5. Design of Intermediate Purlins

July 16, 2017 | Author: Niño Ediliz B. Garcia | Category: Structural Load, Motion (Physics), Structural Engineering, Mechanical Engineering, Building Engineering
Share Embed Donate


Short Description

Design of intermediate purlins...

Description

STEP 5. DESIGN OF INTERMEDIATE PURLINS and SAG RODS 1. Specifications a.) Length of purlins L = 6.00 m b.) Slope of roof θ = tan-1(2.00/7.50) = 14.93° c.) Inclined length of roof Inclined length = (7.52+22)1/2 = 7.762 m d.) Purlin spacing Assuming 11 purlins will be used S = 7.762/11 = 0.70 m e.) No. of lines of sag rod = 3 lines f.) Roof Slope = (2/7.5)*100 = 15% f.) Tributary area of purlin = 0.70(6.00) = 4.20 m2

WL

DL , LL

x y

2. Load computations a.) Dead Loads Weight of G.I. Sheet = 108(0.70) = 75.6 N/m Purlin self-weight + accessories = 100 N/m Total dead load = 75.6 + 100 = 175.6 N/m b.) Live Loads From Table 205 – 3 of NSCP 2010, Total LL = 1000 Pa Total live load = 1000(0.70) = 700 N/m c.) Wind Loads Wn

Maximum Pressure = -1807 Pa Total wind load = -1807(0.70) = -1264.9 N/m

Wt LOAD SUMMARY Dead load Wdn = 175.6cos(14.93°) = 169.67 N/m Wdt = 175.6sin(14.93°) = 45.25 N/m Live load Wln = 700cos(14.93°) = 676.36 N/m Wlt = 700sin(14.93°) = 180.36 N/m Wind load Wwn = -1264.9 N/m Wwt = 0

x

y

FACTORED DESIGN LOADS Load Case 1: DL + LL Wn = 169.67 + 676.36 = 846.04 N/m Wt = 45.25 + 180/36 = 225.61 N/m Load Case 2: 0.75(DL + WL) Wn = 0.75(169.67 – 1264.9) = -821.42 N/m Wt = 0.75(45.25 + 0) = 33.93 N/m Among the two combinations Load Case 2 governs Therefore use, Wn = 846.04 N/m and Wt = 225.61 N/m 3. Select trial section a.) Moment at midspan Mx = WnL2/8 = 846.04(6.00)2/8 = 3807.159 N-m My = WtL2/90 = 225.61(6.00)2/90 = 90.244 N-m b.) Allowable bending stress Fbx = 0.6Fy = 0.6(250) = 150 MPa Fby = 0.75Fy = 0.75(250) = 187.5 MPa c.) Required section modules Sx = Mx/Fbx = 3807.159/150 = 25.38x103 mm3 Try C 130x10 Ix = 3.09x106 mm4 Sx = 48.6x103 mm3 Sy = 6.14x103 mm3 d.) Actual bending stress fbx = Mx/Sx = 3807.159/48.6 = 78.35 MPa fby = My/Sy = 90.244/6.14 = 14.70 MPa e.) Check for biaxial bending criteria (fbx/Fbx) + (fby/Fby) < 1.0 (78.34/150) + (14.70/187.5) = 0.601< 1.0 OK! f.) Check for deflection Wmax = 846.04 N/m E = 200 GPa Allowable deflection δall = 6000/180 = 33.33 mm Actual deflection δactual = 5WL4/384EI = 5(846.06)(6)4109/384(200)(3.09)109 δactual = 23.10 mm < 33.33 mm OK! g.) Actual weight of purlin 9.9 x 9.81 = 97.12 < 100 N/m , OK! Therefore USE C 130 x 10 intermediate purlins spaced at 0.70 m O.C. with 2 lines of sag rods

Tie Rod Critical Sag Rod

DESIGN OF SAG RODS MAXIMUM UNIFORM LOAD IS DUE TO LOAD CASE 1 CHECK FOR LOAD CASE 1 Wt = 225.61 N/m

1.) Total uniform load acting on purlin 45.25 + 180.36 = 225.61 N/m 2.) Max. Tension in Sag Rod to support one purlin 2.0m R1 = 4w/5 = 4(225.61)/5 = 180.488 R2 = 11w/5 = 11(225.61)/5 = 496.342 N 3.) Axial load on critical sag rod, Critical sag rod is carrying, n = 11 spans ΣR1 = 180.488(11) = 1985.368 ΣR2 = 496.342(11) = 5459.762 N 4.) Allowable Axial Stress, Ft = 250(0.60) = 150 MPa 5.) Required Diameter of Sag Rod, A = P/Ft = 5459.762 / 150 = 36.398 m² πdr²/4 = ΣR2 / Ft πdr²/4 = 36.398 mm² dr = 6.807 mm, say 10 mm Therefore use 10 mm dia. Sag rods.

R1

2.0 m

2.0 m R2

R2

R1

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF