PURPOSE Starting a turbine from the control room requires in addition to the distant operation of the starting device, remote control of the emergency trip gear and as the case may be, also of an auxiliary slide valve. Such a control can be achieved with the help of the KORBA SIMULATOR
141
following apparatus. Solenoid valve pressure switch , and an automatically opening control switch whose actuation will be blocked in the open position by an interlocking mechanism. SPEED GOVERNING SYSTEM PURPOSE The pressure oil governor Type SR IV controls the turbine speed and maintains it at a constant value in accordance with the functional relationship represented by its characteristic line. The control characteristic of the governor is of the proportional plus derivative type. The pressure of the secondary oil discharged at the governor output side forms the input signal that acts on the control piston of the servo valve. Mode of operation The signal transmitter for the speed governor is situated on the turbine rotor. The pressure of the primary oil thus generated by this transmitter will be a square function of turbine speed and forms the input signal (actual speed value) for the transducer. Any deviation of actual speed from a given reference value will therefore cause a deflection of the comparator lever which is functionally connected to the traducer. The force which the transducer exerts on the comparator lever is counteracted by a reference value spring. Under steady state conditions the spring force will equal the transducer force. The comparator lever is with its one end acting on the amplifier by means of a slidable bush. Both the amplifier and the bush are provided with discharge pots which, depending on the degree of their overlap, control the discharge of larger or lesser quantities of oil. When, e.g. owing to a decrease of primary oil pressure (Change in actual speed) the comparator lever is going down, the slidable bush will be displaced. This results in a smaller amount of overlap whereby the flow section for the oil discharge is reduced. The balance previously determining the volume of discharged oil will thus be disturbed. This causes an increase in secondary oil pressure so that the amplifier is going to follow the displacement of the slidable bush until the flow section of the discharge port will once more conform to the oil volume corresponding to the altered pressure ratio at the throttle. The pressure change depends on the stroke of the amplifier and on the characteristic of the tension spring. The functional relationship between the stroke of the amplifier and secondary oil pressure is roughly proportional. Secondary oil pressure is acting via a damping device as input signal for the control piston of the servo valve (actuator). Momentarily, the control piston will assume a position which is determined by secondary oil pressure, thus providing a path for the pressure oil to flow either to the upper side or to the underside of the servo piston in the actuator. As the servo piston is going downwards or upwards, the turbine control valves will be actuated accordingly. OPENING OR CLOSING OF TURBINE CONTROL VALVES When, owing to a decrease in turbine speed (actual speed change), the balance at the comparator lever is disturbed, secondary oil pressure will increase. The control piston in the servo valve (actuator) is going upwards under the influence of the increased KORBA SIMULATOR
142
secondary oil pressure until a new balance between secondary oil pressure and the force of spring has been established. Depending on the value of secondary oil pressure and thus also on the position of the control piston in the servo valve (actuator) , pressure oil, although some what restricted by the effect of the throttle, will be admitted to the space above the actuator piston while the space underneath it is connected to the oil drain line (see the functional diagram : the rectangular block “c” will be displaced so that it is situated across the two oil connections). In this way, the piston is pressed downwards, thereby opening the turbine control valves. A feedback element on the actuator will restore the control piston the initial position represented in the diagram, thus stabilising the position of the actuator piston. If the turbine control valves have to be closed, i.e. when primary oil pressure is going up, the described sequence of steps will be followed in an analogous way, but with the opposite effect. SPEED SETTING The speed of the turbine can be adjusted within the limits of approx. 65 % and 107 % of rated speed for compressor drives and of 85 % to 107 % for generator drive sets. Depending on the model of speed setter provided, the adjustment can be effected either by hand, or by means of a pneumatically operated actuator, or by an electric motor. Changing the force exerted by the reference value spring (change in consequence that both the speed and the output is altered when the turboset is operated as an isolated unit, or the output alone with interconnected operation. The slope of the characteristic, and hence the field of proportional response, can be changed through appropriately, adjusting the feedback element in the valve actuator. GOVERNING SYSTEM - SPEED GOVERNOR PURPOSE The oil pressure set up by the governor impeller (primary oil pressure) serves for the control of the turbine speed via an hydraulic governor. The governor impeller is supplied with oil by a pump drawing from an oil tank. The additional pressure imparted to the oil by the impeller is a function for the turbine speed. The oil whose pressure has been thus boosted is supplied to the underside of pressure capsule in the hydraulic governor. MODE OF OPERATION The oil for bearing lubrication and for the impeller is supplied by the main oil pump via a screw valve and the appropriate channels and grooves in the housing the insert, and the bearing flange. Raidally drilled holes in the impeller are setting up a speed dependent pressure in the oil. A steady and adequate supply of oil to the radial holes in the impeller is ensured through the excess oil being collected by a collar and redirected to the housing. The pressure compartment surrounding the impeller is tightly sealed by the oil sealing rings which are held in position by retaining rings. The cover carrying the impeller housing is flangemounted to the front end of the front
KORBA SIMULATOR
143
bearing pedstal. The spur wheel and a spray nozzle for lubricating the gears are projecting into the bearing pedstal compartment. SPEED TELEMETERING A speed - calibrated pressure gauge (pressure gauge type tachometer) is provided for hydraulically measuring the turbine speed on the machine. It will be screwed into the tapped hole. Only slight modifications in the design of the shaft stub at the front end of the impeller and of the cover make it possible to mount devices for remote indication of the turbine speed. HYDRAULIC REFERENCE VALVE RELAY FUNCTION The turbine which drives the feed water pump is fed with steam from the main turbine. If the main turbine suffers an outage (e.g. emergency trip) the feed pump turbine takes its steam from the boiler reheater. The changeover to reheater operation must be performed without a major drop in speed in order to maintain the supply of feedwater. Since the feedwater regulator cannot perform the required alteration of the speed reference value as rapidly as needed, a step increase in the speed reference value is made. The reheater valve therefore receives a lift signal for the same steam flow that the turbine was receiving before the disturbance. After changeover the reference value relay is reduced slowly until the feedwater regulator can hold the lift signal for the reheater valve with no major disturbance (through adjustment of the speed reference). CONSTRUCTION AND MODE OF OPERATION The body of the reference value relay is incorporated in the governor housing and forms the link between the electrical reference setter and reference spring. The reference value relay is linked hydraulically to a 3/2 way solenoid valve (see also Governing System Diagram). When needed the solenoid valve is opened so that pressure oil can flow to the reference value relay. The pressure oil enters the body and passes through the control piston, which is bored and has elongated side ports, to the top of the step change piston. The step change piston is forced downwards as far as the adjusting screw permits and becomes one with it. At the same time the reference spring of the speed governor is tensioned through a rod connected to the step change piston. The turbine control valves move to maximum lift and the steam throughput is now regulated by the reheater valve.
KORBA SIMULATOR
144
After a pre-set delay the solenoid valve is deenergized and the oil spaces of the reference value relay are opened to drain. By means of a throttle the pressure is reduced slowly so that the feedwater regulator can perform the travel set by the reference value rely (step change) without difficulty. OPERATING CONDITION The initiating command for opening of the solenoid valve is a signal from the generator circuit breaker (tripped). The signal is interlocked if the check valve in the main turbine steam line to the feed pump turbine is closed and the reheater valve is already in an appropriate position (this is possible on overload during normal operation). AMPLIFIER PURPOSE The amplifier serves for converting the output signals from the speed governor and the extraction pressure controller into distinct values of secondary oil pressure which are passed on as input signal to the pilot valves of the respective control valve actuators. STARTING DEVICE SPEEDER GEAR AND SPEED CHANGER It is operated either manually or remotely by means of an electric motor. The rotary movement of shaft is transmitted via worm, to helical wheel. This helical wheel is arranged on the threaded portion of handwheel spindle and is fixed axially by inset and gear case. Spindle is connected with sleeve which is free to rotate in cover by feather key in such a force thrust rings which are guided in insert so tightly against sleeve, that sleeve and therefore spindle cannot turn and the spindle is moved in the axial direction when the helical wheel starts to rotate. Depending on the direction of rotation of helical wheel handwheel spindle can be moved in both directions until it bears against feather key and stop nut, respectively. In the two stop positions thrust rings act as a slipping clutch. In this case handwheel spindle and helical wheel rotate simultaneously without the handwheel spindle being moved in the axial direction. Even in the event of a fault, i.e. which the frictional resistance becomes too high, the device acts as slipping clutch and protects the electric motor against overload. PISTON The piston slides in a separate cylindrical housing of the actuator and is mounted on the piston rod. A conical follow up cam has been shrunk up on this piston rod and is secured by a pin. the upper end of the piston rod is screwed into the turnbuckle which also serves for attaching the tie rod which transmits the stroke of the piston to
KORBA SIMULATOR
145
the control valve leverage. The spaces above and below the piston are connected through internal ducts in the housing with the il passages of the pilot valve. PILOT VALVE The piston of the pilot valve is slideably mounted in a sleeve which is tightly inserted into the actuator housing. The core of the valve piston is drilled out and has access to annular grooves on the periphery which coincide with corresponding annular recesses in the valve sleeve. At the bottom the valve piston core is sealed by a screw plug, while at the upper end the oil is able to escape through radial passages which have been drilled into the wheel disc in a spider like configuration. In the region of the pressure oil inlet connection, four radial holes have been drilled from the periphery right down to the core of the valve piston. A pin on the top of the valve piston serves for locating a deep groove ball bearing intended for taking up the thrust. Above this thrust bearing a compression spring is provided which can be tensioned in conformity with the position of the bell crank lever by means of an adjusting screw. FEEDBACK SYSTEM The feedback system serves the purpose of stabilising the control movement. The piston rod is positively connected with the pilot valve via a bell crank lever. The cam follower mounted on the one arm of the bell crank lever is pressed against the conical follow up cam. The other end of the bell crank lever is connected to the adjustment screw of the pilot valve and thus is under the influence of the compression spring. MODE OF OPERATION Any change in pressure of the secondary oil results in an axial displacement of the valve piston. In this way, the relative position of the grooves on the valve piston surface with respect to the corresponding annular recesses in the valve sleeve will be altered with the result that pressure oil is admitted to the space below or above the actuator piston. At the same time, the return oil from these spaces is allowed to drain. The actuator piston will consequently make an appropriate movement and will operate the control valves by their leverage. Owing to the follow up cam, any movement of the actuator piston will be transmitted to the bell crank lever. the action of the bell crank lever on the compression spring goes in a direction opposite to the movement of the pilot valve. Under the influence of the spring force, the valve piston is thus going to assume an intermediate operating position.
KORBA SIMULATOR
146
ACTUATOR ADJUSTMENTS The functional relationship between secondary oil pressure and piston stroke can be changed by rotating the conical follow up cam about its axis. Such a displacement will after the interdependence between actuator piston stroke and compression spring preload while maintaining the direct proportionality between these two quantities. The preload on compression spring can be adjusted by means of the adjusting screw prior to such adjustments the cap has to be removed. PURPOSE The actuator serves for transmitting the positioning impulses for the control valves to the valve operating leverage. The lever system lifts or lowers the control valves of the turbine in such a way that the steam flow will always be adequate to the present or required turbine output. The pilot valve of the actuator receives its control impulses from the secondary oil circuit. However, the actual servo power for positioning the control valves is derived from the pressure of the oil which flows either to the top or to the underside of the actuator piston. MODE OF OPERATION Any change in secondary oil pressure brings about a corresponding stroke of the pilot piston. The annular grooves and oil pockets in the pilot and sleeves, respectively, are arranged in such a manner, that with increasing secondary oil pressure the pilot piston is moved upwards thus opening the pressure oil arriving at connection a channel for flowing to the upper side of the servo piston. By its resulting downward stroke, the piston is thus opening the control valves through the lever system. By means of a reset bar, the piston stroke is fed back to the lever via a bellcrank follower. The action of that lever on the compression spring goes in a direction opposite to the pilot piston stroke. Hence, the pilot piston is going to yield to the spring force and returns to its neutral position. The functional relationship between secondary oil pressure and piston choke can be changed by adjusting the inclination of the reset bar to the desired position with the help of a set screw. Such adjustments will affect only the amount of proportional gain while, with the design of reset bar here under consideration, the secondary oil pressure vs. piston stroke relationship will always a linear function. However, in cases where control requirements warrant it, it will be possible to provide also for non linear control characteristics through an appropriately shaped cam profile of the reset bar. The resetting mechanism serves for stabilising the control action. The functional chain extends between the piston rod and the pilot piston; these parts are interconnected by the bell crank follower and the lever. The pressure roller carried by one arm of the bell crank follower is pressed the reset bar. The other arm of the follower is connected with the lever and, through the adjusting screw, it transmits its motion to the compression spring.
KORBA SIMULATOR
147
START UP PROCEDURE FOR BFP DRIVE TURBINE 1. Ensure : A. Oil supply to control oil system. B. The manual valves to EHC and output of follow up piston are open. C. Speed set point zero for energising Plunger coil. D. No faults on EHTC. E. Turbine trip reset. 2. Select the hydraulic governor with EHTC/Hydraulic selection switch. 3. Open the stop valve with starting device.The stroke of starting device is 0 - 53 % for opening stop valves and bring main control valve secondary oil pressure to 1.5 kg/cm2. 4. Increase the stroke of starting device and observe that speed of the turbine should not increase. 5. Raise the starting device position to 53 %. 6. Select the EHTC with selection switch EHTC/Hydraulic. 7. Increase the speed set point such that EHC position is more than starting device position. 8. Slowly bring down the EHC < HG in small steps, observe that the electronic governor is active and starting device position is following the EHC position. 9. Increase the speed of the machine as per the start up curve manually. Raise/Lower speed reference push buttons till it is just below the BFP C set point. 10. Increase the speeder gear position to maximum. 11. Select the speed reference by BFP C with speed reference manual BFP C set point ref. Selection switch. 12. Increase the speed of the machine till the BFP C set point becomes active i.e. manual set point is more than BFP C set point. 13. Observe the manual set point tracking the BFP C controller set point 14. To take the control from BFP C set point to manual set point.
KORBA SIMULATOR
148
A. Select the manual set point. B. Decrease in small step the manual reference such that manual set point becomes active. 15. Change over to hydraulic governor. A. Select the hydraulic governor. B. Decrease the starting device position in small steps. C. When HG < EHC observe the hydraulic governor active lamp glows. D. Increase the speed set point to maximum to enable to operate the hydraulic governor 100%. INTERLOCK AND PROTECTIONS OF TDBFP TURBINE 1. Emergency trip from Control room LCP Local i.e. from Governing rack and turbine front pedestal all above trips can be resetted from UCB & LCP Please note that mechanical trip can be resetted mechanically only by pressing emergency speed Governor testing device lever downward. 2. Exhaust steam temperature high trip Trip 120OC Alarm 110OC 3. Inlet steam pressure high alarm 7.0 kg/cm2, Trip 10.0 kg/cm2. 4. Governing oil pressure very low ,Alarm 6.5 kg/cm2, stand by pump start At 4.5 kg/cm2. 5. Turbine vibration very high (displacement). Alarm 75µ, Trip 75µ 6. Axial shift high Alarm +/- 0.5 mm, Trip +/- 0.7 mm. (+) Exhaust side, (-) Steam inlet side 7. Eccentricity high Alarm 75µ PP, Trip 75µ P.P. 8. Turbine differential Expansion high alarm +/- 2.5 mm
KORBA SIMULATOR
149
9. Lub oil pressure low. stops)
Alarm1.6 kg/cm2, trip1.0 kg/cm2.
(Barring gear
BFP PLEASE NOTE THE FOLLOWINGS All TDBFP protections will trip the turbine. Turbine can be resetted after getting all permissives for BFP and No turbine trip. But once turbine has been resetted it can be rolled even if any one of BFP permissives are not there. For example if turbine has been resetted and after that some one closes recirculation valve, turbine can be rolled. BFP suction valve limit switch are not provided therefore it has been bypassed. Seal quench water pressure low tripping has been provided from main header pressure. Therefore seal quench water pressure trip or permissive will not come into the picture if seal quench water to the Boiler feed pumps are isolated from their controller end. Emergency seal quench water pump start/stop knob (at MDBFP LCP) should be turn towards ‘OFF’ side after every tripping of Boiler feed pumps on seal quench water pressure low. Otherwise pump (ESP) will not take start on auto, in event of similar next tripping. DISENGAGABLE COUPLING •
Engage - Zero speed & lub oil Pressure adequate.
•
Disengage - less than 100 rpm.
In both the cases power pack motor has to be stopped after completion of engage / disengage operation. However pump will take start on auto when engage or disengage command is given and conditions are fulfilled. In the same reference it is advisable to engage and disengage the coupling at zero speed only. BARRING GEAR 1. Barring gear valve opens on auto when speed is < 100 rpm. JOP will take start when barring gear valve. 2. Barring gear valve close on auto when turbine speed reaches 300 rpm. JOP has to be stopped manually.
KORBA SIMULATOR
150
BFP TURBINE GLAND STEAM FLOW DIAGRAM TDBFP OPERATION 1. Open drain valves, DW 2A, DW 3A, DW 6A (from LCP), MSD - 81, MSD-32, MSD-83, MSD-66, MSD-67 - from LCP or control room. (In case of TDBFP 6B open MSD 82, MSD 46, MSD-77, MSD-66, MSD 68)
2. Charge gland seal of Turbine and open Ex-21 (Exhaust to condenser)
KORBA SIMULATOR
151
3. Charge Aux. Steam and CRH steam to Turbine one after other by opening ASL 004 & Ex-20 (Ex 19 for TDBFP 6B) Atmospheric drain valves may be open to observe the draining of condensate in the Aux and CRH lines. 4. Open MV 78 and Ex 50 for heating the steam line upto ESV (Manual isolating valve before ESV should be full open). 5. Watch steam inlet parameters and then open ESV for chest heating. 6. Roll the turbine according to start up procedures. 7. Closing drains & vents I. MV - 78 EX 50 before rolling. II. Line drains - looking into steam parameters. III. Turbine drains after attaining full speed and watching turbine parameters. Booster pump and BFP are to be lined up according to the procedure followed in case of MDBFP. SHUT DOWN OF TDBFP 1. Disengage the coupling at zero speed and put the machine on barring. Water in the booster pump is to be ensured while running the machine on barring. 2. Close Ex-21 TDBFP A 3. Isolate the gland steam to turbine seals when vacuum comes to 0.2 kg/cm2. 4. Isolate the steam lines. 5. Open the BFP vents and recirculation line vents to restrict suction/discharge differential temperature. 6. Steam and water side isolations are to be done when shut down is for longer period. 7. Barring gear can be stopped after achieving casing temperature less than 100oC (It can be reensured by touching the turbine glands with hand).
KORBA SIMULATOR
152
KORBA SIMULATOR
153
BFP TURBINE EXTRACTION DETAILS
GOVERNING SYSTEM OF TURBINE DRIVEN BOILER FEED PUMP INTRODUCTION The main requirement of a boiler feed pump drive turbine (BFPT) governing system is to maintain speed depending on a signal from feed water controller which in turn depends on boiler feed pump delivery pressure and flow. The turbine speed is being controlled by an Electro hydraulic governor (EHG) which is constantly backed up by an another hydraulic governor. Speed control gangue of EHG is from 20 % to 110 % and that of Hydraulic governor (HG) is 50 % to 110 % of rated speed. The hydraulic governor comes into action immediately when the Electronic governor fails. For smooth change over an electronic tracking device is provided. The steam to BFPT is supplied from one of the bled steam line of main 500 MW steam turbine. During start up and shut-down of main turbine, steam is being supplied from cold reheat line. The BFPT governing system has a feature of starting the BFPT through steam from cold reheat line and then automatically switching on to bled steam supply as soon as it is available without any discontinuity. The other special features of BFP TURBINE governing system includes a quick closing stop valve, over speed trip, low lubrication oil protection, low vacuum protection, axial motion protection, remote tripping and remote engagement of emergency tripping device. HYDRAULIC GOVERNOR The hydraulic governor mainly consists of a governor impeller, hydraulic governor and hydraulic amplifier. The governor impeller is driven by BFPT shaft through gear wheels and it is supplied with a small quantity of oil from the main oil pump. Depending on the speed of BFPT, the governor impeller builds up a pressure on its periphery. This oil pressure called as primary oil pressure acts on a hydraulic governor bellow. The governor bellow is connected to a lever through a tappet. The force exerted on the bellow by primary oil pressure is transmitted to the lever through the tappet. A compression spring is mounted on the top of the lever which is pre-compressed by speeder gear. The signal from feed water controller through electronic governor determines the precompression of the speed set spring which balances the primary oil pressure acting on the bellow. The travel of the tappet is transmitted to the lever which is pivoted at one end through a joint. At its free end the pivoted lever is connected to the control sleeves. The control sleeves and follow-up pistons (amplifiers) are provided with ports. The overlap of these ports is dependent on primary oil pressure and speeder gear position. The follow-up pistons are held in a certain position by a spring. The pressure oil from trip oil circuit is admitted into the follow-up pistons through an orifice. The secondary
KORBA SIMULATOR
154
oil pressure for servomotors depends upon the gap between the follow-up pistons and control sleeves. Any variation in control signal from feed water controller will change the precompression of the speed set spring and thus disturbing the equilibrium of the tappet. This will change the port opening between follow-up pistons and control sleeves. The subsequent increase or decrease in the secondary oil pressures result in a displacement of servomotor pilot valves which determine the position of servopistons. The spindle of servopiston is connected to the control valves through a lever system. The feed back lever resets the pilot valves to the position corresponding to the required load even before the control action is completed. The follow-up pistons amplify the small pressure changes which are produced by governor impeller on a change in speed or due to feed water controller signal. It also reverses the direction of action of pressure in the secondary oil circuit. An interruption of this secondary oil leads to an immediate closure of control valves. The total control action of hydraulic governor can be summarised as follows : For examples, let signal from speed reference is increased, the control signal will try to compress the speed set spring and tappet will move down, which will result in increase in secondary oil pressure. The increased secondary oil pressure through servomotor opens the control valves more, allowing more steam to flow into the BFPT. As a result the speed of BFPT will increase till the primary oil pressure force and speed set spring force are again in balance. ELECTRONIC GOVERNOR The speed of BFPT is sensed by three hall probes. This speed signal through a pulse converter is fed to a speed governor which also receives another signal from a set point setter. Any change in speed of BFPT or set point, speed governor will give signal to an electronic amplifier. The output signal of electronic amplifier is given to the moving coil measuring system of a electro-hydraulic converter. EHC converts the electric signal into a hydraulic signal. The feed back action of EHC is effected by a differential transformer mounted on EHC power piston and feed back amplifier. The power piston EHC through levers move control sleeves of two hydraulic amplifiers. The construction and action of these hydraulic amplifiers are exactly same as that described under hydraulic governor. The output of these hydraulic amplifiers i.e. secondary oil pressure is connected in a parallel with the output of the hydraulic KORBA SIMULATOR
155
governor amplifiers. Thus the secondary oil pressure leading to servomotors is controlled both by hydraulic governor and electronic governor (Function of a low signal selector). A fail safe is provided in the electronic governor to hold the last signal to electronic governor from BFPT controller. In case the signal from BFPT controller fails, and therefore the turbine speed will be maintained at that operating point. BFPT SPEED CONTROL BY ELECTRONIC AND HYDRAULIC GOVERNOR In the present governing system, hydraulic governor acts as secondary governor to electronic governor. As mentioned earlier that the output of both the governors controls the secondary oil pressure. But as a fact the governor which gives less secondary oil pressure will control the final secondary oil pressure. Since the hydraulic governor is designed to follow the electronic governor constantly, the hydraulic governor is set at slightly higher secondary oil pressure. Therefore always electronic governor will be controlling the secondary oil pressure and hydraulic governor will follow. The controlling range of electronic governor is from 20 % to 100 % and that of hydraulic governor is from 50 % to 110 % when electronic governor fails in the range of 50 % to 110 % the speed of the turbine will rise momentarily corresponding to hydraulic governor setting and then hydraulic governor will hold the speed and further speed can be controlled manually. In case the electronic governor fails in the range of 20 % to 50% of speed, the speed will be immediately set automatically to 20 % through the starting device. On the top of starting device a hydraulic reference valve relay is mounted, which receives the pressure oil through the solenoid valve. The solenoid valve gets energised only when BFPT set speed is less than 50 % and electronic governor fails. This signal is also given to the starting device motor, which slowly moves towards 20% speed setting. Through the solenoid valve and hydraulic reference valve relay the starting device is set immediately to 20 % speed, when starting device motor has moved to 20 % speed setting, the actuating signal to solenoid valve and motor are disconnected and turbine runs at 20 % speed as long as it is not disturbed. Further control of turbine can be achieved by operating the starting device manually. STARTING OF BFPT During normal running, the steam to BFPT is supplied from one of the bled steam line of main 500 MW turbine. During starting and shut-down of 500 MW turbine, the steam to BFPT is supplied from the cold reheat line.
KORBA SIMULATOR
156
KORBA SIMULATOR
157
TDBFP GOVERNING SCHEME
Steam into turbine enters through main stop valve and main control valves. The auxiliary control valve and servomotor are located in the cold reheat line before the main stop valve. The main stop valve is of quick closing type. The valve is actuated by means of a starting device. The stop valve consists of a spring loaded piston and piston disc, which is connected to the valve cone through a spindle. For opening the stop vlave, start up oil (from starting device) is admitted to the space above the spring loaded piston, by operating the starting device. Due to start-up oil pressure, the piston moves towards the piston disc and they from a tight seal against each other. Oil from trip oil circuit is then admitted to the space under the piston disc and the space above the piston is connected to oil drain. The trip oil now forces both piston disc and piston to the outer position thereby opening the stop valve. As long as the trip oil pressure is maintained the piston and the piston disc cannot be separated by spring force. The stop valve is closed only when the trip oil pressure drops substantially. On a loss of trip oil, the trip oil pressure, the pressure of secondary oil tapped from trip oil circuit, drops to zero, thus causing the main control valves and auxiliary control valve to close. This arrangement provided a two fold protection against steam entering the turbine. Provision is made for on load testing of stop valve. To admit the steam into the turbine, HP control valves must open since during start, is no bled steam available, steam is to be supplied from cold reheat line and for this Aux. Control valves is to be opened. The arrangement and design is such that aux. Control valve will open only when main control valves are fully opened. With the help of starting device the hydraulic governor is manipulated to increase first the main secondary oil pressure then aux. secondary oil pressure. During this time electronic governor is set at 20 % or speed. Once the aux. control valve is open, steam from cold reheat or Aux. Steam line is available to turbine and after picking up the speed, electronic and hydraulic governor will take over. When bled steam is made available, aux. control valve will close automatically if available steam from IP, LP cross over is sufficeint and turbine will be operating on bled steam supply. DISTURBING PROCESS SIGNAL UNIT (DPSU) When main turbine is tripps bled steam to drive BFPT will not be available and BFPT has to derive the steam from cold reheat line. As soon as the bled steam supply is stopped, the turbine (BFPT) governing system will open the control valves more and more. Thus main control valves immediately open fully and then aux. control valves starts opening till the required steam quantity is met through cold reheat line. In process, when main control valves open, very fast response from electronic governor is expected and will interfere with the hydraulic governor which is comparatively slow. To avoid this interference, a disturbing process signal unit is used to set the hydraulic governor to the maximum valve opening position as soon as 500 MW turbine is tripped. 500 MW turbine trip signal is given to a solenoid valve cylinder of D.P.S.U. The downward movement of the piston compresses the speeder gear to maximum
KORBA SIMULATOR
158
speed setting and thus building maximum secondary oil pressure corresponding to full valve opening. FEED WATER HEATERS INTRODUCTION A feedwater heater is a special form of a shell and tube heat exchanger designed for the unique application of recovering the heat from the turbine extraction steam by preheating the boiler feedwater. Its principal parts are a channel and tubesheet, tubes, and a shell. The tubes may be either bent tubes or straight tubes. Feedwater heaters are defined as high pressure heaters when they are located in the feedwater circuit upstream from the high pressure feedwater pump. Low pressure feedwater heaters are located upstream from the condensate pump which takes its suction from the condenser hotwell. Because the discharge pressure from these pumps differs greatly, the physical and thermal characteristics of high and low pressure feedwater heaters are vastly different. Typically low pressure feedwater heaters are designed for feedwater pressures between 27 kg/cm sq. and 56 kg/cm 2, high pressure feedwater heaters range from 112 kg/cm2 for nuclear heat sources to 335 kg/cm2. for super critical boilers. Regardless of the actual design pressure, the classification depends upon the cycle location relative to the feedwater pumps. The design pressure is specified sufficiently high so as to not over-pressure the channel side of the heaters under any of the various operating conditions, particularly cat pump shut-off. Each feedwater heater bundle will contain from one to three separate heat transfer areas or zones. These are condensing, desuperheating and sub-cooling zones. Economics of design will determine what combination of the three is provided in each heater. A condensing zone is present in all feedwater heaters. Large volumes of steam are condensed in this zone and most of the heat is transferred here. The desuperheating zone is a separate heat exchanger contained within the heater shell. This zone’s purpose is to remove superheat present in the steam. Because of the high steam velocities employed, condensation within the desuperheating zone is undesirable. The sub-cooling zone, like the desuperheating zone, is another separate counter flow heat exchanger whose purpose is to sub cool incoming drains and steam condensate.
KORBA SIMULATOR
159
HEATER OPERATION The following are precautions that should be adopted when operating these feedwater heaters. START - UP Feedwater heater operation should not be undertaken if any of the protective devices are known to be faulty. Feedwater heaters are not to be operated at fluid temperature higher than those shown on the specification sheet. Feedwater heaters must not be subjected to abrupt temperature fluctuations. Hot fluid must not be introduced rapidly when the heater is cold, not cold fluid when the heater is hot. Prior to opening the feedwater valve, the channel start-up vents are to be opened and remain open until all passages have been purged and feedwater begins to discharge. To remove air from the shellsides of a heater which does not operate under vacuum, the shell start-up vent valves should be opened prior to the admission of steam to the feedwater heater. The extraction lines must be free of all condensate to prevent damage to the heater internals by slug flow. When the drains outlet valve is opened, the shell start-up vent valves are to be closed and the operating air vent valves are to be opened. Continuous venting of air and other non-condensibles is assured by keeping the shell operating vent valves open. On initial plant start-up of horizontal feedwater heaters, having integral drain coolers, the liquid level is to be kept just below the high level alarm point. This will avoid the possibility of flashing at the sub-cooler inlet and the possible tube damage that can result. During initial start-up phases, the drains approach temperature (difference between drain cooler and feedwater inlet temperatures) should be monitored. Approach temperatures in excess of 8OC indicate the probability of flashing at the sub-cooler inlet. In this case, the liquid level should be raised until the drains approach temperature approached the specified value. The various turbine extraction’s are charged as follows : •
LPH – 1, Always in service.
•
LPH - 2 & 3, These extractions are charged when the unit load is around 50 MW.
•
Deaerator Extraction is charged when IP exhaust pressure is > 3.5 kg/cm2. (around 40 % of unit capacity)
•
HPH - 5 & 6 These extractions are charged when unit load is around 50 to 60 % of unit capacity. KORBA SIMULATOR
160
VENTING Proper venting is necessary on feedwater heaters. All operating air vent connections must be piped to permit continuos venting. The venting system in a feedwater heater is designed to assure that all points where non-condensable gases could collect are vented. Failure to utilise all of the operating air vents can lead to corrosion damage and/or loss of performance due to air blanketing. Vent lines of heaters operating at a different shell pressure must not be piped to a common manifold. Failure to run individual vent lines from each heater has resulted in inadequate or no venting of a heater operating at a lower shell side pressure than other heaters, piped into a common manifold. Also, tubing adjacent to an air removal connection has failed due to erosion caused by blow back of condensed vapour fed into the heater from a manifold which also served a heater operating at a higher shellside pressure. Multiple operating air vent connections on the same heater can be manifolded downstream from the vent orifices and exhausted through a single vent pipe. The manifold must be sized to handle the total flow from all vents and discharged into a pressure lower than the vent pressure. A sharp distinction must be drawn between start-up vents and operating air vents, as identified on the Setting Plan drawings. Start up vents must be closed during operation, and in no event are start up vents to be piped up to a manifold serving the operating air vents. Vents should not be cascaded. Vent flow control is best accomplished through the use of properly sized sharp edged orifice constructed of stainless steel or other suitable erosion/corrosion resistant material. Vent piping should be sized to assure that the back pressure, at the discharge of the vent orifices, is no greater than 50 % of the shellside operating pressure. When there is no desuperheating zone in a given heater, this shellside operating pressure may be considered as equal to the steam inlet pressure. If a desuperheating zone is employed, deduct 0. 35 kg/cm2 from the steam inlet pressure to obtain the approximate shellside operating pressure for the purpose of sizing vent piping. Note that the intent is to control the operating air vent flow by assuring critical flow through the vent orifices. Isolation valves in vent piping should either be locked in the open position or some other suitable means provided to assure that such valves cannot be closed during normal operation.
KORBA SIMULATOR
161
FEEDWATER BY - PASSING A feedwater heater may be severely damaged by erosion and/or vibration, if it is operated for any significant period or time with the next lower heater’s feedwater flow by passed. When a heater is by-passed, its normal feedwater is passed on to the next higher heater. This next higher heater will come close to making up the duty of both heaters. This single heater will tend to draw a total amount of extraction of steam approximately equal to the flow to both heaters. In the case of heaters with desuperheating zones, the increased steam load due to bypassing the previous heater can cause an excessive pressure drop in the desuperheating zone, which in turn can cause condensation. The condensate flowing at high velocity can lead to severe tube erosion. Excessive steam flow to a heater, resulting from by-passing the feedwater side of the previous heater, can result in : •
Localised high velocity leading to vibration of the tubing.
•
Flows which cannot be adequately handled by the drain control valve.
•
Condensation in the desuperheat zone and high velocity impingement.
DEAERATORS PRINCIPLE OF DEAERATION The deaerating heater utilises steam by spraying the incoming water into an atmosphere of steam in the preheater section (first stage). It then mixes this water with fresh incoming steam in the Deaerator section. (Second stage). In the first stage the water is heated to within 2O of steam saturation temperature and virtually all of the oxygen and free carbon dioxide are removed. This is accomplished by spraying the water through self adjusting spray valves which are designed to produce a uniform spray film under all conditions of load and consequently a constant temperature and uniform gas removal is obtained at this point. From the first stage the preheated water containing minute traces of dissolved gases flows into the second stage. This section consists of either a distributor or several assemblies of trays. Here the water is in intimate contact with an excess of fresh gas/free steam. The steam passes into this stage and it is mixed with the preheated water. Deaeration is accomplished at all rates of flow if conditions are maintained in accordance with design criteria. Very little steam is condensed here as the incoming
KORBA SIMULATOR
162
KORBA SIMULATOR
163
DEAERATOR AND FST CONNECTION
water has a high temperature caused by the preheating. The steam then rises to the first stage and carries small traces of residual gases. In the first stage most of the steam is condensed and the remaining gases pass to the vent where the noncondensable gases flow to the atmosphere. A very small amount of steam is also discharged to the atmosphere which assures that the deaerating water is adequately vented at all times. The water which leaves the second stage falls to the storage tank where it is stored for use. At this time the water is completely deaerated and is heated to the saturated steam temperature corresponding to the pressure within the vessel. The condensate pressure just before the entry to Deaerator shall be atleast 3 psi more than the Deaerator steam pressure. OPERATION OF THE DEAERATOR 1. Flush out all lines and tanks with water until there is no apparent indication of foreign matter or rust. Spray nozzles should be free from all foreign material. 2. Manually check all controls to see that each is working freely. 3. Check to see that all instruments are operating and indicating correctly. 4. Open the Deaerator vent valves or open orifice bypasses to atmosphere. 5. Admit condensate water and slowly increase from 15 % to 30 % of design inlet flow fate. 6. Put one boiler feed pump in service with recirculation to Deaerator. 7. After making certain that adequate steam pressure is available, open steam valve slowly admitting steam into the Deaerator. 8. When a strong flow of steam issues from the vents, start throttling the vent and check feed storage tank temperature. 9. The gauge should read 2 to 3oF below saturation temperature at the existing pressure. 10. Throttle back vent valves to operating positions. The final position is determined in conjunction with oxygen tests during operation.
KORBA SIMULATOR
164
RECOMMENDED NORMS FOR TEMPERATURE CHANGES Changing cold or hot water admission to the water box must be accomplished in a controlled manner. The control must assure that the rate of temperature change of the metal in the shell or the water box does not exceed 400oF per hour with instantaneous changes not greater than 50OF per minute for a total excursion of 150oF. Cold start-up can severely stress a Deaerator. To avoid a severe thermal shock it is recommended that cold start ups be preceded by a warm up steam with the vents open and no flow in to the water box. The steam flow should be regulated to permit the steel shells to heat at a rate of 50OF per minute upto about 200oF. Water in the storage tank should also be heated to the same value. When the entire vessel and its contains are heated, the steam supply should be shut off and any remaining steam vapour should be vented. Accelerated cooling is often desirable for repair work. Accelerated cooling can be accomplished using a cooling fluid which is 100OF to 150OF lower than the metal temperature until the metal has cooled to about 250OF. The rate of change of metal temperature should stay in the 100O F/Hr range. Once the metal is at or below 250OF, cooling of 60OF to 70OF may be used. FEED SYSTEM OPERATION SYSTEM DESCRIPTION The purpose of the Feedwater System is to provide an adequate flow of properly heated and conditioned water to the boiler and maintain boiler drum level compatible with the boiler load. This system also conveys water to the boiler reheater at temperators, superheater at temperators, auxiliary steam desuperheaters, the high pressure bypass desuperheater and HP fill & purge SGCW pump cooler. Feedwater is heated to achieve an efficient thermodynamic cycle. Under normal operating conditions, feedwater flows from the outlet nozzles of the Deaerator storage tank, through the boiler feed booster pumps (BFBP), to the boiler feed pumps (BFP). From the discharge of the boiler feed pumps, the flow continues through both high pressure feedwater heater strings to the boiler economiser inlets. A bypass line around the heaters is provided for removal of either or both heater strings from service.
KORBA SIMULATOR
165
The high pressure feedwater heaters receive extraction steam from the cold reheat line and the IP turbine. The feedwater absorbs heat from the extraction steam as it passes through the heaters. The boiler feedwater flows through individual suction line to the Booster Pumps of 2 x 50 % turbine driven boiler feed pump ( A & B) and 1 x 50 % motor driven boiler feed pump (C). A hand operated isolation valve followed by a temporary start up strainer have been located in each booster suction line. At the suction line of booster pump C (Motor driven BFP) there is provision for introducing hydrazine and ammonia which could be dozed during a wet lay pump operation. From the discharge of booster pump, feedwater flows through the suction of BFP. A flow element has been located in each of these lines. One 275 mm inner dia discharge line merges out from each BFP with one check valve and one motor operated stop check valve placed in series. These lines then form a common discharge line. Each feed pump discharge is provided with an automatic modulating recirculation valve and two locked open isolating valves, located before the discharge check valve, and recirculate feedwater back to the Deaerator feedwater storage tank, as required. This ensures that the feed pumps are each protected by maintain the minimum recirculation flow corresponding to its speed. The balance leak-off line of each BFP is always open and ensure a return flow path to the pump suction. The feedwater temperature is initially raised by passing through the low pressure feedwater heaters and Deaerator feedwater heater. These heaters are associated with the condensate system. The feedwater temperature is further raised in high pressure feedwater heaters. The common discharge header of BFPs ultimately splits into three lines: one for each string of high pressure feedwater heaters (HP Htrs. 5A-6A & 5B6B) and a common bypass line for both strings. The feedlines to HP feedwater heaters each contain two motor operated isolation valves: one on the inlet side of HP feedwater heater 5A/5B and one on the outlet side of HP feedwater heater 6A/6B. The bypass line located between heaters 5A-6A string and heaters 5B-6B string and is sized to accept full feedwater flow, which can be regulated by a motor operated globe valve. Pressure relief valves are provided on the tube side of heaters, to accommodate thermal expansion of the feedwater when a heater is isolated. The outlet header from each string the joins into a common header. The low-load feed control valve (FCV0657) together with one motor-operated control valve bypass and two motor operated control valve inlet -outlet isolation are located parallel to the above common header. Thereafter, this header contains a flow element, a check valve and an isolation valve prior to entering into the economiser.The reheater attemperator supply line has been taken from an intermediate stage of each BFP which join into a common line prior to entering into the spray control station. This line also contains a flow element. The arrangement for superheater attemperator supply line is identical to the above one, excepting that the line is taken from the kicker stage of each BFP.
KORBA SIMULATOR
166
KORBA SIMULATOR
167
HP HEATER CONNECTIONS
SYSTEM CONTROL Two x 50 % turbine driven boiler feed pumps can be controlled either from the Unit Control Room (UCB) or from the Local Control Panel (LCP). These pumps are used during normal operation. In addition, another 50 % motor driven boiler feed pumps has been provided for start-up and standby operation, which is to be controlled from the Central Control Room. Under normal operating conditions, the main feedwater flow continues through each of the two turbine-driven BFBP discharges to the BFP associated with a particular BFBP. There is no cross connection between BFBP’s, nor is there any isolation valve between the discharge of the BFBP ‘s and the suction of the BFP’s. Under normal operation, if there is a malfunction with either a BFBP or BFP, that unit will trip out and cause its companion pump to also trip; at the same time, the motor driven BFP will be brought up to system performance level by operator intervention. Suction strainer of each BFP is provided with a diff. Press. Switch (PDS-0601, 0612 & 0623). In the event of high differential pressure (0.5 kg/cm2 ) these switches actuate control room alarm. This alarm indicates that the suction strainer is dirty and should be cleaned as soon as possible. The standby pump should be cleaned as soon as possible. The standby pump should be placed in service. Thereafter, the suction strainer should be thoroughly cleaned. Each BFP is protected by safety interlocks to prevent eventualities like dry running, low NPSH, lubrication failure, minimum flow conditions, etc. Steam to BFP turbine is normally provided from the IP turbine exhaust. However, during unit start-up or during main turbine tripped condition, steam to BFP turbine is supplied from auxiliary steam or cold reheat steam. Each TD BFP has been provided with two x 100 % Main / Auxiliary Oil Pump and one Emergency Lube Oil Pump. These pumps can be controlled either from UCB or from LCP. The standby auxiliary oil pump shall start automatically in the event of either the tripping of the running oil pump or fall in pump discharge header pressure, to 6.5 kg/cm2, sensed by the pressure switch PSL 3.1. The emergency lube oil pump shall start automatically when lube oil pressure falls to 1.0 kg/cm2, sensed by pressure switches (PSL 3.2A, B & C). This pump can also be controlled either from UCB or from LCP. The jacking oil pump control has been provided on LCP. This pump shall start automatically when turning gear motor operated valve is open. Control of ID TD BFP turning gear has also been provided on LCP. Turning gear motor operated valve shall open automatically when BFP turbine speed is less then 210 rpm and shall close automatically when BFP turbine speed is greater than 240 rpm. The opening of the valve is so controlled that during turning gear operation the turbine speed remains around 100 rpm. Further, the above valve can only be opened either automatically or manually provided the lube oil pressure is 2.5 kg/cm2 (PSL 3.11) or more.
KORBA SIMULATOR
168
Each BFP turbine has been provided with Electro hydraulic governor (EHG), which is backed by a hydraulic governor. EHG can be controlled from both UCB and LCP. EHG is actuated to maintain turbine speed depending on a signal from feed water controller. Speed of MDBFP is maintained by actuating the scoop tube of the hydraulic coupling, depending on the feedwater controller signal. The MDBFP has been provided with one auxiliary oil pump and one shaft driven oil pump associated with the hydraulic coupling. MDBFP utilises the auxiliary lube oil system until the BFP’s associated shaft driven oil pump has developed an acceptable discharge pressure. The auxiliary lube oil pump is then placed in standby. The control of auxiliary oil pump has been provided on UCB only. This pump shall start automatically under any of the following conditions : a. When start command is initiated to MD BFP. b. When MD BFP rotates in reverse direction during standby condition. c. In the event of tripping of MD BFP for a duration of 5 to 10 minutes. d. When lube oil pressure falls to or below 1.2 atg, sensed by pressure switch and MDBFP is running. This pump shall stop automatically when lube oil pressure increases to 3 kg/cm2, sensed by pressure switch. Seal water for both MD and BFP’s is normally supplied from CEP discharge header. Over and above this supply, a common Emergency DC Seal Water Pump (ESP) for all BFPs has been provided to supply water to BFP seals in the event of normal supply failure. The control of ESP is located on the LCP. When the quench pressure to BFP seals falls to 10 kg/cm2, sensed by pressure switches , all BFP shall trip and ESP shall start automatically. Once started, ESP shall be stopped after 5 minutes. Seal water pressure is maintained by actuating the diff. pressure control valve CI-7, 13 & 19 depending on the different pressure signal (sensed by DPT - 244a, b, c) between seal water supply header and Booster pump A/B/C suction line. Gland seal drains of all BFPs is collected in a gland drain tank, where from the drain is transferred by 2 x 100 % Gland Drain Pump (GDP) to Condenser via LP Flash Tank. The GDP is controlled from the LCP. The Gland Drain Pump shall start automatically when gland drain tank level becomes high and shall stop automatically when above level becomes low (both level sensed by LS 162.) Recirculation Control Valve of each BFP modulates automatically to ensure minimum recirculation flow (sensed by flow transmitters corresponding to the operating speed through the pump. This valve opens automatically when differential temperature of feedwater across BFP suction and discharge increase 10OC.
KORBA SIMULATOR
169
The boiler feed pumps each discharge through a motor operated discharge valve. During normal operation FW passes through the HP feedwater heaters. However, in the event of very high level in individual heater, one string of HP feedwater heaters, gets bypassed. For this reason motor operated bypass valve is placed across two strings of HP feedwater heaters. A common SERVICE - AUTO - BYPASS control switch for HP feedwater heater bypass arrangement has been provided on UCB. On AUTO position of the control switch, in the event of very high water level in any HP feedwater heater, sensed by level switches, the bypass valve opens around 50 %. Opening of FW-014 to 50 % position shall cause closing of inlet - outlet motor operated valves of the affected string. When both the string of HP feedwater heaters get bypassed, FW-014 opens full and maintains normal feedwater flow. Full opening of FW-014 shall cause closing of inlet-outlet motor operated valves of the string in service. Restoration of the heater level to normal will not automatically restore the affected string into service. The return to normal operation must be initiated by operator action with the help of SERVICE position of control switch. On BYPASS position of the control switch both heater strings get bypassed, as explained above, irrespective of level condition in each heater. After passing through the HP feedwater heaters, the feedwater reaches the feed control station. During start-up and low load (20 % MCR) condition, l Element drum level control remains in service and the low load feed control valve, isolating valves open automatically. Full opening of these valves shall cause closing of feed control station bypass valve, FW-015. When the load increases and exceeds 20 % MCR, 3 element drum level control comes into service and the bypass valve opens automatically. Full opening of this valves has been provided on UCB. The feedwater header is then directed to the economiser inlet header. INSTRUMENTATION AND CONTROLS FOR FEED WATER DESCRIPTION A 3 element Deaerator feedwater storage tank level control with condensate flow matched to the feedwater flow trimmed from the Deaerator level error system, is supplied. This system has provisions for an automatic trip of all feedwater system pumps in the event of every low level in the Deaerator, with low level alarms at a higher level. Dissolved Oxygen at BFBP suction and dissolved Oxygen, PH, Conductivity & residual hydrazine at economiser inlet are monitored. Analysers and recorders are provided in the steam and water analysis system panel. The BFBP’s are driven by the same drives as that of the BFP’s, and as such, operate simultaneously and in the same mode as their respective BFP’s. Differential pressure across the BFBP suction strainer is monitored. These strainers and their associated instrumentation are temporary and should be removed prior to KORBA SIMULATOR
170
commencement of commercial operation. A high differential pressure across the strainer will initiate an alarm in the control room so that the pump in question can be taken out of service and the strainer cleaned. The speed of each BFP turbine is regulated by the 3-element feedwater control which is regulated according to boiler drum level, feedwater flow to the economiser and main steam flow. During low load (around 20 % MCR) conditions, the system is regulated only by drum level (single element control) by modulating the low load feed control valve. There are no control valves in the main discharge piping from the BFP to the boiler, since the Feedwater flow is controlled by the BFP turbine speed or in case of the motor driven pump by the hydraulic coupling scoop tube position. MOTOR DRIVEN PUMP If the motor driven pump is used for start-up, there is no back pressure available through the boiler and the hydraulic coupling has only a 4:1 turndown capability. Therefore, the low load feed control valve is provided to prevent an inability to control the pump during start-up. TURBINE - DRIVEN B.F. PUMP OPERATION Either of the turbine -driven pumps has the capability to be used for starting up the plant. An auxiliary steam supply to each pump has enabled either pump to run up to a point where sufficient flow is available to the boiler. The low-load feed control valve will regulate flow to maintain drum level. SINGLE ELEMENT VERSUS 3 - ELEMENT CONTROL A common nominal 20 % low load feed control valve has been installed in parallel to the common pump discharge header which will operate from a single element drum level signal. When the 20 % load index is reached, the control will transfer, and the low-load feed control valve is to be closed manually. The flow will then be directed through the main discharge line with the control transferred to the normal 3-element feedwater control signal which will modulate the hydraulic coupling scoop tube for the motor-driven pump or the turbine governor for the turbine driven pumps. The flow through each BFP is measured in the pump suction line. Control valves are provided in recirculation lines from each pump discharge to the Deaerator, to insure the minimum flow through each pump corresponding to its speed. Feedwater heaters 5A-6A & 5B -6B all have automatic bypassing on very high level incorporated in their controls. KORBA SIMULATOR
171
The inlet and outlet motor operated block valves (MOV) on each string of heaters and the heater bypass MOV are interlocked to prevent complete shut off of feedwater flow to the boiler. Very high level in either heater in a particular string (5A/6A or 5B/6B) will initiate isolation of that string and opening of the bypass to 50 % positions. HEATER DRIP AND VENT OPERATION DESCRIPTION OF SYSTEM The purpose of the Heater Vents and Drains System is to remove condensate that has accumulated in the shell side of the closed feedwater heaters from their heat source the extraction steam, and cascade the condensate to the next lower pressure heater. This system also removes any non-condensable feedwater heaters. The heater drain system transfers the shell drains from each closed feedwater heater to the next lower stage of heating and ultimately to the condenser through HP/LP Flash Tank. The normal operating flow path is from heater nos. 6A-6B to No. 5A-5B and on to the Deaerator where in the drains are incorporated in the feedwater flow. From heater No. 3 the drains cascade to heater nos. 2,1, through the drain cooler and into the condenser, through LP flash tank. The drain line from the drain cooler section of each heater, except heater no. 1, divides into two branches, one leading to the next lower pressure heater and the other to HP/LP Flash Tanks. Each branch contains a modulating type control valve located near the inlet of the receiving vessel. The drain from heater no. 1 has a separate drain line to the LP flash tank, through a modulating control valve. Vents and drain of HP/LP flash tanks are finally connected to the condenser. Normal drain from each closed feedwater heater except LP heater 1 has also been provided with a local manually operated level control bypass valve, which can be used in the event of controller failure. All HP feedwater heaters 6A-6B & 5A-5B are provided with shell operating vents and shell start-up vents, which are routed to the HP flash tank manifold, where from drain and vent are connected to the condenser. Likewise, LP feedwater heaters 2 & 3 are provided with shell operating vents and shell start-up vents, which are directly routed to the condenser along with LP Flash Tank vent line. LP feedwater heater no.1, however, is provided with shell operating vent alone, which is also routed to the condenser. The operating vent lines from all feedwater heaters are fitted with orifice plates for flow control. The start-up vent lines from feedwater heater nos. 6A-6B, 5A5B, LPH-3 & LPH-2 and deaerating feedwater heater are provided with manually operated modulating valves. The deaerating feedwater heater vents, both start-up and operating, are piped to atmosphere.
KORBA SIMULATOR
172
SYSTEM CONTROL All feedwater heaters are provided with two field mounted pneumatic level controllers, one for each drain flow path. One controller is set to maintain normal water level in the heater, by providing an appropriate control signal for the modulating drain control valve, located in the cascading drain line to the next lower pressure feedwater heater. The second controller is set at a level higher than normal, and provides a control signal to an alternate modulating drain control valve, which is located in the line branching off the cascading drain and connected directly to the HP/LP flash tanks. The normal operating level of each feedwater heater is specified by the heater manufacturer and this define the set point for the normal level control. Each feedwater heater is provided with “low”, “high” and “high high” level switches. The “low” level switch, set below the lowest pneumatic level controller set point, initiates an alarm in the control room so as to indicate the normal level controller malfunction. The “high” level switch, set above the highest pneumatic level controller set point, provides control room annunciation of high condensate level in the heater. Also, the “high” level switch will open the modulating control valve in the emergency drain line of the affected heater. The “high high” level switch which has a set-point above the “high” level switch provides control room annunciation in addition to the following: a. Closes control valve on the incoming cascade drains to HP feeder water heater nos. 5A-5B, deaerating feedwater heater, LP feedwater heater nos. 3,2 or 1. b. Closes the non-return valve and motor operated isolation valve in the extraction steam lines to the particular heater concerned with the exception of Heater no. 1, which has no means of extraction steam side isolation. c. Opens the condensate bypass valves and closes the isolation valves for LP feedwater heater nos. 1,2 or 3. d. Opens the feedwater bypass valves and closes the isolation valves for HP feedwater heater strings 5A-6A or 5B-6B, depending on which string is experiencing the high level condition. Each heater drain control valves, are provided with open/close position indicating lights as well as manual over-riding control switches in the control room. START UP The heater vents and drains system remains in service at all times and would normally be in service throughout the unit start-up. With the loading of the turbine, as the extraction steam flow increases, the heater levels are established. Keep the heater drains in service. KORBA SIMULATOR
173
During start-up sufficient differential pressure for cascading would not be available in the low pressure heaters. As a result, normal drains would remain ineffective, and heater drains have to be diverted through the emergency drain line. The heaters have to be vented through manually operated shell start-up vent valves during start-up, which are to be closed when steady - state operation has been reached. The heater no.1 has to be vented manually to the condenser during startup, and this vent will remain open at all times. Shell operating vents of all the heaters would always remain open. STEADY STATE OPERATION The heater drains and vents are designed to operate primarily in the automatic mode over the range of system design loads. Heater levels are maintained by the inherent balancing characteristics of the cascaded system and heater level is maintained by proper positioning of the forward level regulating valves or the bypass valves. Venting is regulated by the orifices in the vent lines to the condenser (or atmosphere in the case of the Deaerator). At low load conditions, wherein sufficient differential pressure for cascading might not exist in the low pressure heaters, the drains will be diverted to the condenser.
KORBA SIMULATOR
174
CONDENSER AND EVACUATION SYSTEM
KORBA SIMULATOR
175
KORBA SIMULATOR
176
GLAND STEAM CONDENSER SPECIFICATIONS Pressure drop a cross gland steam condenser Condensate side
:
0.21 Kg.cm2
Steam side
:
0.025 Kg/cm2
Capacity of gland steam condenser
:
0.57 T/hr
No. of Blowers
:
2 Nos.
Blower rating
:
4.0 KW max.
Gland Steam Condenser Parameter (Design Temperature)
Design Value
Shell side
:
350oC
Tube side
:
100Oc
Hydraulic test pressure (Shell side)
:
60 kg/cm2
Empty
:
1240 kg
Flooded
:
1690 kg
Operating
:
1465 kg
Vacuum Raising System
:
2 Nos of 100% each
Weights
Capacity of Vacuum pumps in free dry air at Standard :
50 Nm3/hr.
conditions with pump operating at saturated in take condition of 25.4 mm Hq abs pressure and sub cooled to 4.17oC below temperature corresponding to absolute suction pressure Capacity as above but absolute suction pressure 50.8 mm :
85 Nm3/hr.
Hq abs in place of 25.4 mm Hqabs Discharge pressure
:
1.033 Ksc abs.
For 1 above
:
12.3oC
For 2 above
:
24.5oC
:
36oC
Cooling water inlet temperature
Design TTD (Difference of saturation temperature cooling water inlet temperature.
KORBA SIMULATOR
177
Blank off pressure with CW temperature 36oC at Pump suction
:
51 mm Hq abs
Ejector suction
:
30 mm. Hq. Abs
Minimum suction pressure at pump inlet (allowed) at :
65 mm Hq abs
36oC No of stages
:
One
Pump rated speed
:
21.9 m/sec
Maximum
:
120 kW
As per condition 1
:
80 kW
As per condition 2
:
92 kW
Sealing water pressure
:
0.2 KSC (g)
Cooling water pressure
:
6.0 KSC (g)
Volume of condenser steam space to be evacuated
:
2120 m3
Pump model No.
:
2BE 1 353 - OBL 4
Suction and discharge size
:
200 mm NB
Capacity at 50.8 mm Hq abs and water vapour to saturate :
85 Nm3/hr.
Power required (at pump)
Pump detail.
Heat Exchanger in addition to 7.5oF under cooling Inlet pressure
:
25.4 mm Hq abs
Power at motor terminal box at 25.4 mm abs
:
80 kW
Pump running time to evacuate initial condenser volume
:
14 mins.
Motor Standard Continuous rating
:
155 kW, 50 Hz, 0.4 kV, 3 phase
Rated speed
:
590 rpm
Full load current
:
280 Amps
Power factor at rated load
:
0.82
Type
:
Squirrel cage, induction motor.
KORBA SIMULATOR
178
KORBA SIMULATOR
179
CONDENSER COOLING WATER SYSTEM
VACUUM PUMP SPECIFICATION OF VACUUM PUMP NO. OF PUMPS :
:
2 Nos. Each of 100% cap. For each unit of 500 MW.
Capacity of vacuum pumps in free dry air at : standard
conditions
with
pump
operating
50 Nm3 /hr.
at
standard intake conditions of 25.4 mm of Hg abs. Pressure
and
sub
cooled
to
4.17OC
below
temperature corresponding to absolute suction pressure Capacity as above but absolute suction pressure :
85 Nm3 /hr.
50.8 mm of hg abs. In place of 25.4 mm of HG abs Discharge pressure
:
1.033 KG/Cm2 abs.
For conditions 2 above
:
12.3OC
For conditions 3 above
:
24.5OC
Design TTD (Difference of saturation temp - cooling :
13.9OC
Cooling water inlet temperature
water inlet temperatur Minimum suction pressure at pump inlet (allowed) :
65 mm of Hg abs.
at 36OC cooling water temperature Number of stages
:
one
Pump rated speed
:
590 rpm
Rotor /vane tip speed
:
21.9 m/sec.
Maximum
:
120 KW
As per condition 2 above
:
80 KW
As per condition 3 above
:
92 KW
Cooling water required
:
75 Nm3 /hr.
Sealing water flow (closed circuit)
:
32 Nm3 /hr.
Sealing water pressure
:
0.2 KG/Cm2 (g)
Cooling water pressure
:
6.0 KG/Cm2 (g)
Power required (at pump)
KORBA SIMULATOR
180
Volume of condenser steam space to be evacuated
:
2120 M3.
Suction and discharge size
:
200 mm NB
Heat exchanger
:
9.5x0.8x3810
Air ejector size
:
150 mm
Separator size
:
1600 litres.
Guaranteed performance.
:
Pump details. Pump model No. 2BE 1 353 - OBL 4
Tube size ODX thickness x length in mm
Capacity at 50.8 of Hg abs. And water vapour to :
85 Nm3 /hr.
saturate in addition to 7.5OF under cooling Inlet pressure
:
25.4 mm of Hg. Abs.
Power at motor terminal box at 25.4 mm abs
:
80KW
Pump running time to evacuate initial condenser :
14 mins.
volume Motor standard continuous rating :
:
155KW, 50 Hz, 0.4KV, 3 Phase.
Rated speed
:
590 rpm
Full load current
:
280 amps.
Power factor at rated load
:
0.82
Type
:
Squirrel
cage,
induction
motor. DESCRIPTION OF THE VACUUM PUMP ELMO-F Vacuum pumps are the modern discovery for deaerating steam turbine condensers in to-days power stations. The air, which penetrates into the condenser of power station, reduces its efficiency. Vacuum pumps are used •
To extract this air before the condenser is put into operation (hogging operation)
•
To evacuate continuously the leakage air which flows into the condenser during holding operation in order to permit good heat transfer and thus optimum condenser pressure is maintained.
KORBA SIMULATOR
181
Three types of vacuum pump systems are most frequently used now a day in power plants.These are 1. Water jet vacuum pumps 2. Steam jet vacuum pumps 3. ELMO-F liquid ring vacuum pumps. The ELMO-F vacuum pump is popularly known as ‘Energy Saver’ with ELMO-F vacuum pumps, the steam portion which has been drawn in, condenses in the operating water. This results in a very high specific suction capacity at low power demand. Thus liquid ring ELMO-F vacuum pump comes out to be cheapest installation for evacuating the condenser. Because of their high reliability, flexibility and lowest operating cost, ELMO-F liquid vacuum pumps are the obvious choice for our modern power plants. In all 500 MW, the ELMO-F liquid ring vacuum pumps are used to evacuate steam turbine condensers. PRINCIPLES OF OPERATION & DESIGN FEATURES In vacuum pump gas flow enters the compression chamber from both sides(double flow system). The working fluid is normally water but in special cases solvents, acids etc., may be used. The rotor of the vacuum pump is arranged off-centre in the casing. The rotation of the rotor causes the working liquid in the casing to form a ring which rotates with the rotor. The liquid recedes from the hub of the rotor and the gas being pumped is drawn through the suction port. On discharge side, the ring of liquid approaches the hub again and discharges the compressed gas through the discharge port. The operating water is heated by the steam, which has been drawn, in the condensing and by compression process. Part of this water is discharged with the compressed medium and is separated from the air in a separator attached to the pump and led-off. This water must be replaced with fresh and cool water. The cooling of this operating water is undertaken in the heat exchanger. The comparatively cold operating water from heat exchanger is drawn in by the ELMO-F vacuum pump at the rotor hub and thus seals the gap between the non-contact rotor and the flat port plates. The operating liquid supplied at atmospheric pressure and the quantity is controlled automatically internally. Thermal loads, any back pressure and bubble of water on the suction side have no detrimental effect due to the single stage design, the flat port plates, suitable clearances and automatic control of the required operating liquid flow. Single stage ELMO-F liquid ring vacuum pumps have only one moving part, the rotor, which rotates in the casing without contact. There is, therefore, practically no wear during continuous operation and the pumps require little maintenance. The pump material is selected according to the plant conditions.
KORBA SIMULATOR
182
The direct contact between the cooling liquid ring and the water vapour/air mixture being compressed, during holding operations, results in the water vapour condensing in the vacuum pump. This condensation increases the suction capacity of the ELMOF pump considerably, compared to when dry air is being extracted. Power requirement do not increase. Major studies on ELMO-F vacuum pumps reveal that condensing effect depends substantially on how the operating liquid is supplied and the design of the impeller. The typical vacuum pump casing is elliptical. The rotor is normally sealed with readjustable stuffing box packing and the sealing sections are fitted with replaceable wearing sleeves. The size of the vacuum pump in condenser operation is determined by: 1. The designed leakage air mass flow 2. The required suction pressure 3. The given mixture subcooling. The air sucking capacity of vacuum pump is a function of suction pressure and the mixture of sub cooling. It is clear that the size of the pump is affected significantly by the sub cooling and the suction pressure for which it is designed. Again leakage air mass flow depends on the condenser steam mass flow at rated load. Hence, size of the vacuum pump is determined after giving due considerations to all these above factors. The air, which penetrates into the condenser of a power station, reduces its efficiency. Before the condenser is put into operation, the air must be extracted (Hogging operation) and also during actual operation (holding operation). The vacuum pump serves this purpose. Vacuum pump works under two modes 1. Hogging operation 2. Holding operation HOGGING OPERATION In hogging operation both vacuum pumps operate in parallel and air extracted from the condenser into the suction pipe of both the vacuum pump units via the butterfly valve (16 a & 16 b). The butterfly valve (19 a) remains closed. The air ejector is idle. KORBA SIMULATOR
183
The suction pressure is indicated on the vacuum gauge (1 b). Hogging operation ends when a suction pressure of about 120 mbar abs. is reached. HOLDING OPERATION In holding operation only one vacuum pump remains in operation shutting down of the standby unit. Under special conditions such as • low partial load •
fouled heat exchanger (13)
•
unexpected high pressure loss in the suction piping from condenser to vacuum pump.
The suction capacity can be improved with the air ejector (2) installed upstream.The Vacuum pump can achive a suction pressure of approximately 10mbar withan air ejector with improved capacity. Based on the measured values of the pressure transmitter PT (1Z) and the resistance thermometer TE (45), the delivered ISKAMATIC will decide whether the operation with or without air ejector is favourable. At operation without air ejector (2) the air is extracted from the condenser to the vacuum pump directly via the butterfly valves (16 a and 16 b). At operation with air ejector (2) on signal from Iskamatic the butterfly valve (19 a) will be opened and the bypass valve (16 b) will be closed. Operating air flows to the air ejector (2) via pipe (19) and air from the condenser flows to the vacuum pump via butterfly valve (16 a) and air ejector (2) making the air ejector operative. Together with part of the working fluid, the air is passed via the wet pressure line (17) to the separator (8) where the liquid is mechanically separated form the air. The air leaves the unit at atmospheric pressure via check valve (18 c) at discharge connection. The separated liquid is recirculated to the vacuum pump through a heat exchanger (13) in which the waste heat is removed. The separator is provide with a water level indicator (23), drain valve (24 a), overflow regulator (22b), feed regulator (22 a ) with bypass valve (24 b), and flow meter (20 b) with shut off valve (20 a). To measure air leakages the valve (18 c) must be closed. The air thus flows through flow meter (20 b). Air leakage measurements can only be taken during holding operation. During start up and hogging operation it is important that valve (18 c) is open. The check valve (18 c) is equipped with a hand lever to keep the valve disk closed during air leakage measurement. During air leakage measurement valve (20 a) must be open. The function of the pressure switch (47) is the cutting in/out of the standby - unit.
KORBA SIMULATOR
184
The function of the difference - pressure switch (47 b) is to open the system inlet valve (16 a), when a difference pressure of 30 mbar between condenser and pumpside is reached. The pressure switch (47 a) is installed to cut in/out the air ejector (2) in case of ISKAMATIC failure. By hooking up the fresh water supply with dirt trap (22 h), the feed regulator (22 a) supplies fresh water to the set into the separator and the pump and continues to do so until the desired level is attained. The liquid level in the separator is shown by the water level indicator (23). The overflow regulator (22 b) drains off excess water through the pipe (24). The shut-off valve (24 a) is used for complete draining of the separator (8). The heat exchanger (13) is completely drained through the shut -off valve (24 e) and the pump through shut off valve (241). The operating liquid is required to make up the liquid ring in the pump. It is drawn out of the separator (8) via pipe (26), then fed to the heat exchanger (13) and after cooling returned to the pump through pipe (28). The heat due to compression and also the heat resulting from condensation of the vapour drawn in with the air are thereby drawn off from operation liquid and dissipated. Line (28) is provide with temperature indicator (42) to monitor the operating liquid temperature and the Vacuum pump is provided with pressure indicator (48) to monitor the operating liquid pressure. The cooling water inlet to the heat exchanger (13) is equipped with a duplex filter (32f). AUTOMATIC CONTROL FOR AIR EJECTOR OPERATION (ISKAMATIC) The automatic control is cutting in/out the air ejector. By monitoring the temperature of the water ring and the suction pressure, the ISKAMATIC will decide whether the operation with or without air ejector is favourable. The typical characteristic line of suction pressure and water ring temperature has been given in the attached sheet. Will the actual suction pressure, recorded by an absolute pressure transmitter fall short of the tolerable pressure at the actual water ring temperature a signal generated by the automatic control will be utilised to cut in the air ejector. The pressure P limit for an operating pressure range without problems will be calculated by means of the recorded water ring temperature. This pressure will be compared with the actual operating pressure PD. PD is increasing the air ejector will be cut off, the moment P limit and a given hysteresis is passed.
KORBA SIMULATOR
185
PD
< P limit
ejector ON
PD
< + P hysteresis
ejector OFF
HOGGING AND HOLDING LOGIC •
When both pumps are ON and condenser pressure > 200 mbar then Hogging operation.
•
When condenser pressure is < 120 mbar then standby pump stops.
•
When standby pump is off then holding operation with one pump.
•
When holding operation is going on with one pump and condenser pressure > 200 mbar or running pump has tripped then standby pump takes auto start.
MODIFICATION IN THE VACUUM PUMP AT KSTPS In the original package unit, the cooling water for the surface heat exchangers was raw cooling water taken from ARCW pump discharge. As korba is located in the tropical zone, the CW temperature in summer seasons is maintained high. Thus, invariably in summer season, the seal water temperature was maintaining at very high value (45-50 deg. C). In addition to this, seal water temperature problem, the other problems faced due to this raw cooling water were • frequent choking raw water duplex filters. • Clogging of heat exchanger tubes. Due to these problems performance of liquid ring vacuum pump was getting deteriorated frequently. Hence, the cooling media for surface heat exchangers was changed to equipment cooling water (DM water) from raw cooling water. The equipment cooling water after being cooled in plate heat exchangers is used for cooling the seal water in heat exchanger of vacuum pump. The ECW being DM water the choking problem is eliminated. The seal water temperature is maintained 3-5OC less as cooling media flow increased due to high pressure (5-7 kg/cm sq.) in ECW system.
KORBA SIMULATOR
186
KORBA SIMULATOR
187
VACUUM PUMP FLOW DIAGRAM
AUTOMATIC CONTROL OF AIR EJECTOR OPERATION
KORBA SIMULATOR
188
HP AND LP BYPASS SYSTEM
KORBA SIMULATOR
189
KORBA SIMULATOR
190
HP/LP BYPASS SYSTEMS H.P. BYPASS SYSTEM The H.P. Bypass system in co-ordination with LP-Bypass enables boiler operation and loading independent of the turbine. This allows quick raising of steam parameters to a level acceptable to turbine for rolling during start up. Steam is Bypassed from main steam line to cold reheat line through HP-Bypass and from hot reheat line to condenser through LP Bypass. The HP Bypass valve can handle a maximum of 60 % of the full load turbine steam flow. The possible phases of operation of HP Bypass station can broadly be classified as follows: •
Boiler start-up with TG set on Barring Gear .
•
Raising of steam parameters to a level acceptable for T.G. rolling, at a relatively faster rate than otherwise is possible.
•
Turbine loading while steam flow gets transferred to the turbine.
•
Parallel operation with turbine on load rejection.
•
Allowing boiler operation following turbine trip-out provided boiler load is less than 60 %.
•
Preventing safety valves opening at raised steam pressures.
The HP-Bypass system consists of two parallel branches that divert steam from the M.S. line to C.R.H. line. The steam pressure on the valve upstream side can be maintained at the desired level. The steam is de-superheated in order to keep the steam temperatures in cold reheat line within limits, below 345OC. The M.S. pressure ahead of the turbine is maintained by two nos. of pressure reducing valves BP-1 and BP-2 combined with valve mounted electro-hydraulic actuator. The steam temperature downstream of the HP - Bypass station is maintained by 2 nos. of spray water temperatures control valves BPE- 1 and BPE -2 combined with valve mounted electro-hydraulic actuators. The spray water is available from the BFP discharge line. there is also one no. spray water pressure control valve combined with the valve mounted electro-hydraulic actuator.
KORBA SIMULATOR
191
HP BYPASS SYSTEM KORBA SIMULATOR
192
HP BYPASS SYSTEM HYDRAULICS Oil Supply Unit The oil supply unit provides the hydraulic actuation energy for the complete actuating system, and functions as follows: An electric motor driven axial-piston oil pump sucks the hydraulic fluid through a suction strainer and pumps it through a pressure filter and via a non-return valve into the accumulator. A safety relief valve protects the system against over pressure. The accumulator is of the bladder type and consists of a steel pressure vessel containing a nitrogen filled rubber bladder, which separates the oil from the gas. The accumulator supplies the system with pressurised oil and covers all peak supply requirement. The oil pump therefore, is sized only for the mean supply requirement and it is switched off when the accumulator is fully charged. From the accumulator the oil is fed through the supply manifold with pressure reducing valve and the pressure is set and controlled. The pressure switch monitors the oil pressure in the accumulator and provides the signals to switch on the oil pump motor. From the supply manifold the oil is fed through the pipework and the 3-micron pressure filters to the appropriate control valves and the actuators. SERVOVALVE The two stage servo valve actuated by the torque motor, which is controlled from an analogue-positioning amplifier or from a manual desk control. The torque motor moves the control fork (of the servovalve) and operates the pilot stage (1 st stage), which controls the position of the control piston (2 nd stage). A mechanical override acting directly on the control piston permits local manual operation of the valve. BLOCKING UNIT The electro hydraulically pilot-operated blocking unit is mounted between the servo valve and the actuator. It closes off both ports to the actuator if electrically deenergised or with insufficient oil pressure, and holds the piston of the actuator (disregarding some leakage drift) in its last position. A mechanical override on the blocking unit permits also local manual deblocking. ACTUATOR The actuator consists of a double acting cylinder with piston and piston rod. An intermediate yoke connects this cylinder with the valve, and a solid coupling connects the valve stem with the piston rod. A feedback transmitter unit is mounted onto the coupling yoke and is connected to the valve stem by a linkage system.
KORBA SIMULATOR
193
HP BYPASS: ELECTRO HYDRAULIC SERVO SYSTEM
KORBA SIMULATOR
194
TECHNICAL DATA Oil Pump
OV 16
OV32
UNIT
Supply capacity
12
24
l/min
Speed
1500
1500
Rpm
Nominal power
4
7.5
KW
Voltage
380
380
V
Frequency
50
50
Hz
Phase
3
3
No load rpm
1500
1500
Rpm
Oil tank volume
45
70
Litre
Useable volume
20
50
Litre
Nominal volume
10
30
Litre
Pressure rating
200
approx. Ambient min.
15OC
approx. Ambient max.
65OC
Operating gas
Nitrogen only
Bladder material
Perbunan (synthetic rubber)
Motor (Standard Motor)
Oil Tank
Hydraulic Accumulator (Standard) Bars
Available Oil Pressure The controlled system pressure 25 to 120 bar (set with the pressure reducing valve) The max. oil pressure (limited
50 to 180 bar
with the pressure relief Value) Pressure Switch
Pump motor - on
4 micro-switches for the set
Pump motor - off
points
Pressure too low Pressure too high
KORBA SIMULATOR
195
Electrical Rating
20 Amp at 488 V AC 10 Amp at 125 V AC 0.25 Amp at 250 V AC 0.5 Amp at 125 V AC
MODE OF OPERATION HP Bypass system is intended to ensure reheater protection, minimum superheater safety valve lifting under emergency conditions, adequate steam in CRH for auxiliary steam consumers, if taken from CRH, to retain the boiler under fire in case of turbine load rejections and to follow boiler control system during certain operation. The control system is designed to maintain the steam pressure ahead of Bypass valve to the given set value. The pressure set point can be adjusted from UCB. The steam temperatures at the downstream of valves are automatically controlled to the given set value. The temperature set point can be adjusted from UCB. The operation of the HP Bypass station is manipulated by the pressure and temperature set points and is independent of LP Bypass operation. Depending upon the initial pressure condition at the time of boiler firing the pressure ahead of Bypass valve minus a bias pressure. This will result in opening of the valves. The pressure controller would then maintain the set pressure by allowing a flow matching with the steam flow. As the firing rate increases, the set point needs to be manipulated in the same manner to allow flow sufficient through R.H. This however, shall be possible till the maximum flow capability of the valve is reached at any particular pressure and temperature at upstream. Upon reaching the target steam parameter for turbine rolling, the boiler firing rate will be maintained at the level. Before admission of steam into turbine, the HP Bypass shall be set to maintain the relevant steam pressure ahead of valves plus a bias pressure. Consequent upon steam admission in the turbine, the pressure ahead of Bypass valve would tend to fall in view of constant firing rate. This would result in proportional closing of Bypass valve during pressure controller action. The process shall continue till the set pressure up stream is reached. After this, further loading of the set can be achieved by increasing the firing rate. Thereafter, the Bypass set point shall be raised to live steam pressure plus a bias pressure of 2-5 ata. With this, the HP Bypass station would automatically open and balance the discrepancy between steam generation and consumption acting out of load rejection under normal operation of the unit. The control loop for the steam temperature at downstream of HP Bypass valve can be operated by modulating set point as required for different mode of start-ups governed by boiler/turbine characteristic as well as warm-up requirements of steam pipings.
KORBA SIMULATOR
196
CONTROLS AND INTERLOCKS PRESSURE CONTROL The signal for the HP Bypass station is sensed from the main steam and converted to proportional current signal by transmitters. The actual pressure is displayed at the desk by indicators. The set point can be varied from the desk by a push button module and is indicated on the console itself. TEMPERATURE CONTROL The control positioners for the Bypass spray temperature valves are designed in the same way as those for the HP Bypass valves. In addition PI controllers are also connected upto the control positioners. The temperature measuring signal from transmitters is compared at the PI controllers with the common temperature set point. According to particular control deviation the PI controller forms a rated signal for the control positioners of the associated temperature valves. The electro-hydraulic actuators make it possible to attain short positioning time for the spray water temperature control valves and then allow the temperature control to intervene fast enough in the event of quick opening of the HP Bypass valves. To off-set the time delay of temperature measurement and to achieve favourable conditions when reaching on the spray water cooling system (rapid adjustment to temperature input of the injection value controller by the associated Bypass valves positioning monitor. Thus, independent of the temperature signal, a certain amount of water is injected during the opening of the Bypass valve. Manual operation of the Bypass spray water temperature valve is effected by means of push button modules. The valve position and the control deviation are indicated on the desk. In order to ensure proper spray cooling on BP-1 and BP-2 under different steam flow rates the spray water control valves BPE-1 and BPE-2 are reset to a constant pressure feed water supply through the feed water pressure regulating valve BD. TEMPERATURE CONTROLLER (BPE VALVES) & POSITIONING LOOPS The purpose of this controller is to reduce the HP Bypass steam temperature by injecting water into the BP valves, in accordance with the reheater inlet temperature. PI action controllers drive hydraulic actuators to move the valves to maintain the steam temperature downstream of the BP valve at the preselected value. The temperature deviation, after passing through PI controller produces the valve position demand signal, which drives the proportional controller of the positioning loop, unit it is balanced by the BPE valve position feed back until it is balanced by the BPE valve position feed back signal, from the position transmitter fitted on the actuator.
KORBA SIMULATOR
197
OVERRIDES AND INTERLOCKS BPE OPENING SIGNALS Two anticipatory signals are given to the P part of the PI-P temperature controller. The first one is proportional to the BP valve position, the other one is a fixed value which is given as soon as the fast opening device of the corresponding BP valve is activated. This will ensure immediate opening of the spray valve as the BP valve opens, to counteract the measurement lag associated with temperature measurement. BPE AUTO INTERLOCK As the BP valves start to open, an auto signal is given to the BPE positioning loops. But the controllers of these loops are put on Auto only when the actual temperature is greater than an adjusted value. THERMOCOUPLE BREAKAGE If the thermocouple breakage is detected in the transmitter, an alarm is given and the BP control will be put on manual. TEMPERATURE HIGH An alarm is given when the attemperated steam temperature rises above a pre-set limit. TEMPERATURE TOO HIGH If the temperature rises still further and exceeds the set value, a closing override will be given to the BP control, also putting it on manual, to protect the condenser. SPRAY WATER PRESSURE CONTROLLER, BD VALVE The purpose of this controller is two fold. First, it serves to maintain the spray water pressure at a constant value to achieve favourable conditions for injection. Secondly, the BD valve serves as an isolating valve when the BP valves are closed to eliminate any dribbling of spray water into the BP valves. The downstream pressure signal is compared at the input of the controller with the “desired value” signal coming from the set point formation. The resultant control deviation is fed to a PI controller which produces valve position demand signal. This signal drives the summing amplifier of the positioning loop until it is balanced by the BD valve position feedback signal coming from the position transmitter.
KORBA SIMULATOR
198
OVERRIDES AND INTERLOCKS CLOSING OVERRIDES : this override is given when the BP valves are closed (below 2 %) and the PI output is less than 2 %. This is to prevent any spray water from entering the system. AUTO INTERLOCK : When the BD valve closing override is removed, a signal is sent to put the controller on Auto. This is to ensure correct attemperation when BP valves start opening. OPENING SIGNALS : Anticipation signals proportional to BP valve positions are given to P part of the PI-P controller. This is to ensure immediate opening of the BD valve when BP valves start opening. So it can be summarised as follows : 1. HP Bypass valve BP-1 opening less than 2 % will automatically close the spray water pressure control valve (BD valve). 2. It opening of either of the Bypass valves BP-1 or BP-2 is above 2 %, the control of spray water pressure control valves and temperature control valves BPE1 & BPE 2 shall be changed to ‘AUTO’ mode irrespective of their initial conditions. 3. If BP valves position drops 2 % open, it will receive an auto close command to ensure positive shut-off. 4. If the steam temperature downstream of the BP valves becomes 380 deg C, the closing signal for these valves are initiated accompanied with an alarm. In this case, the BP controller will transfer itself from AUTO to MANUAL. The following will activate the ‘Fast Opening’ Signal :1. Generator breaker open. 2. Turbine load shedding relay operated 3. Pressure controller deviation more (+) 10 %. 4. Depressing of the ‘FAST OPEN’ push button from UGB. L.P. BYPASS SYSTEM Low pressure Bypass system enables to establish an alternative pass for dumping the steam from reheater outlet directly into condenser at suitable steam parameters. The controls for LP-BYPASS system are essentially a combination of electrical and hydraulic system. Electro-hydraulic converter provides the necessary link between hydraulic actuators and the electrical system. The control of LP Bypass system is hooked up by the same control which is used for turbine governing system. The LP KORBA SIMULATOR
199
Bypass valves are two in number. the LP Bypass stop and control valves are combined in a common body. The double shut-off arrangement separates the reheater from the condenser during normal operation. In addition to these, two steam pressure control valves, four injection water valves are provided for desuperheating purpose. This injection water is taken from the discharge of the condensate extraction pumps.
LP BYPASS SYSTEM THE LP TURBINE BYPASS CONTROLLER (LPB) LPB COMPRISES OF : •
Pressure control loop.
•
Valve position control loop.
•
Tracking unit.
•
Actuation of reheat safety valves.
•
Automatic control interface.
•
Condenser temperature protection (CTP)
KORBA SIMULATOR
200
PRESSURE CONTROL LOOP The pressure control loop consists of : 1. Set point derivation equipment. 2. Pressure controller. 3. Actual pressure derivation equipment. Two pressure setpoints are derived for the LPB and are gated in an auctioneer. One is the fixed set point and the other is the variable setpoint. The variable setpoint is obtained with the aid of a pressure transducer upstream of the HP blading (referred to as wheel chamber pressure). This provides a load dependent setpoint and hence reflects the dependence of the actual pressure signal on steam flow. The variable setpoint is limited to an upper value by an adjustable limiting function which is kept well below the response pressure of the reheat safety values. During start-up and shut-down the variable setpoint is suppressed by a fixed setpoint. The fixed setpoint can be adjusted between 0 and 120 % of the maximum reheat pressure from the control room. Actual pressure is obtained by means of a pressure transducer in the reheater outlet (hot reheat line). A PI action pressure controller acts on the deviation between the actual pressure and the higher of the variable and fixed setpoint signals. VALVE POSITION CONTROL LOOP The pressure controller output signal acts as the setpoint signal for the connected valve lift controller. The valve lift controller acts as a slave controller for the pressure control loop. This subordination improves both the stability and the dynamic response of the control system as a whole. The input signal for the valve lift controller is the deviation between the actual valve lift and the valve lift setpoint received from the pressure controller, the lift of the LP turbine Bypass control valves is governed by the position of the servopistion in the electrohydrualic converter. The spray valves and the LP Bypass valves are actuated in accordance with pre-set characteristics. The LPB can be transferred in the control room from governing to manual control by depressing the “controller on/off” push button. It is thus possible to adjust the valves directly by depressing the OPEN and CLOSE push buttons. There is also automatic transfer from governing to manual control during certain fault conditions to prevent incorrect control actions.
KORBA SIMULATOR
201
LP BYPASS CONTROLLER
TRACKING UNIT Continuous tracking of the controlling variable which is not in action is provided to ensure bumpless transfer between control system and manual at all times. In the “automatic governing” mode, the manual setpoint adjuster is automatically tracked to the controller output signal. In the “manual mode” the valve lift controller signal is automatically tracked to the manual setpoint. However, zero deviation between the pressure setpoint and the actual pressure would be required for bumpless transfer from manual control to automatic governing. If the transfer is made in spite of an existing control deviation, this is compensated subsequently by the controller, which repositions the control valves as appropriate.
KORBA SIMULATOR
202
LPBP EHC POSITION
Vs VARIOUS VALVE OPENING
AUTOMATIC CONTROL INTERFACE This acts as a centralised control for the proper operation of the LP Bypass controller. When ACI is switched on, the fixed pressure setpoint is set to a value of approx. +3 bar above the actual pressure as soon as the “Light up” signal is given at the start up sequence. A minimum aperture of 25 % is applied which causes the desuperheating spray, Bypass stop and control valves to be opened during start-up. This is to ensure minimum flow through reheater. To achieve a rapid pressure build-up, the Bypass valves are retained at this aperture till the actual reheat pressure crosses + 12 bars. This is referred to as “Hold process”. In this process the fixed setpoint is automatically tracked to the actual pressure (tracking mode). Control is transferred to automatic governing only when the reheat pressure is above + 12 bars. The fixed setpoint is thus maintained at + 12 bars. When a Bypass valve lift of approx. 35 % is reached, the ACI for the fixed setpoint is switched off. The variable setpoint takes over from the fixed setpoint through the auctioneer and thus governs the reheat pressure setpoint. The fixed set point of +12 bar is reached at unit shut down also. In this manner, sufficient flow through
KORBA SIMULATOR
203
reheater is ensured at all time, as also optimum raising of the reheat pressure is achieved.
LP BYPASS CONTROL SYSTEM
CONDENSER TEMPERATURE PROTECTION The purpose of the condenser temperature protection is to protect the condenser from excessively high steam inlet temperatures.Thermocouples output temperature signals are passed to an interlock circuit which locks out the LP turbine Bypass station. Protective Closing Of Bypass System (Condenser Back-Up Protection) The LP Bypass valves will close automatically under the following normal conditions to prevent damage to the condenser. 1. If the steam pressure downstream of LP Bypass valves is greater than 19 kg/cm2. 2. Condenser vacuum is low (0.4 kg/cm2 abs) 3. Spray water pressure is low (10 kg/cm2 or both condensate pumps off). 4. Condenser wall temperature is high (90OC). KORBA SIMULATOR
204
High exhaust hood temperature will automatically switch on the exhaust hood spray water. In case of condenser wall temperature protection operating, the ‘RESET Bypass TRIP’ - RB, for solenoids SV-1 and SV-2 have to be depressed to reset the TRIP command. LP BYPASS CONTROL (HYDRAULIC) Due to difference between set and actual HRH pressure the electro-hydraulic LP Bypass governor (EHG) generates a proportional signal voltage in the moving coil of the converter (EHC). With increasing signal voltage the jet pipe of the converter moves towards right and the amplifier piston (KA-08) moves down. A feed - back mechanism stabilises the amplifier piston for a given voltage change. The sleeves (KA04) of followup piston valves (KA02/KA03) also move down increasing the signal oil pressure to slide valve of water injection valves (MAN 11+12 AA003), thereby opening them, in the beginning of control operation.
1. 2. 3. 4. 5. 6.
Electric LP bypass governor Plunger coil measuring system Jet pipe Adjusting spring Adjusting screw Jet pipe regulator
a. Control fluid a1. Control fluid under control piston of differential pressure relay a2. Control fluid above control piston of differential pressure relay
ELECTRO HYDRAULIC CONVERTER FOR LP BYPASS
LP Bypass stop valves (MAN 11+12 AA001) open up with a slight time delay after injection valves are opened; due to rising oil pressure in follow-up pistons KA02 (assuming piston KA07 of Bypass limiting regulator is in upper position). LP Bypass control valves (MAN 11 + 12 AA002) open up due to hydraulic feed back between actuator pistons and pilot values . LP Bypass limiting regulator (LPLR) has priority over (EHC). As soon as condensate at required pressure is available with sufficient vacuum in condenser, its jet pipe swings to right and its piston KA07 moves to upper position. This increases the signal oil pressure in KA02 (follow-up pistons), releasing LPSVs and LPCVs to open. In case of condensate water pressure low and condenser pressure high the reverse action takes place and the spring of KA02 is detensioned to such an extent that LP Bypass valves are unable to open.
KORBA SIMULATOR
205
1. 2. 3. 4. 5. 6. 7. 8. 9.
Jet pipe Jet pipe regulator Adjusting spring Adjusting screw Corrugated measuring system Adjusting spring Corrugated measuring Corrugated measuring Adjusting spring
a. Control fluid a1. Control fluid above control piston of limit pressure amplifier a2. Control fluidunder control piston of limit pressure amplifier k. Condensate from hydraulic pressure switch of injection water pressure monitor lI. Vacuum signal from bypass steam piping behind bypass control valve
LP BYAPSS LIMITING REGULATOR
PROTECTION DEVICES LOW VACUUM SAFETY DEVICE A low vacuum safety device (MAG 01 AA016) is installed on the signal oil line from follow-up piston KA02 to Bypass valve’s pilots and if vacuum drops below a pre-set value; the valve of the safety device moves downwards due to increasing pressure above it. The valve thus block off the signal oil thereby closing the LP Bypass stop and control valves. As vacuum increases, Bypass operation is restored in reverse sequence when the pre-set vacuum has built up. LOW INJECTION WATER PRESSURE A pressure switch (MAN 01AA011) is installed in the signal oil line from KA02 to spool valves KA02 and KA05 of LPBypass valves, to protect the condenser in the event of water injection failing. If the injection water pressure drops below a pre-set value, the valve of the pressure switch (MAN 01AA011) moves down, blocking off the signal oil line and depressuring the oil thereby closing the LP Bypass valves due to low condensate water pressure. Bypass operation is restored in the reverse sequence when injection water pressure becomes normal. HIGH CONDENSER WALL TEMPERATURE At a pre-set condenser wall temperature the two thermocouples mounted in steam dome opposite to bypass steam inlet transmit a switching pulse to the associated solenoid valves (MAX53AA021+022). The solenoid values block off the depressive KORBA SIMULATOR
206
signal oil and close bypass valves in the event of high condenser wall temperatures. The bypass valves can be opened from the control room manually one after the solenoids are manually reset after the temperature become normal. TWO STAGE WATER INJECTION To prevent undue overloading of condensate pumps under normal shut-down/start-up conditions, the injection water demanded from CEPs is staggered in two stages. This arrangement opens the injection valves (MAN11+12 AA004) via the pressure switch (MAN01CP001), solenoid valve (MAX53AA041) & slide valve when the steam pressure upstream at the expansion orifice exceeds value corresponding to 45 % of maximum Bypass flow.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Capnut Adjusting csrew Cover Compression spring Diaphragm Valve Valve sleeve Casting Can Lever
a Bypass signal oil from converter a1 Signal oil to bypass valve c Oil drain l Vacuum from condenser
LOW VACUUM SAFETY DEVICE
KORBA SIMULATOR
207
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
Hood Bellos Pushrod Knife edge lever Cam shaft Compression spring Fitted key Shaft Scale Cylindrical pin Nozzle Slide valve Valve bushing Compression spring Bearing bushing Torsion spring Lever
a Control oil a1 Control oil a2 Control oil to pilot valve of bypass valve c Return flow l Injection water pressure
LOW INJECTION WATER PRESSURE PROTECTION
1. Solenoid 2. Compression spring 3. Solenoid valve 4. Compression spring 5. Solenoid 6. Compression spring 7. Main valve 8. Compression spring 9. Limit switch for injection a Control oil b Signal oil to Stop and Control valve operator of bypass SV/CV c Drain
HIGH CONDENSER WALL TEMPERATURE
KORBA SIMULATOR
208
L.P. BYPASS CONTROL SYSTEM - MODE OF OPERATION a) The electro-hydraulic L.P. Bypass controller (proportional action) controls the plunger-coil arranged on the right side of the converter. b) On an increase in voltage, the jet pipe is deflected to the left (as shown) and the piston of the actuator is moved downwards. c) The sleeves of the follow-up pistons connected to the actuator move downwards causing the oil pressure in the following piston to rise. d) At the beginning of the opening (control) sequence, the rising pressure in the follow up piston opens the injection water valves via the pilot valves (iii) and the actuators for the water injection valves. e) The injection water reaches the expansion orifice and is available for cooling the Bypass steam flowing to the condenser. f)
After a short delay, the L.P. Bypass stop valves also open fully when the oil pressure in the follow-up pistons rises provided the piston of the limit pressure controller is in the upper end position.
g) Next the control valves open to a position depending on the oil pressure as determined by the feed back between servo pistons and pilot valve. Following points are to be kept in mind before charging LP bypass. 1. Condenser Vacuum should be > -0.7 kg/cm2 2. Spray water pressure > 25 Kg/cm2 3. Temperature solenoids should be in reset condition given on the turbine console. Remember, if any of the above conditions is not present during LP bypass operation, trip close command will be issued for LP bypass.
KORBA SIMULATOR
209
KORBA SIMULATOR
210
STEAM TURBINE AND AUXILIARIES
KORBA SIMULATOR
211
KORBA SIMULATOR
212
KORBA SIMULATOR
213
TURBINE AND AUXILIARIES TURBINE SPECIFICATION OF MAIN TURBINE Make
:
KRAFTWERK UNION, WEST GERMANY
Type
:
Three Cylinder, reheat, Condensing turbine
No of stages
:
HP 18 Nos. IP 14x2 Nos. LP 6x2 Nos.
Nominal rating
:
500 MW
Peak Loading
:
536.7 MW
Rated Speed
:
3000 rpm
Max/Min Speed
:
3090/2850 rpm
Speed exclusion range
:
400 to 2850 rpm.
STEAM PRESSURES & TEMPERATURE (RATED VALUES) :
Pressure (at) kg/cm2
Temperature oC
Initial steam
:
170
537
First Stage Pressure
:
151.79
537
HP cylinder exhaust
:
45
342.5
IP stop valve inlet
:
40.5
537
Extraction 6
:
45
342.5
Extraction 5
:
19.52
428.3
Extraction 4
:
7.57
302
Extraction 3
:
2.76
197.8
Extraction 2
:
1.42
188.8
Extraction 1
:
0.286
67.6
L.P. Cylinder Exhaust
:
0. 0884
43.1
:
HP
IP
LP
Rotor
:
11.6
21.8
84.6
Cylinder Assembled
:
80.0
32.5
86.0
WEIGHT (TONNES)
Main stop & control valve :
10
Reheat stop & control
17
:
valve
KORBA SIMULATOR
214
MOMENT OF INERTIA (KG-M2) Rotor of HP cylinder
:
713.0
Rotor of IP cylinder
:
2145.6
Rotor of LP cylinder
:
22981.0
LIMITING VALUES CASING TEMPERATURE (0C) Alarm
Machine must be shutdown at
HP Turbine Exhaust
:
480 oC
500 oC
Outer Casing of LP
:
90 oC
110 oC
cylinder (SPRAY WATER TO LP CYLINDER MUST BE SWITCHED ON AT 900C) TEMPERATURE DIFFERENCES (0C) (BETWEEN UPPER AND LOWER CASING SECTION) Alarm
Machine must be shutdown at
HP Turbine Middle
:
+ 30 oC
+ 45 oC
I.P. Turbine Front
:
+ 30 oC
+ 45 oC
L.P. Turbine Rear
:
+ 30 oC
+ 45 oC
STEAM PURITY (KWU RECOMMENDED VALUES) Conductivity at 35oC
:
< 0.15 ms/cm
Silica Acid (SiQ2)
:
< 0.010 mg/kg
Total iron (Fe)
:
2850 rpm) can occur for the following two cases:a) If TSE becomes faulty the reference value is blocked and integrator stops. The integrator can again be enabled after the TSE influence is switched off and master set point release push button is reset. Since the stress evaluator monitors the dynamic margin on fault detection, the fault is stored in the turbine governor. The memory is reset by command; “Stress evaluator limitation off”.
KORBA SIMULATOR
265
SPEED CONTROLLER KORBA SIMULATOR
266
b) On tranistion from turning speed to control by electric speed controller, a transition period occurs as a result of undermodulation of the speed by speed controller. The reference value is blocked at Nref - Nact > 50 rpm in order to prevent occurance of excessive control deviation (N). If the speed set point control is in action, the test function of the stress evaluator is suppressed. The NRTD signal is transmitted to the final speed controller where it is compared with actual measured speed signals and thus generate final controller output of speed controller. NO-LOAD SPEED CORRECTION As a result of proportional control behaviour of the speed controller, a control error exists between the actual value & the reference value. A feed forward signal which is influenced as a function of boiler pressure is provided to achieve identical speed at synchronising point. DROOP OF SPEED CONTROLLER 5% i.e. 2.5 Hz above and below 50 Hz. So for a changing of + 150 rpm of reference or speed, the speed controller ouput will vary from 0 to + 10 volts. STOPPING OF SPEED REFERENCE VALUE CONTROL If stress evaluator fault occurs and the generator circuit breaker is “open” and NR 56% and all stop valves open: Close the test valve manually and open it slowly, from the valve room (first locate the test valve of the particular stop valve). When unit is running. First close the particular line control valve using ATT gearbox handle, next open the stop valve later control valve.
KORBA SIMULATOR
293
KORBA SIMULATOR
294
AUTOMATIC TURBINE TESTING SYSTEM
KORBA SIMULATOR
295
KORBA SIMULATOR
296
AUTOMATIC TURBINE TESTING SYSTEM INTRODUCTION Under the present crunch of power crisis, the economy dictates long intervals between turbine overhauls and less frequent shutdowns. This warrants testing of equipments and protective devices at regular intervals, during normal operation. The steam stop valves and control valves along with all the protective devices on the turbine must be always maintained in serviceable condition for the safety and reliability. The stop and control valves can be tested manually from the location but this test does not cover all components involved in a tripping. Also manual testing always poses a risk of mal operation on the part of the operator, which might result in loss of generation or damage to machine components. A fully automatic sequence for testing all the safety devices has been incorporated which ensures that the testing does not cause any unintentional shutdown and also provides full protection to turbine during testing. SALIENT FEATURES The Automatic Turbine Tester is distinguishable by following features: •
Individual testing of each protective device and stop/control valve assembly.
•
Automatic functional pre-testing, upon selection of a test, of the substitute devices that protect turbine during that test.
•
Testing of the protective devices during normal turbine operation can only be performed if the pretest has run without fault and protection of the turbine during testing is assured.
•
Monitoring of all programme steps for execution within a predefined time.
•
Interruption if the running time of any programme step is exceeded or if trip is initiated.
•
Automatic reset of test programme after a fault.
•
Protection of turbine during testing provided by special test protective devices.
Automatic Turbine Testing extends into trip oil piping net work where total reduction of trip oil pressure due to actuation of any protective device, is the criteria for the satisfactory functioning of devices. During testing general alarm of the case of tripping are also initiated so that this part of alarm annunciation system also gets tested. Also, during testing, two electrically formed values of 3300 rpm take over protection of turbine against over speed. KORBA SIMULATOR
297
The testing system or ATT is sub divided in two functional sub-groups.
Each sub-group contains the device and all associated transmission elements for initiation of a trip. AUTOMATIC TESTING OF PROTECTIVE DEVICES ATT sub group for protective devices covers the following devices. 1. Remote trip solenoid-1. 2. Remote trip solenoid-2. 3. Over speed trip device. 4. Hydraulic low vacuum trip device. 5. Thrust bearing trip device. During normal operation, protective devices act on the stop/control valves via the main trip valves. Whenever any tripping condition (hydraulic/electrical) occurs, the protective device concerned is actuated. It drains the aux. trip fluid, closing the main trip valves. The closure of main Trip Gear drains the trip fluid, causing stop/control valves to close.
During testing, trip fluid circuit is isolated and changed over to control fluid by means of test solenoid valves and the changeover valve. This control fluid in trip circuit prevents any actual tripping of the machine. However, all alarm/annunciation gets activated as in case of an actual tripping. TEST PROCEDURE The test begins with the selection of the Protective devices subgroup. Protective device sub-group is selected by pressing the subgroup ON/OFF pushbutton. The subgroup remains in the ON position until switched off when the program has been completed. While the protective devices subgroup program is running, the other subgroups are blocked. The ON/OFF pushbutton is also used to acknowledge alarms.
KORBA SIMULATOR
298
SELECTION After the subgroup has been switched on, the protective device to be tested is selected by pressing the selection pushbutton for the individual device. A separate selection pushbutton is provided to each protective decive. Only one selection may be made at a time. Selection of a further test is possible only once all other programs have ended. TEST PUSHBUTTON The automatic test program is started by pressing the Test Pushbutton. CANCEL PUSHBOTTON This pushbotton can be used to terminate the test program running at any time and to initiate the reset program. The reset program has priority over the test program. LAMP TEST PUSHBOTTON All the signal lamps on the control panel can be tested by pressing the Lamp Test pushbotton. ATT for protective devices broadly incorporates the following sub programmes: a. Preliminary test programme. b. Hydraulic test circuit establishment. c. Main test programme. d. Reset programme. PRELIMINARY TEST In preliminary test programme, the substitute circuit elements and the circuit are tested for their healthiness; the turbine is fully protected against any inadvertent tripping during ATT. If any fault is present further testing is inhibited. During preliminary test, following steps are performed. Test solenoids become energised. Build-up of control oil pressure upstream of changeover valve is monitored. Test solenoids de-energised and drop of control oil pressure is monitored. If all steps are executed within a specified time pre-test is said to be successfull. KORBA SIMULATOR
299
ATT OF PROTECTIVE DEVICES
KORBA SIMULATOR
300
KORBA SIMULATOR
301
ATT OF PROTECTIVE DEVICES
HYDRAULIC TEST CIRCUIT ESTABLISHMENT If no fault is present during preliminary test command is automatically given to establish hydraulic test circuit (substitute circuit). The hydraulic test circuit is responsible for the supply of control fluid in trip fluid circuits. The test solenoids valves are again energised building up the control oil pressure upstream of changeover valve. At this moment solenoid for change over valve gets energised, draining control fluid from the bottom of the change over valve and change over valve moves to bottom position (i.e test position). With changeover valve in its test position, control fluid flows in the trip fluid piping and main trip valve gets isolated from the trip fluid header as the port for trip fluid coming from the main trip valve gets closed in the change over valve. After successful establishment of hydraulic test circuit command goes to initiate the main test, in which individual devices can be checked. Main Test During main test programme, the associated hydraulic test signal transmitter with the exception of remote trip solenoids provides the necessary signal to actuate protective devices. The protective device under test operates and drains the aux. trip fluid. Due to draining of auxiliary trip fluid Main trip valves operates and trip fluid pressure drains and associated alarms flash. Reset Programme The resetting programme automatically starts after the main test is over. The reset solenoid valves energise and supply control fluid in aux. start-up fluid circuit to reset main trip valves and protective devices, which have tripped from their normal positions. Once they return to their normal position, trip fluid and aux. trip fluid pressure can be built-up and monitored. If fluid pressure is satisfactory then change over valve solenoid gets de-energised and change over valve moves to normal position. After this reset solenoids along with test solenoid valves de-energised, deactivating hydraulic test circuit. HYDRAULIC TEST SIGNAL TRANSMITTERS The function of the hydraulic test signal transmitters is to activate the protective devices (with the exception of the remote trip solenoids). Each protective device has an associated test signal transmitter. For testing the overspeed trip device, the associated test signal transmitter builds up a test pressure relatively slowly and press it to the overspeed trips'for testing the low vacuum trip an air pressure signal is introduced to the device via an orifice; and for testing the thrust bearing trip, a control medium signal is passed to the test piston. The test signals to remote trip solenoids MAX52 AA001 and MAX52 AA002 turbine tester goes by itself and not by a test signal transmitter.
KORBA SIMULATOR
302
1. Compression Spring 2. Coil 3. Valve Disc FOR THRUST BEARING TRIP
I: Test Medium To Releasing Device II: Drain Medium III: Control Medium FOR LOW VACUUM TRIP
I: Vacuum To Low Vacuum Trip II: Vacuum From Condenser III: Air At Atmospheric Pressure HYDRAULIC TEST SIGNAL TRANSMITTER
MAIN TRIP VALVES MAX51 AA005 and MAX51 AA006 Only one of the two main trip valves is described in the following, as they are constructionally and functionally identical. FUNCTION The function of the main trip valve is to amplify and store the hydraulic or mechanical (manually initiated local) trip signal. It must respond in the course of every successful protective device test. OPERATION Each main trip valve is kept in its operating position by auxiliary trip medium pressure. If a protective device is actuated, the auxiliary trip medium circuit is depressurized and the main trip valve is activated. This connects the trip medium and auxiliary trip medium circuits to drain and shuts off the control medium supply to the turbine valves. At the same time, limit switches 1 are actuated. Auxiliary start-up medium pressure forces piston 3 into its normal operating position. Control medium KORBA SIMULATOR
303
1: Limit Switch 2: Spring 3: Piston 4: Body
I: Trip Medium II: Aux. Trip Medium III: Drain Medium IV: Control Medium V: Aux. Start-Up
Medium
MAIN TRIP VALVE
IV is then free to pass through to build up the pressure in the trip medium and the auxiliary trip medium circuits. Pressure switches MAX48 CP201 AND MAX48 CP202 monitor the auxiliary start-up medium circuit to ensure that the pressure collapses when the main trip valves latch-in nominal position. REMOTE TRIP SOLENOIDS MAX52 AA001 and MAX52 AA002 The twin electrical remote trip feature consists of the two-solenoid valves MAX52 AA001 and MAX52 AA002. One trip channel is described here, as the test procedure is the same for both. FUNCTION The function of the remote trip solenoids is to depressurize the trip medium circuit in the shortest possible time, thereby bringing main trip valves MAX51 AA005 and KORBA SIMULATOR
304
MAX51 AA006 into their trip positions, in the event of a malfunction requiring electrical trip initiation. During normal operation the remote trip solenoid blocks the passage of auxiliary trip medium to the drain. For testing, the solenoid valve is switched over by the automatic turbine tester so that the auxiliary trip medium circuit is connected to drain. Trip initiation is monitored downstream of the main trip valves by pressure switch MAX51 CP209 and MAX52 CP211 in the auxiliary trip medium circuit. In addition, the limit switch of each main trip valve must annunciate successful completion of the test. REMOTE TRIP SOLENOID
1. Compression Spring 2. Magnet System 3. Body 4. Vent Hole
I: Auxiliary Trip Fluid II: Drain Medium
LATCHING-IN On successful completion of testing, solenoid valves MAX52 AA001 and MAX52 AA002 are de-energized. The reset program is then started. OVER SPEED TRIPS MAY10 AA01/MAY10 AA002 FUNCTION The two overspeed trips are provided to protect the turbine against overspeeding in the event of load coincident with failure of the speed governor. As they are particularly
KORBA SIMULATOR
305
important to the protection of the turbine, they can also be locally tested by hand during turbine operation at rated speed with the aid of overspeed trip test device (hydraulic test signal transmitter) MAX62 AA001.
OVER SPEED TRIP DEVICE
1. Turbine Shaft
I: Test Oil
2. Eccentric Shaft Fly Bolt
II: Auxiliary Start-Up Medium
3. Compression Spring
III: Auxiliary Trip Medium
4. Pawl
IV: Drain Medium
5. Piston
6. Limit Switch
OPERATION When the preset overspeed is reached, the eccentric flybolt 2 each overspeed trip activates piston 5 and limit switch annunciator 6 via pawl 4. This connects the auxiliary trip medium circuit to drain thereby de-pressurising it. The loss of auxiliary trip medium pressure causes the main trip valve to drop, which in turn causes the trip medium pressure to collapse. To activate the overspeed trip at rated speed, as the test routine performed by the automatic turbine tester requires, a specific force, equivalent to the increase in centrifugal force between rated speed and present trip overspeed, is needed. For testing, this force is exterted by the test oil pressure, acting on the head of bolt 2. On the bais of the existing defined geometry, the test oil pressure is a reproduceible measure for the trip speed, and can therefore be used to check whether the overspeed trip responds at the desired setting.
KORBA SIMULATOR
306
OVER SPEED TRIP DEVICE HTT
1. Limit Switch (Normal Position 2. Limit Switch (Test Position) 3. Valve For Test Oil 4. Actuator I: Control Medium
II: Test Oil III: Auxiliary Trip Medium IV: Auxiliary Start-Up Medium V: Control Oil VI: Drain Oil
TEST SEQUENCE The test oil pressure is produced using the hydraulic test signal transmitter which is also used for manual testing First the command is given to the actuator motor to go into the trip position (down). After a cetain idling time, the test oil pressure builds up to act on the two overspeed trip bolts 2. If the two bolts are functioning correctly, they will fly outwards into the trip position when the defined pressure is reached, thereby activating the main trip valve via pawl 4, slide valve 5 and the auxiliary trip medium circuit. The two overspeed trips are monitored for actuation at the given test oil pressure by observing the two pressure switches MAX62 CP211 and MAX62 CP212 in the test oil line, and the annunciation from limit switch 6. Pressure switches MAX62 CP211 and MAX62 CP212 are preset to respond at a certain level (approx. 0.15 atm) below and above the test oil reference pressure respectively. This test reference oil pressure is determined empirically during commissioning and entered in the operating log. Limit siwtch 6 must respond within the pressure range between the settings of pressure switches MAX62 CP211 and MAX62 CP212. A slow build-up of pressure is required for this operation, which is why a relatively long monitoring period, equivalent to the running time of the actuator, has to be selected. Premature response of the overspeed trips is annunciated.
KORBA SIMULATOR
307
LATCHING-IN Once the trip has been initiated, the actuator of the hydraulic test signal transmitter is driven back until the integral limit switch annunciates that normal position has been reached. In addition, monitoring must be continued until the test oil pressure at pressure switch MAX62 CP213 is less than 0.1 atm. This double check-back of the hydraulic test signal transmitter having returned to normal position ensures that, after completion of testing, the overspeed at which the turbine will trip is not reduced due to test oil pressure remaining effective and that the overspeed trip will not be set off prematurely in the event of load reduction. While test oil pressure is being dispersed, the two overspeed bolts spring back into their normal positions at a pressure well above 0.5 atm. Subsequently by, piston 5 is brought back into its nominal position by pressure of auxiliary start-up medium II and latched in with pawl 4. At the same time, piston 5 shuts off drain channel IV, so auxiliary trip medium III can build up pressure. Once this has been done, the auxiliary start-up medium can be depressurized. LOW VACUUM TRIP MAG01 AA011 FUNCTION The function of the low vacuum trip is to operate the main trip valve during normal operation, if the vacuum in 4, the turbine condenser is too weak for condensation to be properly effected. OPERATION In each trip device, compression spring 3, set to a specific tension, pushes downwards against diaphragm 4, the top side of which is subject to the vacuum. If the vacuum is too weak to counteract the spring tension, the spring moves valve 6 downwards. The pressure beneath valve 7 is thereby dispersed and the auxiliary trip medium circuit is connected to drain. The resultant depressurization of the auxiliary trip medium circuit actuates main trip valves MAX51 AA005 and MAX51 AA006, thereby closing all turbine valves. TEST SEQUENCE First, test signaller (solenoid valve) MAG01 AA201, fitted in the vacuum carrying signal line, is energized. This blocks off the vacuum line and simultaneously connects the space above diaphragm 4 to the atmosphere, so that air is free to flow in via an orifice (connection II) to weaken the vacuum. Compression spring 3 presses down valve 6 to
KORBA SIMULATOR
308
connect the auxiliary trip medium circuit to drain via valve 7 when the preset limit is reached The low vacuum trip is monitored for operation within the specified vacuum range by observing pressure switches MAG01 CP202 and MAG01 CP201.
LOW VACUUM TRIP DEVICE
1. Adjusting Piston 2. Stem (Adjustable) 3. Compression Spring 4. Diaphragm 5. Limit Switch 6. Valve 7. Valve I. Primary Oil II. Vacuum III. Atmospheric Pressure IV. Auxiliary Trip Medium V. Drain Medium VI. Control Medium LATCHING-IN When test signal transmitter MAG01 AA201 has been de-energized and the connection between low vacuum trip and the condenser re-established, vacuum builds up again above diaphragm 4. Valve 6 moves into its upper end position, thereby opening the passage for the control medium to flow to valve 7. When valve 7 is in its upper end position, the auxiliary trip medium circuit is closed again. Restoration of normal operating configuration is annunciated by the limit switch of the low vacuum trip and by pressure switch MAG01 CP201. KORBA SIMULATOR
309
THRUST BEARING TRIP DEVICE
1. Shaft
I: Auxiliary Trip Medium
2. Tripping Cam
II: Auxiliary Start-Up Medium
3. Pawl
III: Drain Medium
4. Test Piston
IV: Test Medium
5. Tension Spring 6. Valve Piston 7. Compression Spring 8. Limit Switch
KORBA SIMULATOR
310
THRUST BEARING TRIP MAY10 AA011 FUNCTION The function of the thrust bearing trip is to monitor the shaft position in the bearing pedestal and, if a fault occurs, to depressurize the auxiliary trip medium and thus the trip medium circuit in the shortest possible time, thereby tripping the turbine. OPERATION The two rows of tripping cams 2 which are arranged on opposite sides of turbine shaft 1 have a specific clearance, equivalent to the permissible shaft displacement, relative to pawl 3 of the thrust bearing trip. If the axial displacement of the shaft exceeds the permissible limit, the cams engage pawl 3, which releases piston 6 to de-pressurize the auxiliary trip medium circuit and at the same time to actuate limit switch 8. TEST SEQUENCE To test the thrust bearing trip, the associated hydraulic test signal transmitter MAX61 AA202 is energized. Test medium IV is then free to pass to test piston 4, which then deflects pawl 3 against the force of spring 5. The combined force of the auxiliary trip medium and of compression spring 7 drives piston 6 into its trip position. The pressure of test medium IV is monitored by pressure switch MAX61 CP211. LATCHING-IN After the pressure of test medium IV has dropped again, the thrust bearing trip is returned to its normal operating position by applying the pressure of start-up auxiliary medium II to valve piston 6, thus moving the piston against the force of compression spring 7. Thereby pawl 3 latches in and holds valve piston blocks off drain III. Once this has been done, the auxiliary start-up medium is depressurized again. RESET SOLENOIDS MAX48 AA201 AND MAX48 AA 202 FUNCTION The function of the reset solenoids is to restore the tripped protective devices to their normal operating positions during the ATT reset program. OPERATION The reset solenoids are two 3-way solenoid valves (2 ports open at any time), fitted in the auxiliary start-up medium line. Both solenoid valves are energized in the course of the reset program conducted after each subtest, so that auxiliary start-up medium KORBA SIMULATOR
311
line II is supplied with control medium III. The control medium pressure forces all protective devices back into their normal operating positions, and the trip medium and auxiliary trip medium pressure can build up again. When the protective devices have latched in again, reset solenoid MAX48 AA201 is deenergized first to shut off the control medium supply through this valve. Dispersion of the auxiliary start-up medium pressure is monitored by pressure switch MAX48 CP201. The second reset solenoid MAX48 AA202 is then de-energized to disperse the pressure between the two solenoid valves. This is monitored by pressure switch MAX48 CP202. The use of two reset solenoids ensures that main trip valves MAX 51 AA005 and MAX 51 AA006 will always be sure to be actuated if either one of the two reset solenoids is deenergized.
RESET SOLENOID
1. Compression Spring 2. Coil 3. Valve Disc I: Auxiliary Start-Up Medium II:
Auxiliary
Start-Up
MediumTo
Protective Devices III: Control Medium
ATOMATIC TURBINE TESTER FOR STOP AND CONTROL VALVES GENERAL The stop valves and the control valves of the turbine are the final control elements governed by the protective the final control elements governed by the protective devices and it is therefore equally important that these, as well as the protective devices, should function reliably. The testing of these valves in conjunction with testing of the protective devices, ensures that all elements which must respond on turbine trip are tested for their ability to function reliably.
KORBA SIMULATOR
312
Each stop valve is tested together with its associated control valve. The automatic turbine tester is designed so that only one valve assembly may be selected and tested at any time. TEST REQUIREMENTS To avoid turbine output changes and initial pressure variations due to the closing of the tested control valve during testing, the electro-hydraulic turbine controller must be in operation prior to testing. For the same reason, the closing time of the control valves is relatively long. To enable initial pressure to be maintained constant, testing is only permissible when the turbine output is below a certain value. SPECIAL CONDITIONS DURING TESTING During testing one of the control valves MAA10 to 40 AA002 or MAB10 to 40 AA002 is closed completely by means of a motor-operated positioner - AA002M acting on relay piston KA06 parallel to pilot valve KA05. This results in a closing movement simulating that which occurs when the associated secondary pressure drops. This constant slow closing movement is also necessary in order to enable the associated controller to keep the output or initial pressure constant. Thus the conditions for actuation of the valve are the same during testing as during normal actuation by the controller. The stop valves, which are held in the open position by trip medium pressure during normal operation, are subjected to exactly the same hydraulic conditions during testing as would be the case in the event of actual turbine trip, as the action of the protective devices is simulated by solenoid valve MAX61 AA211 to 214 or MAX61 AA221 to 224, respectively. The steam side conditions during testing are somewhat more severe than during actual trip, as the pressure downstream of the stop valve connot drop off during closure because the control valve is closed. This means that the steam pressure acting against the spring closure force (steam lift) is greater than is the event of normal trip. The automatic turbine tester intervenes in the medium circuits normally used to control the valves and uses only trip medium both for operation of test valves MAX47 AA011 to 014 and MAX47 AA021 to 024 and for resetting and opening of the stop valves. Thus closure of the valves cannot be impeded in the event of a trip during testing, regardless of the stage which the test has reached. This also applies to the control valves, as the ATT does not interrupt the secondary medium circuit and the
KORBA SIMULATOR
313
secondary medium can thus be depressurized in the normal manner in the even of a trip. ATT OF STOP/CONTROL VALVES
KORBA SIMULATOR
314
FEATURES OF THE AUTOMATIC TURBINE TESTER •
The automatic tester is distinguished by the following features: KORBA SIMULATOR
315
•
Individual testing of each valve assembly
•
Monitoring of all program steps for execution within a certain time.
•
Automatic reset of the testing program after a fault.
Protection of the turbine during testing provided by special test protective devices. TEST SELECTION UNITS There are 4 combined main stop and control valves and 4 combined reheat stop and control valves, each of which is tested as a separate unit and has a separate selection push button in the ATT control panel. They are: • • • • • • • •
Selection Selection Selection Selection Selection Selection Selection Selection
1: 2: 3: 4: 5: 6: 7: 8:
Main stop and control valve, Main stop and control valve, Main stop and control valve, Main stop and control valve, Reheat stop and control valve, Reheat stop and control valve, Reheat stop and control valve, Reheat stop and control valve,
TEST PROCEDURE: START OF TESTING The test begins with the selection of the valve test subgroup. This is performed by pressing the subgroup ON/OFF pushbutton. The subgroup remains in the ON postion until switched off when the program has been completed. While the valve test subgroup program is running, the other subgroups are blocked. The On/Off pushbutton is also used to acknowledge alarms. SELECTION If the test requirements have been fulfilled and the balve test subgroup switched on, the valve assembly (e.g. main stop and control valve, to be tested is selected by pressing the selection pushbutton for the individual valve assembly. A separate selection pushbutton is provided for each valve assembly. Only one selection may be made at a time. Selection of further test is possible only once all other programs have ended. TEST PUSHBUTTON KORBA SIMULATOR
316
The automatic program is started by pressing the Test pushbutton of the valve test program tile. CANCEL PUSHBUTTON All the signal lamps on the control panel can be tested by pressing the Lamp Test pushbutton. CLOSURE OF CONTROL VALVE If all the test requirements have been fulfilled and the selection and Test pushbottons pressed, control valve MAA10 to 40 AA002 or MAB10 to 40 AA002 of the valve assembly selected is closed by means of its associated valve test positioner (test motor, -AA002M). Operation of positioner -AA002M is continued until limit switches CG002C on the control valve and -AA002 MS72 and -AA002 MS73 on the actuator are actuated to annunciate, with a slight delay to achieve a ceratin overtravel, that the control valve being tested is in closed position. During this time, the controllers compensate for the effects of closure of the valve being tested on the initial pressure or turbine output by opening the other control valves. The running time for closure of the control valve is monitored. If the control valve is functioning properly, it will close within the pre-set running time. CLOSURE OF STOP VALVE If the control valve has closed properly, solenoid valve MAX61 AA211 to 214 or MAX221 to 224 is energized. This allows trip medium to flow to the space below changeover slide valve MAX61 AA011 to 014 or MAX61 AA021 to 024, which moves into its upper end position and connects the space below piston disc KA02 with the drain. The pressure in this space drops rapidly and is monitored by the pressure switch MAX51 CP223 CP223, 228, 233, 238 or MAX51 CP248, 253, 258, respectively. When the pressure at this pressure switch has dropped slightly below the break-away pressure of piston disc KA02, monitoring of the stop valve closure time starts. Limit switch - CG001E annunciated entry of the valve into its closed position, thus making it possible to monitor the valve closing action for completion within the maximum running time.
OPENING OF STOP VALVE Next, solenoid valve MAX47 AA211 to 214 or MAX47 AA221 to 224 is energized (test position) and trip medium is admitted to the control surface of the piston in test valve KORBA SIMULATOR
317
MAX47 AA011 to 014 or MAX47 AA021 to 024. The piston moves into its lower end position against the spring force, thus permitting trip medium to flow to the space above piston KA01 of the stop valve. This piston is forced downwards by the pressure of the medium, thereby tensioning the spring between piston KA01 is relatively low, being equal to the spring force acting against it. The spontaneous pressure rise when piston KA01 has made contact with piston disc KA02, and thus on completion of the spring tensioning action, is detected by pressure switch MAX51 CP222, 227, 232, 237 or MAX51 CP242, 247, 252, 257. If all conditions are fulfilled within this relatively long monitoring period, solenoid valve MAX61 AA211 to 214 or MAX61 AA221 to 224 is de-energized (operating position), so that trip medium is once again able to flow to test valve MAX47 AA011 to 014 or MAX47 AA021 to 024 and the drain is blocked off again. The build-up of trip medium pressure monitored by pressure switch MAX51 CP221, 226, 231, 236 or MAX51 CP241, 246, 251, 256. When the pressure is sufficiently high, the stop valve is opened by de-energizing solenoid valve MAX47 AA211 to 214 or MAX47 AA221 to 224 (operating position). Test valve MAX47 AA011 to 014 and MAX47 AA021 to 024 switches over, admitting trip medium to the underside of piston disc KA02 and, after a certain amount of further travel, slowly connects the space above piston KA01 with the drain. The resultsant pressure difference causes the tensioned piston relay to open the stop valve. As soon as open position is reached, the full trip medium pressure builds up. This is monitored by pressure switch MAX51 CP223, 228, 233, 238 or MAX51 CP243, 248, 253, 258 and by limit switch - CG001D. Testing of the stop valve is now completed. RE-OPENING OF CONTROL VALVE If the conditions are fulfilled within the specified monitoring period, the control valve is re-opened. The motor of positioner--AA002M is operated in the opening direction. Positioner -AA002M moves the control valve into its original position in the reverse sequence to the closing action. Again the initial pressure and output are kept constant by the appropriate controller. Operation of positioner -AA002M is continued until, after a certain amount of overtravel, it has positively ceased to influence the controller. This position is detected by limit switch -AA002 MS61 or -AA002 MS62. If the control valve is functioning properly, it will open within the pre-set running time.
CANCELLATION OF SELECTION On conclusion of testing of each valve assembly, the selection is automatically canelled and the program shut down.
KORBA SIMULATOR
318
INTERRUPTION DUE TO RUNNING TIME EXCEEDED The reset program is automatically initiated if the running time for any step is the test program is exceeded. If any running time is exceeded during the reset program, the program is halted. In either case, the alarms Fail signal and Time Overrun are generated. If the Fault in ATT alarm is displayed, the fault lies in the automatic tester itself. INTERRUPTION DUE TO TURBINE TRIP If electrical turbine trip is initiated during testing, all solonoid valves are de-energized and positioner -AA002M is returned to its extreme position and the program cancelled. All equipment associated with the automatic turbine tester is automatically returned to its normal position.
KORBA SIMULATOR
319
KORBA SIMULATOR
320
KORBA SIMULATOR
321
TURBINE STRESS EVALUATOR
KORBA SIMULATOR
322
KORBA SIMULATOR
323
TURBINE STRESS EVALUATOR Steam parameter varies with the condition throughout the operating range with every change (start up, loading, shutdown) of the turbine, and in turn turbine metal is subjected to those temp changes. The resulting T in the turbine material is a measure of thermal stress subjected to that part. As thermal stress becomes major consideration from turbine side, it is to be ensured that turbine is never subjected to undesirable thermal stress. Differential Temperature in the material should always be kept within the permissible limits. The optimum balance between longevity on the one hand and max flexibility of operation on the other is achieved when the permissible range of material stress can be utilised to the full. Turbine Stress Evaluator measures and calculates the relevant temperature values and evaluates them in an analog computing circuit and determines the allowable conditions of operation so that useful life of the turbine shall not be unduly reduced. Thus it allows the operation of the turbine at the highest possible rates of load/ speed change while limiting the stresses within permissible values. The results of TSE, which are the appropriate operating instructions, are displayed by means of an indicating instrument. INPUTS TO THE TSE Actual Speed (Hall Probe)
: 0 -3600 rpm
Actual Load
: 0 -600 MW
Temperatures Of Turbine Metal Parts
: MSV, MCV, HPC. HPS, IPS
TSE gets inputs from 5 points of turbine to compute limits for operation: 1.
Main ESV Temp. (Surface and midwall.)
2.
MCV Temp. (Surface and midwall.)
3.
HP Shaft Temp. (Surface and midwall.)
4.
HP Casing Temp. (Surface and midwall.)
5.
IP Shaft Temp. (Surface and midwall.)
Temperature at various points are measured at surface (96% depth) and inside (54%) with the help of thermocouples placed at proper places. In case of HP shaft and IP shaft, temperature is measured at the casing where thermal behavior of shaft and casing is supposed to be same. The mean internal (mid metal) shaft temperature can be calculated with an adequate degree of accuracy by means of the following mathematical equation. KORBA SIMULATOR
324
Tm = Ts [ 1- (0.692 e Where,
-t/T1
+ 0.131 e
+ 0.177 e
-t/T2
Ts
:
Surface Temperature
T1
:
2408.31
Tm
:
Mid metal Temperature
T2
:
457.08
t
:
Time in minutes
Tk
:
56.62
-t/Tk
)]
Time constants
Various constants used in the above equation are derived from the shaft diameter and thermal diffusivity of the rotor material. CALCULATION CIRCUIT The milli-volt output from thermocouple is fed into the signal conditioning cabinet where the transducers give out 4-20 mA signals as temperature signals. For calculation purpose we have one analog computer located in the controller cabinet having five computing channels for above five inputs. Each computing channels determines the temperature difference (∆Ta) between surface and mid metal temperature. The thermal stress is proportional to this temperature difference. The calculated temperature difference is compared against the permissible temperature difference (∆Tp), which is derived from function generator for each computing channel. The difference between ∆Tp and ∆Ta is called MARGIN. Comparing ∆Ta against ∆Tp on the + ve side, we get upper margin and the –ve side we get lower margin. The smallest of the respective upper and lower temperature Margins computed for admission and turbine areas are selected for display on the TSE indicator and used for further processing. TSE DISPLAY The indicator is divided vertically into two sections one for starting and one for load operation. It comprises of three discs. - One Circular Scale disc, partly calibrated in Speed - and Two Load partly coloured glass discs. These discs are controlled by means of three electrical servomotors equipped with feedback potentiometers. The circular scale is controlled by the actual value for either Speed or Load. The upper red coloured disc is controlled by the upper available margin either for the temperature or the load. The lower red coloured disc is controlled by the lower available margin either for the temperature or the load. The module for control of the potentiometer-equipped servomotor is located in the TSE indicator and receives three impressed currents of ± 1 mA for the computing circuits. Power supply for the TSE indicator is ± 24 V. Before the generator is synchronised, or the load is below 2% MCR the actual speed and temperature margins are displayed on the left side of the display. After the
KORBA SIMULATOR
325
TSE BLOCK DIAGRAM KORBA SIMULATOR
326
generator is synchronised and load is greater than 2%, the actual load and load margins are displayed on the right side. The effective section is illuminated according to the operating mode. The row of alarm windows located across the top of the two section of the indicator shows which computing channel is on line. The red window in the middle is the fault alarm. Illumination of the appropriate chosen window indicates whether the displayed margins are being supplied by admission or turbine channel. Additional LEDs located above and below are the symbols for HP and IP turbine in the turbine related window and indicate from which turbine upper margin (Upper LED) and the lower margin (Lower LED) is originated. The appropriate LEDs then show a red light.
KORBA SIMULATOR
327
During start-up, speed and temperature margins are displayed on the left hand section. Speed is indicated on a circular moving scale. The upper and lower temperature margins are covered on the screen. These screens have two zones in different colour; the red area represents a warning or prohibited range, while the white indicates the permissible zone of operation. During load operation, the right hand section displays the actual load and the load margins. The actual load is shown on a rotating disc marked in MW. Two rotating red discs indicate the permissible load range. The turbine is operating within the permissible stress as long as the actual temperatures, load values are located within the transparent region between the discs. The opaque red section between the discs covers the prohibited range. The upper boundary of the transparent sector indicates the upper margins (for start-up and increasing load); the lower boundary indicates lower margins (for decreasing load and shut-down).
KORBA SIMULATOR
328
Changing Section of the TSE Indicator During speed operation, the TSE indicator can be switched manually by means of two push buttons on the control desk to indicate the respective margin either from the admission or from the turbine channels as desired. During speed operation, if the non-illuminated green alarm window flashes, this indicate that the temp margins originating from one of the channels related to the flashing window has been reduced to less than 100K. The flashing lamp instructs the operator to changeover to the range with the smaller margins. When changeover has been affected, the green alarm window changes the flashing to steady light. When the unit is synchronised, the TSE indicator automatically changes over to the right hand section, which displays the load margins calculated from the temperature margins. Two red discs indicate the permissible load change.
KORBA SIMULATOR
329
IMPORTANCE OF TSE MARGINS The temperature margin is a measure of the degree of thermal stress, which a turbo set, is subjected to, during speed rising before synchronization. The load margin is the greatest step change in load based on the instantaneous stress condition, which the turbine can withstand without being over stressed. If the margin is consumed, this means that the component is being stressed to its permissible limits. This condition is indicated by either of upper or lower red disc reaching horizontal position. If the upper load or speed margin is consumed then the following methods can be adopted to restore the lost margin. • • •
Avoidance of further loading of turbine. Reduction of steam temperatures in case boiler firing rate had been rapid. Soaking the machine for sufficient time period.
If the lower margin gets consumed then the following methods can be adopted • •
Stopping of further unloading & soaking the turbine. Increase the steam temperatures.
It is worthwhile to mention here that before synchronization turbine should have temperature margin more than 300 K available so that minimum load on the set can be achieved immediately after synchronization. OUTPUTS ATRS
:
EHC
: + 30 DEG.K
CMC
: + 30 DEG.K
TSE TEMP. RECORDE
: 0 - 600 DEG.C.
TSE MARGIN RECORDER
: + 150 DEG.K.
TSE INDICATOR
: + 150 DEG.K., 0 TO 600 MW
TO ATRS
All metal temperature criteria come from curve generators/LVRs. Inputs to these are from the same thermocouple that are used for TSE
KORBA SIMULATOR
330
•
In SGC Turbine step 14 TSE Test programme block command is given.
•
In SGC Turbine step 15 TSE margin more than 30O K. criteria is checked.
•
If TSE influence is made off, SGC Turbine program goes OFF.
•
TSE fault does not switch off ATRS SGC Turbine program. In case of fault last margin is frozen so that rolling does not get affected till 2850 rpm.
EHC Only temperature margins are taken and not load margins. SPEED CONTROLLER: Only upper margin is used. Lower margin is not used, as coasting down is natural. TSE margins determine the gradient at which NRTD varies. LOAD CONTROLLER: Both lower and upper margins used. In set point controller, these margins determine the gradient at which PRTD varies –
If TSE influence is OFF, 10 volt is fed at TSE margin input to minimum gate so that UCB gradient controls the P rtd rate. 10V input is used for clamping the max gradient allowable. It is not from UCB but from EHC panel.Negative upper temperature margin can unload the machine but loading the machine is left to desk engineer. STOP REFERENCE (LOAD/SPEED): TSE fault is one of the conditions for stop reference. In case of TSE fault TSE influence is to be made off and then reset the fault. Then switch on TSE influence otherwise the set/reset memory may not reset properly.
KORBA SIMULATOR
331
24 V SUPPLY OFF TO TSE PANEL: Discs will close on TSE indicator. All lamps in TSE indicator will go off. TSE fault occurs. TSE release will be absent for EHC and load ref. stop will come. TSE INDICATOR SUPPLY UCB OFF : TSE discs will close. All lamps will go OFF in the TSE indicator. TSE TEST Release should be present from EHC, CMC and ATRS. EHC, CMC release will come if the controllers are balanced i.e. there is no variation between actual and set values. Testing can be dome if TSE influence is OFF in the absence of these releases. ATRS SGC turbine programme step-14 output should be absent; otherwise, TSE testing will be blocked. TSE test is carried out in order to check the healthiness of various computing channel and display channels, which are coming to TSE display. Testing is possible only when enable signal from EHC is present. For testing known input data can be introduced for each channel to give rise to display of certain predetermined results. If TSE is functioning correctly, the indicator must show specific values for each computing channel. If there is deviation from the tolerance test values, it is probable that there is a fault in the evaluator. TSE influence switching off facility is there to be used under fault condition. For healthiness of computing channels dynamic monitoring system is also active. Dynamic monitoring system is based on the principle of detecting change as a function of time. Each channel generates the gradient for its curves. These circuits keep watch on temperature requisition and nature of kompensograph ensures if a pre-set gradient is exceeded i.e. characteristic gradient is noticed, the dynamic monitoring loop responds and associated lamplights up with fault indication. This facilitates rapid localization of defective computing channel. Test program is available for display not for kompensograph. Power supply is separately available for display and kompensograph. In case of loss of supply for display, kompensograph will not affected.
ALARMS 1. On exceeding the limits computed by TSE, Margin spent alarm is initiated. 2. TSE fault alarms is initiated on following condition, shown on centre window of the TSE display in red colour
KORBA SIMULATOR
332
• • • •
Enabling signal for test Transducer fault Fault detected by dynamic monitoring Hardware fault
DISPLAY RESULTS FROM THE TEST PROGRAM Main steam stop valve (MSV)
Top screen
30 + 1 k
Bottom screen
70 + 1 k
Top screen
61 + 1 k
Bottom screen
35 + 1 k
Top screen
29 + 1 k
Bottom screen
43 + 1 k
Top screen
503 + 6 mw
Actual power
401 + 6 mw
Bottom screen
104 + 6 mw
HP Turbine Shaft (HPS)
Top screen
58 + 1 k
Variable Speed range
Top screen
28 + 1 k
Power output range
Top screen
554 + 6 mw
Actual power
400 + 6 mw
Bottom Screen
206 + 6 mw
Top screen
96 + 1 k
Bottom screen
56 + 1 k
Top screen
451 + 6 mw
Actual power
401 + 6 mw
Bottom screen
152 + 6 mw
Main steam control valve (MCV) HP Turbine Casing (HPC) Variable-speed range Power output range
IP Turbine Shaft (IPS) Variable speed range Power output range
KORBA SIMULATOR
333
KORBA SIMULATOR
334
KORBA SIMULATOR
335
GENERATOR AND GENERATOR AUXILIARIES
KORBA SIMULATOR
336
KORBA SIMULATOR
337
GENERATOR & ITS AUXILIARIES GENERAL DESIGN FEATURES
Make
: BHEL
Type
: THDF 115/59
Code
: IEC 34-1, VDE 0530
Cooling ,stator winding
: Directly water cooled
Stator core ,rotor
: Directly hydrogen cooled.
Rating Apparent power
: 588 MVA
Active power
: 500 MW
Power factor
: 0.85(LAG)
Terminal voltage
: 21 KV
Permissible variation in voltage
: +5%
Speed/Frequency/Hz
: 3000/50
Stator current
: 16200
Hydrogen pressure
: 4 Kg/Cm2
Short circuit Ratio
: 0.48
Field Current(calculated value)
: 4040 A
Class and Type of Insulation
: MICALASTIC (similar to class F)
No. of terminals brought out
: 6
Resistance in Ohms at 20OC : U-X 0.0014132 Stator Winding between terminals
: V-Y 0.0014145 : W-Z 0.0014132
Rotor Winding
KORBA SIMULATOR
: F1-F2 0.0672
338
Main Exciter
:
Active Power
: 3780 KW
Current
: 6300 A
Voltage
: 600V
Pilot Exciter Apparent power
: 65 KVA
Current
: 195 A
Voltage
: 220 V(1+10%)
Frequency
: 400 Hz
Torque, Critical Speeds Maximum short circuit torque of stator at line to : 1488 kpm line single phase short circuit Moment of inertia of generator shaft
: 10,000kgm2
Critical speed (calculated) nk1
: 14.4 rps(V-GEN)
nk2
: 30.1rps(V-EXC)
nk3
: 39.8rps(S-GEN)
GENERAL DESCRIPTION The two-pole generator uses direct water cooling for the stator winding, phase connectors and bushings and direct hydrogen cooling for the rotor winding. The losses in the remaining generator components, such as iron losses windage losses and stray losses, are also dissipated through hydrogen. The generator frame is pressure-resistant and gas tight and equipped with one stator end shield on each side. The hydrogen coolers are arranged vertically inside the turbine end stator end shield. The generator consists of the following components : Stator Stator frame End shields Stator core Stator winding KORBA SIMULATOR
339
Hydrogen coolers Rotor Rotor shaft Rotor Winding Rotor retaining rings Field connections Bearings Shaft seals The following additional auxiliary systems are required for generator operation :Oil system Gas system Primary water system Excitation system COOLING SYSTEM The heat losses arising in the generator interior are dissipated to the secondary coolant (raw water, condensate etc.)
through hydrogen and primary water.Direct
cooling essentially eliminates hot spots and differential temperatures between adjacent components which could result in mechanical stress, particularly to the copper conductors, insulation rotor body and stator core. HYDROGEN COOLING CIRCUIT : The hydrogen is circulated in the generator interior in a closed circuit by one multistage axial-flow fan arranged on the rotor at the turbine end. Hot gas is drawn by the fan from the air gap and delivered to the coolers, where it is recooled and then divided into three flow path after each cooler. FLOW PATH I Flow path I is directed into the rotor at the turbine end below the fan hub for cooling of the turbine end half of the rotor.
KORBA SIMULATOR
340
KORBA SIMULATOR
341
FLOW PATH II Flow path II is directed form the coolers to the individual frame compartments for cooling of the stator core. FLOW PATH III Flow path III is directed to the stator end winding space at the exciter end through guide ducts in the frame for cooling of the exciter end half of the rotor and of the core end portions. The three flows mix in the air gap. The gas is then returned to the coolers via the axial-flow fan. The cooling water flow through the hydrogen coolers should be automatically controlled to maintain a uniform generator temperature level for various loads, and cold water temperatures. COOLING OF ROTOR For direct cooling of the rotor winding, cold gas is directed to the rotor end windings at the turbine and exciter ends. The rotor winding is symmetrical relative to the generator centre line and pole axis. Each oil quarter is divided into two cooling zones. The first cooling zone consists of the rotor end winding and the second one of winding portion between the rotor body end and the mid point of the rotor. Cold gas is directed to each cooling zone through separate openings directly before the rotor body end. The hydrogen flows through each individual conductor in closed cooling ducts. The heat removal capacity is selected such that approximately identical temperatures are obtained for all conductors. The gas of the first cooling zone is discharged from the coils at the pole centre into a collecting compartment within the pole area below the end winding. From there the hot gas passes into the air gap through pole face slots at the end of the rotor body. The hot gas of the second cooling zone is discharged into the air gap at mid-length of the rotor body through radial openings in the hollow conductors and wedges. COOLING OF STATOR CORE For cooling of the stator core, cold gas is admitted to the individual frame compartments via separated cooling gas ducts. From these frame compartments the gas then flows into the air gap through slots in the core where it absorbs the heat from the core. To dissipate the higher losses in the core ends, the cooling gas slots are closely spaced in the core end sections to ensure effective cooling. These ventilating ducts are supplied with cooling gas directly from the end winding space. Another flow path is directed from the stator end winding space past the clamping fingers between the pressure plated and core end section into the air gap. A further flow path passes into the air gap along either side of the flux shield.
KORBA SIMULATOR
342
All the flows mix in the air gap and cool the rotor body and stator core surfaces. The gas is then returned to the coolers via the axial-flow fan. To ensure that the cold gas directed to the exciter end cannot be directly discharged into the air gap, an air gap choke is arranged with in the range of the stator end winding cover and the rotor retaining ring at the exciter end. PRIMARY COOLING WATER CIRCUIT IN THE GENERATOR The treated water used for cooling of the stator winding phase connectors and bushing is designated as primary water in order to distinguish it from the secondary coolant (raw water, condensate, etc.). The primary water is circulated in a closed circuit and dissipates the absorbed heat to the secondary cooling water in the primary water cooler. The pump is supplied with hot primary water from the primary water tank and delivers the water to the generator via the coolers. The cooled water flow is divided into two flow paths as described in the following paragraphs. FLOW PATH I Flow path I cools the stator windings. This flow path first passes to a water manifold on the exciter end of the generator and from there to the stator bars via insulated hoses. Each individual bar is connected to the manifold by a separate hose. Inside the bars the cooling water flows through hollow strands. At the turbine end, the water is passed through similar hoses to another water manifold and then returned to the primary water tank. Since a single pass water flow through the stator is used, only a minimum temperature rise is obtained for both the coolant and the bars. Relative movements due to different thermal expansions between the top and bottom bars are thus minimised. FLOW PATH II Flow path II cools the phase connectors and the bushings. The bushings and phase connectors consists of thick walled copper tubes through which the cooling water is circulated. The six bushings and the phase connectors arranged in a circle around the stator end winding are hydraulically interconnected. The secondary water flow through the primary water cooler should be controlled automatically to maintain a uniform average generator temperature level for various loads and cold water temperatures. STATOR FRAME The stator frame consists of a cylindrical centre section and two end shield which are gas tight and pressure resistant. The stator end shields are joined and sealed to the stator frame with an O-ring and bolted flange connections. The stator frame accommodates the electrically active parts of the stator, i.e. the stator core and the stator windings. Both the gas ducts and a large number of welded circular ribs provide for the rigidity of the stator frame. Ring shaped supports for resilient core suspension are arranged between the circular ribs. The generator cooler is subdivided into cooler sections arranged vertically in the KORBA SIMULATOR
343
turbine side stator end shield. In addition, the stator end shields contain the shaft seal and bearing components. Feet are welded to the stator frame and end shields to support the stator on the foundation. The stator is firmly connected to the foundation with anchor bolts through the feet. STATOR CORE The stator core is stacked from insulated electrical sheet steel laminations and mounted in supporting rings over insulated dovetailed guide bars. Axial compression of the stator core is obtained by clamping fingers, pressure plates and non-magnetic trough type clamping bolts which are insulated from the core. The supporting rings form part of an inner frame cage. This cage is suspended in the outer frame by a large number of separate flat springs which are tangentially arranged on the circumference in sets of three springs each, i.e. two vertical supporting springs on both sides of the core and one horizontal stabilising spring below the core. The springs are so arranged and tuned that forced vibrations of the core resulting from the magnetic field will not be transmitted to the frame and foundation. The pressure plates and end portions of the stator core are effectively shielded against stray magnetic fields. The flux shields are cooled by a flow of hydrogen gas directly over the assembly. STATOR WINDING Stator bars, phase connectors and bushings are designed for direct water cooling. In order to minimise the stray losses, the bars are composed of separately insulated strands which are transposed by 540O in the slot portion and bonded together with epoxy resins in heated moulds. After bending, the end turns are likewise bonded together with backed synthetic resin fillers. The bars consists of hollow and solid strands distributed over the entire bar cross section so that good heat dissipation is ensured. At the bar ends, all the solid strands are jointly brazed into a connecting sleeve and the hollow strands into a water box from which the cooling water enters and exits via teflon insulating hoses connected to the annular manifolds. The electrical connection between top and bottom bars is made by a bolted connection at the connecting sleeve. The water manifolds are insulated from the stator frame, permitting the insulation resistance of the water-filled winding to be measured. During operation, the water manifolds are grounded. MICALASTIC HIGH - VOLTAGE INSULATION High-voltage insulation is provided according to the proven Micalastic system. With this insulating system, several half-overlapped continuous layers of mica tape are applied to the bars. The mica tape is built up from larger mica splitting which are sandwiched between two polyester backed fabric layers with epoxy as an adhesive. The number of layers, i.e., the thickness of the insulation depends on the machine voltage. The bars are dried under vacuum and impregnated with epoxy resin which has very good penetration properties due to its low viscosity. After impregnation KORBA SIMULATOR
344
under vacuum, the bars are subjected to pressure, with nitrogen being used as pressurising medium. The impregnated bars are formed to the required shape in moulds and cured in an oven at high temperature. The high-voltage insulation obtained is nearly void - free and is characterised by its excellent electrical, mechanical and thermal properties in addition to being fully water proof and oil resistant. To minimize corona discharges between the insulation and the slot wall, a final coat of semiconducting varnish is applied to the surfaces of all bars within the slot range. In addition, all bars are provided with an end corona protection to control the electric field at the transition from the slot to the end winding and to prevent the formation of creepage spark concentrations. BAR SUPPORT SYSTEM To protect the stator winding against the effects of magnetic forces due to load and to ensure permanent firm seating of the bars in the slots during operation, the bars are inserted with a side ripple spring, a hot-curing slot bottom equalising strip, and a top ripple located beneath the slot wedge. The gaps between the bars in the stator end windings are completely filled with insulating material and cured after installation. For radial support, the end windings are clamped to a rigid support ring of insulating material which in turn is fully supported by the frame. Hot-curing conforming fillers arranged between the stator bars and the support ring ensure a firm support of each individual bar against the support ring. The bars are clamped to the support ring with pressure plates held by clamping bolts made from a high-strength insulating material. The support ring is free to move axially within the stator frame so that movements of the winding due to thermal expansions are not restricted. The stator winding connections are brought out to six bushings located in a compartment of welded non - magnetic steel below the generator at the exciter end. Current transformers for metering and relaying purposes can be mounted on the bushings. ROTOR Rotor Shaft The high mechanical stresses resulting from the centrifugal forces and short-circuit torque call for a high quality heat-treated steel. Therefore, the rotor shaft is forged from a vacuum cast steel ingot. Comprehensive tests ensure adherence to the specified mechanical and magnetic properties as well as homogeneous forging. The rotor shaft consists of an electrically active portion, the so-called rotor body, and the two shaft journals. Integrally forged flange couplings to connect the rotor to the turbine and exciter are located outboard of the bearings. Approximately two-thirds of the rotor body circumference is provided with longitudinal slots which hold the field winding. Slot pitch is selected so that the two solid poles are displaced by 180 deg.
KORBA SIMULATOR
345
Due to the non-uniform slot distribution on the circumference, different moments of inertia are obtained in the main axis of the rotor. This is turn causes oscillating shaft deflections at twice the system frequency. To reduce these vibrations, the deflections in the direction of the pole axis and the neutral axis are compensated by transverse slotting of the pole. After completion, the rotor is balanced in various planes at different speeds and then subjected to an overspeed test at 120 % of rated speed for two minutes. The solid poles are also provided with additional longitudinal slots to hold the copper bars of the damper winding. The rotor wedges act as a damper winding in the area of the winding slots. COOLING OF ROTOR WINDING Each turn is subdivided into eight parallel cooling zones. One cooling zone includes the slots from the centre to the end of the rotor body, while another cover, half the end winding. The cooling gas for the slot portion is admitted into the hollow conductors through milled openings directly before the end of the rotor body and flows through the hollow conductors to the centre of the rotor body. The hot gas in then discharged into the air gap between the rotor body and the stator core through radial openings in the conductors and the rotor slot wedges. The cooling gas passages are arranged at different levels in the conductor assembly so that each hollow conductor has its own cooling gas outlet. The cooling gas for the end windings is admitted into the hollow conductors at the ends of the rotor body. It flows through the conductors approximately up to the pole centre for being directed into a collecting compartment and is then discharged into the air gap via slots. At the end winding, one hollow conductor passage of each bar is completely closed by a brazed copper filler section. The enlargement of the conductor rigidity.
ROTOR WINDING The rotor winding consists of several coils which are reinserted into the slots and series connected such that two coil groups from one pole. Each coil consists of several series- connected turns, each of which consists of two half turns which are connected by brazing in the end section.
KORBA SIMULATOR
346
The rotor winding consists of silver bearing de-oxidised copper hollow conductors with two lateral cooling ducts. L-shaped strips of laminated epoxy glass fibre fabric with Nomex filler are used for slot insulation. The slot wedges are made of highconductivity material and extend below the shrink seat of the retaining ring. The seat of the retaining ring is silver plated to ensure a good electrical contact between the slot wedges and rotor retaining rings. This system has long proved to be a good damper winding. The field winding are inserted into the longitudinal slots of the rotor body. The coils are wound around the poles so that one north and one south magnetic pole are obtained. The hollow conductors have a trapezoidal cross-section and are provided with two cooling ducts of approximately semi-circular cross-section. All conductors have identical copper and cooling duct cross-sections. The individual conductors are bent to obtain half turns. After insertion into the rotor slots, these turns are combined to form full turns, the series-connected turns of one slot constituting one coil. The individual coil of the rotor winding are electrically series-connected. CONDUCTOR MATERIAL The conductors are made of copper with a silver content of approximately 0.1 %. As compared to electrolytic copper, silver-alloyed copper features high strength properties at higher temperatures so that coil deformations due to thermal stresses are eliminated. INSULATION The insulation between the individual turns is made of layers of glass fibre laminate. The coils are insulated from the rotor body with L-shaped strip of glass fibre laminate with Nomex filler. To obtain the required creepage paths between the coil and the frame, thick top strips of glass fibber laminate are inserted below the slot wedges. LOCATION OF PARTS IN THE ROTOR WINDING ROTOR SLOT WEDGES To protect the winding against the effects of the centrifugal force, the winding is secured in the slots with wedges. The slot wedges are made from a copper-nickelsilicon alloy featuring high strength and good electrical conductivity, and are used as
KORBA SIMULATOR
347
damper winding bars. The slot wedges extend below the shrink seats of the retaining rings.The rings acts as short-circuit ring to induced currents in the dampers windings. END WINDING BRACING The spaces between the individual coils in the end winding are filled with insulating members, which prevent coil movement. ROTOR RETAINING RING The rotor retaining rings contain the centrifugal forces due to the end windings. One end of each ring is shrunk on the rotor body, while the other end of the ring overhangs the end windings without contacting the shaft. This ensures an unobstructed shaft deflection at the end windings. The shrunk on end ring at the free end of the retaining ring serves to reinforce the retaining ring and secures the end winding in the axial direction at the same time. A snap ring is provided for additional protection against axial displacement of the retaining ring. To reduce the stray losses and retain strength, the rings are made of non-magnetic, cold-worked material. Comprehensive tests, such as ultrasonic examination and liquid examination, ensures adherence to the specified mechanical properties.
penetrate
The retaining ring shrink-fit areas act as short-circuit rings to induced currents in the damper system. To ensure low contact resistance, the shrink seats of the retaining rings are coated with nickel, aluminium and silver by a three-step flame spraying process. FIELD CONNECTIONS The field connections provide the electrical connection between the rotor winding and the exciter and consists of : •
Field current lead at end winding
•
Radial bolts
•
Field current lead in shaft bore
KORBA SIMULATOR
348
FIELD CURRENT LEAD AT END WINDING The field current lead at the end winding consists of hollow rectangular conductors. The hollow conductors are inserted into shaft slots and insulated. They are secured against the effects of centrifugal force by steel wedges. One end of each field current lead is brazed to the rotor winding, and the other end is screwed to a radial bolt. Cooling hydrogen is admitted into the hollow conductors via the radial bolts. The hot gas discharged into the air gap together with the gas used to cool the end winding. RADIAL BOLTS The field current leads located in the shaft bore are connected to the conductors inserted in the shaft slots through radial bolts which are secured in position with slot wedges Contact pressure is maintained with a tension bolt and as expanding cone in each radial bolt. Contact pressure increase due to centrifugal force during operation. All contact surfaces are silver-plated to attain a low contact resistance. The radial bolt is made from forged electrolytic copper. The seal between air and hydrogen spaces is located close to the radial bolt. This seal consists of an insulating ring which is pressed between the shaft and radial bolt with a threaded ring. FIELD CURRENT LEAD SHAFT BORE The leads are run in the axial direction from the radial bolt to the exciter coupling. They consists of two semi-circular conductors insulated from each other and from the shaft by a tube.
The field current leads are connected to the exciter leads at the
coupling with Multikontakt plug-in contacts which allow for unobstructed thermal expansion of the field current leads. ROTOR FAN The generator cooling gas is circulated by one axial-flow fan located on the turbineend shaft journal. To augment the cooling of the rotor winding, the pressure established by the fan works in conjunction with the gas expelled from the discharge ports along the rotor.
KORBA SIMULATOR
349
The moving blades of the fan are inserted into T shaped grooves in the fan hubs. The fan hubs are shrink-fitted to the shaft journal spider. HYDROGEN COOLER The hydrogen cooler is a shell and tube type heat exchanger which cools the hydrogen gas in the generator. The heat removed from the hydrogen is dissipated through the cooling water. The cooling water flows through the tubes, while the hydrogen is passed around the finned tubes. The hydrogen cooler is subdivided into identical sections which are vertically mounted in the turbine-end stator end shield. The cooler sections are solidly bolted to the upper half stator end shield, while the attachment at the lower water channel permits them to move freely to allow for expansion. The cooler sections are parallel connected on their water sides. Shutoff valves are installed in the lines before and after the cooler sections. The required cooling water flow depends on the generator output and is adjusted by control valves on the hot water side. Controlling the cooling water flow on the outlet side ensures an uninterrupted water flow through the cooler sections so that proper cooler performance will not be impaired. BEARINGS The sleeve bearings are provided with hydraulic shaft lift oil during startup and turning gear operation. To eliminate shaft currents, all bearings are insulated from the stator and base plate, respectively. The temperature of the bearings is monitored with thermocouples embedded in the lower bearing sleeve so that the measuring points are located directly below the babbitt. Measurement and any required recording of the temperatures are performed in conjuction with the turbine supervision. The bearings have provisions for fitting vibration pickups to monitor bearing vibrations. SHAFT SEALS The points where the rotor shaft passes through the stator casing are provided with a radial seal ring. The seal ring is guided in the seal ring carrier which is bolted to the seal ring carrier flange and insulated to prevent the flow of shaft currents. The seal ring is lined with babbitt on the shaft journal side. The gap between the seal ring and the shaft is sealed with hydrogen side and air side seal oil. The hydrogen side seal oil
KORBA SIMULATOR
350
is supplied to the seal ring via an annular groove in the seal guide. Inside the seal ring this seal oil is fed to the hydrogen side annular groove in the seal ring and from there to the sealing gap via several bores uniformly distributed on the circumference. The air side seal oil is supplied to the sealing gap from the seal ring chamber via radial bores and the air side annular groove in the seal ring. To ensure effective sealing, the seal oil pressures in the annular gap are maintained at a higher level than the gas pressure with in the generator casing, the air side seal oil pressure being set to approximately the same level as the hydrogen side seal oil pressure. The oil drained on the hydrogen side of the seal rings is returned to the seal oil system through ducts below the bearing compartments. The oil drained on the air side is returned to the seal oil storage tank together with the bearing oil. On the air side, pressure oil is supplied laterally to the seal ring via an annular groove. This ensures free movement of the seal ring in the radial direction. OIL SUPPLY FOR BEARINGS AND SHAFT SEALS BEARING OIL SYSTEM The generator and exciter bearings are connected to the turbine lube oil supply. SEAL OIL SYSTEM
Seal Oil Pump 1 & 2 Air Side Kind of Pump
: Screw Pump
Type
: SNH210-R46 (Allweiler)
Capacity
: 3.3 DM3/S
Discharge pressure
: 15 bar
Pump motor -Type
: 1LA3-133-4AA90 (Siemens)
Rating
: 7.5 KW
Current
: 141A
Type of enclosure
: IP54
No.
: 2 Nos.Full capacity
Seal Oil Pump Air Side Kind of pump
: Screw pump
Type
: SNH210-R46 (All weiler)
Capacity
: 3.3 DM3/S
Discharge pressure
: 15bar
KORBA SIMULATOR
351
Pump motor drive
: 1 HA 4165-5JL20 (Siemens)
Ranting
: 8.5KW
Voltage
: 220V, DC
Current
: 51A
Speed
: 24.17RPS
Type of enclosure
: IP54
No.
: 1 No. full capacity
Seal Oil Pump H2 Side Kind of pump
: Screw pump
Type
: SNH 210R46 (All Weiler)
Capacity
: 2.17 DM 3/S
Discharge pressure
: 15 bar
Pump motor
: ILA3 133-6AA90 (Siemens)
Rating
: 4 KW
Current
: 7.2 A
Speed
: 15.8 RPS
Type of enclosure
: IP54
No.
: 1 No. Full capacity
Seal Oil Filter, Air Side and H2 Side Kind of filter
: Strainer Type
Type
: 2.62.9 MA (BOLL+MIIRCH)
Volume flow rate
: 3.3 DM3/5
Degree of filter ation
: 100 Microns
No. of air side
: 2 Nos. full capacity
No. of H2 side
: 2 Nos. full capacity
SEAL OIL SYSTEM CONSTRUCTION The shaft seals are supplied with seal oil from two seal oil circuits which consists of the following principal components.
KORBA SIMULATOR
352
HYDROGEN SIDE SEAL OIL CIRCUIT • • • • • • • •
Seal oil tank Seal oil pump Oil cooler 1 Oil cooler 2 Seal oil filter Differential pressure valve C Pressure equalising valve TE Pressure equalising valve EE.
AIR SIDE SEAL OIL CIRCUIT •
Seal oil storage tank
•
Seal oil pump 1
•
Seal oil pump 2
•
Standby seal oil pump
•
Oil cooler 1
•
Oil cooler 2
•
Seal oil filter
•
Differential pressure valve A1
•
Differential pressure valve A2
HYDROGEN SIDE SEAL OIL CIRCUIT The seal oil drained towards the hydrogen side is collected in the seal oil tank. The associated seal oil pump returns the oil to the shaft seals via a cooler and filter. The hydrogen side seal oil pressure required downstream, of the pump is controlled by differential pressure valve C according to the preset reference value, i.e. the preset difference between air side and hydrogen side seal oil pressures. The hydrogen side seal oil pressure required at the seals is controlled separately for each shaft seal by the Exciter end or Turbine end pressure equalising valve, according to the preset pressure difference between the hydrogen side and air side seal oil. Oil drained from the hydrogen side is returned to the seal oil tank via the generator prechambers. Two float operated valves keep the oil level at a predetermined level, thus preventing gas from entering the suction pipe of the seal oil pump (hydrogen side). The low level float operated valve compensates for an insufficient oil level in the tank by admitting oil from the air side seal oil circuit. The high level float operated valve drains excess oil into the seal oil storage tank. The hydrogen entrained in the KORBA SIMULATOR
353
KORBA SIMULATOR
354
seal oil comes out of the oil and is extracted by the bearing vapour exhauster for being vented to the atmosphere above the power house roof. During normal operation, the high level float-operated drain valve is usually open to return the excess air side seal oil, which flowed to the hydrogen side via the annular gaps of the shaft seals, to the air side seal oil circuit. Air Side Seal Oil Circuit The air side seal oil is drawn from the seal oil storage tank and delivered to the seals via a cooler and filter by seal oil pump 1. In the event of a failure of seal oil pump 1 of the air side seal oil circuit, seal oil pump 2 automatically takes over the seal oil supply. Upon failure of seal oil pump 2, the standby seal oil pump is automatically started and takes over the seal oil supply to the shaft seals. In the event of a failure of the seal oil pump of the hydrogen side seal oil circuit, the seal oil is taken from the air side seal oil circuit. The air side seal oil pressure required at the seals is controlled by differential pressure valve A1 according to the preset value, i.e. the required pressure difference between seal oil pressure and hydrogen pressure. In the event of a failure, i.e. when the seal oil for the seals is obtained from the standby seal oil pump, differential pressure valve A2 takes over this automatic control function. The seal oil drained from the air side of the shaft seals is directly returned to the seal oil storage tank. GAS SYSTEM General The gas system contains all equipment necessary for filling the generator with CO2, hydrogen or air and removal of these media, and for operation of the generator filled with hydrogen. In addition, the gas system includes a nitrogen (N2) supply. The gas system consists of : • • •
H2 supply CO2 supply
•
N2 supply Pressure reducers
• •
Pressure gauges Miscellaneous shut off valves
• • •
Purity metering equipment Gas dryer CO2 flash evaporator
•
Flowmeters.
KORBA SIMULATOR
355
HYDROGEN GAS SYSTEM HYDROGEN (H2 ) SUPPLY GENERATOR CASING The heat losses arising in the generator are dissipated through hydrogen. The heat dissipating capacity of hydrogen is eight times higher than that of air. effective cooling, the hydrogen in the generator is pressurized.
KORBA SIMULATOR
For more
356
PRIMARY WATER TANK Nitrogen environment is maintained above the primary water in the primary water tank: •
To prevent the formation of a vacuum due to different thermal expansions of the primary water.
•
To ensure that the primary water in the pump suction line is at a pressure above atmospheric pressure so as to avoid pump cavitation.
•
To ensure that the primary water circuit is at a pressure above atmospheric pressure so as to avoid the ingress of air on occurrence of a leak.
CARBON DIOXIDE (CO2 ) SUPPLY As a precaution against explosive hydrogen air mixtures, the generator must be filled with an inert gas (CO2 ) prior to H2 filling and H2 removal. The generator must be filled with
(CO2 ) until it is positively ensured that no explosive mixture will form during the subsequent filling or emptying procedures. COMPRESSED AIR SUPPLY To remove the CO2 generator.
from the generator, compressed air must be admitted into the
The compressed air must be clean and dry. For this reason, a compressed air filter is installed in the filler line. NITROGEN (N2 ) SUPPLY Nitrogen is required for removing the hydrogen or air during primary water filling and emptying procedures. PRIMARY WATER SYSTEM GENERAL The primary water required for cooling is circulated in a closed circuit by a separate pump. To ensure uninterrupted generator operation, two full-capacity pumps are provided. In the event of a failure of one pump, the standby pump is immediately ready for service and cuts in automatically. Each pump is driven by a separate motor. KORBA SIMULATOR
357
KORBA SIMULATOR
358
All valves, pipes and instruments coming into contact with the primary water are made from stainless material. The primary water system consists of the following principal components: • • • • •
Primary water tank Primary water pumps Primary water coolers Fine filter Ion Exchanger.
As illustrated in the diagram, the primary water admitted to the pump from the tank is first passed via the cooler and fine filter to the water manifold in the generator interior and then to the bushings. After having performed its cooling function, the water is returned to the primary water tank. The gas pressure above the water level in the primary water tank is maintained constant by a pressure regulator. PRIMARY WATER TANK The primary water tank is located on top of the stator frame on an elastic support, thus forming the highest point of the entire primary water circuit in terms of static head. PRIMARY WATER TREATMENT SYSTEM The direct contact between the primary water and the high-voltage windings call for a low conductivity of the primary water. During operation, the electrical conductivity should be maintained below a value of approximately 1 mmho/cm. In order to maintain such a low conductivity it is necessary to provide for continuous water treatment during operation, a small quantity of the primary water should therefore be continuously passed through the ion exchanger located in the bypass of the main cooling circuit. The ion exchanger resin material requires replacement at infrequent intervals. The resins can be replaced during operation of the generator, since with the water treatment system out of service, the conductivity will rise very slowly. STATOR To facilitate manufacture, erection and transport, the stator consists of the following main components : •
Stator frame KORBA SIMULATOR
359
• •
End shields Bushing compartment
The stator frame with flexible core suspension components, core, and stator winding is the heaviest component of the entire generator. A rigid frame is required due to the forces and torque’s arising during operation. In addition, the use of hydrogen for the generator cooling requires the frame to be pressure resistant up to an internal pressure of approximately 10 bar (130 psig). The welded stator frame consists of the cylindrical frame housing, two flanged rings and axial and radial ribs. Housing and ribs within the range of the phase connectors of the stator winding are made of non-magnetic steel to prevent eddy current losses, while the remaining frame parts are fabricated from structural steel. The arrangement and dimensioning of the rib are determined by the cooling gas passages and the required mechanical strength and stiffness. Dimensioning is also dictated by vibrational considerations, resulting partly in greater wall thickness than required from the point of view of mechanical strength. The natural frequency of the frame does not correspond to any exciting frequencies. Two lateral supports for flexible core suspension in the frame are located directly adjacent to the points where the frame is supported on the foundation. Due to the rigid design of the supports and foot portion the forces due to weight and shot-circuit will not result in any over-stressing of the frame. Manifolds are arranged inside the stator frame at the bottom and top for filling the generator with CO2 and H2. The connections of the manifolds are located side by side in the lower part of the frame housing. Additional openings in the housing, which are sealed gas tight by pressure-resistant covers, afford access to the core clamping flanges of the flexible core suspension system and permit the lower portion of the core to be inspected. Access to the end winding compartments is possible through manholes in the end shields. In the lower part of the frame at the exciter end an opening is provided for bringing out the winding ends. The generator terminal box is flanged to this opening. STATOR END SHIELDS The ends of the stator frame are closed by pressure containing end shields. The end shields feature a high stiffness and accommodate the generator bearings, shaft seals and hydrogen coolers. The end shields are horizontally split to allow for assembly. The end shields contain generator bearings. This results in a minimum distance between bearings and permits the overall axial length of the Turbine end shield to be utilised for accommodation of the hydrogen cooler sections. Cooler wells are provided
KORBA SIMULATOR
360
in the end shield on both sides of the bearing compartment for this purpose. One manhole in both the upper and lower half end shield provides access to the end winding compartments of the completely assembled machine. Inside the bearing compartment the bearing saddle is mounted and insulated from the lower end shield. The bearing saddle supports the spherical bearing sleeve and insulates it from ground to prevent the flow of shaft currents. The bearing oil is supplied to the bearing saddle via pipe permanently installed in the end shield and is then passed on to the lubricating gap via ducts in the lower bearing sleeve. The bearing drain oil is collected in the bearing compartment and discharged from the lower half of the end shield via a pipe. The bearing compartment is sealed on the air side with labyrinth rings. On the hydrogen side the bearing compartment is closed by the shaft seal and labyrinth rings. The oil for the shaft seal is admitted via integrally welded pipes. The seal oil drained towards the air side is drained together with the bearing oil. The seal oil drained towards the hydrogen side is first collected in a gas and oiltight chamber below the bearing compartment for defoaming and then passed via a siphon to the seal oil tank of the hydrogen side seal oil circuit. The static and dynamic bearing forces are directly transmitted to the foundation via lateral feet attached to the lower half end shield. The feet can be detached from the end shield, since the end shields must be lowered into the foundation opening for rotor insertion. GENERATOR TERMINAL BOX The phase and neutral leads of the three-phase stator winding are brought out of the generator through six bushings located in the generator terminal box at the exciter end of the generator. The terminal box is a welded construction of non-magnetic steel plate. This material reduces stray losses due to eddy currents. Welded ribs provide for the rigidity of the terminal box. Six manholes in the terminal box provide access to the bushing during assembly and overhauling.
KORBA SIMULATOR
361
STATOR CORE In order to minimise the hysteresis and eddy current losses of the rotating magnetic flux which interacts with the core, the entire core is built up of thin laminations. Each lamination layer is made up from a number of individual segments. The segments are punched in one operation from 0.5 mm (0.02 in.) thick electrical sheet-steel laminations having a high silicon content, carefully deburred and then coated with insulating varnish on both sides. The stator frame is turned on end while the core is stacked with lamination segments in individual layers. The segments are staggered from layer so that a core of high mechanical strength and uniform permeability to magnetic flux is obtained. On the outer circumstance the segments are stacked on isolated dovetail bars which hold them in position. One dovetail bar is not insulated to provide for grounding of the laminated core. Stacking guides inserted into the winding slots during stacking provide smooth slot walls. To obtain the maximum compression and eliminate undue settling during operation, the laminations are hydraulically compressed and heated during the stacking procedure when certain heights of stack are reached. The complete stack is kept under pressure and located in the frame by means of clamping bolts and pressure plates. The clamping bolts running through the core are made of non-magnetic steel and are insulated from the core and the pressure plates to prevent the clamping bolts from short-circuiting the laminations and allowing the flow of eddy currents. The pressure is transmitted from the pressure plates to the core by clamping fingers. The clamping fingers extend up to the ends of the teeth thus ensuring a firm compression in the area of the teeth. The stepped arrangement of the laminations at the core ends provides for an efficient support of the tooth portion and in addition, contributes to a reduction of eddy current losses and local heating in this area. The clamping fingers are made of non-magnetic steel to avoid eddy current losses. For protection against the effects of the stray flux in the coil ends, the pressure plates and core end portions are shielded by gas-cooled rings of insulation-bonded electrical sheet-steel. To remove the heat, spacer segments, placed at intervals along the bore length, divide the core into sections to provide radial passages for cooling gas flow. In the core end portions, the cooling ducts are wider and spaced more closely to account for the higher losses and to ensure more intensive cooling of the narrow core sections. SPRING SUPPORT OF STATOR CORE The revolving magnetic field exerts a pull on the core, resulting in a revolving and nearly elliptical deformation of the core which sets up a stator vibration at twice the system frequency. To reduce the transmission of these dynamic vibrations to the KORBA SIMULATOR
362
foundation, the generator core is spring mounted in the stator frame. The core is supported in several sets of rings. Each ring set consists of two supporting rings and two core clamping rings. The structural members to which the insulated dovetail bars are bolted are uniformly positioned around the supporting ring interior to support the core and to take up the torque acting on the core. For firm coupling of the ring sets to the core, the supporting ring is solidly pressed against the core by the clamping ring. The clamping ring consists of two parts which are held together by two clamps. Tightening the clamps reduces the gap between the ring segments so that the supporting ring is pressed firmly against the core. Each ring set is linked to the frame by three flat springs. The core is supported in the frame via two vertical springs in the vicinity of the generator feed. The lower spring prevents a lateral deflection of the core. The flat springs are resilient to radial movements of the core suspension points and will largely resist transmission of double frequency vibration to the frame. In the tangential direction they are however, sufficiently rigid to take up the short-circuit torque of the unit. The entire vibration system is turned so as to avoid resonance with vibrations at system frequency or twice the system frequency. STATOR WINDING GENERAL, CONNECTION The three-phase stator winding is a fractional-pitch two-layer type consisting of individual bars. Each stator slot accommodates two bars. The slot bottom and top bars are displaced from each other by one winding pitch and connected at their ends to form coil groups. The coil group are connected together with phase connectors inside the stator frame. This arrangement and the shape of the bars at the ends result in a cone shaped winding having particularly favourable characteristics both in respect of its electrical properties and resistance to magnetically induced forces. The bars afford maximum operating reliability, since each coil consists of only one turn. This makes the turn insulation and themaaiiin insulation identical. CONDUCTOR CONSTRUCTION The bar consists of a large number of separately insulated strands which are transposed to reduce the skin effect losses.
KORBA SIMULATOR
363
The strands of small rectangular cross-section are provided with a braided glass fibber insulation and arranged side by side over the slot width. The individual layers are insulated from each other by a vertical separator. In the straightslot portion the strands are transposed by 540 deg. The transposition provides for a mutual neutralisation of the voltages induced in the individual strands due to the slot cross field and end winding flux leakage and ensures that minimum circulating currents exist. The current exist. The current flowing through the conductor is thus uniformly distributed over the entire bar cross-section so that the current-dependent losses will be reduced. The alternate arrangement of one hollow strand and two solid strands ensures optimum heat removal capacity and minimum losses. At the Roebel crossover points, the insulation is reinforced with insulating strip inserts. To ensure that the strands are firmly bonded together and to give dimensional stability in the slot portion, the bars are cured in an electrically heated press. Prior to apply the bar insulation, the bar ends are bent with a special device which shapes the involutes over a cone shell. This ensures a uniform spacing of the bars over the entire length of the end turns after installation. Contact sleeves for electrical connection of the bars and water boxes with the cooling water connections are brazed to the bar ends. In the course of manufacture, the bars are subjected to numerous electrical and leakage tests for quality control. CORONA PROTECTION To prevent potential differences and possible corona discharges between the insulation and the slot wall, the slot sections of the bars are provided with an outer corona protection. This protection consists of a wear-resistant, highly flexible coating of conductive alkyd varnish containing graphite. At transition from the slot to the end winding portion of the stator bars, a semiconductive coating is applied. On top of this, several layers of semi-conductive end corona protection coating are applied in varying lengths. This ensures uniform control of the electric field and prevents the formation of corona discharge during operation and during performance of high voltage tests. A final wrapping of glass fabric tapes impregnated with epoxy resin serves as surface protection.
KORBA SIMULATOR
364
COMPONENTS FOR WATER COOLING OF STATOR WINDINGS GENERAL Two separate water cooling circuits are used for the stator winding and the phase connectors and bushings. All water connection between ungrounded parts and the distribution manifolds & water manifolds of the cooling circuits are insulated teflon hoses. The water connections are equipped with O-rings of Viton and Belleville washers to prevent loosening of the connection. The fittings are made from non-magnetic stainless steel. WINDING COOLING CIRCUIT The end windings are enclosed by an annular water manifold to which all stators bars are connected through hoses. The water manifold is mounted on the holding plates of the end winding support ring and connected to the primary water supply pipe. This permits the insulation resistance of the water-filled stator winding to be measured. The water manifold is grounded during operation. For measurement of the insulation resistance, e.g. during inspections, grounding is removed by opening the circuit outside the stator frame. The hoses, one side of which is connected to ground, consists of a metallic section to which the measuring potential is applied for measurement of the insulation resistance of the water-filled stator winding. The cooling water is admitted to three terminal bushings via a distribution water manifold, flows through the attached phase connectors and is then passed to the distribution water manifold for water outlet via the terminal bushings on the opposite side. The parallel-connected cooling circuits are checked for uniform water flows by a flow measurement system covering all three phases. The cooling primary water flows through the stator bars, which are hydraulically connected in parallel, from the exciter end to the turbine end of the generator. This ensures a minimum temperature rise of the stator bars, a minimum water velocity, and a minimum head loss. Moreover, the thermal expansions of the stator bars are completely uniform.
KORBA SIMULATOR
365
PHASE CONNECTOR COOLING CIRCUIT Phase connectors and terminal bushings are supplied with cooling water through pipes arranged outside the generator at the terminal bushing and generator terminal box and connected to the cooling water inlets and outlets of the cooling circuit through Teflon hoses. The flexible expansion joints and the hydraulically series-connected phase connector sections are connected by Teflon hoses. The hoses, one side of which is connected to ground, consists of a metallic section to which the measuring potential is applied for measurement of the insulation resistance of the water-filled stator winding. The cooling water is admitted to three terminal bushings via a distribution water manifold, flows through the attached phase connectors and is then passed to the distribution water manifold for water outlet via the terminal bushings on the opposite side. The parallel-connected cooling circuits are checked for uniform water flows by a flow measurement system covering all three phases. EXCITATION SYSTEM 500 MW INTRODUCTION In 500 MW Turbo-generator, brushless excitation system is provided. Brushless exciter consists of a 3 phase permanent magnet pilot exciter the output of which is rectified and controlled by the Thyristor Voltage Regulator to provide a variable d.c. current for the main exciter. The 3 phases are induced in the rotor of the main exciter and is rectified by the rotating diodes and fed to the field winding of generator rotor through the D.C. leads in the rotor shaft. Since the rotating rectifier bridge is mounted on the rotor, the slip rings are not required and the output of the rectifier is connected directly to the field winding through the generator rotor shaft. A common shaft carries the rectifier wheels, the rotor of the main exciter and permanent magnet rotor of the pilot exciter. The voltage regulation is effected by using thyrism 04.2, an automatic voltage regulator. There are two independent control systems right up to the final Thyristor element-an auto control and a manual control. The control is effected on the 3 phase output of the pilot exciter and provides a variable d.c. input to the main exciter. The feedback of voltage and current output of the generator is fed to the AVR where it is compared with the set-point generator volts set from the control room. The current feedback is utilised for active and reactive power compensation and for the limiters.
KORBA SIMULATOR
366
KORBA SIMULATOR
367
There are 3 limiters, under excitation limiter, over excitation limiter and U/Hz limiter which act on the AVR. A power system stabiliser is also envisaged for damping oscillations in the power system. The manual control system consists of an excitation controller which control the excitation as set on the manual set-point from the control room. A field forcing limiter allows field forcing during emergency upto the capability of the main exciter. In cases of defects in the automatic control system the excitation automatically changes over the manual regulation through protective relays. In order to ensure a bumpless transfer follow up circuit controls the manual channel so that it follows the auto channel continuously. De-excitation of the machine is effected by driving the thyristors to inverter mode of operation causing the thyrister to supply maximum reverse voltage to the field winding of the main exciter. Approximately 0.5 secs. after de-excitation command is received two field suppressions contractors connect field suppression resistors in parallel to main exciter field winding and following this a trip command is transmitted to the field circuit breaker via its trip coil. In the event of a failure of the electronic de-excitation through inverter operation, de-excitation would be effected with a delay of 0.5 seconds by field suppression resistors. The main advantage of rotating diode excitation system is that it eliminates the use of slip rings and carbon brushes which pose constant maintenance problems. Following chapters deal with the design features, constructional details and basic operation of the excitation system. The first part will deal with the basic design features and will illustrate the Basic Arrangement of Brushless Excitation System with rotating diodes along with the constructional details of the system. The second part will describe the voltage regulator, its Basic mode of operation along with the limiters. The three-phase pilot exciter has a revolving field with permanent magnet poles. The three-phase ac generated by the permanent magnet exciter is rectified and contributed by the TVR to provide a variable de current for exciting the main exciter. The three phase AC induced in the rotor of the main exciter is rectified by the rotating rectifier bridge and led to the field winding of the generator rotor through the DC leads in the rotor shaft. A common shaft carries the rectifier wheels, the rotor of the main exciter and the permanent magnet rotor of the pilot exciter. The shaft is rigidly coupled to the
KORBA SIMULATOR
368
generator rotor. The exciter shaft is supported on a bearing between the main and pilot exciters. The generator and exciter rotors are thus supported on total of three bearings. Mechanical coupling of the two shaft assemblies results in simultaneous coupling of the dc leads in the central shaft bore through the Multikontakt electrical contact system consisting of plug-in bolts and sockets. This contact system is also designed to compensate for length variations of the leads due to thermal expansion. RECTIFIER WHEELS The main components of the rectifier wheels are the silicon diodes which are arranged in the rectifier wheels in a three phase bridge circuit. The contact pressure for the silicon wafer is produced by a plate spring assembly. The arrangement of the diode is such that this contact pressure is increased by the centrifugal force during rotation. Two diodes each are mounted in each aluminium alloy heat sink and thus connected in parallel. Associated with each heat sink is a fuse which serves to switch off the two diodes if one diodes fails (loss or reverse blocking capability). Following are the basic elements of rectifier wheels: 1. Rectifier wheel 2. Three phase lead 3. Heat sink 4. Diode 5. Fuse 6. Multikontakt plug -in-bolt For suppression of the momentary voltage peaks arising from commutation, each wheel is provided with six RC networks consisting of one capacitor and one damping resistor each which are combined in a single resin-encapsulated unit. The insulated and shrunken rectifier wheels serves as DC buses for the negative and positive side of the rectifier bridge. This arrangement ensures good accessibility to all components and a minimum of circuit connections. The two wheels are identical in their mechanical design and differ only in the forward directions of the diodes. The direct current from the rectifier wheels is fed to the dc leads arranged in the centre bore of the shaft via radial bolts. The three-phase alternating current is obtained via copper conductors arranged on the shaft circumference between the rectifier wheels and the three-phase main exciter. The conductors are attached by means of banding clips and equipped with screw-on
KORBA SIMULATOR
369
lugs for the internal diode connections. One three-phase conductor each is provided for the four diodes of a heat sink set. THREE-PHASE MAIN EXCITER MAIN COMPONENTS OF 3 PHASE EXCITER ARE : 1. 2. 3. 4. 5.
Rotor Stator Magnetic pole Sliprings for ground fault detection Bearing housing
The three-phase main exciter is a six-pole revolving-armature unit. Arranged in the stator frame are the poles with the field and damper winding. The field winding is arranged on the laminated magnetic poles. At the pole shoe bars are provided their ends being connected so as to form a damper winding. Between two poles a quadrature-axis coil is fitted for inductive measurement of the exciter current. The rotor consists of stacked laminations which are compressed by through bolts over compression rings. The three-phase winding is inserted in the slots of the laminated rotor. The winding conductors are transposed within the core length, and the end turns of the rotor winding are secured with steel bands. The connections are made on the side facing the rectifier wheels. The winding ends are run to a bus ring system to which the three-phase leads to the rectifier wheels are also connected. After full impregnation with synthetic resin and curing, the complete rotor is shrunk on to the shaft. A journal bearing is arranged between main exciter and pilot exciter and has forced oil lubrication from the turbine oil supply. THREE-PHASE PILOT EXCITER The three-phase pilot exciter is a 16 pole revolving-field unit. The frame accommodates the laminated core with the three-phase winding. The rotor consists of a hub with mounted poles. Each pole consists of 10 separate permanent magnets which are housed in a non-magnetic metallic enclosure. The magnets are braced between the hub and the external pole shoe with bolts. The rotor hub is shrunk onto the free shaft end. COOLING OF EXCITER The exciter is air cooled. The cooling air is circulated in a closed circuit and recooled in two cooler sections arranged along side the exciter.
KORBA SIMULATOR
370
The complete exciter is housed in an enclosure through which the cooling air circulates.The rectifier wheels, housed in their own enclosure draw the cool air in at both ends and expel the warmed air to the compartment beneath the base plate. The main exciter enclosure receives cool air from the fan after it passes over the pilot exciter. The air enters the main exciter from both ends and is passed into ducts below the rotor body and discharged through radial slots in the rotor core to the lower compartment. The warm air is then returned to the main enclosure via the cooler sections. EMERGENCY COOLING OF EXCITER Emergency cooling is provided to permit continued operation in the event of cooler failure.
In such an emergency, flaps in the hot and cold air compartments are
automatically operated by actuators admitting cold air from outside the exciter enclosure and discharge the hot air through openings in the base frame. Main parts of permanent Magnet pilot exciter are: 1. Stator 2. Permanent-magnet rotor 3. Stator winding REPLACEMENT OF AIR INSIDE EXCITER ENCLOSURE When the generator is filled with hydrogen (operation or standstill) an adequate replacement of the air inside the exciter enclosure must be ensured. The air 3 volume inside the exciter enclosure requires an air change rate of 125 m /hr.While the generator is running the air leaving the exciter enclosure via the bearing vapour exhaust system and the leakage air outlet in the foundation provides for a pullthrough system. The volume of air extracted from the cooling air circuit is replaced via the filters located at the top of the enclosure: When the generator is at rest the air dryer of the exciter unit discharges dry air inside the exciter enclosure. The air leaves the exciter enclosure via the leakage air filter and the leakage air outlet at the shaft as well as via the bearing vapour exhaust system if this system is in service. EXCITER DRYING GENERAL A dryer (dehumidifier) and an anticondensation heating system are provided to avoid the formation of moisture condensate inside the exciter with the turbine generator at rest or on turning gear.
KORBA SIMULATOR
371
MODE OF OPERATION The dryer dehumidifies the air within the exciter enclosure. The dryer wheel is made of a non-flammable material. On its inlet side, the wheel is provided with a system of tubular ducts, the surfaces of which are impregnated with a highly hygroscopic material. The tubular ducts are dimensioned so that a laminar flow with low pressure loss is obtained even at high air velocity. The moisture absorbed by the dryer wheel is removed in a regeneration section by a stream of hot air directed through the wheel in the opposite direction of the inlet air and then discharged to the atmosphere. After regeneration, the dryer wheel material is again capable of absorbing moisture. The adsorption of moisture and regeneration of the dryer wheel material take place simultaneously, using separate air streams, which ensures a continuous drying of the air. A shutoff valve in the dry air outlet line prevents that contaminated air from the power house which will be drawn during load operation of the exciter: OPERATING PRINCIPLE OF ADSORPTION DRYER The dehumidification takes revolutions per hour). The alloy containing crystalline subdivided so that 1/4 is section.
place in a slowly rotating dryer wheel (approximately 7 honeycomb dryer wheel consists of a magnesium silica lithium chloride. The inlet side of the dryer wheel is available for regeneration and 3/4 for the adsorption
ADSORPTION SECTION The air to be dehumidified passes through the absorption section of the dryer wheel, with part of the moisture contained in the air being removed by the adsorbent material, i.e. lithium chloride. The moisture is removed as a result of the partial pressure drop existing between the air and the adsorbent material. REGENERATION SECTION In the regeneration section of the dryer wheel, the accumulated moisture is removed from the dryer wheel by the heated regeneration air.
KORBA SIMULATOR
372
Continuous rotation of the dryer wheel ensures continuous dehumidification of the air within the exciter. ANTICONDENSATION HEATING SYSTEM An anticondensation heating system to support the dryer is installed in the exciter baseframe. The heaters are rated and arranged so that the temperature in the exciter interior is maintained above the dew point level. The heaters are controlled through rod-type thermostats located in the exciter interior. GROUND FAULT DETECTION SYSTEM The field ground fault detection system detects high resistance and low-resistance ground faults in the exciter field circuit. This is very important for safe operation of a generator, because a double fault causes magnetic unbalances, with very high currents flowing through the faulted part, resulting in its destruction within a very short time. It is therefore an essential requirement that even simple ground faults should activate an alarm and protective measures be initiated, if possible, before the fault can fully develop. For this reason, the field ground fault detection system consists of two stages and operates continuously. If the field ground fault detection system detects a ground fault, an alarm is activated at . If the insulation resistance between the exciter field circuit and ground either suddenly or slowly drops to the generator electrical protection is tripped (2nd stage). The generator is thus automatically disconnected from the system and de-excited. AUTOMATIC VOLTAGE REGULATOR VOLTAGE REGULATING SYSTEM Type
: Thyrisiem 04-2
Maximum output voltage
: 250V
Output current for field forcing
: 152A
Output current for rated generator load
: 88A
Auxiliary voltage from pilot exciter for thyristor : Three phase supply sets
220 V,400 Hz
D.C.voltage from station battery for conductor & : 220V drives Power input continuously
: < 0.1KW
Power input short time
: < 1KW
KORBA SIMULATOR
373
DC current from station battery 2 X 24 V for : Max. 15A positive control and regulation
Max.6A Negative
Rated secondary voltage
: 120V
Power input of voltage transformer per phase
: 2 VA
Rated secondary current
: 5A
Power input of current transformer per phase
: 6.5
VA
(plus
losses
in
connecting leads) Accuracy of control
: better than ± 0.5%
Setting range of voltage set point potentiometer
: + 5-10%of nominal Gen. voltage
Setting
range
of
droop
compensation
compounding
or : ± 0-10%
dependent
on
the
setting of the potentiometer and proportional to reactive current
BASIC MODE OF OPERATION The THYRISIEM 04-2 voltage regulator is designed for excitation and control brushless generators. The block diagram shows the circuit configuration. The machine set consists of the generator and a direct coupled exciter unit with a three phase main exciter, rotating rectifiers and a permanent magnet auxiliary exciter. The main components of the voltage regulator are two closed-loop control systems each followed by a separate gate control unit and Thyristor set and a de-excitation equipment. In addition to this (but not shown), a open-loop control system for the signal exchange between the regulator and the power station control room and other plant components is provided as well as power supply equipment. Control system 1 for automatic generator voltage control (AUTO) comprises the following : •
Generator voltage control; the output quantity of this control is the set-point for a following
•
Excitation current regulator, controlling the field current of the main exciter (= output current of the co-ordinated Thyristor set)
•
Circuit for automatic excitation build-up during start-up and field suppression during shut-down; this equipment acts onto the output of the generator voltage control, limiting the set-point for the above excitation current regulator. The stationary value of this limitation determines the maximum possible excitation current set-point (field forcing limitation);
•
Limiter for the under-excited range (under excitation limiter),
KORBA SIMULATOR
374
•
Delayed limiter for the over excited range (over excitation limiter).
The field forcing limitation limits - practically undelayed - the output current of the thyristor sets to the maximum permissible value, when the voltage regulation calls for maximum excitation. Normally, this maximum permissible value is 1.5 times the rated excitation. The over excitation limiter ensures delayed reduction of the excitation current to the rated value in the over excited range, i.e. between rated excitation and maximum excitation. The delay time depends on the amount by which the rated value has been exceeded. These limiters protect Thyristor sets and machines against over excitation with too high values or too long duration. In the under-excited range, the under excitation limiter ensures that the minimum excitation required for stable parallel operation of the generator with the system is available and that the under-excited reactive power limited accordingly. The response characteristic is formed on the basis of the generator reactive current, active current and terminal voltage and can be matched to the generator and system data. Control system 2 (MANUAL) mainly comprises a second excitation current regulator with separate sensing for the actual value. This control system is also called Manual control system, because for constant generator voltage manual re-adjusting of the excitation current set-point is required when changing the generator load. The excitation current regulator permits plotting of generator characteristics and setting of protective relays during no-load and short-circuit runs of the generator during commissioning and maintenance work. The system can also be used for setting the generator excitation during normal operation when the automatic voltage is defective. Normally, the automatic voltage regulator is in service even during start-up and shut down of the generator set. The set-point adjuster of the excitation current regulator for MANUAL is tracked automatically (follow-up control) so that, in the event of faults, changeover to the MANUAL control system is possible without delay. Automatic changeover to the MANUAL control system is possible without delay. Automatic changeover is initiated by some special fault conditions. Correct operation of the follow-up control circuit is monitored and can be observed on a matching instrument in the control room. This instrument can also be used for manual matching. Either control system is co-ordinated with a separate gate-control and Thyristor set. Separate equipment is also provided for supplying power to either control system.
The two separate Thyristor sets for automatic voltage regulation (AUTO) and excitation current control (MANUAL) have the same ample dimensioning regarding rated current and blocking voltage. Each Thyristor is fused separately. The Thyristor set for automatic voltage regulation can be switched off by means of an isolator with contacts in the gate-control, power supply and output sides. KORBA SIMULATOR
375
KORBA SIMULATOR
376
This isolator in conjunction with corresponding arrangement and design of the Thyristor set enables an exchange of thyristors and fuses during operation if necessary whilst operation is continued by means of the excitation current regulator (MANUAL). In addition, the Thyristor set for automatic voltage regulation is equipped with a current-flow monitoring system for detecting failure of firing pulses or fuses. Automatic changeover to the current regulator (MANUAL) is initiated by this system. On the input side, the Thyristor sets are fed with auxiliary power from a 220V, 400 Hz. Permanent magnet auxiliary exciter. The output side of the Thyristor sets feeds the field winding of the main exciter with variable D.C. current. To de-excite the generator during shutdown or when the generator protection system has picked up, a command is transmitted to the outputs of both control systems, driving the Thyristor set being in service to maximum negative output voltage. The negative voltage (inverter operation) de-excites the main exciter in less than 1/2 sec. The generator de-excitation following is a function of the relevant effective generator time constant. Approximately 1/2 sec. after receiving the de-excite command, two field suppression contractors (one being redundant) switch a field discharge resistor in parallel to the main exciter field winding. Subsequently an off command is issued to the field breaker via its tripping coil. In the event of failure of the electronic field suppression by inverter operation, de-excitation would be achieved with a delay of 1/2 sec.via the field discharge resistors. The THYRISIEM 04-2 voltage regulator equipment is arranged within the cubicle group selected according to the power circuits and the 24 V D.C. or 15 V D.C. open and closed-loop control circuits. The signal exchange between the power circuits and the electronic circuits is via voltage isolating transducers, transformers and coupling relays. The closed-loop control systems are made up of modules of the simadyn C system whereas modules of the simatic c1 system are used for the electronic open-loop control and the alarm system. CONNECTION Closing of the field breaker from the control room or from a functional group equipment is controlled by an Iscamatic control module AS11. Off (de-excite) commands are issued from the generator protection and from the emergency pushbutton (via the generator protection) at the 220 V level. When the generator is being shut down, speed criteria cause the field circuit breaker to be tripped (de-excitation). The Off pushbutton in the control room normally is only provided, to reset the Iscamatic control module in these cases. The voltage regulator issues the checkback signals “Field breaker Off/On” and “Control voltage fault” to the control room. The latter is issued if one or both of the trip voltages for the field breaker are faulty. The pushbutton “MATCHING” which is used for manual matching during AUTOMANUAL changeover and the associated signal lamps. Only one set of pushbuttons KORBA SIMULATOR
377
LOWER/RAISE is provided for the control of the set-point adjusters. The commands go automatically to the set-point adjuster depending on the mode of operation selected, also during matching. The position of both set-point adjusters is qualitatively indicated by two instruments. The instrument “MATCH” is necessary for manual matching. It also enables the automatic follow-up to be checked. During steady-state operation, the matching instrument must indicate approximately zero. LOWER/RAISE command also come from the synchronisation unit. A checkback signal “Generator voltage > 90%’’ is formed in the regulator for used as a enabling criterion, available for a functional group control. The alarm “AVR fault” is a group alarm; the triggering individual alarms appear on indicator modules in the regulator cubicle. The alarm “Autom. Changeover to MANUAL” is issued if due to a fault criterion within the regulator automatic changeover to excitation current control (MANUAL) takes place. The alarms Excitation Low/High appear when the under - or over-excitation limiter is in action. The input “AUTO command” and checkback signal “AUTO” are required to set the regulator to the AUTO-mode by the functional group control equipment prior to automatically starting up turbo-set. A twin supply from the 220 V battery. This is used for supplying the field breaker motor drive and the two field breaker trip loops. The power supply inputs of both trip loops are wired to terminals; this offers the possibility, in case of twin channel generator protection one trip loop each to be assigned to the power supply and the trip command of the two protection channels. The 24 V power supply for open-loop and closed-loop control circuits is also a twin supply. Short-circuit protection of the voltage transformers is ensured by an MCB connected to the secondaries. Tripping of this MCB initiates automatic changeover to MANUAL. The 220 V, 400 Hz auxiliary power for the Thyristor sets is fed to the regulator via a power cable. The voltage of the auxiliary exciter is largely proportional to the speed and is used as speed criterion in the voltage regulator. To eliminate the load current dependent voltage drop on the cable from the measured value in case of large distances between the machine set and the regulator cubicle, an unloaded cable for the 400 Hz measuring are fused on the machine side and monitored for undervoltage on the regulator side. The output voltage of the Thyristor sets is available for measuring purpose (e.g. for the under-excitation protection system) at terminals protected by low-rated MCB’s.
KORBA SIMULATOR
378
In addition to the speed criterion derived from the auxiliary exciter voltage, the speed value n < 2790 rpm is provided from a speed limit monitor as a redundant criterion. The speed criteria are used for enabling the excitation during start-up and for automatic de-excitation of the generator during shutdown. The criteria Generator loaded/not loaded are required for enabling or inter-locking some control and monitoring functions. If applicable, a breaker to feed the station supply bus from the generator terminals is to be taken into account accordingly EXCITATION CONTROL DURING START-UP AND SHUTDOWN, FIELD BREAKER CONTROL, DE-EXCITATION Excitation and voltage closed-loop control are not necessary for speeds under approx. 0.95 times rated speed. Furthermore closed-loop control of the generator voltage to the rated voltage would not be permissible at low speeds since the generator and unit transformer would become saturated. For this reason, functions are provided for enabling excitation during start-up and for blocking excitation during shutdown of the generator. The speed is detected via the largely speed-proportional voltage of the auxiliary exciter. In addition to this, redundant speed criteria n< and n> are used from a speed limit monitor, if available. The field breaker is to be switched on after reaching the speed limit required by a manual command or from a functional group control system. In both cases the command passes, as well as the check-back signals “Field breaker Off/On” and “Control voltage fault” through a Iscamatic control module AS11; Closing of the field breaker is interlocked with the criterion “Ramp function generator lower limit” to ensure that the generator voltage builds up slowly without overshooting. During excitation current control (MANUAL), the lower limit of the setpoint adjuster is interlocked instead to ensure that zero excitation is obtained after closing. In addition to this, the power supply of both tripping channels must be available and the key operated switch for blocking the excitation during commissioning and maintenance work (arranged in the voltage regulator cubicle) must be set to the position “Excitation not blocked”. With the field breaker being closed and the speed limits exceeded the pulse blocking signal to the gate control set disappears, the ramp function generator runs up thus building up the generator excitation provided that automatic voltage control (AUTO) has been selected. The run-up command is stored by a memory with remnant relay. When the speed drops below the limit values during shutdown, this initiates together with the status “Generator not loaded”. KORBA SIMULATOR
379
•
field breaker OFF command
•
pulse blocking signal to the gate control set
•
run-down of ramp function generator.
Run-down of the ramp function generator may also be initiated during rated speed by the OFF state of the field breaker, when the breaker is tripped from the generator protective system. The speed criteria are monitored with respect to their importance. Presence of the criterion n< or absence of the criterion n > while the generator is loaded will be alarmed. Under excitation current control (MANUAL), no automatic excitation build-up is effected during start-up. When the field breaker is closed, the excitation current is at its lowest possible value = zero value approx. The desired excitation can be set on the set-point adjuster (lower/Raise pushbutton in UCB). During shut down of generator the field current set point adjuster receives a continuous LOWER command on tripping of the field breaker so that the set-point adjuster is set to the lower limit position. The tripping circuits for the de-excitation are provided twice for redundancy reasons. This should be complemented by corresponding safety in the power supply for the trip circuits; A de-excitation command from the generator protection system or a “Field breaker OFF” command from the control room energises relays K12 (system 1)/K22 (system 2) which seal in and start the time relays K13/K23, set to 0.5 s. Via relays K12/K22 the Thyristor set operating is driven to inverter operation thereby reversing the main exciter field winding voltages and thus reducing the Thyristor set output current to zero in less than half a second. The field discharge contractors K14/K24, energised by time relays K13 or K23 respectively, switch a field discharge resistor in parallel to the field winding of the main exciter and trip field breaker Q1 via its tripping coil. The field discharge resistor ensures that proper de-excitation is achieved even in the event of failure of the electronic de-excitation circuit. The field breaker is automatically tripped during generator shutdown by speed criteria as described above if not tripped earlier by the reverse power protection system. In emergencies, the field breaker can also be tripped manually via the generator protection system by actuating the emergency pushbutton on the control desk. In this case, also a turbine trip command is transmitted to the turbine control equipment. The OFF pushbutton for the field breaker is normally only connected for reset of the Iscamatic control module AS11 in the above cases. Should the OFF pushbutton be required to really trip the field breaker, interlocks must be provided with the generator
KORBA SIMULATOR
380
breaker and possibly with the station service supply breaker(s) to prevent de-excitation of loaded generator. Local non-electrical (mechanical) tripping of the field breaker is not permissible as the other essential de-excitation functions (field discharge by resistors, field suppression by overeater operation) are not tripped in this case. For emergency de-excitation a push-button or switch is locally provided (in the cubicle). Emergency de-excitation is possible also by tripping the MCB’s for the pulse power supply of the Thyristor sets. Mechanically closing of the field breaker is to be avoided also, as the sealed in relays in the tripping circuits would not drop out in this case. During short-circuit operation of the generator for setting of the generator protective equipment, the degree of excitation is adjusted by means of the excitation current regulator (MANUAL). During this mode of operation, a “MANUAL faulted” criterion available in the alarm system of the regulator can provisionally be used for tripping the field breaker. CHANGEOVER AUTO-MANUAL The THYRISIEM 04-2 voltage regulator includes a control system for automatic voltage control (AUTO) and an excitation current control system (MANUAL). The excitation current control system is provided for taking generator characteristics during commissioning and maintenance, for short-circuit operation of the generator during commissioning and for adjusting the excitation current in case of the automatic voltage regulator being faulty. This means that changeover from AUTO to MANUAL and vice versa is only required in exceptional cases. The manual changeover command is normally issued from the control room. Pushbuttons are also provided in the voltage regulator cubicle for commissioning and maintenance purposes. Push buttons AUTO, MATCH and MANUAL are provided for manual changeover. The MATCH pushbutton must be actuated prior to manual changeover. Following this, the RAISE, LOWER pushbuttons must be actuated for matching the output value of the set-point adjuster for MANUAL (on transition to MANUAL) or of the set-point adjuster for AUTO (on transition to AUTO) to the actual excitation state or to the generator voltage actual value. When the matched state is reached, the matching instrument in the control room indicates zero. Since different controlled variables are associated to the MANUAL to AUTO modes of operation, matching must not be effected by balancing the set-point adjuster position which are also indicated in the control room. Changeover to MANUAL or AUTO is only possible after the MATCH condition has been selected (interlocking circuit). Changeover to MANUAL or AUTO is also blocked from the regulator alarm system when the excitation current regulator or the automatic voltage regulator is faulty.
KORBA SIMULATOR
381
Automatic interrogation and evaluation of the matching stage and associated interlocking circuits have purposely not been provided since, in the event of faults changeover required for maintaining generator operation might be restricted inadequately. When all conditions for changeover are fulfilled, changeover is initiated by actuating pushbutton MANUAL or AUTO. The stored commands MATCH and MANUAL or AUTO are cancelled by the checkback signal “Gate control set MANUAL ON” or “Gate control set AUTO ON”. Changeover from AUTO to MANUAL and vice versa is initiated by a remanent relay module in the gate control set. Certain fault conditions in the automatic voltage control system initiate automatic changeover to MANUAL; This requires continuous automatic follow-up control of the excitation current set-point adjuster, i.e. on manual transition to MANUAL, a more or less balanced state already exists when MATCH is selected. Manual fine matching may still be carried out if necessary since automatic matching is blocked when MATCH is selected. FAULT INDICATIONS The following alarms are issued from the voltage regulator to the control room AVR fault; AVR, automatic changeover to MANUAL, AVR, loss of alarm voltage. The group alarm “AVR fault” collects the individual alarms; The initiating individual signal (s) is are stored and can be identified locally (in the voltage regulator cubicle) by means of LED’s. The indications are :Power supply Auto; Generator voltage actual value; Thyristor set AUTO; Faulty over excitation. Cause automatic changeover to MANUAL unless changeover is not blocked due to a fault in the excitation current control (MANUAL). Changeover can also be checked if components of MANUAL or AUTO are not ready for operation. This blocking takes effect both for automatic and manual commands. Fault conditions initiating automatic changeover also cause the alarm “AVR’ automatic changeover to MANUAL” to be given. The Power Supply AUTO” alarm initiating automatic changeover occurs in the event of undervoltage in the stabilised 15 V power supply for the automatic voltage control and the associated gate control set. The alarm “Generator voltage actual value” is initiated either by tripping of the voltage transformer MCB for the generator voltage actual value or by the generator voltage actual value monitor.
KORBA SIMULATOR
382
Response of the current flow monitoring system initiates the “Thyristor set AUTO” alarm. AUTOMATIC VOLTAGE REGULATION [AUTO] The potentiometer R1 fed from the + 10 V stabilised voltage presets the base reference value, the standard corresponding 85 % rated voltage. Added to this is the variable value from the set-point adjuster as standard 0- 20 %, corresponding to a total setting range of 85 to 105 %. The output voltage of the subsequently arranged amplifier N2 amounts to 8.0 V at rated generator voltage. The comparison of the set-point with the actual value takes place at the input of the proportional amplifier N4. Furthermore the output of the amplifier N3 which sums up the influencing factors of the compensation (reactive current effect) and of the under and over excitation limiters, is also switched to this junction point. The result of these influences is that of an additional set-point. The inputs for the limiters as well as further free inputs of the amplifier N3 can be individually switched to this point (the switches are not shown). The compassion can be set to between 0 and approx. 10 % by a potentiometer. A cascade of a proportional - integral (PI) voltage regulator (amplifiers N4, N7) and a following excitation current regulator (amplifiers N14,N15) serves for dynamic is determined and amplified by amplifier N4; the gain is set at potentiometer R4. The integral function is provided by amplifier N7 and adjusted at potentiometer R7. The feedback resistor R8 determines the static gain. The amplifiers N9, N10 with high proportional gain (about 100) limit the positive and negative output voltage of the amplifier N8 and thus the input signal to the excitation current regulator, depending on the setting of the potentiometers R9, R10. Negative output voltage of the P1 voltage regulator (output of N8) results in a positive set-point value to the input of the excitation current proportional (P-) regulator N 15. This P-regulator compares the positive set-point value against a negative actual value signal from amplifier by potentiometer R15. Under steady-state conditions, the setpoint and actual value signals have approx. The same amount, the difference setting to a value which multiplied by the gain of N15 result in the required signal going to the gate control set (output of N15). Negative voltage to the gate control set generates firing angles < 90 deg. Thus supplying power to the field winding of the main exciter (controlled rectifier operation) Positive voltage generates firing > 90 deg. Thus reversing the Thyristor set output voltage and drawing power from the field winding of the exciter, resulting in the current falling towards zero (inverter operation).
KORBA SIMULATOR
383
KORBA SIMULATOR
384
The relay K15 switches a positive voltage to a limiting input of amplifier N15 during de-excitation resulting in an equal positive constant input voltage to the gate control set. The Thyristor set output current then drops in less than half a second to zero, the generator voltage - or generator current in the case of a short-circuit - follows with a delay corresponding to the relevant generator time constant. As soon as the current reaches zero the Thyristor are blocked and the reversed voltage on the field winding disappears. This de-excitation process by inverter operation is shown below. The excitation current actual value = output current of the Thyristor sets is sensed by two transducers connected to separate shunt resistors, i.e. one combination each of shunt resistor plus transducer is provided for the automatic voltage regulator (AUTO) and for the MANUAL control system. The matching amplifier following the transducer for automatic voltage control transmits the current actual value to the input of amplifier N14. FIELD FORCING With the automatic voltage regulation calling for maximum excitation of the generator, the Thyristor set initially supplies a higher voltage to the field winding of the main exciter than that actually required under steady-state conditions, until the actual current in the main exciter field winding has reached the excitation current set-point coming from the PI-voltage regulator (output of N8). Overdriving the voltage to the field winding of the main exciter reduces the time required for building up the corresponding current in same field winding and thus improves the exciter response, for a large control action. The overdriving function - also refereed to as field forcing also becomes effective in the case of smaller control operations. This effect is achieved by the proportional excitation current regulator N15 together with proper setting of the control limits.
KORBA SIMULATOR
385
The maximum possible output voltage of the Thyristor set UA MAX is determined by a limit set as required in the gate control unit; i.e. the minimum delay angle for rectifier operation. Because of the high gain of the current regulator N15, a small increase of the set point is sufficient to reach UA MAX. The maximum output current IA MAX is determined by the maximum possible excitation current set-point from the PI-voltage regulator; this set-point is limited by amplifier N10 with respect to a reference voltage coming from ramp function generator N11, the function of which is explained below. This reference voltage is corresponding with the setting on potentiometer R11. Overdriving also becomes effective in case of downward control actions. The maximum possible reversed output voltage again is determined by a limit set (to a standard value) in the gate control unit, i.e. the maximum delay angle for inverter operation,. The positive signal from the PI-voltage regulator to the excitation current regulator is limited by amplifier N9 according to the setting of potentiometer R9 to a small value; this (standard) value is selected to make possible maximum reversed Thyristor output voltage during downward regulation through the whole current range, i.e. also at small actual current values. At the beginning of a generator start-up cycle, the output voltage of the ramp function generator N11 is zero so that the Thyristor set output current is limited to zero. When a speed value just short of synchronisation is reached, the ramp function generator gets its input voltage to run up to its maximum value within approx. 20. Thus due to the gradual enabling of the current, the generator receives its voltage within a few seconds without overshooting. On shutdown of the machine the ramp function generator runs back to output zero after removing the run-up command. Failure of diodes in the rotating rectifier between the main exciter and the generator field winding reduces its load capacity. The control panel in the regulator cubicle includes a switch by means of which the normal field - forcing value IA MAX of 1.5 times rated excitation can be limited to 1.1 times rated output by means of which the field - forcing limitation is reduced. The limitation to 1.1 times rated excited also becomes effective when the generator is not loaded; Field -forcing limitation, i.e. limitation of the Thyristor set output current to IA MAX ‘ is monitored by a limit monitor which senses the output current of the Thyristor set and its pick-up value being adjusted to 1.1 x IA MAX. Response of this limit monitor initiates automatic changeover to the MANUAL control system.
KORBA SIMULATOR
386
MANUAL CONTROL SYSTEM The MANUAL control system incorporates a proportional action amplifier for closedloop control of the Thyristor set output current = excitation current of the main exciter. This control system is provided for commissioning and maintenance work (particularly for operating the generator short-circulated) and maintaining operation when the automatic voltage regulator is disturbed. The current actual value for the control system is transmitted via a shunt from transducer U1 and matching amplifier N6. The set-point value is supplied by a motoroperated potentiometer with a setting range which normally goes from the remanence value to 1.1 times rated excitation. The range is adjusted by a potentiometer R6 of matching amplifier N6. The set-point and actual values are compared at the input of proportional amplifier N1. The output of amplifier N1 supplied the input voltage for the gate control set via amplifier N2 (gain = +1). Amplifier N3, N4 with high proportional gain (approx. 100) limit the positive and negative output voltage of amplifier N2 and thus the input signal of the gate control set in accordance with the setting of potentiometers R2,R3. Potentiometer R3 is set in accordance with the Thyristor set output voltage actually required (approx. 1.1. times rated excitation).Potentiometer R2 for the maximum inverter voltage is set to a standard value. For de-excitation, the positive output voltage is changed over from potentiometer R2 to amplifier N4 by means of relay K1 thus ensuring an equal positive constant input voltage of the gate control set. On tripping of the generator from the grid, the current regulator would maintain the excitation current on a level corresponding to the preceding load operation which would result in generator over voltage. This is prevented by two measures. Amplifier N5 limits the generator overvoltage to a response value pre-set by potentiometer R4 this response value must be slightly higher than the maximum generator voltage to be expected during operation (e.g. 106 %). In addition to this, value which corresponds to the station supply load. CONTROL OF SET-POINT ADJUSTERS Each of the two control systems AUTO and MANUAL has its own 24 V d.c. motoroperated set-point adjuster; Two separate output drivers are provided for supplying the motor in both directions of rotation. When one of the end positions is reached, the output voltage of the set-point potentiometer blocks the relevant driver by a limit value monitor. In addition, the drive is protected by a slip-clutch. The set-point
KORBA SIMULATOR
387
potentiometer can also be adjusted manually without electric control by means of a knob provided on the module front panel. The LOWER or RAISE signals transmitted from the control room act on the OR function in the driver input. The driver are mutually interlocked via blocking inputs. Furthermore , response of the under excitation limiter blocks the RAISE driver of the AUTO set point adjuster. The inputs of the drivers for the MANUAL set point adjuster are also influenced by the follow -up control system (refer to chapter 11). Furthermore, U5 when the generator is disconnected from the grid and during deexcitation. Limit monitor U5 reduces the set point value to a value which approximately corresponds to the station-service power requirements of the unit. The activity of limit monitor U5 during shutdown of the generator was provided to assist the operator who must carry out a fine adjustment in accordance with the generator voltage. During de-excitation, the set-point adjuster is moved to the lower end position. Together with the LOWER / RAISE commands from the control room, the corresponding commands from the automatic synchroniser and the local control panel in the regulator cubicle are applied through or gates. The LOWER/RAISE commands are transmitted to both set-point adjusters to support follow-up control. During matching, only the commands to the set-point adjuster to be matched are enabled. MATCHING FOLLOW UP CONTROL OF THE EXCITATION CURRENT SET-POINT ADJUSTER The excitation current regulator (MANUAL) is mainly used during commissioning and maintenance work and in exceptional cases when faults occur in the automatic voltage control system. For this purpose, the setting of the excitation current set-point adjuster must be matched to the actual excitation state before changeover to MANUAL. In some special fault cases, changeover to manual is initiated automatically. Therefore matching is to be carried out continuously by means of an automatic follow-up control system. It must be taken into consideration that the excitation current may be subject to considerable transient variations during faults. For this reason, a clear design of the matching and follow-up control circuits is more essential than high accuracy. Under steadystate conditions, the matching and follow circuits ensure, that the sustained and transient change of the excitation caused by changeover practically are to be neglected. Changeover from control of the generator voltage (AUTO) to the excitation current regulator (MANUAL requires the excitation current set-point adjuster to be set to a position in which a set point corresponding to the actual excitation current is supplied.
KORBA SIMULATOR
388
The output values of the excitation current regulators for AUTO and MANUAL are compared for that purpose by amplifier N1. The difference signal acts on the matching instrument in the control room and on the input of the three term controller U1 for follow-up control of the excitation current set-point adjuster. The set-point value of the excitation current regulator is suitably adjusted for changeover when the difference signal at the outputs of amplifiers N1 and N2 is zero. The difference signal at the output of amplifier N2 is connected to a proportional amplifier U1 N1 with adjustable gain and substantial smoothing in the three term controller. The input of the limit monitors U1U1/U1U2 for Lower/Raise outputs with fixed response thresholds are connected to the output of amplifier U1N1. The difference value which just initiates response of the three-term controller is determined by the proportional gain of U1N1. In the case of larger differences, the response time of the limit monitors is shortened as a function of the increasing difference; refer to the AVR diagrams “response mode” and “response time”. The values of the gain and smoothing time constant of amplifier U1N1 are selected so that on the one hand sufficient accuracy and fast correction of the deviation is ensured, and on the other hand the switching frequency of the set-point potentiometer is sufficiently limited. The circuits of the three-term controller are shown simplified without the components which ensure a minimum pulse time and stabilisation of the follow-up control (feedback). When the generator is connected in parallel with grid, the LOWER /RAISE commands from the control room are simultaneously transmitted to the AUTO and MANUAL set point adjusters. This reduces the setting time of the follow-up control system. For monitoring of the follow-up control system, the difference signal behind amplifier N2 is monitored by limit monitors. Response of a monitor initiates delayed signalling. To prevent disturbing changes in excitation during changeover from MANUAL to AUTO, the output voltage of the generator voltage regulator must be adjusted according to the actual excitation level i.e. the excitation current set-point delivered by the generator voltage regulator must be adapted to the excitation current actual value. The excitation current set-point value is made up by two components: •
The voltage of a proportional amplifier N4* and
•
The voltage of an integrator N7*
During steady-state conditions, the output voltage of amplifier N4* is zero and the output voltage of integrator N7* delivering the set-point to the excitation current regulator of the AUTO system. This means that the AUTO set-point adjuster must be so adjusted that the output voltage of amplifier N4* becomes zero, whereas the output voltage of integrator N7* is essentially to be adjusted to the excitation current actual value. The first task is solved by applying the output voltage of amplifier N4* to the input of amplifier N2 feeding the matching instrument. The instrument reading is to be adjusted to zero by LOWER/RAISE commands from the control room.
KORBA SIMULATOR
389
KORBA SIMULATOR
390
UNDEREXCITATION LIMITER The underxcitation limiter automatically prevents too low excitation of the generator. A reduction of the excitation may, for instance, occur under influence of the automatic voltage regulator when the system voltage rises during low-load operation. A reduction of the excitation may also result from a faulty operation, e.g. the tapping switch of the main transformer. Fig. 1 illustrates the response value for a generator with an assumed maximum rotor o displacement angle of 75 . This response value includes an adequate safety margin above the stability limit. The safety margin allows for transient phenomena due to major system disturbances and switching operations. This safety margin is of particular importance in the event of short-circuits occurring close to the generator terminals, since the rotor displacement angle increases rapidly in this case. The final value of the rotor displacement angle on clearance of the fault is the decisive factor for maintaining stability. This angle will increase with increases of the steady-state initial value of the rotor displacement angle or decreases of the excitation.
OVEREXCITATION LIMITER Reduction of the system voltage due to increased reactive power requirements, switching operation or disturbances cause the voltage regulator to increase the generator excitation in order to maintain a constant generator voltage. Major system voltage reductions may result in a thermal overloading of the exciter and generator
KORBA SIMULATOR
391
rotor unless the operator presets a lower set-point for the generator voltage or changes the ratio of the unit transformer. In such a case the overexcitation limiter limits the generator excitation by automatically reducing the generator voltage. The excitation current if is measured through a current transformer with shunt and compared with a set-point. When the excitation current exceeds the set-point value, a signal appears at the output of the overexcitation limiter. The resulting signal in the input amplifier of the voltage regulator causes the excitation to decrease accordingly. The overexcitation limiter has a response time inversely proportional to the difference between the actual value and the response value. The shortest response time should be coordinated with the time setting of the backup protection of the generator (Fig.2). The voltage regulator keeps the generator voltage constant independent of the generator frequency. Excitation of the generator with excessive under frequency values is prevented by speed-dependent enabling of the excitation at a speed value of 0.95 p.u. approx. or by blocking at a speed value of less than 0.90 p.u. approx. This means that the excitation equipment permits excited operation of the generator with frequency deviations up to 0.1 p.u. below nominal frequency. The magnetic flux of the unit transformer is directly proportional to the terminal voltage and inversely proportional to the frequency, i.e. proportional to the ratio terminal voltage/frequency. The maximum under frequency value mentioned above may cause a rise of the unit transformer flux. by 0.1 p.u. as against the nominal value. A further increase is possible depending on the permissible setting range of the generator voltage and even higher magnetic flux values are obtained when fault conditions of the voltage regulator are taken into consideration. The conditions described above basically also apply to the magnetic flux of the generator. Excessive magnetic flux increases thermal stressing of the unit transformer and of the generator. The function of the V/Hz limiter is to issue a signal to the voltage regulation loop when a present V/Hz limit value is exceeded and to reduce this value to the permissible limit. For this purpose the V/Hz limiter includes an element for measuring the frequency, comparing the frequency value against the generator voltage value and evaluating a correction signal. The action of the V/Hz limiter is frequently restricted to operation with the generator being disconnected from the grid.
POWER SYSTEM STABLISER GENERAL The power system stabilizer is an integral part of the voltage regulator. The stabilizer has the function of damping any turboset power fluctuations following power supply failures or in service switching operations in order to increase operational reliability
KORBA SIMULATOR
392
and security of supply. Simultaneously the stabilizer generally attains smoother turboset behavior in normal power supply operation. Mode of Operation Given power system structures in combination with certain generator output levels, and also disturbances in the power supply, can frequently produce small power system short circuit currents. In addition, the higher utilization factor (increased output) of modern generators with correspondingly high excitation responses reduces the inherent damping of generators on line. This is understandable in view of the fact that the damping torques are largely dependent on the geometry of the rotor, whereas the increased output of the generators was primarily achieved by more intensive cooling of the rotor; consequently the rotor dimensions did not increase in proportion to output. These two trends, reduction of the ratio of power system short circuit current to generator output and less effective damping of the large generators, lead as a whole to a greater tendency toward fluctuation of the overall generator power supply system. A system stabilization of turbo sets can as a rule be achieved through reduction of the proportional gain of the turbine governing system. Control action influencing the generator excitation system is however a significantly better means of increasing damping. For reasons of technology, the inherent damping in the damping circuits of the generator, which is proportional to slip, cannot directly be increased by inputting additional damping signals. Such signals to improve the stability of the turboset on line must pass through various existing control elements and thus be exactly matched in their time response. Additional damping through feed forward to the signal comparison circuit of the generator voltage regulator with its integral power system stabilizer can be made large enough to override disturbances in other control circuits. The stabilizer for power systems of differing structures operates on signals derived from active power changes (actual power values) and acts on the generator excitation, system by inputting an additional damping signal in the proper phase relation. The power system stabilizer increases oscillation damping in a frequency range from 0.05 Hz to 2.5 Hz. For this purpose, the monitored output power is fed to the inputs of two 2-point vector identifiers, each having one in phase and one phase-shifted output. The output signals in cross-connected opposed-phase pairs are fed via matching elemets to one summing KORBA SIMULATOR
393
element per pair; the output signals from the two summing elements are fed through one matching element per signal to an additional summing element. The resultant output signal is transmitted via a noise suppression element and a limiter as an additional input to the signal comparison circuit of the voltage regulator.
KORBA SIMULATOR
394
Filename: Volume1 Directory: D:\Backup-CD\Manuals\500MW Template: C:\Documents and Settings\SIMULATOR\Application Data\Microsoft\Templates\Normal.dot Title: Subject: Author: Simulator Keywords: Comments: Creation Date: 12/8/2005 3:06 PM Change Number: 93 Last Saved On: 4/28/2006 12:05 AM Last Saved By: user Total Editing Time: 1,579 Minutes Last Printed On: 7/14/2006 11:42 AM As of Last Complete Printing Number of Pages: 394 Number of Words: 95,502 (approx.) Number of Characters: 477,512 (approx.)
View more...
Comments