ตรีโกณม5-2

August 9, 2017 | Author: Hutsatorn Yenmanoch | Category: N/A
Share Embed Donate


Short Description

Download ตรีโกณม5-2...

Description

2

øíß°å™—π µ√’‚°≥¡‘µ‘

 “√–·≈–¡“µ√∞“π°“√‡√’¬π√Ÿâ ”À√—∫Àπ૬°“√‡√’¬π√Ÿâπ’È  “√–∑’Ë 2 : °“√«—¥ ¡“µ√∞“π § 2.3 : „™â§«“¡√Ÿâ‡√◊ËÕßÕ—µ√“ à«πµ√’ ‚°≥¡‘µ‘·°âªí≠À“‡°’ˬ«°—∫°“√«—¥‰¥â  “√–∑’Ë 4 : æ’™§≥‘µ ¡“µ√∞“π § 4.1 : Õ∏‘ ∫ “¬·≈–«‘ ‡ §√“–Àå · ∫∫√Ÿ ª (pattern) §«“¡ — ¡ æ— π ∏å ·≈– øíß°å™—πµà“ßÊ ‰¥â

º≈°“√‡√’¬π√Ÿâ∑’˧“¥À«—ß ¡’§«“¡§‘¥√«∫¬Õ¥‡°’¬Ë «°—∫øíß°å™π— µ√’ ‚°≥¡‘µ·‘ ≈–‡¢’¬π°√“ø¢Õßøíß°å™π— ∑’°Ë ”Àπ¥„Àâ ‰¥â 2. 𔧫“¡√Ÿâ‡√◊ËÕßøíß°å™—πµ√’ ‚°≥¡‘µ‘·≈–°“√ª√–¬ÿ°µå ‰ª„™â°“√·°âªí≠À“‰¥â 1.

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

88

2.1 øíß°å™—π‰´πå·≈–øíß°å™—π‚§‰´πå °“√°”Àπ¥§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘ ∑”‰¥â ‚¥¬„™â«ß°≈¡Àπ÷ËßÀπ૬ ¡’®ÿ¥»Ÿπ¬å°≈“ß∑’Ë®ÿ¥ °”‡π‘¥ √—»¡’ 1 Àπ૬ «ß°≈¡‡ªìπ°√“ø¢Õߧ«“¡ —¡æ—π∏å {(x, y)  RR|x2y2 = 1} °”Àπ¥®”π«π®√‘ß  (∑’µ“) «—¥√–¬–®“°®ÿ¥ (1, 0) ‰ªµ“¡ à«π‚§âߢÕß«ß°≈¡Àπ÷ËßÀπ૬ ¬“« || Àπ૬ ∂÷ß®ÿ¥ (x, y) ´÷ËßÕ¬Ÿà∫π«ß°≈¡Àπ÷ËßÀπ૬ ‚¥¬∑’Ë 1.   0 «—¥ à«π‚§âß®“°®ÿ¥ (1, 0) ‰ª„π∑‘»∑“ß∑«π‡¢Á¡π“Ãî°“ 2.   0 «—¥ à«π‚§âß®“°®ÿ¥ (1, 0) ‰ª„π∑‘»∑“ßµ“¡‡¢Á¡π“Ãî°“ 3.  = 0 ®ÿ¥ª≈“¬ à«π‚§âߧ◊Õ®ÿ¥ (1, 0) Y (x, y)

Y

 O

(1, 0)

X

O

X



(x, y)

0

(1, 0)

0

‡¡◊ËÕ°”Àπ¥®”π«π®√‘ß  „Àâ ®– “¡“√∂À“®ÿ¥ (x, y) ´÷Ë߇ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“« || Àπ૬ „π∑‘»∑“ß°“√«—¥∑’Ë°”À𥉥â‡æ’¬ß®ÿ¥‡¥’¬«‡∑à“π—Èπ ∂â“ ||  2p °“√«—¥ à«π‚§âß®–‡°‘π 1 √Õ∫ °”Àπ¥øíß°å™—π f : R Æ R ·≈– g : R Æ R ‚¥¬∑’Ë ”À√—∫·µà≈–®”π«π®√‘ß  „¥Ê f() = x ·≈– g() = y ‡¡◊ËÕ (x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âߢÕß«ß°≈¡Àπ÷ËßÀπ૬∑’Ë«—¥®“°®ÿ¥ (1, 0) ¬“« || ‡√’¬°øíß°å™—π g «à“ øíß°å™—π‰´πå (sine) ·≈–‡√’¬°øíß°å™—π f «à“ øíß°å™—π‚§‰´πå (cosine) ‡¢’¬π ·∑π g ¥â«¬ sin ·≈–‡¢’¬π·∑π f ¥â«¬ cos ®–‰¥â y = sin  Õà“π«à“ «“¬‡∑à“°—∫‰´πå∑µ’ “ x = cos  Õà“π«à“ ‡Õ°´å‡∑à“°—∫§Õ ∑’µ“ ®“°°√“ø¢Õߧ«“¡ —¡æ—π∏å {(x, y)  RR|x2y2 = 1} ®–‡ÀÁπ«à“ 1  y  1 ·≈– 1  x  1 ¥—ßπ—Èπ §à“¢Õßøíß°å™—π‰´πå·≈–øíß°å™—π‚§‰´π凪ìπ®”π«π®√‘ßµ—Èß·µà 1 ∂÷ß 1 ‡√π®å¢Õßøíß°å™—π‰´πå·≈–øíß°å™—π‚§‰´πå§◊Õ‡´µ¢Õß®”π«π®√‘ßµ—Èß·µà 1 ∂÷ß 1 ·≈–‚¥‡¡π¢Õßøíß°å™—π∑—Èß Õߧ◊Õ‡´µ¢Õß®”π«π®√‘ß

89

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

2

= 1

2

= 1

x y

®“° ®–‰¥â À√◊Õ‡¢’¬π

2

(cos ) (sin ) 2

2

cos sin  = 1

‡¡◊ËÕ  ‡ªìπ®”π«π®√‘ß ‡¡◊ËÕ  ‡ªìπ®”π«π®√‘ß

À¡“¬‡Àµÿ 2

À¡“¬∂÷ß (cos )2 = (cos )(cos ) 2 2 cos  À¡“¬∂÷ß cos ¢Õß®”π«π®√‘ß  «ß°≈¡Àπ÷ËßÀπ૬¡’√—»¡’ 1 Àπ૬ ‡ âπ√Õ∫«ß¬“« 2pr À√◊Õ 2p Àπ૬ ‡¡◊ËÕ r = 1 Àπ૬ cos 

2.2 §à“¢Õßøíß°å™—π‰´πå·≈–øíß°å™—π‚§‰´πå 2.2.1 §à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß∫“ß®”π«π §«“¡¬“« à«π‚§âß«—¥®“°®ÿ¥ (1, 0) ∑«π‡¢Á¡π“Ãî°“∂÷ß®ÿ¥ (0, 1) ‡∑à“°—∫

p 2

Àπ૬

§«“¡¬“« à«π‚§âß«—¥®“°®ÿ¥ (1, 0) ∑«π‡¢Á¡π“Ãî°“∂÷ß®ÿ¥ (1, 0) ‡∑à“°—∫ p Àπ૬ §«“¡¬“« à«π‚§âß«—¥®“°®ÿ¥ (1, 0) ∑«π‡¢Á¡π“Ãî°“∂÷ß®ÿ¥ (0, 1) ‡∑à“°—∫ 3p2 Àπ૬ §«“¡¬“« à«π‚§âß«—¥®“°®ÿ¥ (1, 0) ∑«π‡¢Á¡π“Ãî°“∂÷ß®ÿ¥ (1, 0) ‡∑à“°—∫ 2p Àπ૬

§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß 0, p2 , p, 32p , 2p Y (0, 1) π (1, 0)

O

Y π  2

3π  2 (0, 1) (1, 0) 2π

3π  (0, 1) 2

X

(1, 0) π

O

π (0, 1)  2

2π (1, 0)

X

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

90 

p 2

0

p 2

p

3p 2

2p

sin

0

1

0 ........

1 ........

0 ........

1

cos

1

0

1 ........

0 ........

1 ........

0

øíß°å™π—



3p 2

2p

0 ........

1 ........

0 ........

1 ........

0 ........

1 ........

-p



p , 3p , 5p , 7p

§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß

4

4

4

4

Y

®“°√Ÿª P(x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“« p4 Àπ૬ «—¥®“°®ÿ¥ (1, 0) ·≈–‡ªìπ®ÿ¥°÷Ëß°≈“ߢÕß à«π‚§âß AB ®–‰¥â§Õ√å¥ PA ¬“«‡∑à“°—∫§Õ√å¥ PB

B(0, 1) P(x, y)

O

X

B(1, 0)

PA = PB 2

( x1) ( y0)

2

2

2

x 2x1y

2

=

( x0) ( y1) 2

2

2

= x y 2y1

x = y

®“° ¡°“√«ß°≈¡ 1 Àπ૬

2

x y

2

= 1

2

= 1

2

=

2x x

1 2

x = 

¥—ßπ—Èπ æ‘°—¥¢Õß®ÿ¥ ¿“æ –∑âÕπ¢Õß®ÿ¥ P

,

P(x y)

§◊Õ

1 2

1 1ˆ PÊ , Ë 2 2¯

À√◊Õ

P

2ˆ Ê 2 , Ë 2 2¯

 à«π®ÿ¥Õ◊ËπÊ À“‰¥â®“°

91

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

Y

Y

Ê 2 2ˆ  , Ë 2 2¯ p

2ˆ Ê 2 , Ë 2 2¯ p 4 (1, 0)

p 3p = 4 4

p 5p = 4 4 2ˆ Ê 2  ,  Ë 2 2¯ p



O

3p 4

sin

2 2

2 2

cos

2 2





7p (2 n1)p ... 4 4

, ,

5p 4

2 2

7p 2ˆ 4 Ê 2 , Ë 2 2¯ (1, 0)

X

O

X

p  4 2ˆ Ê 2 ,  Ë 2 2¯

5p 4

7p 4



p 4



3p 4





2 .......... 2

2  .......... 2



2 2



2 2

2 .......... 2

2 .......... 2

2 .......... 2

2 .......... 2



2 2



2 .......... 2

2 .......... 2



2 2

§à“¢Õßøíß°å™π— ‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß 



7p p 2p = 4 4 Ê 2 2ˆ  ,  2ˆ Ê 2 Ë 2 ¯ 3p 2 ,   Ë 2 2¯ 4

p 4

øíß°å™π—

Ê 2 2ˆ  , Ë 2 2¯

3p 5p 7p (2 n1)p ... 4 4 4 4

,

,

, ,

5p 4



7p 4

·≈–  34p ,  54p ,

‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡∫«°

§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß p6 ,

5p , 7p , 11p 6 6 6

Y B(0, 1)

®“°√Ÿª P(x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§â߬“« p6 Àπ૬

P(x, y)

«—¥®“°®ÿ¥ (1, 0) A ‡ªìπ¿“æ –∑âÕπ¢Õß®ÿ¥ P ¢â“¡·°π X ®–¡’æ‘°—¥‡ªìπ (x, y)

X

O A(x, y)

 à«π‚§âß PA ¬“«‡∑à“°—∫ à«π‚§âß PB ∑”„Àâ§Õ√å¥ PA ¬“«‡∑à“°—∫§Õ√å¥ PB 2

( xx) ( yy)

2 2

4y

2

=

( x0) ( y1) 2

2

= x y 2y1

2

4y 2y2 = 0 2

2

2y y1 = 0

2

2

(x y = 1)

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

92

(2y1)(y1) = 0 2y1 = 0

À√◊Õ y1 = 0 ‡π◊ËÕß®“° (x, y) Õ¬Ÿà „π§«Õ¥√—πµå∑’Ë 1 1 ¥—ßπ—Èπ y = 2 3 2

x =

·≈– æ‘°—¥¢Õß®ÿ¥ P §◊Õ p 5p p = 6 6

Ê 3 1ˆ , Ë 2 2¯

 à«π®ÿ¥Õ◊ËπÊ À“‰¥â®“°¿“æ –∑âÕπ¢Õß®ÿ¥ P

Y

Y

Ê 3 1ˆ  , Ë 2 2¯ 7p  6

Ê 3 1ˆ , Ë 2 2¯ p 6

Ê 3 1ˆ  , Ë 2 2¯

X

(1, 0)

11p  6 Ê 3 1ˆ , Ë 2 2¯ X (1, 0) p  6 Ê 3 1ˆ ,  Ë 2 2¯

7p 6 3 1ˆ ,  2 2¯

O

p 6

5p 6

7p 6

11p 6



p 6



sin

1 2

1 2

1 ..........  2

1 ..........  2



1 2

1 ..........  2

1 .......... 2

1 .......... 2

cos

3 2

3 ..........  2

3 ..........  2

3 2

3 ..........  2

3 ..........  2

3 2

p p = 6 Ê  Ë



øíß°å™π—

Ê 3 1ˆ ,  Ë 2 2¯ 11p p 2p = 6 6

Ê 3 1ˆ  ,  Ë 2 2¯ 5p  6

3 .......... 2

§à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß„π√Ÿª 2np

11p 6

O

2np

p 6

,

5p 6

2np



5p 6

,

7p 6

2np



7p 6

11p 6

·≈–

‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡

§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß p3 ,

2p 4p 5p , 3, 3 3

Y

®“°√Ÿª

B(x, y)

P(x, y)

O

A(1, 0)

X

,

P(x y)

‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«

p 3

Àπ૬ «—¥®“°®ÿ¥ (1, 0) B ‡ªìπ¿“æ –∑âÕπ¢Õß®ÿ¥ P ¢â“¡ ·°π Y ¡’æ‘°—¥‡ªìπ (x, y)  à«π‚§âß PA ¬“«‡∑à“°—∫ à«π‚§âß PB ∑”„Àâ§Õ√å¥ PA ¬“«‡∑à“°—∫§Õ√å¥ PB

93

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

(x1) ( y0)

2

2

=

( xx) ( yy)

®–‰¥â

x =

1 2

·≈–

y =

3 2

2

3ˆ Ê1 , Ë2 2 ¯

¥—ßπ—Èπ æ‘°—¥¢Õß®ÿ¥ P §◊Õ

 à«πæ‘°—¥¢Õß®ÿ¥Õ◊ËπÊ À“‰¥â®“°¿“æ –∑âÕπ¢Õß®ÿ¥ P p 2p p = 3 3 Ê 1 3ˆ  , Ë 2 2¯ p 4p p = 3 3 Ê 1 3ˆ  ,  Ë 2 2¯



Y

Y Ê1 3ˆ , Ë2 2 ¯ p 3

Ê 1 3ˆ  , Ë 2 2¯ 4p  3

X (1, 0) Ê1 3ˆ ,  Ë2 2¯ 5p p 2p = 3 3

O

p 3

2p 3

4p 3

sin

3 2

3 2

3  .......... 2

cos

1 2

1  .......... 2

øíß°å™π—



1 2

O

5p 3 



5p 3

p 3

3  .......... 2

3 2

1 .......... 2

1 2

2np

‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡

°‘®°√√¡∑’Ë 2.2.1 1.

„Àâπ—°‡√’¬π‡µ‘¡µ“√“ß„Àâ ¡∫Ÿ√≥å 180

Õß»“ ‡∑à“°—∫

p

‡√‡¥’¬π

5p 3ˆ 3 Ê1 , Ë2 2 ¯

X

(1, 0) p  3 Ê1 3ˆ ,  Ë2 2¯

Ê 1 3ˆ  ,  Ë 2 2 ¯ 2p  3

§à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß„π√Ÿª 2np





2p 3



3 2

3  .......... 2

3 2

1  .......... 2

1  .......... 2

1 2

p 3

,

2np



4p 3



2p 4p 2np 3 3

,

5p 3

·≈–

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

94  (

Õß»“)

 (

‡√‡¥’¬π)

sin 

cos 

0

0

1 0 ............................... ...............................

30

p 6

1 3 ............................... ............................... 2 2

45

p 4

2 2 ............................... ............................... 2 2

60

p 3

1 3 ............................... ............................... 2 2

90

p 2

0 1 ............................... ...............................

120

2p 3

1 3  ............................... ............................... 2 2

135

3p 4

2 2  ............................... ............................... 2 2

150

5p 6

3 1  ............................... ............................... 2 2

180

p

1 0 ............................... ...............................

210

7p 6

3 1   ............................... ............................... 2 2

225

5p 4

2 2   ............................... ............................... 2 2

240

4p 3

1 3   ............................... ................................ 2 2

270

3p 2

0 1 ............................... ...............................

300

5p 3

1 3  ............................... ............................... 2 2

315

7p 4

2 2  ............................... ............................... 2 2

330

11p 6

3 1  ............................... ............................... 2 2

360

2p

1 0 ............................... ...............................

95

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2.

„Àâπ—°‡√’¬πÀ“§à“¢Õß sin  ·≈– cos  ‡¡◊ËÕ  ‡ªìπ®”π«π®√‘ß ‡¢’¬π®”π«π®√‘ß 2np ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ ·≈– 0   2p ®”π«π®√‘ß 

·π«§‘¥

sin 



„π√Ÿª

cos 

1) 5p

2pp

1 0 .......................... ..........................

2) 3p

(2pp) = 2pp

1 0 .......................... ..........................

9p 2 7p 4)  2

3)

4p

p 2

3p

0 1 .......................... .......................... p 3p = 2p 2 2

0 1 .......................... ..........................

5) 63p

62pp

1 0 .......................... ..........................

6) 47p

46pp

1 0 .......................... ..........................

p 3p = 12p 2 2 p 6p 2

0 1 .......................... ..........................

27p 2 13p 8)  2

7)

9) 31p 10) 67p 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)

9p 4 13p 3 19p 6 21p 4 23p  6 29p  3 17p  6 100 p 3 200 p  6 95p  6

13p

0 1 .......................... ..........................

30pp

1 0 .......................... ..........................

66pp

1 0 .......................... ..........................

p 4 p 4p 3 p 7p 3p = 2p 6 6 p 5p 5p = 4p 4 4 5p 11p  Ê 3p ˆ = 2p Ë 6¯ 6 2 pˆ 5p Ê  9p = 8p Ë 3¯ 3 5p 5p  Ê 2 p ˆ = 2p Ë 6¯ 6 p 4p 33p = 32p 3 3 2p 4p 33p = 32p 6 3 5p 11p 15p = 14p 6 6

2 .......................... 2 3 .......................... 2 1  .......................... 2 2  .......................... 2 1 .......................... 2 3 .......................... 2 1  .......................... 2 3  .......................... 2 3 .......................... 2 1 .......................... 2

2p

2 .......................... 2 1 .......................... 2 3  .......................... 2 2  .......................... 2 3 .......................... 2 1 .......................... 2 3  .......................... 2 1  .......................... 2 1  .......................... 2 3 .......................... 2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

96 3.

°”Àπ¥«ß°≈¡Àπ÷ËßÀπ૬ „Àâπ—°‡√’¬π‡µ‘¡æ‘°—¥¢Õß®ÿ¥ª≈“¬¢Õß à«π‚§âß∫π«ß°≈¡ Y

1 3  ........) (........, 2 2 2 2  2π (........, ........) 2 2 3π  3  4 3 1 5π  (........, ........)  2 2 6 1 ........) 0 (........,

3 1   (........, ........) 2 2

0 ........) 1 (........,

π  2

π 7π  6

π  3

1 3 (........, ........) 2 2 2 2 π (........, ........)  2 2 4 π 3 1  (........, ........) 6 2 2 2π

O

X 1 ........) 0 (........,

11π 5π   3 1 4 4π  7π 6 (........, ........) 2 2   2 2 (........, ........)   5π 3π 3  4 2 2  2 2 3 2 (........,  ........) 1 3 2 2   (........, ........) 2 2 1 3 0 ..........) 1 (..........,  ..........) (.........., 2 2

4.

„Àâπ—°‡√’¬π∫Õ°®”π«π®√‘ß∫«° 2 ®”π«π ®”π«π®√‘ß≈∫ 2 ®”π«π∑’Ë∑”„Àâ 1) sin  = 1

 =

2) cos  = 1

3p 7p p 5p   2 2 2 2

,

,

,

3) sin  = 1

4) cos  = 1

3p 7p , 2 ,  p2 ,  52p  = ......................................................... 2

5) sin  =

2 2

p 3p , ,  p4 ,  34p  = ......................................................... 4 4 7) sin  = 

p, 3p, p, 3p  = .........................................................

3 2

4 p 5p , 3 ,  p3 ,  23p  = ......................................................... 3

0, 2p, 2p, 4p  = ......................................................... 6) cos  =

1 2

p 5p , ,  p3 ,  53p  = ......................................................... 3 3 8) cos  = 

1 2

4p 2p 4p  2p  = .........................................................  , , , 3 3 3 3

97

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

2.2.2 §à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß„¥Ê Y

®“°®ÿ¥ (x, y) ·≈– (x, y)  √ÿª‰¥â«à“ (x, y)

x = cos 

 O

(1, 0)  (x, y)

y = sin 

x = cos()

X

y = sin()

sin() = sin 

¥—ßπ—Èπ

cos() = cos 

∂â“   2p ·≈–À“√  ¥â«¬ 2p ·≈⫉¥â n ‡À≈◊Õ‡»… (·Õ≈ø“) π—Ëπ§◊Õ

+

 = 2np

‡¡◊ËÕ n  I ·≈– 0   2p

°“√«—¥ à«π‚§âߢÕß«ß°≈¡Àπ÷ËßÀπ૬®“°®ÿ¥ (1, ‡æ√“– 2np · ¥ß«à“«—¥§√∫ n √Õ∫  √ÿª‰¥â¥—ßπ’È

0)

‰ª¬“«  Àπ૬ «—¥‰ª Àπ૬°ÁæÕ

sin  = sin(2np )

= sin

cos  = cos(2np )

= cos

µ—«Õ¬à“ß∑’Ë 1 ®ßÀ“§à“¢Õß sin 253p , sin ÊË 256pˆ¯ , cos 254p ·≈– cos ÊË 293pˆ¯ «‘∏’∑”

sin

25p 3

p = sin Ê 8p ˆ Ë 3¯

25pˆ sin Ê Ë 6 ¯

p = sin Ê 24 p ˆ Ë 3¯

= sin =

p = sin Ê 22 p ˆ Ë 6¯

= sin

µÕ∫

=  cos

25p 4

29pˆ cos Ê Ë 3 ¯

p = cos Ê 6 p ˆ Ë 4¯

=

2 2

p 6

1 2

= cos

µÕ∫ 29p 3

5p = cos Ê 8p ˆ Ë 3¯

p = cos Ê 23p ˆ Ë 4¯

= cos

25p 6

p = sin Ê 4 p ˆ Ë 6¯

p 3

3 2

= sin

p 4

= cos

µÕ∫

=

1 2

5p 3

µÕ∫

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

98

°“√À“§à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ßµ—Èß·µà 0 ∂÷ß 2p 1.

‡¡◊ËÕ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë 2

„Àâ P1(x1, y1) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ p „Àâ = p ®–‰¥â 0   2 ·≈–  = p ®ÿ¥ P(x, y) ‡ªìπ¿“æ –∑âÕπ¢Õß P1 ¢â“¡·°π Y ®ÿ¥ P(x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“« Àπ૬

Y

P1(x1, y1)

 P(x, y)

O

B

A(1, 0)

X

y = sin

¥—ßπ—Èπ ·µà ·≈–

x = cos

·≈–

y = y1 = sin  = sin(p ) x = x1 = cos  = cos(p )

p 2 p 0   2

sin  = sin(p ) = sin

‡¡◊ËÕ 0  

cos  = cos(p ) = cos

‡¡◊ËÕ

µ—«Õ¬à“ß∑’Ë 2 ®ßÀ“ sin 56p ·≈– cos «‘∏’∑”

sin

5p 6

2p 3

p = sin Ê p ˆ Ë 6¯

= sin =

2.

cos

p 6

p 2p = cos Ê p ˆ Ë 3¯ 3

= cos

1 2

= 

‡¡◊ËÕ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë 3 ‡¡◊ËÕ p   

Y P(x, y)

Q



B P1(x1, y1)

O

Ê p    pˆ Ë2 ¯

A(1, 0)

X

3p 2

p 3

1 2

Ê p    3pˆ Ë 2¯

‡¢’¬π„π√Ÿª  = p ‚¥¬∑’Ë 0  

„Àâ P1(x1, y1) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®ÿ¥ Q ‡ªìπ°“√ –∑âÕπ¢Õß®ÿ¥ P1 ¢â“¡·°π X ®ÿ¥ P(x, y) ‡ªìπ¿“æ –∑âÕπ¢Õß®ÿ¥ Q ¢â“¡·°π Y  à«π‚§âß AP ¬“« Àπ૬ y1 = y, x1 = x ®ÿ¥ P(x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“« Àπ૬

p 2

99

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

¥—ßπ—Èπ

p 2 p 0   2

sin  = sin (p ) = sin

‡¡◊ËÕ 0  

cos  = cos (p ) = cos

‡¡◊ËÕ

µ—«Õ¬à“ß∑’Ë 3 ®ßÀ“ sin 54p ·≈– cos 76p «‘∏’∑”

sin

p = sin Ê p ˆ Ë 4¯

5p 4

= sin = 

3.

cos

p 7p = cos Ê p ˆ Ë 6¯ 6

p 4

= cos

2 2

= 

µÕ∫

‡¡◊ËÕ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë 4 3p    2p 2 ‚¥¬∑’Ë 0   p2

‡¡◊ËÕ

Y P(x, y)

O

A(1, 0)

3 2

µÕ∫

Ê 3 p    2 pˆ Ë 2 ¯

‡¢’¬π„π√Ÿª  = 2p

„Àâ P1(x1, y1) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®ÿ¥ P(x, y) ‡ªìπ¿“æ –∑âÕπ¢Õß®ÿ¥ P1 ¢â“¡·°π X  à«π‚§âß AP ¬“« Àπ૬ ·≈– y1 = y, x1 = x ‡¡◊ËÕ P(x, y) ‡ªìπ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“« Àπ૬

X

P1(x1, y1)

¥—ßπ—Èπ

p 6

p 2 p 0   2

sin  = sin (2p ) = sin

‡¡◊ËÕ 0  

cos  = cos (2p ) = cos

‡¡◊ËÕ

µ—«Õ¬à“ß∑’Ë 4 ®ßÀ“§à“¢Õß sin 53p ·≈– cos 74p «‘∏’∑”

sin

5p 3

p = sin Ê 2 p ˆ Ë 3¯

= sin = 

3 2

cos

p 3

p 7p = cos Ê 2 p ˆ Ë 4¯ 4

= cos

µÕ∫

=

2 2

p 4

µÕ∫

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

100

°‘®°√√¡∑’Ë 2.2.2 °”Àπ¥

1.

1) 2) 3) 4) 2.

p = 3.1416

2p = 6.2832

p 2 p 3 p 4 p 6

3p 2 2p 3 3p 4 5p 6

= 1.5708 = 1.0472 = 0.7854 = 0.5236

= 4.7124 = 2.0944 = 2.3562 = 2.6180

1 ·≈– 2 °”Àπ¥ sin  = 0.48 ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®–Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë ........................ 3 ·≈– 4 °”Àπ¥ sin  = 0.52 ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®–Õ¬Ÿà „π§«Õ¥√—πµå∑’Ë .................... 1 ·≈– 4 °”Àπ¥ cos  = 0.91 ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®–Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë ....................... ·≈– 3 °”Àπ¥ cos  = 0.85 ®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®–Õ¬Ÿà„π§«Õ¥√—πµå∑’Ë .2...................

„Àâπ—°‡√’¬π‡¢’¬π§à“¢Õßøíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ßµàÕ‰ªπ’È „ Àâ Õ ¬Ÿà „π√Ÿª§à“¢Õß øíß°å™—π‰´πå·≈–‚§‰´πå¢Õß®”π«π®√‘ß∑’Ë¡’§à“µ—Èß·µà 0 ∂÷ß p2 ‡¢’¬π„π√Ÿª ®”π«π®√‘ß 

 = p

cos 

 = 2np p 6

p sin Ê p ˆ Ë 6¯

2p 5

2p sin Ê p ˆ Ë 5¯

7p 6

p

3p 5

p

5p 3

sin 

p 2 p .......................... 3

= sin

= sin

p 6

2p 5

p p sinÊ 2 p ˆ =  sin ........................................... Ë 3¯ 3

p cos Ê p ˆ Ë 6¯

= cos

p 6

2p cos Ê p ˆ Ë 5¯

= cos

2p 5

p p cosÊ 2 p ˆ = cos ................................................... Ë 3¯ 3

101

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

‡¢’¬π„π√Ÿª ®”π«π®√‘ß

 = p



cos 

 = 2np

9p 10

p p .......................... 10

p p sinÊ p ˆ = sin ........................................... Ë 10¯ 10

p p cosÊ p ˆ =  cos ................................................... Ë 10¯ 10

17p 9

p 2 p .......................... 9

p p sinÊ 2 p ˆ =  sin ........................................... Ë ¯ 9 9

p p cosÊ 2 p ˆ = cos ................................................... Ë ¯ 9 9

15p 7

p 2 p .......................... 7

p p sinÊ 2 p ˆ = sin ........................................... Ë 7¯ 7

p p cosÊ 2 p ˆ = cos ................................................... Ë 7¯ 7

19p  5

p Ê 4 p ˆ .......................... Ë 5¯

p p  sinÊ 4 p ˆ = sin ........................................... Ë 5¯ 5

p p cosÊ 4 p ˆ = cos ................................................... Ë 5¯ 5

7p 3

p .......................... Ê 2 p ˆ Ë 3¯

p p  sinÊ 2 p ˆ =  sin ........................................... Ë 3¯ 3

p p cosÊ 2 p ˆ = cos ................................................... Ë 3¯ 3



3.

sin 

°”Àπ¥„Àâ 0   

p 2

·≈– sin  = 0.42 ®ßÀ“§à“¢Õß

1) cos 

2) sin(p)

«‘∏’∑” ®“°

2

2

sin cos  = 1

«‘∏’∑”

2

2

cos  = 1sin 

‡π◊ËÕß®“° 0    cos  =

sin(p) = sin 

p 2

0.42 = .............................. 2

1sin 

=

2

1(0.42) 1 0.1764 = ..............................

0.8236 = .............................. = 0.91 .............................. 3) cos (p)

«‘∏’∑”

cos (p)

4) cos (2p)

«‘∏’∑”

cos (2p)

= cos 

= cos (2p)

= 0.91 ..............................

) = cos(2p ..............................

[

]

 = cos .............................. = 0.91 ..............................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

102 5) sin (2p)

«‘∏’∑”

4.

6) cos (p)

sin (2p)

«‘∏’∑”

cos(p) ...................................

sin  = ..............................

cos  = ..............................

0.42 = ..............................

0.91 = ..............................

∂â“ cos2xsin2x =

1 2

®ßÀ“§à“ x ‡¡◊ËÕ 0  x  p 2

2

cos xsin x =

«‘∏’∑” ®“° 2

2

cos x(1cos x) =

1 2 1 2

2

1 .............................. 2

2 cos x =

2

3 .............................. 2

2

3 .............................. 4

2

cos x1cos x =

cos x =

3 ..............................

cos x = 

‡¡◊ËÕ

p 0  x  2 cos x =

2

‡¡◊ËÕ 3 2

p  x  p 2 cos x = 

p

cos x =

cos .................... 6

x =

.................... 6

p

p 5p ¥—ßπ—Èπ §à“¢Õß x §◊Õ .......... ·≈– .......... 6 6

3 2

pˆ Ê cos x = cos Ë p 6 ¯

....................

x =

p p .................... 6

x =

5p .................... 6

103

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 5.

®ßÀ“‡´µ§”µÕ∫¢ÕßÕ ¡°“√ 1) sin  cos , 0    p

2) sin   cos  p    2p

,

Y

Y

π  4 O

(1, 0)

X

5π  4

È p , p˘ ‡´µ§”µÕ∫§◊Õ............................................. ÍÎ 4 ˙˚

O

(1, 0)

È5p , 2p˘ ‡´µ§”µÕ∫§◊Õ............................................. ÍÎ 4 ˙˚

2.3 øíß°å™—πµ√’ ‚°≥¡‘µ‘Õ◊ËπÊ ∫∑𑬓¡  ”À√—∫®”π«π®√‘ß  „¥Ê sin  tan  = ‡¡◊ÕË cos  cot  = cosec  = sec  =

cos  sin  1 sin  1 cos 

cos  π 0

‡¡◊ÕË

sin  π 0

‡¡◊ÕË

sin  π 0

‡¡◊ÕË

cos  π 0

‚¥‡¡π·≈–‡√π®å¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘ 1. ‚¥‡¡π¢Õßøíß°å™—π sin ·≈– cos §◊Õ R 2. ‡√π®å¢Õßøíß°å™—π sin ·≈– cos §◊Õ {x  R|1  x  1} (2 n1)p , 3. ‚¥‡¡π¢Õßøíß°å™—π tan ·≈– sec §◊Õ R ÏÌx  R | x = 2 Ó ‚¥‡¡π¢Õßøíß°å™—π cot ·≈– cosec §◊Õ R{x  R|x = np, n  I} 5. ‡√π®å¢Õßøíß°å™—π tan ·≈– cot §◊Õ R 6. ‡√π®å¢Õßøíß°å™—π sec ·≈– cosec §◊Õ R{x  R|1  x  1} 4.

X

n  I ¸˝ ˛

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

104

§«“¡ —¡æ—π∏å√–À«à“ßøíß°å™—πµ√’ ‚°≥¡‘µ‘µà“ßÊ 1 cot  = ‡¡◊ÕË tan  π 0 À√◊Õ sin  π 0 tan  2

sec 

2

2

cosec 

1tan  =

2

1cot  =

‡¡◊ÕË ‡¡◊ÕË

cos 

π 0

sin 

π 0

°‘®°√√¡∑’Ë 2.3 1.

°”Àπ¥ sin  = 0.52 ·≈– 0    2

p 2

®ßÀ“§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘Õ◊ËπÊ ¢Õß 

2

1) sin cos  = 1 2

2

cos  = 1sin 

p 2

2

cos  =

1sin  , 0    2

1(0.52) = ............................................................ 10.2704 = ............................................................ 0.7296 = ............................................................

0.85 = ............................................................

2.

sin  cos  0.52 = .............................. 0.85 0.61 = ..............................

2)

tan  =

4)

sec  =

1 cos  1 = .............................. 0.85 1.18 = ..............................

°”Àπ¥„Àâ 0    1) cosec   sec  2

2

3) sec   tan 

«‘∏∑’ ”

p 2

·≈– sin  =

3 5

1 sin  1 = .............................. 0.52 1.92 = ..............................

3)

cosec  =

5)

cot  =

cos  sin  0.85 = .............................. 0.52 1.63 = ..............................

®ßÀ“§à“¢Õß 2

2

2) sin   cos  2

2

4) cosec   cot 

2 ®“° cos  =  1sin  ‡π◊ËÕß®“° 0    p2 ¥—ßπ—Èπ cos  = 1sin 2 

2

3 1Ê ˆ cos  = ........................................ Ë 5¯

105

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 9 1 = ........................................ 25

®–‰¥â

16 = ........................................ 25 4 = ........................................ 5 3 4 tan  = .................... cot  = .................... 4 3 5 5 sec  = .................... cosec  = .................... 4 3 2

1) cosec sec 

2 2 Ê 3ˆ Ê 4ˆ = ........................................ Ë 5¯ Ë 5¯

5 5  = ........................................ 3 4 2015 = ........................................ 12 35 = ........................................ 12 2

9 16 = ........................................  25 25

= 1........................................

2

2

3) sec tan  2

3.

2

2) sin cos 

2

4) cosec cot 

2

Ê 5ˆ Ê 3ˆ = ........................................ Ë 4¯ Ë 4¯

2 2 Ê 5ˆ Ê 4ˆ = ........................................ Ë 3¯ Ë 3¯

25 9 = ........................................  16 16

25 16 = ........................................  9 9

1 = ........................................

= 1........................................

„Àâπ—°‡√’¬π‡µ‘¡µ“√“ß· ¥ß§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘ ‡¡◊ËÕ 0    

sin 

cos 

tan 

p 2

cosec 

sec 

cot 

‰¡à𑬓¡

1 ....................

‰¡à𑬓¡

0

0 0 1 .................... .................... ....................

p 6

1 3 3 2 3 3 2 .................... .................... .................... .................... .................... .................... 2 2 3 3

p 4

2 2 2 2 .................... .................... .................... .................... .................... .................... 1 1 2 2

p 3

3 2 3 3 1 3 2 .................... .................... .................... .................... .................... .................... 3 3 2 2

p 2

0 1 .................... ....................

‰¡à𑬓¡

.................... 1

‰¡à𑬓¡

.................... 0

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

106 4.

„Àâπ—°‡√’¬π∫Õ°«à“®ÿ¥ª≈“¬ à«π‚§âß∑’ˬ“«  Àπ૬ ®–Õ¬Ÿà„π§«Õ¥√—πµå„¥ ‡¡◊ËÕ°”Àπ¥ 1 2 1) sin   0 ·≈– cos   0 ............... 2) sin   0 ·≈– cos  0 ............... 4 3 3) sin   0 ·≈– cos   0 ............... 4) sin   0 ·≈– cos   0 ............... 3 2 6) sin   0 ·≈– tan   0 ............... 5) tan   0 ·≈– cos   0 ............... 2 4 7) cos   0 ·≈– tan   0 ............... 8) cos   0 ·≈– tan   0 ...............

5.

„Àâπ—°‡√’¬πÀ“§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘∑ÿ°øíß°å™—π¢Õß®”π«πµàÕ‰ªπ’È 

®ÿ¥ª≈“¬  à«π‚§âßÕ¬Ÿà„π §«Õ¥√—πµå∑’Ë

1)

p 2p Ê p ˆ 3¯ 3 Ë

2 .......................

3 1 1 2 2 ............  3 ............ ............   ............ ............ ............ 2 2 3 3

2)

p 3p Ê p ˆ 4¯ 4 Ë

2 .......................

2 2 2 2  1 ............ ............  1 ............ ............ ............ ............ 2 2 2 2

3)

p 5p Ê p ˆ Ë 6¯ 6

2 .......................

1 2 1 3    2 ............  3 ............ ............ ............ ............ 3 3 ............ 2 2

4)

p 7p Ê p ˆ 6¯ 6 Ë

3 .......................

2 1 1 3    2 ............ 3 ............ ............ ............ ............ 3 ............ 3 2 2

5)

p 5p Ê p ˆ 4¯ 4 Ë

3 .......................

2 2 2 2     1 1 ............ ............ 2 ............ 2 ............ 2 2 ............ ............

6)

p 4p Ê p ˆ Ë 3¯ 3

3 .......................

2 1 1 3  3 ............   2 ............ ............ ............ ............ ............ 3 3 2 2

7)

p 5p Ê 2p ˆ Ë 3¯ 3

4 .......................

3 1 2 1  2  3   ............ ............ ............ 2 ............ 2 3 ............ ............ 3

8)

p 7p Ê 2 p ˆ Ë 4¯ 4

4 .......................

2 2 2 2  1 ............ 1  ............ ............ 2 ............ 2 2 ............ 2 ............

9)

p 11p Ê 2 p ˆ 6¯ 6 Ë

4 .......................

3 1 1 2  2 ............ ............  3  ............ ............ ............ ............ 2 2 3 3

sin 

cos 

tan  cosec  sec 

cot 

107

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1



®ÿ¥ª≈“¬  à«π‚§âßÕ¬Ÿà„π §«Õ¥√—πµå∑’Ë

p 5p  Ê p ˆ Ë 4¯ 4

2 .......................

2 2 2 2   1 ............ ............ 1 ............ ............ ............ ............ 2 2 2 2

p 13p 11)   Ê 3p ˆ Ë 4¯ 4

2 .......................

2 ............ ............ 2 ............ 2 ............ 2 ............ ............  1 1  2 2 2 2

p 25p  Ê 4 p ˆ Ë 6¯ 6

4 .......................

3 1 1 2  2 ............ ............  3  ............ ............ ............ ............ 2 2 3 3

10)



12) 

6.

sin 

cos 

tan  cosec  sec 

cot 

®ßÀ“§à“¢Õß 14 pˆ 1) sin Ê Ë 3 ¯

‡π◊ËÕß®“°æÀÿ§Ÿ≥¢Õß 2p §◊Õ 2p, 4p ·≈– 6p ·≈– 6p  143p  4p 14 p  3

‡¢’¬π„π√Ÿª

18p 4 p 4p  = 6p 3 3 3

14 pˆ 4p sin Ê = sin È 3(2 p)˘ ÍÎ 3 ˙˚ Ë 3 ¯

¥—ßπ—πÈ

4p = sin 3

..............................

=  3 2

..............................

13pˆ 2) cos Ê Ë 3 ¯

‡π◊ËÕß®“°æÀÿ§Ÿ≥¢Õß 2p §◊Õ 2p, 4p ·≈– 6p ·≈– 6p  133p  4p 13p  3

‡¢’¬π„π√Ÿª

6p

5p 3

13pˆ 5p cos Ê = cos È 3(2 p)˘ ÍÎ 3 ˙˚ Ë 3 ¯

=

5p cos .............................. 3

=

1 .............................. 2

14 p p = 5p  3 3 14 p 2p = 4p  3 3

®ÿ¥ª≈“¬ à«π‚§âßÕ¬Ÿà∑’˧«Õ¥√—πµå∑’Ë 3

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

108 7.

„Àâπ—°‡√’¬πÀ“§à“¢Õß 1) sin

5p 7p 3p 4p tan cos sin 6 6 4 3

p p p p = sin Ê p ˆ tan Ê p ˆ cos Ê p ˆ sin Ê p ˆ Ë Ë Ë Ë 6¯ 6¯ 3¯ 4¯ p p p p = sin tan  Êcos ˆ Êsin ˆ Ë ¯ Ë 3¯ 4 6 6

1 3 2 3  Ê ˆ Ê ˆ = ..................................................................................... 2 3 Ë 2 ¯Ë 2 ¯ 1 3 6   = ..................................................................................... 2 3 4 64 33 6 = ..................................................................................... 12 2) cos

25p 15p 16 p 13p cos sin sin 4 4 3 4

p p p p .... .... .... .... = cos Ê 6p 4 ˆ cos Ê 4 p 4 ˆ sin Ê 5p 3 ˆ sin Ê 3p 4 ˆ Ë ¯ Ë ¯ Ë ¯ Ë .... .... .... .... ¯ p p p p cos cos Ê sin ˆ Ê sin ˆ = ..................................................................................... 3¯ Ë 4¯ 4 4 Ë

3ˆ Ê 2ˆ Ê 2 ˆ Ê 2 ˆÊ   = ..................................................................................... Ë 2¯Ë 2¯ Ë 2¯Ë 2¯ 2 6  = ..................................................................................... 4 4 2 6 = ..................................................................................... 4 3) sin

5p 2p 7p p tan cos cot Ê ˆ Ë 3¯ 3 6 6

p ˆ p ˆ .... p p Ê .... Ê = sin Á p 3 ˜ tan Á p 6 ˜ cos cot Ê 2 pˆ Ë3 ¯ .... ¯ Ë .... ¯ Ë 6

p p p p sin tan  cos cot = ..................................................................................... 3 6 6 3 Ê 3 ˆ Ê 1 ˆÊ 3 ˆ Ê 1 ˆ = ..................................................................................... Ë 2 ¯ Ë 3¯ Ë 2 ¯ Ë 3¯

1 1  = ..................................................................................... 2 2 1 = .....................................................................................

p 5p  p 2 6 7p 3p  p  6 2 p 3p  p 2 4 4p 3p p   3 2

109

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

4) sin

9p 11p 29p cos sin cos(5p) 4 3 6

p p p sinÊ 2 p ˆ cosÊ 4 p ˆ sinÊ 5 p ˆ cos 5 p = ..................................................................................... Ë Ë Ë 3¯ 6¯ 4¯

p p p sin cos  sin cos 5 p = ..................................................................................... 4 3 6 Ê 2 ˆ Ê 1 ˆÊ 1 ˆ (1) = ..................................................................................... Ë 2 ¯ Ë 2¯ Ë 2¯ 2 1  = ..................................................................................... 4 2 22 = ..................................................................................... 4 2

5) 3tan

p 4 2p 1 2p 1 2p  cos  sec  sin 6 3 6 2 4 3 3 2

2

2

Ê 1 ˆ  4 Ê 3ˆ  1 ( )2 1 Ê 3ˆ 3 2 = ..................................................................................... Ë 3¯ 3 Ë 2 ¯ 2 3Ë 2 ¯

1 111 = ..................................................................................... 4 1 1 = ..................................................................................... 4 3 = ..................................................................................... 4 6) sin

p p 2p 2p cos Ê ˆ sin cos Ê ˆ Ë 6¯ Ë 6¯ 3 3

Ê 3ˆ Ê 3ˆ  Ê 3ˆ Ê 3ˆ = ..................................................................................... Ë 2 ¯Ë 2 ¯ Ë 2 ¯Ë 2 ¯ 3 3  = ..................................................................................... 4 4

0 = ..................................................................................... 8.

∂â“ x ‡ªìπ®”π«π®√‘ß∫«°∑’Ë¡’§à“πâÕ¬°«à“ 2p ·≈â« 2cos 2x ¡’§à“¡“°∑’Ë ÿ¥ ‡¡◊ËÕ x ¡’§à“‡∑à“‰√ «‘∏∑’ ” ®“°°”Àπ¥ 0  x  2p ·≈– 2cos 2x ¡’§à“¡“°∑’Ë ÿ¥ ∂â“ 2cos 2x ¡’§à“¡“°∑’Ë ÿ¥·≈â« cos 2x µâÕß¡’§à“πâÕ¬∑’Ë ÿ¥ §à“πâÕ¬∑’Ë ÿ¥¢Õß cos 2x §◊Õ 1 ¥—ßπ—πÈ cos 2x = 1

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

110

cos 2x = cos(2npp)

[cos p = 1]

2x = 2npp

p np x = ......................................................................... 2

‡¡◊ËÕ n = 0,

p x = ......................................................................... 2

‡¡◊ËÕ n = 1,

p 3p p = x = ......................................................................... 2 2

‡¡◊ËÕ n = 2,

p 5p 2p = 2p x = ......................................................................... 2 2

´÷Ëß¡“°°«à“

p 3p  ·≈– ¥—ßπ—Èπ x ¡’§à“‡∑à“°—∫ ................................. 2 2 9.

∂â“ x ‡ªìπ®”π«π®√‘ß∫«°¡’§à“πâÕ¬°«à“ 2p ·≈â« 3sin 3x ¡’§à“πâÕ¬∑’Ë ÿ¥ ‡¡◊ËÕ x ¡’§à“‡∑à“‰√ «‘∏∑’ ” ®“°°”Àπ¥ 0  x  2p ·≈– 3sin 3x ¡’§à“πâÕ¬∑’Ë ÿ¥ µâÕß¡’§à“¡“°∑’Ë ÿ¥ ∂â“ 3sin 3x ¡’§à“πâÕ¬∑’Ë ÿ¥·≈â« sin 3x ................................................................. §à“¡“°∑’Ë ÿ¥¢Õß sin 3x §◊Õ 1 sin 3x = 1......................................................................... p sin 3x = sin Ê 2np ˆ ........................................................................................................................................ Ë 2¯

¥—ßπ—πÈ

p 3x = 2np ........................................................................................................................................ 2 2np p x =  ........................................................................................................................................ 3 6 p n = 0 x = ......................................................................... 6

‡¡◊ËÕ

,

‡¡◊ËÕ n = 1,

2p p 5p  = x = ......................................................................... 3 6 6

‡¡◊ËÕ n = 2,

4p p 3p  = x = ......................................................................... 3 6 2

p 2p 2p x = ......................................................................... 6 p 5p 3p x ........................................................................................................................................ 6 6 2

‡¡◊ËÕ n = 3,

¥—ßπ—Èπ ¡’§à“‡∑à“°—∫ ,

´÷Ëß¡“°°«à“

·≈–

111

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

2.4 øíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß¡ÿ¡ Àπ૬„π°“√«—¥¡ÿ¡ §◊Õ Õß»“ 1 Õß»“ ‡∑à“°—∫ 60 ≈‘ª¥“ () 1 ≈‘ª¥“ ‡∑à“°—∫ 60 øî≈‘ª¥“ () ¡ÿ¡∑’Ë®ÿ¥»Ÿπ¬å°≈“ߢÕß«ß°≈¡´÷Ëß√Õß√—∫¥â«¬ à«π‚§âߢÕß«ß°≈¡∑’ˬ“«‡∑à“°—∫√—»¡’¢Õß «ß°≈¡¡’¢π“¥ 1 ‡√‡¥’¬π a



¡ÿ¡∑’®Ë ¥ÿ »Ÿπ¬å°≈“ߢÕß«ß°≈¡√—»¡’ r Àπ૬ ´÷ßË √Õß√—∫¥â«¬ à«π‚§âߢÕß«ß°≈¡∑’¬Ë “« a Àπ૬ ®–¡’¢π“¥ a ‡√‡¥’¬π r

r

Õß»“

=

‡√‡¥’¬π

=

1 1



®“°√Ÿª ®–‰¥â  180 Õß»“ p 180 180 p

‡√‡¥’¬π Õß»“



0.01745

=

a r

=

p

‡√‡¥’¬π

‡√‡¥’¬π

⬇ 57 18

 à«π‚§âߢÕß«ß°≈¡Àπ÷ßË Àπ૬∑’√Ë Õß√—∫¡ÿ¡∑’®Ë ¥ÿ »Ÿπ¬å°≈“ß¢π“¥ 1 ‡√‡¥’¬π ®–¬“« 1 Àπ૬ ¥—ßπ—Èπ  à«π‚§âߢÕß«ß°≈¡Àπ÷ËßÀπ૬∑’Ë√Õß√—∫¡ÿ¡∑’Ë®ÿ¥»Ÿπ¬å°≈“ß¢π“¥  ‡√‡¥’¬π ®÷߬“« Àπ૬ Ÿ °”Àπ¥√Ÿª “¡‡À≈’ˬ¡ ABC ´÷Ëß¡’ C ‡ªìπ¡ÿ¡©“° ¥—ß√Ÿª B

®“°√Ÿª  √ÿª‰¥â¥—ßπ’È =

a c

,

sin B

=

b c

cos A =

b c

,

cos B =

a c

tan A

=

a b

,

tan B

=

b a

cot A

=

b a

,

cot B

=

a b

sin A c

A

a

b

C

129

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

°‘®°√√¡∑’Ë 2.5 1.

2.

3.

„Àâπ—°‡√’¬πÕà“π§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘®“°µ“√“ß 1) sin 24 40

0.4173 = ................................

2) cos 72

0.9090 = ................................

3) tan 55 20

1.4460 = ................................

4) cot 41 50

1.1171 = ................................

5) sin 68 20

0.9283 = ................................

6) cos 35 30

0.8141 = ................................

7) tan 39 50

0.8342 = ................................

8) cot 65 20

2.1775 = ................................

9) sin 44 50

0.7050 = ................................

10) cos 45 10

0.7050 = ................................

11) tan 42 40

0.9217 = ................................

12) cot 47 20

0.9217 = ................................

„Àâπ—°‡√’¬πÕà“π§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß®“°µ“√“ß 1) sin 0.3142

0.3090 = ................................

2) cos 1.2566

0.3092 = ................................

3) tan 0.3985

0.4210 = ................................

4) cot 1.1723

0.4210 = ................................

5) sin 0.9657

0.8225 = ................................

6) cos 0.6050

0.8225 = ................................

7) tan 1.2392

2.9042 = ................................

8) cot 0.3316

2.9042 = ................................

9) sin 0.8319

0.7392 = ................................

10) cos 0.7389

0.7392 = ................................

11) tan 1.5417

34.368 = ................................

12) cot 0.0271

34.368 = ................................

„Àâπ—°‡√’¬πÀ“§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π®√‘ß 1) sin 0.495

®“°µ“√“ß

sin 0.4945 = 0.4746 sin 0.4974 = 0.4772

§à“¢Õß®”π«π®√‘ßµà“ß°—π 0.0029 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π §à“¢Õß®”π«π®√‘ßµà“ß°—π (0.4950.4945) = 0.0005 0005 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π 00..0029 (0.0026) ª 0.0004 ¥—ßπ—πÈ

0.0026

0.47460.0004 sin 0.495 = ............................................................ 0.475 = ............................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

130

(2) sin 0.8862 0.7735 ........................................................................ 0.7753 sin 0.8872 = ........................................................................ 0.0018 0.0029 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π .................. §à“¢Õß®”π«π®√‘ßµà“ß°—π .................. .88620.8843) = ........................................................................ 0.0019 §à“¢Õß®”π«π®√‘ßµà“ß°—π (0............................ 0.0019 (0.0018) ª ........................................................................ 0.0012 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π ............................ 0.0029 0.77350.0012 ¥—ßπ—Èπ sin 0.8862 = ........................................................................ 0.7747 = ........................................................................

®“°µ“√“ß

sin 0.8843 =

(3) cos 1 cos 0.9977 = 0 5422

. ........................................................................ 0.5398 cos 1.0007 = ........................................................................ 0.0024 0.003 §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π .................. §à“¢Õß®”π«π®√‘ßµà“ß°—π .................. (10.9977) = ........................................................................ 0.0023 §à“¢Õß®”π«π®√‘ßµà“ß°—π ............................ 0.0023 (0.0024) ª ........................................................................ 0.0018 §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π............................ 0.003 0.54220.0018 ¥—ßπ—Èπ cos 1 = ........................................................................ 0.5404 = ........................................................................

®“°µ“√“ß

(4) cos 0.33 cos 0.3287 = 0 9465

. ........................................................................ 0.9455 cos 0.3316 = ........................................................................ 0.0029 §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π .................. 0.001 §à“¢Õß®”π«π®√‘ßµà“ß°—π .................. (0.330.3287) = ........................................................................ 0.0013 §à“¢Õß®”π«π®√‘ßµà“ß°—π ............................ 0.0013 0.0004 (0.001) ª ........................................................................ §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π............................ 0.0029 0.94650.0004 ¥—ßπ—Èπ cos 0.33 = ........................................................................ 0.9461 = ........................................................................

®“°µ“√“ß

(5) tan 0.5575

. ................................................................... 0.6249 tan 0.5585 = ................................................................... 0.0029 §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π .................. 0.0041 §à“¢Õß®”π«π®√‘ßµà“ß°—π .................. (0............................ .55750.5556) = ................................................................... 0.0019 §à“¢Õß®”π«π®√‘ßµà“ß°—π 0.0019 0.0027 (0.0041) ª ................................................................... §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π ............................ 0.0029 ®“°µ“√“ß

tan 0.5556 = 0 6208

131

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 ¥—ßπ—Èπ

tan 0.5575 = 0 62080 0027 =

. . ................................................................... 0.6235 ...................................................................

6) tan 1.5 tan 1.4981 = 13 727

. ................................................................... 14.301 tan 1.5010 = ................................................................... 0.0029 §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π .................. 0.574 §à“¢Õß®”π«π®√‘ßµà“ß°—π .................. (1.51.4981) = ................................................................... 0.0015 §à“¢Õß®”π«π®√‘ßµà“ß°—π ............................ 0.0019 0.376 (0.574) ª ................................................................... §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π ............................ 0.0029 13.7270.376 ¥—ßπ—Èπ tan 1.5 = ................................................................... 14.103 = ...................................................................

®“°µ“√“ß

4.

„Àâπ—°‡√’¬πÀ“¢π“¥¢Õß¡ÿ¡ 1) sin A

=

A

®“°∑’Ë°”Àπ¥„Àâ

0.4234 0.4226 = sin 25 0

®“°µ“√“ß

0.4253 = sin 25 10

§à“¢Õßøíß°å™—π‰´πåµà“ß°—π 0.0027 ¢π“¥¢Õß¡ÿ¡µà“ß°—π 10 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π (0.42340.4226) = 0.0008 0008 ¢π“¥¢Õß¡ÿ¡µà“ß°—π 00..0027 (10) ⬇ 3 A = 25 03

¥—ßπ—πÈ

25 3 = ................................................................................. 2) sin A

=

®“°µ“√“ß

0.6826 0.6820 = sin 43 0 ..................................

0.6841 = sin 43 10 ........................................................ 10 0.0021 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π ............................. ¢π“¥¢Õß¡ÿ¡µà“ß°—π ................................ 0.68260.6820 = 0.0006 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π .................................................................................................... 0.0006 (10) ª 3 ¢π“¥¢Õß¡ÿ¡µà“ß°—π ............................................................................................................. 0.0021 43 0 3 ¥—ßπ—πÈ A = .............................................................................. 43 3 = .................................................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

132

3) sin A

=

0.4790 sin 28 30 0.4772 = ................................................................................

®“°µ“√“ß

sin 28 40 0.4797 = ................................................................................ 10 0.0025 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π ............................. ¢π“¥¢Õß¡ÿ¡µà“ß°—π ................................ 0.47900.4772 = 0.0018 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π .................................................................................................... 0.0018 (10) ª 7 ¢π“¥¢Õß¡ÿ¡µà“ß°—π ............................................................................................................. 0.0025 28 30 7 ¥—ßπ—πÈ A = ................................................................................. 28 37 = ................................................................................. 4) cos A

=

®“°µ“√“ß

0.9412 0.9417 = cos 19 40 ................................ 0.9407 = cos 19 50 ................................

§à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π 0.001 ¢π“¥¢Õß¡ÿ¡µà“ß°—π 10 §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π 0.94170.9412 = 0.0005 ¢π“¥¢Õß¡ÿ¡µà“ß°—π 00..0005 (10) ⬇ 5 0001 ¥—ßπ—πÈ A = 19 405 45 = 19 ................................................................................ 5.

„Àâπ—°‡√’¬πÀ“§à“¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß¡ÿ¡ 1) sin 24 43

®“°µ“√“ß

sin 24 40 = 0.4173 sin 24 50 = 0.4200

¢π“¥¢Õß¡ÿ¡µà“ß°—π ¢π“¥¢Õß¡ÿ¡µà“ß°—π

10

¥—ßπ—πÈ

sin

3

§à“¢Õßøíß°å™—π‰´πåµà“ß°—π 0.0027 §à“¢Õßøíß°å™—π‰´πåµà“ß°—π 103 (0.0027) = 0.0008 0.41730.0008 24 43 = ................................................................................. 0.4181 = .................................................................................

2) cos 64 26

®“°µ“√“ß

cos 64 20 = 0.4331 cos 64 30 = 0.4305

¢π“¥¢Õß¡ÿ¡µà“ß°—π ¢π“¥¢Õß¡ÿ¡µà“ß°—π

10 6

§à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π §à“¢Õßøíß°å™—π‚§‰´πåµà“ß°—π

0.0026

6 (0.0026) 10

=

0.0016

133

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 cos 64 26 = 0.43310.0016

¥—ßπ—πÈ

0.4315 = ................................................................................. 3) tan 77 12 4.3892 tan 77 10 = .................................................................................

®“°µ“√“ß

4.4494 tan 77 20 = ................................................................................. 10 §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π 0.0597 ¢π“¥¢Õß¡ÿ¡µà“ß°—π .......... ......................................... 2 2 (0.0597) = 0.0119 ¢π“¥¢Õß¡ÿ¡µà“ß°—π .......... §à“¢Õßøíß°å™—π·∑π‡®πµåµà“ß°—π 10 .................. .................. .38970.0119 ¥—ßπ—πÈ tan 77 12 = 4................................................................................. .4016 = 4................................................................................. 4) cot 40 36

. 1.1640 cot 40 40 = ................................................................................. 0.0068 10 §à“¢Õßøíß°å™—π‚§·∑π‡®πµåµà“ß°—π ..................................... ¢π“¥¢Õß¡ÿ¡µà“ß°—π .......... 1 1708 cot 40 30 = .................................................................................

®“°µ“√“ß

6

(0.0068) = 0.0041 6 ¢π“¥¢Õß¡ÿ¡µà“ß°—π .......... §à“¢Õßøíß°å™—π‚§·∑π‡®πµåµà“ß°—π 10 ................. .............. .17080.0041 ¥—ßπ—πÈ cot 40 36 = 1................................................................................. .1667 = 1................................................................................. 6.

°”Àπ¥„Àâ 1)

0  x  180

„Àâπ—°‡√’¬πÀ“

sin x = 0.7526

x

‚¥¬‡ªî¥µ“√“ß 2)

sin x = sin 48.8

sin x = sin 72.1 x = 72.1 ...................................................................

x = 48.8

sin 72 1 = sin(180 72 1 ) ...................................................................

sin 48.8 = sin(180 48.8 )

¥—ßπ—πÈ 3)

sin x = 0.9515

.

.

= sin 131.2

= sin 107 9 ...................................................................

x = 48.8 131.2

¥—................................................................... ßπ—πÈ x = 72.1 , 107.9

.

,

cos x = 0.2375 = cos 76.3

4)

cos x = 0.7826 = cos 38.5

= cos (180 76.3 )

= cos(180 38 5 ) ...................................................................

= cos 103.7

= cos 141 5 ...................................................................

x = 103.7

.

.

x = 141 5 ...................................................................

.

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

134 tan x = 0.7814

5)

tan x = 1.215

6)

= tan 38

= tan 50.5

= tan(180 38 )

= tan(180 50 5 ) ...................................................................

= tan 142

= tan 129 5 ...................................................................

.

.

x = 129 5 ...................................................................

.

x = 142 7.

0    360

°”Àπ¥„Àâ

sin  =

1)

„Àâπ—°‡√’¬πÀ“§à“



2 2

®“° ¡°“√ cos  = cos 180 .................

sin  = sin 45 = sin(180 45 )

¥—ßπ—Èπ

8.

 = 180 ...................................................................

45 , 135  = ........................................

sin  = 0.6180

3)

cos  = 1

2)

cos  = 0.5125

4)

sin  = sin 38 10 ...................................................................

cos  = cos 59 10 ...................................................................

= sin(180 38 10 ) ...................................................................

 = 59 10 ...................................................................

 = 218 10 ...................................................................

cos  = cos(360 59 10 ) ...................................................................

sin  = sin(360 38 10 ) ...................................................................

 = 300 50 ...................................................................

 = 321 50 ...................................................................

...................................................................

„À⇵‘¡‡§√◊ËÕßÀ¡“¬ ¡“°°«à“

()

πâÕ¬°«à“

()

À√◊Õ‡∑à“°—∫

(=)

≈ß„π™àÕß«à“ß„Àâ∂Ÿ°µâÕß

 1) sin 55 ................. cos 55

= 2) sin 50 ................. cos 40

 3) sin 36 ................. cos 18

4) sin

5) sin

3p 2

 ................. cos 0

= 7) sin 54 ................. cos 36  9) tan 15 ................. cot 15 11) tan

2p 3

p  ................. cot 3

p 2 p 6) sin 5

 ................. cos p

 4p ................. cos 5 = 8) sin 18 ................. cos 72 10) tan

3p 4

12) tan p

 3p ................. cot 4 p  ................. sin 2

135

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

9.

°”Àπ¥„Àâ

sin

p 4

=

0.7

·≈–

cos

p 4

=

1) 2cos 45 3sin 135

0.7

„Àâπ—°‡√’¬πÀ“§à“¢Õß

2) 3cos 135 4sin 135

= 2 cos 45 3 sin 45 ...................................................................

= 3(cos 45 )4 sin 45 ...................................................................

= 2(0 7)3(0 7) ...................................................................

= 3(0 7)4(0 7) ...................................................................

= 35 ...................................................................

= 07 ...................................................................

.

.

.

3) cos 135 2sin 45

.

.

.

4) 2cos 315 3sin 45

= cos 45 2 sin 45 ...................................................................

= 2 cos 45 3 sin 45 ...................................................................

= 0 72(0 7) ...................................................................

= 2(0 7)3(0 7) ...................................................................

.

.

= 2.1 ...................................................................

5p 7p sin 4 4 p p = 2Ê cos ˆÊ sin ˆ ................................................................... Ë ¯ Ë 4 4¯

5) 2cos

. . = 0.7 ................................................................... 7p 5p 3sin 4 4 p p Ê = 4 cos 3  sin ˆ ................................................................... Ë 4¯ 4

6) 4cos

= 2(0 7)(0 7) ...................................................................

= 4(0 7)3(0 7) ...................................................................

= 2 1 ...................................................................

= 49 ...................................................................

.

.

.

11p 9p 4cos 4 4 p p = 3 sin 4 cos ................................................................... 4 4

7) 3sin

.

.

.

13p 21p cos 4 4 p p = 5Ê sin ˆÊ cos ˆ ................................................................... Ë ¯ Ë 4 4¯

8) 5sin

= 3(0 7)4(0 7) ...................................................................

= 5(0 7)(0 7) ...................................................................

= 49 ...................................................................

= 2 8 ...................................................................

.

.

.

5p 3p 9) sin Ê ˆ cos Ê ˆ Ë 4¯ Ë 4¯

.

.

.

7p 3p 10) cos Ê ˆ 2sin Ê ˆ Ë 4¯ Ë 4¯

5p 3p =  sin  cos ................................................................... 4 4

3p 7p = cos 2Ê sin ˆ ................................................................... Ë 4¯ 4

p p = Ê sin ˆÊ cos ˆ ................................................................... Ë 4¯ Ë 4¯

7p 3p = cos 2 sin ................................................................... 4 4 p p = cos 2 sin ................................................................... 4 4 = 0 72(0 7) ...................................................................

= (0 7)(0 7) ...................................................................

.

.

= 0 ................................................................... ...................................................................

. . = 2.1 ...................................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

136

10.

°”Àπ¥„Àâ sin 2

0    2p

=

cos

«‘∏∑’ ” ®“° ‡π◊ÕË ß®“°

„Àâπ°— ‡√’¬πÀ“®”π«π®√‘ß∫«°



´÷ßË  Õ¥§≈âÕß°—∫ ¡°“√

1  2 1 sin 2 = cos  2

1 p 1 cos  = sin Ê  ˆ Ë2 2 ¯ 2 p 1 sin 2 = sin Ê  ˆ Ë2 2 ¯

2 =

¥—ßπ—πÈ

p 1   2 2

p 1 2 = 2p Ê  ˆ Ë2 2 ¯ p 1 2 = 4p Ê  ˆ Ë2 2 ¯ p 1 2 = 6p Ê  ˆ Ë2 2 ¯

¥—ßπ—πÈ

‡π◊ÕË ß®“°

1 2  = 2

cos

5 2 5 2 5 2 5 2

= = = =

p 2 5p 2 9p 2 13p 2

®–‰¥â



=

p ............................................. 5

®–‰¥â



=

p .............................................

®–‰¥â



=

®–‰¥â



=

9p ............................................. 5 13 p ............................................. 5

1 p 1  = sin Ê  ˆ Ë 2 2 ¯ 2

p 1 sin 2 = sin Ê  ˆ Ë2 2 ¯

¥—ßπ—πÈ

p 1   2 = ................................................................................ 2 2 p 1 2 pÊ  ˆ 2 = ................................................................................ Ë2 2 ¯ p 1 4 pÊ  ˆ 2 = ................................................................................ Ë2 2 ¯ p 1 6 pÊ  ˆ 2 = ................................................................................ Ë2 2 ¯

137

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

¥—ßπ—πÈ

1 2  2

§”µÕ∫∑’˵âÕß°“√§◊Õ 11.

p p ®–‰¥â  = ............................................. 3 2 5 p 5p = ®–‰¥â  = ............................................. 3 2 9 p 9p = ®–‰¥â  = ............................................. 3 2 13 p 13p = ®–‰¥â  = ............................................. 3 2 p , p , 95p , p3 , 53p ......................................................................................................... 5 =

Ÿ

3 2 3 2 3 2 3 2

Ÿ

√Ÿª “¡‡À≈’ˬ¡ ABC ¡’ A = 30 , C Ÿ ¢Õß B ·≈–§«“¡¬“«¢Õߥâ“π∑’ˇÀ≈◊Õ «‘∏∑’ ”

=

= 90

·≈–

a = 9 3

‡´πµ‘‡¡µ√ ®ßÀ“¢π“¥ B

c

a= 9 3

30 A

Ÿ

°”Àπ¥„Àâ

A Ÿ

C

30 = ............................................. 90 = .............................................

Ÿ

¥—ßπ—πÈ sin A

C

b

=

a c

À√◊Õ

60 B = ............................................. 9 3 sin 30 = ............................................. c

1 2

9 3 = ............................................. c

c = ............................................. 29 3 ............ c = ............................................. 18 3 ............ b cos 30 = ............................................. 18 3

‡´πµ‘‡¡µ√

cos A

=

b c

À√◊Õ

3 2

b = ............................................. 18 3

3 18 3 b = ............................................. 2 b = ............................................. 27 ............

‡´πµ‘‡¡µ√

´¡.

138

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

12.

√Ÿª “¡‡À≈’ˬ¡ ABC ¡’¥â“π BC ¬“« 25 2 ‡´πµ‘‡¡µ√ ¥â“π AB ¬“« 50 ‡´πµ‘‡¡µ√ ¡ÿ¡ C ¡’¢π“¥ 90 ®ßÀ“¢π“¥¢Õß¡ÿ¡ B §«“¡¬“«¢Õߥâ“π AC ·≈–‡ âπµ—Èß©“°∑’Ë≈“°®“° C ‰ª¬—ߥâ“π AB «‘∏∑’ ” C

25 2

A

45

45 D 50

°”Àπ¥

´¡.

B

´¡.

‡´πµ‘‡¡µ√ 50 ‡´πµ‘‡ ¡µ√ .............................................

25 2 BC = ............................................. AB = Ÿ

90 = ............................................. BC cos B = AB 25 2 = ............................................. 50 C

2 = ............................................. 2 Ÿ

45 ¥—ßπ—πÈ B = ............................................. Ÿ 45 ·≈– A = .............................................  “¡‡À≈’ˬ¡Àπâ“®—Ë« √Ÿª “¡‡À≈’ˬ¡ ABC ‡ªìπ√Ÿª ............................................. 25 2 ‡´πµ‘‡¡µ√ ¥—ßπ—πÈ AC = ............................................. „π√Ÿª “¡‡À≈’ˬ¡ BCD; sin B = CD BC CD sin 45 = ............................................. 25 2 1 CD ....................................................... = ............................................. 2 25 2

‡´πµ‘‡¡µ√

25 CD = .............................................

139

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

13.

®“°√Ÿª “¡‡À≈’ˬ¡ ABC À“§«“¡¬“«¢Õß AD ·≈– «‘∏∑’ ”

Ÿ

B = 45

,

Ÿ

C = 120 , a

= 40

‡´πµ‘‡¡µ√ „Àâπ—°‡√’¬π

A

CD

45 B 40

Ÿ

°”Àπ¥

ABC Ÿ

BCA Ÿ

¥—ßπ—πÈ

D

´¡. C

ACD

120

45 = ............................................. 120 = ............................................. 60 = .............................................

40 BC = .............................................

‡´πµ‘‡¡µ√

„π√Ÿª “¡‡À≈’ˬ¡

ACD

; Ÿ

tan ACD

=

tan 60 = 3 =

AD =

„π√Ÿª “¡‡À≈’ˬ¡

ABD

AD CD AD CD AD CD 3 CD

..........(1)

; Ÿ

AD BD AD tan 45 = 40  CD 3CD 1 = ............................................................................................................................................. 40CD tan ABD =

3CD 40+CD = ............................................................................................................................................. 40 = ( 31) CD ............................................................................................................................................. 40 Ê 31ˆ CD = Á ˜ ............................................................................................................................................. 31 Ë 31¯ 40( 31) ............................................................................................................................................. = 31 = 20 ( 31) .............................................................................................................................................

‡´πµ‘‡¡µ√

(1) AD = 3 [20( 3 1)] .............................................................................................................................................

®“° ;

= 20(3 3 ) .............................................................................................................................................

‡´πµ‘‡¡µ√

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

140

14.

Ÿ

®“°√Ÿª∑’Ë°”Àπ¥ Q ®ßÀ“§«“¡¬“«¢Õß «‘∏∑’ ”

= 90 QR = 8

,

RS

,

QS

·≈–

‡´πµ‘‡¡µ√,

Ÿ

Ÿ

QRP = 60 QPR = 30

,

∂â“

QS ⬜ PR

PS Q

8

R

„π√Ÿª “¡‡À≈’ˬ¡

´¡. 60

30 S

P

;

QRS

RS RQ RS 1 = ............................................................................ 8 2 1 8 RS = ............................................................................ 2

cos 60 =

‡´πµ‘‡¡µ√

RS = 4............................................................................ QS RS QS 3 = ............................................................................ 4

tan 60 =

4 3 QS = ............................................................................

‡´πµ‘‡¡µ√

„π√Ÿª “¡‡À≈’ˬ¡

PQS

; QS PS 4 3 = ............................................................................ PS

tan 30 = 1 3

4 3 3 PS = ............................................................................

‡´πµ‘‡¡µ√

12 PS = ............................................................................

141

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

15.

√Ÿª ’ˇÀ≈’ˬ¡¥â“π¢π“π ABCD ¥â“π AB ¬“« 24 27 3 ‡´πµ‘‡¡µ√ ¥â“π AD ¬“« 14 Ÿ ‡´πµ‘‡¡µ√ BAD = 30 , DE ⬜ AB ∑’Ë®ÿ¥ E ®ßÀ“§«“¡¬“«¢Õß DE , AE ·≈– BD D 14

A

C

´¡.

30

247 3

«‘∏∑’ ” „π√Ÿª “¡‡À≈’ˬ¡

B

E

´¡.

ADE sin 30 =

;

DE DA

1 DE = ............................................................................................................................................. 2 DA 1 DE = DA ............................................................................................................................................. 2 1 = 14 ............................................................................................................................................. 2 = 7 .............................................................................................................................................

‡´πµ‘‡¡µ√

AE AD AE 3 ............................................................................................................................................. = AD 2 cos 30 =

3 AE = AD ............................................................................................................................................. 2 3 = 14 ............................................................................................................................................. 2 = 7 3 .............................................................................................................................................

‡´πµ‘‡¡µ√

„π√Ÿª “¡‡À≈’ˬ¡

BDE

;

BD

2

2

= DE BE 2

2

2

= 7 (24) ............................................................................................................................................. = 49576 ............................................................................................................................................. = 625 ............................................................................................................................................. BD = 25 .............................................................................................................................................

¥—ßπ—πÈ

‡´πµ‘‡¡µ√

142

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

16.

µ÷° ÕßÀ≈—ß Ÿßµà“ß°—π 30 ‡¡µ√ ™“¬§πÀπ÷Ë߬◊πÕ¬Ÿà∑’Ëæ◊Èπ·π«√“∫‡¥’¬«°—∫µ÷° Àà“ß®“°µ÷°∑’ˇµ’Ȭ °«à“‡ªìπ√–¬– 100 ‡¡µ√  —߇°µ‡ÀÁπ¬Õ¥µ÷°Õ¬Ÿà„π·π«‡ âπµ√߇¥’¬«°—π‡ªìπ¡ÿ¡‡Õ’¬ß 27 2 °—∫æ◊Èπ√“∫ ®ßÀ“§«“¡ Ÿß¢Õßµ÷°∑—Èß Õß (°”Àπ¥ tan 27 2 = 0.51) D 30 B

BC DE Ÿ

E

C 100

A

F

27 2

A

«‘∏∑’ ” „Àâ

¡.

¡.

‡ªìπ®ÿ¥ —߇°µ ‡ªì𧫓¡ Ÿß¢Õßµ÷°∑’ˇµ’Ȭ°«à“ ‡ªì𧫓¡ Ÿß¢Õßµ÷°∑’Ë Ÿß°«à“

DAE =

27 2

„π√Ÿª “¡‡À≈’ˬ¡

;

ABC

BC AC

tan 27 2 =

BC = AC tan 27 2 1000.51 = .............................................

¥—ßπ—È𠧫“¡ Ÿß¢Õßµ÷°À≈—ß∑’ˇµ’Ȭ°«à“

51 = .............................................

‡¡µ√

5130 DE = .............................................

¥—ßπ—È𠧫“¡ Ÿß¢Õßµ÷°À≈—ß∑’Ë Ÿß°«à“ 17.

‡¡µ√

81 = .............................................

√Ÿª ’ˇÀ≈’ˬ¡¥â“π¢π“π ABCD ¡’‡ âπ√Õ∫√Ÿª¬“« 12 ‡´πµ‘‡¡µ√ DE µ—Èß©“°°—∫ AB ∑’Ë E DE = 3 ‡´πµ‘‡¡µ√ ¡ÿ¡ A ¡’¢π“¥ 60 Õß»“ ®ßÀ“æ◊Èπ∑’Ë¢Õß√Ÿª ’ˇÀ≈’ˬ¡¥â“π¢π“π√Ÿªπ’È D

C

3

´¡.

60 A

E

B

143

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

«‘∏’∑” √Ÿª “¡‡À≈’ˬ¡

ADE

‡ªìπ√Ÿª “¡‡À≈’ˬ¡¡ÿ¡©“° sin A =

DE AD

sin 60 =

3 AD

3 3 AD = ............................................................................ o = 3 sin 60 2

‡´πµ‘‡¡µ√

2 = ............................................................................ 12 ABBCCDDA = ............................................................................ 12 2(AB)2(DA) = ............................................................................ ABDA = ............................................................................ 6 ...................................................... 62 = 4 AB = ............................................................................

‡´πµ‘‡¡µ√

æ◊Èπ∑’Ë¢Õß√Ÿª ’ˇÀ≈’ˬ¡

ABDE ABCD = ............................................................................ 4 3 = ............................................................................

µ“√“߇´πµ‘‡¡µ√

4 3 = ............................................................................ 18.

√Ÿª “¡‡À≈’ˬ¡¥â“π‡∑à“ ABC ¡’ AD µ—Èß©“°°—∫ BC ∑’Ë®ÿ¥ D „Àâ §«“¡¬“«¢Õß AD ·≈–®ß· ¥ß«à“ cos260 cot230 = 134

BC = 2x

Àπ૬ ®ßÀ“

A

B

«‘∏∑’ ” ®“°√Ÿª

C

D

Àπ૬ 2x Àπ૬ ............................................................................

x BD = ............................................................................ AB = 2

AD

2

2

2

(2x) x = 3x = ............................................................................

3x AD = ............................................................................ Ÿ

ABD Ÿ

BAD

60 = ............................................................................ 30 = ............................................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

144 Ÿ

BD x 1 = = = ...................................................... AB 2x 2

Ÿ

3x AD = = 3 = ....................................................... x BD

cos ABD = cos 60 cot BAD = cot 30 2

Ê 1 ˆ ( 3 )2 2 2 cos 60 cot 30 = ............................................................................ Ë 2¯

¥—ßπ—πÈ

1 3 = ............................................................................ 4 13 = ............................................................................ 4

19.

≥ ∑’Ë®ÿ¥Àπ÷Ëß¡Õ߇ÀÁπ‡ “∏߇ªìπ¡ÿ¡‡ß¬¢÷Èπ 30 ‡¡◊ËÕ‡¥‘π‡¢â“‰ª¬—߇ “∏ßÕ’° 10 ‡¡µ√ ¡ÿ¡‡ß¬ ¢÷Èπ¢Õ߬ե‡ “∏߇ªìπ 45 ®ßÀ“§«“¡ Ÿß¢Õ߇ “∏ß „Àâ A ‡ªìπ®ÿ¥ —߇°µ§√—Èß·√° D „Àâ B ‡ªìπ®ÿ¥ —߇°µ§√—Èß∑’Ë Õß AB = 10 ‡¡µ√ „π√Ÿª “¡‡À≈’ˬ¡ ACD; A

45

30

C

B

CD AC CD 1 = ........................................... ABBC 3

tan 30 =

‡π◊ËÕß®“° BCD ‡ªìπ√Ÿª “¡‡À≈’ˬ¡Àπâ“®—Ë« CD ¥—ßπ—Èπ ¥â“π BC ¬“«‡∑à“°—∫¥â“π................................................................................................................. 1 CD = ............................................................................................................................................................ 3 10CD 10CD = 3CD ............................................................................................................................................................ 3CD CD = 10 ............................................................................................................................................................ ( 31)CD = 10 ............................................................................................................................................................

10 Ê 31ˆ CD = Á ˜ ............................................................................................................................................................ 31 Ë 31¯ = 5( 31) ............................................................................................................................................................ 5( 31) ............................................................................................................................................................

¥—ßπ—Èπ ‡ “∏ß Ÿß

20.

‡¡µ√

≥ ∑’Ë®ÿ¥Àπ÷Ëß´÷ËßÀà“ß®“°™—Èπ≈à“ߢÕßµ÷°À≈—ßÀπ÷Ëß„π·π«√“∫ 40 ‡¡µ√ ¡Õ߇ÀÁπ¬Õ¥µ÷°·≈– ª≈“¬‡ “Õ“°“»´÷Ëßµ—ÈßÕ¬Ÿà∫π¬Õ¥µ÷°‡ªìπ¡ÿ¡ 30 ·≈– 60 µ“¡≈”¥—∫ ®ßÀ“«à“‡ “Õ“°“» Ÿß ‡∑à“‰√

145

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 „Àâ A ‡ªìπ®ÿ¥ —߇°µ Àà“ß®“°µ÷°„π·π«√“∫∑’Ë®ÿ¥ ¥—ßπ—Èπ AB = 40 ‡¡µ√ BC ‡ªì𧫓¡ Ÿß¢Õßµ÷° CD ‡ªì𧫓¡ Ÿß¢Õ߇ “Õ“°“» „π√Ÿª “¡‡À≈’ˬ¡ ABC;

D

B

BC tan 30 = ............................................ AB 1 BC = ............................................ 3 60 30 40 A B 40 ¡. 40 BC = ............................................ 3 ABD BD tan 60 = ............................................ AB BCCD 3 = ............................................................................................................................................................ 40 40 40 3 = CD ............................................................................................................................................................ 3 C

„π√Ÿª “¡‡À≈’ˬ¡

;

120 = 40 3CD ............................................................................................................................................................ 80 80 3 CD = = ............................................................................................................................................................ 3 3 80 3 ............................................................................................................................................................ 3

¥—ßπ—Èπ ‡ “Õ“°“» Ÿß

21.

‡¡µ√

„π°“√ ”√«®§«“¡°«â“ߢÕß·¡àπÈ” ¬◊π ”√«®§√—Èß·√°∑’Ë®ÿ¥ A ´÷ËßÕ¬Ÿàµ√ߢⓡ°—∫∑à“πÈ” ‡¡◊ËÕ ‡¥‘π∫π∂ππ‡≈’¬∫·¡àπÈ”‰ª∑’Ë®ÿ¥ B ¡Õ߇ÀÁπ∑à“πÈ”‡ªìπ¡ÿ¡ 60 ·≈–‡¥‘πµàÕ‰ªÕ’° 40 ‡¡µ√ ∑’Ë ®ÿ¥ C ¡Õ߇ÀÁπ∑à“πÈ”‡ªìπ¡ÿ¡ 45 ®ßÀ“§«“¡°«â“ߢÕß·¡àπÈ” ∑à“πÈ” D

C

45 40

60

¡.

B

A

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

146

„Àâ

D

‡ªìπ®ÿ¥·∑π∑à“πÈ”

„π√Ÿª “¡‡À≈’ˬ¡ ABD;

AD tan 60 = ...................................................................................... AB AD 3 = ...................................................................................... AB AD AB = ...................................................................................... 3

„π√Ÿª “¡‡À≈’ˬ¡ ACD ‡ªìπ√Ÿª “¡‡À≈’ˬ¡Àπâ“®—Ë« AD AC = ...................................................................................... ABBC = AD ............................................................................................................................................................ AD 40 = AD ............................................................................................................................................................ 3

3AD AD 40 3 = ............................................................................................................................................................ 40 3 = ( 31)AD ............................................................................................................................................................ 40 3( 31) AD = ............................................................................................................................................................ 2

AD = 20 3( 31) ............................................................................................................................................................ 20 3( 31) ............................................................................................................................................................

¥—ßπ—Èπ ·¡àπÈ”°«â“ß

22.

‡¡µ√

‡ “‰øøÑ“ 2 µâπ  Ÿß‡∑à“°—π Õ¬ŸàÀà“ß°—π 100 ‡¡µ√ ™“¬§πÀπ÷Ë߬◊πÕ¬Ÿà∫πæ◊Èπ√“∫√–À«à“ß ‡ “‰øøÑ“∑—Èß Õß ≥ ®ÿ¥∑’ˬ◊π¡Õ߇ÀÁπ‡ “‰øøÑ“ 2 µâ𠇪ìπ¡ÿ¡‡ß¬ 30 ·≈– 60 ®ßÀ“«à“ ™“¬§ππ’Ȭ◊πÕ¬Ÿà ≥ ®ÿ¥„¥ ·≈–‡ “‰øøÑ“∑—Èß Õß Ÿß‡∑à“‰√ A

C

30 B

«‘∏∑’ ” „Àâ

x

¡.

60 E 100x

¡.

·≈– CD ·∑π‡ “‰øøÑ“ 2 µâπ ´÷Ëß Ÿß‡∑à“°—π E ‡ªìπ®ÿ¥ —߇°µ„ÀâÀà“ß®“°‡ “‰øøÑ“ AB x ‡¡µ√ ¥—ßπ—πÈ BE = x ‡¡µ√ ·≈– DE = 100x ‡¡µ√ AB

tan 30 =

AB BE

D

147

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 BE tan 30 AB = ...................................................... tan 60 =

..........(1)

CD DE

DE tan 60 CD = ......................................................

..........(2)

‡π◊ÕË ß®“° AB = CD BE tan 30 = DE tan 60 ¥—ßπ—Èπ ................................................................................................................................ 1 ............................................................................................................................................. (x) Ê ˆ = (100x) 3 Ë 3¯ x = 3(100x) ............................................................................................................................................. x = 3003x ............................................................................................................................................. 4x = 300 ............................................................................................................................................. x = 75 .............................................................................................................................................

¥—ßπ—Èπ ‡¢“¬◊π ≥ ®ÿ¥´÷ËßÀà“ß®“°‡ “‰øøÑ“ µâπ ‡¡µ√ ·≈– ‡¡µ√ ‡ “‰øøÑ“ Ÿß DE tan 60 = 25 3 ‡¡µ√ ............................................................................................................................................. 2 75 25 .............................................................................................................................................

2.6 °√“ø¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘ °√“ø¢Õß

y = sin x Y

 2p



3p 2

p

p 2

3p 2

1 O 1

p 2

X p

2p

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

148

°√“ø¢Õß

y = cos x

Y

1

3p  2

°√“ø¢Õß

p 2

p

p 2

O 1

3p 2

p

X

y = tan x Y



°√“ø¢Õß

3p 5p 2p  p 2 2



Op 2

p 2

3p 2

p

2p

X

5p 2

y = cot x Y

2p 

°√“ø¢Õß

3p p p  2 2

O

p 2

p

3p 2

2p

5p 2

2p

5p 2

X 3p

y = cosec x Y

 3p 2p  p 2

p 1 2

1

3p 2

O p 2

p

X 3p

149

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 y = sec x

°√“ø¢Õß

Y

1 O p  2 1

3p 5p  2p  p 2 2

p 2

3p 2

p

2p

X

5p 2

‚¥‡¡π·≈–‡√π®å¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘

øíß°å™π—

‚¥‡¡π

sine

R

cosine

R

tangent

(2 k  1) p Ïxx k  I ¸˝ Ì | R xπ 2 ˛ Ó

cotangent secant cosecant

‡√π®å {y|y {y|y

,

{x|x

,

 R x π kp k  I

,

,

,

{x|x

,

 R x π kp k  I

,

,

}

 1





, |y| R, |y|

} 1}

R

}

Ïx|x  R x π (2 k  1) p k  I ¸ Ì ˝ 2 Ó ˛

 R

R

{y|y

 R

, |y|

1

}

{y|y

 R

, |y|

1

}

§“∫·≈–·Õ¡æ≈‘®Ÿ¥ øíß°å™—πµ√’ ‚°≥¡‘µ‘∑ÿ°øíß°å™—π‡ªìπøíß°å™—π∑’ˇªìπ§“∫ ‡¡◊ËÕ·∫àß·°π X ÕÕ°‡ªìπ™à«ß¬àÕ¬ ‚¥¬∑’˧«“¡¬“«¢Õß·µà≈–™à«ß¬àÕ¬‡∑à“°—π ·≈–°√“ø„π·µà≈–™à«ß¬àÕ¬¡’≈—°…≥–‡À¡◊Õπ°—𠧫“¡¬“«¢Õß™à«ß¬àÕ¬∑’Ë —Èπ∑’Ë ÿ¥∑’Ë¡’ ¡∫—µ‘¥—ß°≈à“« ‡√’¬°«à“ §“∫ (period) ¢Õßøíß°å™—π

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

150

 ”À√—∫øíß°å™—π∑’ˇªìπ§“∫´÷Ëß¡’§à“ Ÿß ÿ¥‡∑à“°—∫ 1 (amplitude) ‡ªìπ (ab) 2

a

·≈–§à“µË” ÿ¥‡∑à“°—∫

{(x, y)|y = A sin Bx} {(x, y)|y = A cos Bx} ·µà≈–øíß°å™—π¡’·Õ¡æ≈‘®Ÿ¥‡ªìπ |A| ·≈–¡’§“∫‡ªìπ

b

®–¡’·Õ¡æ≈‘®Ÿ¥

øíß°å™—π

§“∫æ◊Èπ∞“π¢Õßøíß°å™—π §“∫æ◊Èπ∞“π¢Õßøíß°å™—π

,

, ·≈–

..........(1) ..........(2) 2p | B|

·≈– cosecant ‡ªìπ 2p cotangent ‡ªìπ p

sine cosine secant tangent

°‘®°√√¡∑’Ë 2.6 1.

®ß∫Õ°§“∫·≈–·Õ¡æ≈‘®Ÿ¥æ√âÕ¡∑—È߇¢’¬π°√“ø  ¡°“√

§“∫

·Õ¡æ≈‘®Ÿ¥

1) y = 4sinx

2p ...........

4 ....................

°√“ø Y

4 π

1 2) y = 3sin x 2

4p ...........

π  2

O 4

π  2

π

π



X

Y

3 .................... 3

2π



O 3

X

151

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

 ¡°“√

§“∫

·Õ¡æ≈‘®Ÿ¥

3) y = sin3x

2p 3

1

°√“ø Y 1

π π   3 6

O

π  6

π  3

X

π  2

π

X

π



1

4) y = 2cosx

2p ...........

Y

2 .................... 2 π  2 π

O 2

1 5) y = 3cos x 2

4p ...........

Y

3 .................... 3

2π



O

X

3

Y

6) y = 4sinx

2p ...........

4 ....................

4

O

4

π  2

π

3π  2



X

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

152

 ¡°“√

§“∫

·Õ¡æ≈‘®Ÿ¥

7) y = 3sin3x

2p ........... 3

3 ....................

°√“ø Y 3

O

π  6

π  3

π  2

2π  3

π







π







3π  4

π

X

3

1 8) y = 3sin x 2

4p ...........

3 ....................

Y 3

O

X

3

1 9) y = 2cos x 2

4p ...........

2 ....................

Y

2 O

X

2

10) y = 4sin2x

p ...........

4 ....................

Y 4

O

4

π  4

π  2

X

153

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

 ¡°“√ 11) y =

1 3 sin x 2 2

§“∫

·Õ¡æ≈‘®Ÿ¥

4p ........... 3

1 .................... 2

°√“ø Y 1  2 O 1  2

12) y = 2 cos

2x 3

3p ...........

π

4π  3

3π 3π 9π    4 2 4



π  3

2π  3

X

Y

2 .................... 2

O

X

2

13) y =

3 1 sin x 2 4

8p ...........

3 .................... 2

Y 3  2 O

2π 4π





4π 2π  3

8π  3

X

3  2

14) y = 0.5 sin

3x 8 p ........... 3 4

Y

0.5 .................... 3  2

O 3  2

2π  3

X

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

154

2.

®ßÀ“·Õ¡æ≈‘®Ÿ¥·≈–§“∫æ◊Èπ∞“π æ√âÕ¡∑—È߇¢’¬π°√“ø„π™à«ß  ¡°“√ 1) y = 4 sin x

·Õ¡æ≈‘®Ÿ¥ |4|

= 4

2p  x  2p

§“∫

°√“ø Y

2p 4

2p 2p

p

O

X

p

4

2) y =

1 cos x 2

1 ............... 2

Y

2p ....................

1  2

2π



O

π



π



X

1  2

3) y = 3 cos x

3 ...............

Y

2p .................... 3

2π



O 3

X

155

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

 ¡°“√ 4) y =

3 sin x 2

·Õ¡æ≈‘®Ÿ¥

§“∫

3 ............... 2

2p ....................

°√“ø Y 3  2

2π π

π

O



X

3  2

5) y = 

4 cos x 3

4 ............... 3

2p ....................

Y 4  3

2π



π

O



X

4  3

6) y = 

5 sin x 2

5 ............... 2

2p ....................

Y 5  2

2π π

O

π



X

5  2

3.

®ß‡¢’¬π°√“ø¢Õßøíß°å™—π 1) 2)

Ï( x y)|y = 2 sin 1 x ¸ Ì ˝ 3 ˛ Ó

,

·≈–‡µ‘¡§”µÕ∫≈ß„π™àÕß«à“ß

2 ·Õ¡æ≈‘®Ÿ¥‡∑à“°—∫ ........................... ·≈–§“∫æ◊Èπ∞“π‡∑à“°—∫ ‡¢’¬π°√“ø¢Õßøíß°å™—π„π™à«ß§“∫æ◊Èπ∞“π‰¥â¥—ßπ’È

6p ...........................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

156

Y 2 1 O





X



1 2

3)

À“®ÿ¥ Ÿß ÿ¥ ‡¡◊ËÕ

3p x = ............................................. 2

¥—ßπ—Èπ

1 3p 2 sin Ê ˆ = 2 y = ............................................. 3Ë 2 ¯

®ÿ¥ Ÿß ÿ¥§◊Õ 4)

Ê 3 p , 2ˆ ..................................................................... Ë 2 ¯ 9p x = ............................................. 2

À“®ÿ¥µË” ÿ¥ ‡¡◊ËÕ

¥—ßπ—Èπ

1 9p y = ............................................. 2 sin Ê ˆ 3Ë 2 ¯

= ............................................. 2

®ÿ¥µË” ÿ¥§◊Õ

Ê 9 p , 2ˆ .................................................................... Ë 2 ¯

2.7 øíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õߺ≈∫«°·≈– º≈µà“ߢÕß®”π«π®√‘ßÀ√◊Õ¡ÿ¡ ‡¡◊ËÕ , ‡ªìπ®”π«π®√‘ßÀ√◊Õ¡ÿ¡„¥Ê cos (  ) = cos cos sin sin

.....(1)

cos (  ) = cos cos sin sin

.....(2)

sin (  ) = sin cos cos sin

.....(3)

sin (  ) = sin cos cos sin

.....(4)

tan (  ) =

tan  tan 1  tan tan

,

cot (  ) =

cot cot  1 cot  cot

tan (  ) =

tan  tan 1  tan tan

,

cot (  ) =

cot cot  1 cot  cot

157

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 µ—«Õ¬à“ß∑’Ë 1 ®ßÀ“§à“¢Õß cos 15 , cos 75 , sin 15 ·≈– sin 75 «‘∏’∑” cos 15 cos 75 = cos (45 30 ) À√◊Õ cos (60 45 ) = cos (30 45 ) = cos 45 cos 30 sin 45 sin 30

= cos 30 cos 45 sin 30 sin 45

À√◊Õ cos 60 cos 45 sin 60 sin 45

=

3 2 1 2    2 2 2 2

=

2 3 2 1    2 2 2 2

=

6 2  4 4

=

6 2  4 4

=

6 2 4

=

6 2 4

µÕ∫

sin 15

µÕ∫ sin 75

= sin (60 45 )

À√◊Õ sin (45 30 )

= sin 60 cos 45 cos 60 sin 45

= sin (30 45 ) = sin 30 cos 45 cos 30 sin 45

=

3 2 1 2    2 2 2 2

=

=

6 2  4 4

=

6 2  4 4

=

6 2 4

=

6 2 4

 √ÿª

cos 15 = sin 75

µÕ∫ ·≈– cos 75 = sin 15

µ—«Õ¬à“ß∑’Ë 2 ®ßÀ“§à“¢Õß tan 15 ·≈– tan 75 «‘∏’∑” tan 15 = tan (60 45 ) À√◊Õ tan (45 30 ) =

=

= =

o o tan 60  tan 45 o o 1  tan 60 tan 45

31 1  31 31 31  31 31

3  2 3 1 31

1 2 3 2    2 2 2 2

tan 75 = tan (30 45 ) =

o o tan 30  tan 45 o o 1  tan 30 tan 45

1 1 3 = 1 1  1 3

= =

31 31  31 31

3  2 3 1 31

µÕ∫

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

158

=

42 3 2

=

= 2 3

µÕ∫

42 3 2

= 2 3

µÕ∫

®“° (1), (2), (3) ·≈– (4) ®–‰¥â 2 sin cos = sin (  )sin (  )

.....(5)

2 cos sin = sin (  )sin (  )

.....(6)

2 cos cos = cos (  )cos (  )

.....(7)

2 sin sin = cos (  )cos (  )

.....(8)

 = x

∂â“

 = y xy 2

=

®–‰¥â

·≈– =

xy 2

®“° (5), (6), (7) ·≈– (8) ®–‰¥â xy xy cos 2 2 xy xy sin xsin y = 2 cos sin 2 2 xy xy cos xcos y = 2 cos cos 2 2 xy xy cos xcos y = 2 sin sin 2 2

sin xsin y = 2 sin

øíß°å™—πµ√’ ‚°≥¡‘µ‘¢Õß®”π«π´÷Ë߇ªìπ Õ߇∑à“  “¡‡∑à“¢Õß  sin 2 = 2 sin cos 2

2

cos 2 = cos sin 2

cos 2 = 2 cos 1 2

cos 2 = 12 sin tan 2 =

2 tan 2 1 tan

cot 2 =

cot 1 2 cot

2

159

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

cos 2 = sin 2 =

1 tan 2

1 tan

2 tan 2 1 tan 3

sin 3 = 3 sin 4 tan 3

cos 3 = 4 cos 3 cos 3

tan 3 =

®“° cos 2x ®–‰¥â cos x 2x

cos cos

13 tan 2

2x

= 2 cos

1

®–‰¥â

2 1  cos x 2

x 2

=  1  cos x 2

=

=

 1  cos x 2  1  cos x 2

µ—«Õ¬à“ß∑’Ë 3 ®ßÀ“ tan

p 8

=

x 2

=  1  cos x 2

x tan 2

x x 2 cos 2 2 x x cos 2 cos 2 2

sin

sin x cos x

x 2 x cos 2

=

2

1  cos x 2

2

sin

sin

x 2

2x

cos x = 12 sin 2x

=

®“°

2

cos 2x = 12 sin x

·≈–

2

x tax 2

«‘∏’∑”

2

= 2cos x1

tan x =

tan

3 tan  tan

À√◊Õ

=

=

 1  cos x 1  cos x

tan

sin

tan

x 2

p tan 8

=

sin x 1 cos x

p = tan 4 2

=

sin

p 4

1  cos

p 4

x 2

x x cos 2 2 2x 2 cos 2

2 sin

=

sin x 1 cos x

=

sin x 1 cos x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

160

2 2

=

1

2 2

2 2 2 2 2 2 2

=



=

2 (2  2) 42

=

2 1

°‘®°√√¡∑’Ë 2.7 1.

1) sin 2 = 2 sin cos

®ß· ¥ß«à“

2

2

2

2

2) cos 2 = cos sin = 2 cos 1 = 12 sin 3) tan 2 =

«‘∏’∑”

1)

2 tan 2 1 tan

sin 2 = sin (  ) cos sin = sin cos ................................................................................. 2 sin cos = .........................................................................................................

2)

cos 2 = cos (  ) sin sin = cos cos ................................................................................. 2

2

sin = cos ......................................................................................................... 2

2

À√◊Õ (1sin2 )sin2 2 2 2 2 1sin sin cos 1cos ..................................................... = ..................................................... 2 2 12 sin 2 cos 1 ..................................................... = .....................................................

= cos (1cos ) = = 3)

tan 2 = tan (  )

tan  tan 1  tan tan 2 tan = ......................................................................................................... 2 1  tan =

161

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2.

3

1) sin 3 = 3 sin 4 sin

®ß· ¥ß«à“

3

2) cos 3 = 4 cos 3 cos 3

3) tan 3 =

«‘∏’∑”

1)

3 tan  tan 2

13 tan

sin 3 = sin (2  ) = sin 2 cos cos 2 sin 2

= (2 sin cos ) cos (12 sin ) sin 2

3

sin cos sin 2 sin = 2........................................................................................................ 2

3

sin (1sin )sin 2 sin = 2........................................................................................................ 3

3

sin 2 sin sin 2 sin = 2........................................................................................................ 3

sin 4 sin = 3........................................................................................................ 2)

cos 3 = cos (2  ) = cos 2 cos sin 2 sin 2

= (2 cos 1) cos (2 sin cos ) sin 3

2

2 cos cos 2 cos sin = ........................................................................................................ 2

2

2

3

2 cos cos 2 cos (1cos ) = ........................................................................................................ 2 cos cos 2 cos 2 cos = ........................................................................................................ 3

4 cos 3 cos = ........................................................................................................ 3)

tan 3 = tan (2  ) tan 2  tan = ........................................................................................................ 1  tan 2  tan 2 tan  tan 2 = ........................................................................................................ 1  tan 2 tan 1   tan 2 1  tan 3

2 tan  tan  tan = ........................................................................................................ 2 2 1  tan  2 tan 3

3 tan  tan = ........................................................................................................ 2 1  3 tan

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

162

3.

∂â“ sin x =  14 ·≈– p  x 

3p 2

®ßÀ“§à“¢Õß cos 2x ·≈– sin 2x

2

2

cos xsin x = 1

«‘∏’∑” À“ cos x ®“°

2

2

cos x = 1sin x

‡π◊ËÕß®“° p  x 

3p 2

®–‰¥â cos x =

2

 1  sin x ..................................................................... 2

·∑π§à“ ®–‰¥â

 1  Ê 1ˆ cos x = ..................................................................... Ë 4¯  15 = ..................................................................... 4

„™â µŸ √ sin 2 = 2sin cos 2

2

cos 2 = cos sin

®“°

cos 2x

sin 2x

2

2

= cos xsin x

= 2 sin x cos x

15 ˆ Ê Ê 1ˆ Á ˜  Ë ¯ = ............................................. Ë 4 4 ¯

Ê 1ˆ Ê 15 ˆ 2 Á ˜ Á = ............................................. Ë 4¯ Ë 4 ˜¯

15 1  = ............................................. 16 16

15 = ............................................. 8

2

2

14 = ............................................. 16 7 = ............................................. 8

4.

®ß· ¥ß«à“ 1) sin (90 A) = cos A

2) cos (90 A) = sin A

«‘∏’∑”

«‘∏’∑”

sin (90 A) = sin 90 cos Acos 90 sin A

cos (90 A)

1cos A0sin A = .....................................................

= cos 90 cos Asin 90 sin A 0cos A1sin A = .....................................................

cos A = .....................................................

sin A = .....................................................

3) tan (90 A) = cot A

4) cot (90 A) = tan A

«‘∏’∑”

«‘∏’∑”

tan (90 A)

o sin (90  A ) o cos (90  A ) cos A = ..................................................... sin A

cot (90 A)

o cos (90  A ) sin (90o  A ) sin A = ..................................................... cos A

=

=

cot A = .....................................................

tan A = .....................................................

163

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

5.

5) sec (90 A) = csc A

6) csc (90 A) = sec A

«‘∏’∑”

«‘∏’∑”

sec (90 A)

csc (90 A)

=

1 o cos (90  A ) 1 = ..................................................... sin A

=

1 o sin (90  A ) 1 = ..................................................... cos A

csc A = .....................................................

sec A = .....................................................

7) sin (270 A) = cos A

8) cos (270 A) = sin A

«‘∏’∑”

«‘∏’∑”

sin (270 A)

cos (270 A)

= sin 270 cos Acos 270 sin A

= cos 270 cos Asin 270 sin A

cos A0sin A = (1) .....................................................

0cos A(1)sin A = .....................................................

A = cos .....................................................

sin A = .....................................................

®ßÀ“§à“¢Õß 1) sin 10 cos 50 cos 10 sin 50 = sin (10 50 ) sin 60 = ..................................................... 3 = ..................................................... 2 3) cos 70 cos 50 sin 70 sin 50

2) sin 40 cos 10 cos 40 sin 10 sin (40 10 ) = ..................................................... sin 30 = ..................................................... 1 = ..................................................... 2 4) cos 75 cos 15 sin 75 sin 15

= cos (70 50 )

cos (75 15 ) = .....................................................

cos 120 = ..................................................... 1 = .....................................................  2

cos 60 = ..................................................... 1 = ..................................................... 2

5) sin

7p 5p 7p 5p cos cos sin 12 12 12 12

6) sin

7p 5p 7p 5p cos cos sin 12 12 12 12

Ê 7p 5pˆ sinÁ  ˜ = ..................................................... Ë 12 12 ¯

Ê 7p 5pˆ sin Á  ˜ = ..................................................... Ë 12 12 ¯

2p sin = ..................................................... 12

12 p sin = ..................................................... 12

p sin = ..................................................... 6 1 = ..................................................... 2

sin p = ..................................................... 0 = .....................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

164

7) cos

11p 7p 11p 7p cos sin sin 12 12 12 12

8) cos

11p 7p 11p 7p cos sin sin 12 12 12 12

Ê 11p 7 pˆ cos Á  ˜ = ..................................................... Ë 12 12 ¯

Ê 11p 7 pˆ cos Á  ˜ = ..................................................... Ë 12 12 ¯

18 p cos = ..................................................... 12 3p cos = ..................................................... 2

4p cos = ..................................................... 12 p cos = ..................................................... 3 1 = ..................................................... 2 5p p 5p p 10) cos cos sin sin 6 2 6 2

0 = ..................................................... 9) cos

2p p 2p p cos sin sin 3 6 3 6

Ê 2 p pˆ cos Á  ˜ = ..................................................... Ë 3 6¯

Ê 5p pˆ cos Á  ˜ = ..................................................... Ë 6 2¯

5p cos = ..................................................... 6

8p cos = ..................................................... 6

pˆ Ê cos Á p  ˜ = ..................................................... Ë 6¯

pˆ Ê cos Á p  ˜ = ..................................................... Ë 3¯

p cos = ..................................................... 6 3  = ..................................................... 2 p p Ê pˆ Ê pˆ 11) cos cos Á ˜ sin sin Á ˜ Ë 6¯ Ë 6¯ 3 3

p cos = ..................................................... 3 1  = ..................................................... 2 p p p p 12) cos cos sin sin 4 4 4 4

È p Ê pˆ ˘ cos Í  Á ˜ ˙ = ..................................................... Î 3 Ë 6¯ ˚

Ê p pˆ cos Á  ˜ = ..................................................... Ë 4 4¯

Ê p pˆ cos Á  ˜ = ..................................................... Ë 3 6¯

cos 0 = .....................................................

p = cos ..................................................... 2

1 = .....................................................

= 0..................................................... 13) sin

p p p p cos cos sin 12 12 3 3

Êp p ˆ sinÁ  ˜ = ..................................................... Ë 3 12¯

3p sin = ..................................................... 12 p sin = ..................................................... 4 2 = ..................................................... 2

14) sin 132 cos 12 cos 132 sin 12 sin (132 12 ) = ..................................................... sin 120 = ..................................................... sin 60 = ..................................................... 3 = ..................................................... 2

165

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

6.

7p 7p ®ßÀ“§à“¢Õß sin 12 ·≈– cos 12 7p Ê p pˆ = sin Á  ˜ Ë 3 4¯ 12 p p p p = sin cos cos sin .......................................................................... 3 4 3 4

7p Ê p pˆ = cos Á  ˜ Ë 3 4¯ 12 p p p p = cos cos sin sin ..................................................................... 3 4 3 4

3 2 1 2    = .......................................................................... 2 2 2 2

3 2 1 2 =    ..................................................................... 2 2 2 2

3 2 2 .......................................................................... = 4

2 3 2 ..................................................................... = 4

2 .......................................................................... = ( 3 1) 4

2 ..................................................................... = (1 3 ) 4

«‘∏’∑”

7.

sin

®ßÀ“§à“¢Õß 1) cos 165

2) sin 165

= cos(120 45 )

sin(120 45 ) = ........................................................

= cos 120 cos 45 sin 120 sin 45

sin 120 cos 45 cos 120 cos 45 = ........................................................

Ê 1 ˆ Ê 2ˆ Ê 3ˆ Ê 2ˆ = ........................................................ Á ˜ Á ˜  Á ˜ Á ˜ Ë 2¯ Ë 2 ¯ Ë 2 ¯ Ë 2 ¯

Ê 3ˆ Ê 2ˆ Ê 1 ˆ Ê 2ˆ = ........................................................ Á ˜ Á ˜  ÁË ˜¯ Á ˜ 2 Ë 2¯ Ë 2 ¯Ë 2 ¯

3 2  2  = ........................................................ 4 4

3 2 2  = ........................................................ 4 4

2 (1 3 ) = ........................................................ 4 3) cos 22.5

2 ( 3 1) = ........................................................ 4 4) sin 22.5

=

8.

cos

o 1  cos 45 2

=

o 1 cos 45 2

2 1 2 = ........................................................ 2

2 1 2 = ........................................................ 2

2 2 = ........................................................ 4

2 2 = ........................................................ 4

1 2 2 = ........................................................ 2

1 2 2 = ........................................................ 2

°”Àπ¥ tan 36 = «‘∏’∑”

10  2 5 5 1

2

tan 36 Ê 10  2 = Á 5 1 Ë

®ßÀ“ cos 72 cos 72

5ˆ ˜ ¯

2

=

2

o

2

o

1  tan 36 1  tan 36

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

166

9.

=

10  2 5 5  2 5 1

=

1  (5  2 5 ) 1  (5  2 5 )

=

10  2 5 6  2 5  62 5 62 5

=

4  2 5 6  2 5  6  2 5 6  2 5

=

60  20 5  12 5  45 36  20

=

24  8 5  12 5  20 36  20

=

80  32 5 = 5 2 5 16

=

4 5  4 16

=

5 ............................................................ 4

............................................................ ............................................................ ............................................................  1

®ßÀ“§à“¢Õß 1) sin 105

2) sin 135

= sin (60 45 ) = sin 60 cos 45 cos 60 sin 45

= sin (90 45 ) sin 90 cos 45 cos 90 sin 45 = ........................................................

3 2 1 2    = ........................................................ 2 2 2 2

2 2 1 0 = ........................................................ 2 2

2 ( 3  1) = ........................................................ 4

2 = ........................................................ 2

3) sec 225 =

4) cosec 315

1

=

o cos 225

1

o sin 315

= cos 225

= sin 315

= cos (180 45 )

= sin (360 45 ) sin 360 cos 45 cos 360 sin 45 = ........................................................

= cos 180 cos 45 sin 180 sin 45 Ê 2ˆ 2 (1)Á ˜ 0 = ........................................................ 2 Ë 2¯

2 2 1 0 = ........................................................ 2 2 2  = ........................................................ 2 2   2 cos 315 = ............... = ............... 2

2 =  ........................................................ 2 2   2 sec 225 = ............... = ............... 2 5) tan 75

6)

Ê 5p ˆ cot Á ˜ Ë 12 ¯

5p 12

= tan (45 30 ) o o tan 45  tan 30 = ........................................................ o o 1  tan 45  tan 30

= cot

1 1 3 = ........................................................ 1 1 3

p p cot cot  1 4 6 = p p cot  cot 4 6

Ê p pˆ = cot Á  ˜ Ë 4 6¯

167

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 31 31 = ........................................................  31 31

(1)( 3)  1 = ........................................................ 31

3 2 31 = ........................................................ 31

31 31 = ........................................................   1 3 31

42 3 = ........................................................ 2

3 2 31 = ........................................................ 31

3 = 2 ........................................................

42 3 = ........................................................ 2 2 3 = ........................................................

7)

5p p  tan 3 3 8) p 5p 1  tan tan 3 3 Ê 5p pˆ tanÁ  ˜ = ........................................................ Ë 3 3¯

o o tan 10  tan 20 o o 1  tan 10 tan 20

tan

= tan (10 20 ) tan 30 = ........................................................ 3 = ........................................................ 3

4p tan = ........................................................ 3 p tan = ........................................................ 3

3 = ........................................................ 10.

®ßÀ“§à“¢Õß sin «‘∏’∑” ∂â“

®–‰¥â

5p 8

·≈– cos

5p x = 4 5p x = 4

cos

5p 4

5p 8

=

x 5p = 2 8 p p 4

=

3 p p cos(p ) = cos =  4 4 2

·≈â«

2 Ê 5p ˆ sin Á ˜ Ë 8¯

=

„™â Ÿµ√ 2

x 1 = (1cos x) 2 2

2

x 1 = (1cos x) 2 2

cos

sin

1Ê 5p ˆ Á1  cos ˜ 2Ë 4¯

Ê 2ˆ ˘ 1È Í1  Á ˜ ˙ = .......................................................................................... 2 ÍÎ Ë 2 ¯ ˙˚ 1Ê 2ˆ Á1  ˜ = .......................................................................................... 2¯ 2Ë 5p 8

1Ê 2ˆ = 1 2  2 Á1  ˜ = .......................................................................................... 2 2Ë 2¯

2 Ê 5p ˆ cos Á ˜ Ë 8¯

1Ê 5pˆ Á 1  cos ˜ = .......................................................................................... 2Ë 4¯

sin

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

168

Ê 2ˆ ˘ 1È = .......................................................................................... Í1  Á ˜ ˙ 2 ÍÎ Ë 2 ¯ ˙˚

1Ê 2ˆ = .......................................................................................... Á 1 ˜ 2Ë 2¯ cos

11.

°”Àπ¥ sin x =

4 5

5p 8

1 ˆ Ê  1 Á1  2˜ =  2  2 = .......................................................................................... 2 2Ë 2¯

·≈– 0  x 

p 2

®ßÀ“

1) sin 2x = 2 sin x cos x

®“° sin2 xcos2 x

2

cos x = 1sin x

Ê 4 ˆ Ê 3ˆ 2Á ˜ Á ˜ = ........................................................ Ë 5¯ Ë 5¯ 24 = ........................................................ 25

= 1

2

cos x =

‡¡◊ËÕ 0  x  2, cos x

2) cos 2x

2

 1  sin x

=

1  sin x

=

Ê 4ˆ 1 Á ˜ Ë 5¯

2

2

2 cos x1 = ........................................................

=

2

Ê 3ˆ = ........................................................ 2Á ˜  1 Ë 5¯

·≈– tan x

18 = ........................................................ 1 25 7 = ........................................................  25

3) tan 2x =

=

2

3 5 4 3

4) sin 4x

2 tan x 2

1  tan x Ê 4ˆ 2Á ˜ Ë 3¯ = ........................................................ 2 Ê 4ˆ 1 Á ˜ Ë 3¯

8 9  = ........................................................ 3 (7) 24  = ........................................................ 7

= 2 sin 2x cos 2x Ê 24ˆ Ê 7 ˆ 2 Á ˜ Á ˜ = ........................................................ Ë 25¯ Ë 25¯ 336  = ........................................................ 625

169

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

5) cos 4x

6) tan 4x 2

= 2 cos 2x1

=

7 2 2 Ê ˆ  1 Ë 25¯ = ........................................................

98  625 = ........................................................ 625 527  = ........................................................ 625

o 1  cos 180 2 o 180 sin = ........................................................ 2

2

1  tan 2 x

Ê 24ˆ 2Á ˜ Ë 7¯ = ........................................................ 2 Ê 24ˆ 1  Á ˜ Ë 7¯

49 ˆ 2Ê 1 = ........................................................ Ë 625¯

7)

2 tan 2 x

48 49   = ........................................................ 7 (527)

336 = ........................................................ 527 8)

o 1  cos 300 2 o 300 cos = ........................................................ 2

sin 90 = ........................................................

cos 150 = ........................................................

1 = ........................................................

3 = ........................................................  2 o sin 450 10) o 1  cos 450 o 450 tan = ........................................................ 2 225 = tan ........................................................

o 9)  1  cos 300o 1  cos 300 o 300 = tan 2 150 = tan ........................................................ (180 30 ) = tan ........................................................

(180 45 ) = tan ........................................................

30 ) = (tan ........................................................ 1 = ........................................................ 3 o 1 2 tan 22 2 11) o 2 1 1  tan 22 2

45 = tan ........................................................ = 1........................................................

12)

sin 420

o

1  cos 420

o

o 1 = tan 2 (22 ) 2 tan 45 = ........................................................

o 420 tan = ........................................................ 2

1 = ........................................................

tan (180 30 ) = ........................................................

tan 210 = ........................................................ tan 30 = ........................................................ 1 = ........................................................ 3

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

170

12.

4 5

∂â“ 90  x  180 ·≈– sin x =

®ßÀ“

1) cos x

2) tan x cos x =

«‘∏’∑”

2

 1  sin x

tan x =

«‘∏’∑”

4 5 = ............................... 3  5

2

 1  ÊÁ 4ˆ˜ = ............................... Ë 5¯

3 = ...............................  5 3) cos

x 2

4) sin

3 5 3 1 5



x 2 x cos 2 2

cos

5) tan

«‘∏’∑”

x 1 2 2 x = 2 cos 1 2 2 x = 2 cos 2

cos x = 2 cos

«‘∏’∑”

2

x 2

x x cos 2 2 x 1 2 sin  = ............................... 2 5

sin x = 2 sin

«‘∏’∑”

4 5 x 4 5 sin .................. = ...............................  2 5 2

1 5 1 = ............................... 5

2 5 = ............................... 5

6) cos

x tan 4

4 = ...............................  3

=

x 4 =

1  cos

x 2

x sin 2

1 1 5 = ............................... 2 5 5 51 5 = ...............................  5 2 5

51 = ............................... 2

sin x cos x

«‘∏’∑”

x 4

cos

2 cos

2

x 2

= 2 cos

x 4

= cos

2

x 1 4

x 1 2

1 1 = ............................... 5 51 = ............................... 5 2 x 51 5 cos .................. = ...............................  4 2 5 5 2 x 5 5 cos .................. = ............................... 4 10

x 5 5 cos .................. = ............................... 4 10 1 = ............................... 50  10 5 10

171

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 13.

®ßÀ“§à“¢Õß p p cos 8 8

1) 2 sin

2) cos

Ê pˆ = 2 sin 2 Á ˜ Ë 8¯ = sin

2

2 p p sin 12 12

Ê pˆ = cos 2 Á ˜ Ë 12¯

p 4

= cos

2 = ........................................................ 2

p 6

3 = ........................................................ 2

2

2

2 cos 15 1

12 sin 75

cos 2(15 ) = ........................................................

cos 2 (75 ) = ........................................................

cos 30 = ........................................................

cos 150 = cos 30 = ........................................................

3 = ........................................................ 2 o 1 2 tan 22 2 3) o 2 1 1  tan 22 2

3 = ........................................................  2

o Ê 22 1 ˆ tan 2 = ........................................................ Ë 2¯ tan 45 = ........................................................ 1 = ........................................................

4)

o tan 75 o 2 1 1  tan 75 2 2 =

o tan 75

o 2 1 (1  tan 75 ) 2 o 2 tan 75 = 2 o 1  tan 75

tan 2 (75 ) = ........................................................ tan 150 = tan (180 30) = ........................................................

5) sin 75 sin 15

3 = ........................................................  3 6) sin 75 sin 15

Ê 75o  15o ˆ Ê 75o  15o ˆ = 2 sin Á ˜ cos Á ˜ 2 2 Ë ¯ Ë ¯

Ê 75o  15o ˆ Ê 75o  15o ˆ = 2 cos Á ˜ sin Á ˜ 2 2 Ë ¯ Ë ¯

= 2 sin 45 cos 30

2 cos 45 sin 30 = ........................................................

2 3 2  = ........................................................ 2 2

2 1 2  = ........................................................ 2 2

6 = ........................................................ 2 sin 45 sin 15 Ê 45o  15o ˆ Ê 45o  15o ˆ 2 sin cos = ........................................................ Á ˜ Á ˜ 2 2 Ë ¯ Ë ¯

2 = ........................................................ 2 sin 45 sin 15 Ê 45o  15o ˆ Ê 45o  15o ˆ 2 cos sin = ........................................................ Á ˜ Á ˜ 2 2 Ë ¯ Ë ¯

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

172 2 sin 30 cos 15 = ........................................................

2 cos 30 sin 15 = ........................................................

1 31 2  = ........................................................ 2 2 2

3 31 2  = ........................................................ 2 2 2

2 ( 3  1) = ........................................................ 4

6 ( 3  1) = ........................................................ 4 8) cos 75 cos 15

7) cos 75 cos 15

Ê 75o  15o ˆ Ê 75o  15o ˆ = 2 cos Á ˜ cos Á ˜ 2 2 Ë ¯ Ë ¯

Ê 75o  15o ˆ Ê 75o  15o ˆ = 2 sin Á ˜ sin Á ˜ 2 2 Ë ¯ Ë ¯

2 cos 45 cos 30 = ........................................................

2 sin 45 sin 30 = ........................................................

2 1 2  = ........................................................ 2 2

2 1 2  = ........................................................ 2 2

2 = ........................................................ 2

2 =  ........................................................ 2

9) cos 45 cos 15

14.

10) cos 45 cos 15

Ê 45o  15o ˆ Ê 45o  15o ˆ 2 cos Á ˜ cos Á ˜ = ........................................................ 2 2 Ë ¯ Ë ¯

Ê 45o  15o ˆ Ê 45o  15o ˆ 2 sin Á s in = ........................................................ ˜ Á ˜ 2 2 Ë ¯ Ë ¯

cos 30 cos 15 = 2........................................................

2 sin 30 sin 15 = ........................................................

1 31 2  = ........................................................ 2 2 2

1 31 2  = ........................................................ 2 2 2

31 = ........................................................ 2 2

2 ( 3  1) =  ........................................................ 4

®ßÀ“§à“¢Õß 1) sin 45 cos 15

2) cos 45 sin 15

=

1 [sin (45 15 )sin (45 15 )] 2 1 = (sin 60 sin 30 ) 2

=

1 Ê 3 1ˆ  ˜ = ....................................................... Á 2Ë 2 2¯

1 Ê 3 1ˆ  ˜ = ........................................................ Á 2Ë 2 2¯

3  1 = ....................................................... 4

31 = ........................................................ 4

3) sin 75 cos 15

4) cos 75 sin 15

1 sin (75 15 )sin (75 15 ) = ........................................................ 2 1 (sin 90 sin 60 ) = ........................................................ 2

[

1 [sin (45 15 )sin (45 15 )] 2 1 = ........................................................ (sin 60 sin 30 ) 2

]

1 sin (75 15 )sin (75 15 ) = ........................................................ 2 1 (sin 90 sin 60 ) = ........................................................ 2

[

]

173

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 3ˆ 1Ê = ........................................................ Á1  ˜ 2Ë 2¯

3ˆ 1Ê = ........................................................ Á1  ˜ 2Ë 2¯

2 3 = ........................................................ 4

2  3 = ........................................................ 4

5) cos 45 cos 15

6) sin 45 sin 15

=

1 [cos (45 15 )cos (45 15 )] 2 1 (cos 60 cos 30 ) = ..................................................... 2

1 [cos (45 15 )cos (45 15 )] 2 1 (cos 30 cos 60 ) = ........................................................ 2

1Ê1 3ˆ = .....................................................  2Ë2 2 ¯

1 Ê 3 1ˆ = ........................................................  ˜ Á 2Ë 2 2¯

1 3 = ..................................................... 4

31 = ........................................................ 4

7) cos 75 cos 15 1 cos (75 15 )cos (75 15 ) = ........................................................ 2 1 (cos 90 cos 60 ) 2 = ........................................................

[

15.

=

8) sin 75 sin 15

]

=

1 [cos (75 15 )cos (75 15 )] 2

1 (cos 60 cos 90 ) = ........................................................ 2

1Ê 1ˆ Á0  ˜ 2Ë 2¯ = ........................................................

1Ê 1 ˆ Á  0˜ = ........................................................ ¯ 2Ë 2

1 4 = ........................................................

1 = ........................................................ 4

°”Àπ¥

4 p 0   5 2 5 p cos = 0   13 2

sin =

,

,

Y B(5, 12)

12

Y A(3, 4)

4

O

3

X

O

5

X

®ßÀ“ 1) sin (  )

2) sin (  )

= sin cos cos sin

sin cos cos sin = ........................................................

Ê 4ˆ Ê 5 ˆ Ê 3ˆ Ê 12ˆ = Á ˜Á ˜  Á ˜Á ˜ Ë 5¯ Ë 13¯ Ë 5¯ Ë 13¯

Ê 4ˆ Ê 5 ˆ Ê 3ˆ Ê 12ˆ Á ˜Á ˜  Á ˜Á ˜ = ........................................................ Ë 5¯ Ë 13¯ Ë 5¯ Ë 13¯

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

174

=

20 36  65 65

56 = ........................................................ 65

3) cos (  )

16.

20 36  = ........................................................ 65 65 16 =  ........................................................ 65 4) cos (  )

= cos cos sin sin

cos cos sin sin = ........................................................

Ê 3ˆ Ê 5 ˆ Ê 4ˆ Ê 12ˆ = Á ˜Á ˜  Á ˜Á ˜ Ë 5¯ Ë 13¯ Ë 5¯ Ë 13¯ 15 48 = ........................................................  65 65 33 =  ........................................................ 65

Ê 3ˆ Ê 5 ˆ  Ê 4ˆ Ê 12ˆ = ........................................................ Ë 5¯ Ë 13¯ ÁË 5˜¯ ÁË 13˜¯

°”Àπ¥

p   p 2

cos = 

5 3

sin = 

7 3p , 2   2p 4

,

15 48 = ........................................................  65 65 63 = ........................................................ 65

Y

Y

( 5 , 2) 3 2  5

3

O

X

O

X

4 (3,  7 )

®ßÀ“ 1) sin (  )

2) sin (  )

sin cos cos sin = ........................................................

= sin cos cos sin

Ê 2ˆ Ê 3ˆ  Ê 5 ˆ Ê 7ˆ = ........................................................ Ë 3¯ Ë 4¯ ÁË 3 ˜¯ ÁË 4 ˜¯

Ê 2ˆ Ê 3ˆ Ê 5 ˆ Ê 7ˆ = Á ˜ Á ˜  Á ˜ Á ˜ Ë 3¯ Ë 4 ¯ Ë 3 ¯ Ë 4 ¯

35 6  = ........................................................ 12 12

35 6  = ........................................................ 12 12

6  35 = ........................................................ 12 3) cos (  )

6  35 = ........................................................ 12 4) cos (  )

cos cos sin sin = ........................................................

= cos cos sin sin

Ê 5 ˆ Ê 3ˆ Ê 2 ˆ Ê 7ˆ Á ˜ ÁË ˜¯  ÁË ˜¯ Á ˜ = ........................................................ 3 Ë 4¯ Ë 3¯ 4

Ê 5 ˆ Ê 3ˆ Ê 2 ˆ Ê 7ˆ = ........................................................ Á ˜ ÁË ˜¯  ÁË ˜¯ Á ˜ 3 Ë 4¯ Ë 3¯ 4

3 5 2 7 = ........................................................  12 12

3 5 2 7 = ........................................................  12 12

3 5  2 7 = ........................................................ 12

3 5  2 7 = ........................................................ 12

175

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

17.

∂â“ sin x = 35 , sin (xy) =  135 ‚¥¬∑’Ë 0  x  ®ßÀ“ 1) sin y «‘∏’∑” ‡π◊ËÕß®“° sin x =

®“°

·≈– p  xy 

3p 2

2) tan (xy) 3 5

·≈– 0  x  cos x =

¥—ßπ—Èπ

p 2

p 2

Ê 3ˆ 1 Á ˜ Ë 5¯

2

4 = ................. 5

5 13 5 sin x cos ycos x sin y =  13 3 4 5 cos y sin y =  5 5 13 3p p  xy  2

sin (xy) = 

.....(1)

‡π◊ËÕß®“° ¥—ßπ—Èπ

cos (xy) =  1  sin ( x  y) 2

2

 1  ÊÁ 5 ˆ˜ = ........................................................................... Ë 13¯ 12 = ...........................................................................  13 12 cos (xy) =  13 12 cos x cos ysin x sin y =  13 4 3 12 cos y sin y =  ......................................................................................................................... .....(2) 5 5 13 12 16 20 cos y sin y = (1)4; ......................................................................................................................... .....(3) 5 5 13 12 9 36 cos x sin y = (2)3; ......................................................................................................................... .....(4) 5 5 13 16 5 sin y = (3)(4) ......................................................................................................................... 13 16 sin y = ......................................................................................................................... 65 sin (x  y) tan (x+y) = cos ( x  y)

®“°

5  13 = ........................................................................... 12  13

5 = ........................................................................... 12

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

176

18.

∂â“

p 3p  x  p p  y  2 2

,

·≈– cos x =  35 , tan y =

5 12

®ßÀ“ cos (xy) «‘∏’∑” ®“° p2  x  p ·≈– cos x =  35 sin x =

¥—ßπ—Èπ

2

1  cos x 2

Ê 3ˆ 1  Á ˜ = ........................................................................... Ë 5¯

·≈– p  y 

4 = ........................................................................... 5

3p 2

¥—ßπ—Èπ sin y  0 ·≈– cos y  0 ®“° tan y = sin y cos y

®–‰¥â

=

5 12 5  13 12  13

cos x cos ysin x sin y cos (xy) = ........................................................................... Ê 3ˆ Ê 12ˆ Ê 4ˆ Ê 5 ˆ = ........................................................................... Á ˜ Á ˜  Á ˜ Á ˜ Ë 5¯ Ë 13¯ Ë 5¯ Ë 13¯ 36 20 = ...........................................................................  65 65 56 = ........................................................................... 65

19.

®ßÀ“§à“¢Õß 2

1) (sin xcos x) sin 2x 2

2

= sin x2 sin x cos xcos x2 sin x cos x 2

2

= (sin xcos x)(2 sin x cos x2 sin x cos x) = 10 = 2)

............................................................ 1 ............................................................

2 sin 2 x sin x cos x 2 cos x

4

4

2

3) sec xtan x2 tan x

2

2 2 sin x cos x cos x 2 cos x

= (sec xtan x)(sec xtan x)2 tan x

= sin xcos x

= 1(sec xtan x)2 tan x

=

2 2 ............................................................ 1 ............................................................

=

=

2

2

2

=

2

2

2

2

............................................................ 2 2 sec xtan x ............................................................ 1 ............................................................

2

177

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

4)

Èsin 2 x  cos 2 x ˘ sec x tan2 x cos x ˚˙ ÎÍ sin x

5) cos 2xsin 2x tan x

2 sin 2 x cos x cos 2 x sin x ˘ sin x = È sec x tan x = cos 2xsin 2x ÍÎ ˙ cos x sin x cos x ˚

È sin (2x  x )˘ sec x 2 = ............................................................ tan x ÍÎ sin x cos x ˙˚

cos 2 x cos x  sin 2 x sin x = ............................................................ cos x cos (2x  x ) = ............................................................ cos x cos x = ............................................................ cos x = ............................................................ 1

È sin x ˘ sec x 2 = ............................................................ tan x ÍÎ sin x cos x ˙˚ 2

= ............................................................ sec xsec xtan x 2

2

= ............................................................ sec xtan x = ............................................................ 1

2.8 µ—«º°º—π¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘ øíß°å™—π∑’Ë¡’µ—«º°º—π‡ªìπøíß°å™—π øíß°å™—ππ—ÈπµâÕ߇ªìπøíß°å™—π 1-1 ‡∑à“π—Èπ ‡π◊ËÕß®“° øíß°å™—πµ√’ ‚°≥¡‘µ‘‰¡à‡ªìπøíß°å™—π 1-1 ¥—ßπ—Èπµ—«º°º—π¢Õßøíß°å™—πµ√’ ‚°≥¡‘µ‘®÷߉¡à‡ªìπøíß°å™—π ·µà ∂â“°”À𥂥‡¡π¢Õßøíß°å™π— µ√’ ‚°≥¡‘µ„‘ Àâ‡À¡“– ¡ µ—«º°º—π¢Õßøíß°å™π— µ√’ ‚°≥¡‘µ®‘ –‡ªìπøíß°å™π—

2.8.1 µ—«º°º—π¢Õßøíß°å™—π‰´πå øíß°å™—π {(x, y)|y = sin x },   x  , 1  y  1 ‰¡à‡ªìπøíß°å™—π 1-1 ¥—ßπ—Èπ µ—«º°º—π¢Õßøíß°å™—π‰´πå§◊Õ {(x, y)|x = sin y} ®÷߉¡à‡ªìπøíß°å™—π ·µà∂â“°”À𥂥‡¡π¢Õßøíß°å™—π‰´π凪ìπ x| p2  x  p2 øíß°å™—π (x, y)|y = sin x,

{



p p  x  2 2

‡√’¬°«à“

}

} ‡ªìπøíß°å™—π - ®–¡’øíß°å™—πº°º—π§◊Õ { , 1 1

{

(x y) x = sin y 

|

,

p p  y  2 2

} ´÷Ëß

arcsine

∫∑𑬓¡ øíß°å™—π arcsine §◊Õ‡´µ¢ÕߧŸàÕ—π¥—∫ (x, y) ‚¥¬∑’Ë x = sin y ·≈–  p2

 y 

p 2

‡¡◊ËÕ (x, y)  arcsine ®–‰¥â y = arcsine x À√◊Õ y = arcsin x ¡’§«“¡À¡“¬‡™àπ‡¥’¬«°—∫ p p x = sin y ‡¡◊ËÕ   y  2 2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

178

y = arcsin x 1  x  1

,

·≈–  p2

p 2

 y 

‚¥‡¡π¢Õßøíß°å™—π arcsine §◊Õ [1, 1] ·≈–‡√π®å¢Õßøíß°å™—π arcsine §◊Õ Y

Y

π  2

Ê1, p ˆ Ë 2¯y = x Ê p , 1ˆ Ë2 ¯

π  2

Ê p , 1ˆ Ë2 ¯

1

1 y = sin x

π  1 2

Ê p , 1ˆ Ë 2 ¯

È p , p ˘ ÎÍ 2 2 ˙˚

O

1

y = sin x

X

π  2

1 π  2

π  1 2 Ê p , 1ˆ Ë 2 ¯

1 π  Ê1,  p ˆ 2 Ë 2¯

π  2 y = arcsin x

O

1

X

µ—«Õ¬à“ß∑’Ë 1 ®ßÀ“§à“¢Õß

«‘∏’∑”

1 2

1)

arcsin

1)

„Àâ arcsin ‡π◊ËÕß®“°

2)

2) arcsin (1)

1 =  2 p p     2 2

„Àâ arcsin (1) =  ‡π◊ËÕß®“°  p2   

p 2

1 2

®–‰¥â

sin  =

®–‰¥â

sin  = sin

¥—ßπ—Èπ

 =

π—Ëπ§◊Õ arcsin 12 ®–‰¥â sin  ®–‰¥â sin 

=

p 6 p 6

π—Ëπ§◊Õ

µÕ∫

= 1 = 1

sin  = sin

¥—ßπ—Èπ

p (¡’‡æ’¬ß§à“‡¥’¬«) 6

3p 2 3p arcsin (1) = 2

3p (¡’‡æ’¬ß§à“‡¥’¬«) 2

 =

µÕ∫

179

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

2.8.2 µ—«º°º—π¢Õßøíß°å™—π‚§‰´πå øíß°å™—π {(x, y)|y = cos x},   x  , 1  y  1 ‰¡à‡ªìπøíß°å™—π 1-1 ¥—ßπ—Èπ µ—«º°º—π¢Õßøíß°å™—π‚§‰´πå§◊Õ {(x, y)|x = cos y} ®÷߉¡à‡ªìπøíß°å™—π ‡¡◊ËÕ°”À𥂥‡¡π¢Õß y = cos x ‚¥¬„Àâ 0  x  p ®–‰¥âøíß°å™—π {(x, y)|y = cos, 0  x  p} ‡ªìπøíß°å™—π 1-1 ´÷Ëß¡’øíß°å™—πº°º—π {(x, y)|x = cos y, 1  x  1, 0  y  p} ‡√’¬° øíß°å™—πº°º—ππ’È«à“ arccosine ∫∑𑬓¡ øíß°å™—π arccosine §◊Õ‡´µ¢ÕߧŸàÕ—π¥—∫ (x, y) ‚¥¬∑’Ë x = cos y ·≈– 0  y  p ‡¡◊ËÕ (x, y)  arccosine ®–‰¥â y = arccosine x À√◊Õ y = arccos x ¡’§«“¡À¡“¬‡™àπ‡¥’¬«°—∫ x = cos y ‡¡◊ËÕ 0  y  p y = arccos x, 1  x  1 ·≈– 0  y  p ‚¥‡¡π¢Õßøíß°å™—π arccos §◊Õ [1, 1] ·≈–‡√π®å¢Õßøíß°å™—π arccos §◊Õ [0, p] (1, π)

Y (0, 1)

y  arccos x

y = cos x

O

π

yx

π  2 (0, 1)

π  2

1

Y

X

π

(π, 1)

O

1

π (1, 0)  2

1

y  cos x

π

X (π, 1)

µ—«Õ¬à“ß∑’Ë 2 ®ßÀ“§à“¢Õß «‘∏’∑”

1)

arccos 1

1)

„Àâ arccos 1 =  ‡π◊ËÕß®“° 0    p

1 2) arccos Ê ˆ Ë 2¯

®–‰¥â cos  = 1 ®–‰¥â cos  = cos 0 ¥—ßπ—Èπ  = 0 π—Ëπ§◊Õ arccos 1 = 0

µÕ∫

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

180

2)

Ê 1 ˆ =  Ë 2¯

®–‰¥â

cos  = 

‡π◊ËÕß®“° 0    p

®–‰¥â

cos  = cos

„Àâ arccos

π—Ëπ§◊Õ arccos

 = Ê 1 ˆ Ë 2¯

2p 3

3p ( 2 2p 3

sin  =

¥—ßπ—Èπ

1 2

¡’æ’¬ß§à“‡¥’¬«)

2p 3

=

µÕ∫

2.8.3 µ—«º°º—π¢Õßøíß°å™—π·∑π‡®πµå ∫∑𑬓¡ øíß°å™—π arctangent §◊Õ‡´µ¢ÕߧŸàÕ—π¥—∫ (x, y) ‚¥¬∑’Ë x = tan y ·≈–  p2 ‡¡◊ËÕ (x,

y)  arctangent

‡¥’¬«°—∫ x = tan y ·≈–  p2

®–‰¥â

 y 

y = arctangent x

À√◊Õ

y = arctan x

Y π  2

1 O

X

π  2

1

O

1

X

1

π y  arctan x  2

y  tan x y  tan x



p p x 2 2

·≈–   y  

  x   ·≈– 

p p y 2 2

‚¥‡¡π¢Õßøíß°å™—π arctan §◊Õ R ·≈–‡√π®å¢Õßøíß°å™—π arctan §◊Õ µ—«Õ¬à“ß∑’Ë 3 ®ßÀ“§à“¢Õß «‘∏’∑”

1)

arctan

1)

„Àâ arctan 3 =  ‡π◊ËÕß®“°  p2   

2) arctan (1)

3

p 2

®–‰¥â ®–‰¥â

tan  =

3

tan  = tan

p 3

p 2

¡’§«“¡À¡“¬‡™àπ

p 2

Y

π  2

y

Ê p , p ˆ Ë 2 2¯

181

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

π—Ëπ§◊Õ arctan 2)

„Àâ arctan (1) =  ‡π◊ËÕß®“°  p2

p 2

  

p 3 p 3 = 3

 =

¥—ßπ—Èπ

µÕ∫

®–‰¥â

tan  = 1

®–‰¥â

Ê pˆ tan  = tan Á ˜ Ë 4¯

¥—ßπ—Èπ

p  =  4

π—Ëπ§◊Õ arctan (1) =

p  4

µÕ∫

°‘®°√√¡∑’Ë 2.8 1.

®ßÀ“§à“¢Õß 1) arcsin

3 2 p p 3 = ,     2 2 2

„Àâ arcsin ®–‰¥â

2) arcsin 0

3 2

sin  =

sin  = sin

3) arccos

............................

3 2

„Àâ arccos ®–‰¥â

p 6

p 3 = 4 2

,

cos  =

3 2 p cos 6 p 6

cos  =

............................

 =

............................

¥—ßπ—Èπ arccos

p 3 = 6 2

..........................

p 2

sin  =

sin 0 ............................

 =

0 ............................

0 ¥—ßπ—Èπ arcsin 0 = ............................ 4) arccos

3 =  0    p 2

  

sin  = 0

®–‰¥â

p ............................ 4

 =

¥—ßπ—Èπ arcsin

„Àâ arcsin 0 = ,  p2

1 2

„Àâ arccos ®–‰¥â

1 = , 0    p 2 1 2 p cos cos  = ............................ 3 p  = ............................ 3 cos  =

¥—ßπ—Èπ arccos

p 1 = 3 2

............................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

182

Ê 2ˆ 6) arcsin Á ˜ Ë 2¯

5) arccos (1)

„Àâ arccos (1) = , 0    p ®–‰¥â

cos  =

1 ............................

cos  =

cos p ............................

 =

p ............................

„Àâ arcsin ®–‰¥â

Ê 2ˆ p p Á ˜ =      2 2 Ë 2¯ 2 sin  =  2

,

............................

sin  =

p p p    ............................ 4 2 2

p ¥—ßπ—Èπ arccos (1) = ........................

 =

¥—ßπ—Èπ arcsin 7) arctan

3 3

„Àâ arctan ®–‰¥â

p p 3 = ,     3 2 2

3 3

tan  =

p 2ˆ Ê =   Ë 2¯ 4

..........................

( 3) = , 

3 = 3

p p    2 2

p tan  =  3     0 2 Ê pˆ tan  = tan Ë 3 ¯ ,

......,

...................................

p p p    ................................... 3 2 2

p ........................ 6

 =

¥—ßπ—Èπ arctan

„Àâ arctan ®–‰¥â

....................

p ........................ 6

 =

¥—ßπ—Èπ arctan

p  ................................... 3

p  ( 3) = ............................... 3

1 10) arcsin ( ) 2

3 2

„Àâ arccos

p  ............................ 4

8) arctan ( 3)

p tan  = tan 6

9) arccos

Ê pˆ

sin Á ˜ , ............................ Ë 4¯

3 =  0    p 2 3 cos  = 2 p cos  = cos 6 p  = 6

,

®–‰¥â ....................................................

„Àâ arcsin ( 12 ) = ,  p2    p2 1 p sin  =  ,     0 ®–‰¥â ........................................................... 2 2

.................................................................

Ê pˆ sin  = sin Á ˜ , ......................................................................... Ë 6¯

.................................................................

p p .........................................................................   0

¥—ßπ—Èπ arccos 23 = p6 .................................................................

.........................................................................

2 6 p  =  6 1 p arcsin (  ) =  2 6

¥—ßπ—Èπ .........................................................................

183

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 Ê 2ˆ 12) arccos Á ˜ Ë 2¯

11) arctan 1

„Àâ arctan 1 = ,  p2

  

p 2

tan  = 1 ®–‰¥â ....................................................

p

tan  = tan ................................................................. 4

p

2.

„Àâ arccos

Ê 2ˆ Á ˜ =  0    p Ë 2¯ 2 cos  =  2 3p 3p cos  = cos ,0 p 4 4

,

®–‰¥â ...........................................................

......................................................................... 3p

 = ................................................................. 4

 = ......................................................................... 4

¥—................................................................. ßπ—Èπ arctan 1 = p4

¥—......................................................................... ßπ—Èπ arccos ÊÁË 22ˆ˜¯ = 34p

®ßÀ“§à“¢Õß 1) arcsin (cos

p ) 4

2) arccos (sin

Ê 2ˆ = arcsin Á ˜ Ë 2¯ = arcsin (sin =

p ................................................. 4

3) arctan (tan =

p ) 4

p ) 3

p ................................................. 3

p ) 2

= arccos (1) = arccos (cos 0) =

................................................. 0 .................................................

4) arccot (tan

p ) 6

Ê 1ˆ = arccot Á ˜ Ë 3¯ = arccot (cot

p

) ................................................. 3

= 5) arcsec (tan

p ) 4

p ................................................. 3

6) arccosec (cot

3p ) 4 p ) 4

= arcsec (1)

= arccosec (cot

= arcsec (sec 0)

= arccosec (1)

= 0

p = arccosec cosec (  2 )

................................................. .................................................

[ ] ................................................. p ................................................. 2

= 

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

184 3 7) tan Ê arcsin ˆ Ë 2¯

1 8) sec Ê arccos ˆ Ë 2¯

= tan arcsin (sin

[

p = tan 3

=

p ) 3

[

[

[

=

]

p = sin arctan (tan( ) 4 p sin (  ) = 4

p ................................................. 3 2.................................................

[

]

10) cos arccot ( 3 )

= cos arccot(cot

]

[

p = cos 6

.................................................

p )] 6

................................................. 3 .................................................

=  2 2

= 

.................................................

3.

]

= sec

................................................. 3 .................................................

9) sin arctan (1)

p ) 3

= sec arccos (cos

]

2

®ßÀ“§à“µàÕ‰ªπ’È ‚¥¬„™âµ“√“ß 1) arctan 6.4348

2) arctan 0.8391

„Àâ arctan 6.4348 = ,  p2 ®–‰¥â

  

p 2

tan  = tan 1.4166

 = 1.4166 .........................

¥—............................................................ ßπ—Èπ arctan 6.4348 = 1.4166 3) arcsin 0.6157

®–‰¥â

  

p 2

tan  = 0.8391 ®–‰¥â .......................................................... tan  = tan 0.6981 ......................................................................  = 0.6981 ...................................................................... ¥—............................................................... ßπ—Èπ arctan 0.8391 = 0.6981

tan  = 6.4348

„Àâ arcsin 0.6157 = ,  p2

„Àâ arctan 0.8391 = ,  p2

4) arcsin 0.8192   

0.6157 sin  = .........................

p 2

„Àâ arcsin 0.8192 = ,  p2 ®–‰¥â

  

p 2

0.8192 sin  = ...........................

sin  = sin 0.6632 ............................................................

sin  = sin 0.9599 ...............................................................

 = 0.6632 ............................................................

 = 0.9599 ...............................................................

arcsin 0.6157 = 0.6632 ............................................................

¥—............................................................... ßπ—Èπ arcsin 0.8192 = 0.9599

¥—ßπ—Èπ

5) arccos 0.9336

6) arccos 0.7071

„Àâ arccos 0.9336 = , 0    p 0.9336 ®–‰¥â cos  = .........................

„Àâ arccos 0.7071 = , 0    p 0.7071 ®–‰¥â cos  = ...........................

cos  = cos 0.3665 ............................................................

cos  = cos 0.7854 ...............................................................

 = 0.3665 ............................................................

 = 0.7854 ...............................................................

arccos 0.9336 = 0.3665 ............................................................

¥—............................................................... ßπ—Èπ arccos 0.7071 = 0.7854

¥—ßπ—Èπ

185

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 4.

®ßÀ“§à“¢Õß 2 1) sin [arccos ] 3

[

2) csc arccos

2 =  3 2 cos  = 0    p 3

«‘∏’∑” „Àâ arccos ®–‰¥â

,

2

3

 O

=

5

X

2

1 0    p 3 1 csc arccos 3

Y

[

,

]

2

3

............................... 5 ............................... 9

=

1 =  3

cos  =

®–‰¥â

2

Ê 2ˆ 1 Á ˜ Ë 3¯

]

«‘∏’∑” „Àâ arccos

sin  = 1cos 

Y

1 3

X

1

O

= csc 

8



·µà 0    p2 ¥—ßπ—Èπ sin  = 35 ............................................................................

=

3 .................... 8

=

3 2 .................... 4

π—Ëπ§◊Õ sin [arccos 23 ] = 35 ............................................................................ [

p ) 6 p arcsin (cos ) =  6 p sin  = cos 6

]

3) tan arcsin (cos

«‘∏’∑” „Àâ

sin  =

[

5) tan arcsin (cos

p ) 6 p arccos (sin ) =  6

«‘∏’∑” „Àâ

]

cos  = sin

3 2

cos  =

p .................... 3

cos  = cos

p .................... 3

 =

p )] 6

[

6) tan arccos (sin

= tan  p = tan 3

= tan  p = tan 3

=

=

.................... 3 ....................

p .................... 3

p )] 6

.................... 3 ....................

7) tan (arcsin 0.5592)

8) cos (arctan 1.8040)

«‘∏’∑” „Àâ arcsin 0.5592 = 

«‘∏’∑” „Àâ arctan 1.8040 = 

sin  = 0.5592 (

p 6

1 2

p 3

sin  = sin

 =

[

4) tan arccos (sin

®“°µ“√“ß)

tan  = 1.8040

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

186

5.

sin  = sin 34

tan  = tan 61

 = 34

 = 61

tan (arcsin 0.5592)

cos (arctan 1.8040)

= tan 

= cos 

= tan 34

= cos 61

=

=

.................... 0.6745 .................... (®“°µ“√“ß)

®ßÀ“§à“¢Õß 1 1) cos [arcsin ] 2

[

2) sin arccos

1 p p =      2 2 2 1 sin  = 2 p sin  = sin 6 p  = 6 1 cos arcsin ) = cos  2 p = cos 6 3 = 2

,

«‘∏’∑” „Àâ arcsin

.................... 0.4848 .................... 1 2

]

«‘∏’∑” „Àâ arccos

1 =  0    p 2 1 cos  = 2 p cos  = cos 3 p  = 3

,

.................... ....................

[

[

sin arccos

1 2

]

....................

[

3) cos arccos

1 2

]

[

4) sin arcsin

1 =  0    p 2 1 cos  = 2 p cos  = cos 3 p  = 3 1 cos arccos = cos  2 p = cos 3 = 1 2

«‘∏’∑” „Àâ arccos

, .........................

........................ ........................ ........................

[

]

........................ ........................ ........................

1 2

=

cos  ....................

=

cos .................... 3

=

1 .................... 2

p

]

p p 1 =      2 2 2 1 sin  = 2 p sin  = sin 6 p  = 6 1 sin arcsin = sin  2 p = sin 6 = 1 2

«‘∏’∑” „Àâ arcsin

, .............................. ........................ ........................ ........................

[

]

........................ ........................ ........................

187

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

5) cos arcsin ( 

[

3 )] 2

6) sin arccos ( 

[

«‘∏’∑” „Àâ arcsin (  23 ) =  

«‘∏’∑” „Àâ arccos (  23 ) = 

p p    2 2

®–‰¥â

[

0    p

sin  =

3 .....................  2

sin  =

sin(  ) ..................... 3

 =

 ..................... 3

cos arcsin ( 

3 )] 2

p

]

cos  =

3 .....................  2

cos  =

cos ..................... 6

 =

..................... 6

p

p = cos (  ) 3 1 = 2

3 ) 2

®–‰¥â

..............

sin arccos ( 

[

3 ) 2

]

.....................

[

7) tan arcsin

1 ] 2

[

8) tan arccos

1 p p = ,     2 2 2 1 ®–‰¥â sin  = ......................... 2 p sin = ......................... 6 p  = ......................... 6 p 1 tan tan [arcsin ] = ......................... 6 2

«‘∏’∑” „Àâ arcsin

=

[ ] «‘∏’∑” „Àâ arctan = 1,  p2

[

5p

5p

=

sin ..................... 6

=

1 ..................... 2

1 ] 2

1 = , 0    p 2 1 ®–‰¥â cos  = .............................. 2 p cos = .............................. 3 p  = .............................. 3 p 1 tan tan [arccos ] = .............................. 3 2

«‘∏’∑” „Àâ arccos

3 .........................

=

3

9) tan arctan 1

5p

[ ] «‘∏’∑” „Àâ arctan 1 = ,  p2

3 ..............................

10) cot arctan 1   

p 2

  

p 2

tan  =

1 ..............................

tan  =

1 ..............................

=

p tan .............................. 4

=

tan .............................. 4

 =

p .............................. 4

 =

.............................. 4

=

p tan .............................. 4

=

cot .............................. 4

=

1 ..............................

=

1 ..............................

]

tan arctan 1

[

]

cot arctan 1

p

p

p

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

188

[

11) sin arccos

3 5

]

«‘∏’∑” „Àâ arccos

[

12) cos arcsin 3 =  5

«‘∏’∑” „Àâ arcsin 3 5

=

®–‰¥â cos 

4 5

·≈–

®–‰¥â

] 4 =  5

sin  =

0    p 2

2

2

sin  = 1cos  Ê 3ˆ = 1 Á ˜ Ë 5¯

¥—ßπ—Èπ

sin  =

[

«‘∏’∑” „Àâ

®–‰¥â

4

.......... 5

2 ) =  3 2 .......... ·≈–  p2 3

sin  = 

  

  

p 2

p 2

   0

À“ cot  ‚¥¬æ‘®“√≥“®“° 2

=

9 .............................. 25

cos  =

3  .............................. 5

π—Ëπ§◊Õ cos [arcsin 45 ] = 53 ......................................................................

]

‡π◊ËÕß®“° sin   0 ·≈–  p2 ¥—ßπ—Èπ  p2

2

·µà 0    p ...................................................................... ¥—ßπ—Èπ cos  = 53 ......................................................................

2 ) 3

arcsin ( 

p p    2 2 2

4 π—Ëπ§◊Õ sin [arccos 35 ] = .......... 5 13) cot arcsin ( 



Ê 4ˆ 1 Á ˜ = .............................. Ë 5¯

2

16 25 4 sin  =  5

p 2

·≈–

cos  = 1sin 

=

ᵈ 0   

4 5

2

cot  = cosec  1 2

Ê 3ˆ Á ˜  1 Ë 2¯

=

..................................................

=

9 1 .................................................. 2

=

7 .................................................. 2

cot  =

 7 =  .................................................. 2 2

14

189

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

14)

[

]

sin arctan (3)

«‘∏’∑” „Àâ arctan (3) =



p p 3 ·≈–     ®–‰¥â tan  = ....................................................... 2 2 p p ‡π◊ËÕß®“° tan   0 ·≈–  2    2 ..........................................................................................................

p     0 .......................................................................................................... 2

¥—ßπ—Èπ

Y

À“ sin  ‚¥¬æ‘®“√≥“®“°√Ÿª 3 sin  = ....................................................... 10 3 sin arctan (3) = .......................................................................................................... 10

¥—ßπ—Èπ

6.

7.

[

®ßÀ“§à“µàÕ‰ªπ’È 1 1) sin [arcsin ] 2

= p

4) arccos 0

=

6) arctan (1)

=

8) arcsec 2

=

10) arccot 0

=

12) arccsc (2)

=

[

..............................

p = cos (  ) 4 2 = 2

2) arccos (1)

1 2) cos arccos ( ) 2

Ê pˆ = sin Á ˜ Ë 6¯ 1 = 2

[

1

]

®ßÀ“§à“À≈—°„π·µà≈–¢âÕµàÕ‰ªπ’È 0 1) arcsin 0 = .................... p 3) arctan 3 = .................... 3 p  5) arcsin (1) = .................... 2 p 7) arccot 3 = .................... 6 3p  9) arccsc ( 2) = .................... 4 3p  11) arcsec ( 2) = .................... 4

3) cos arcsin ( 

3

2 ) 2

]

..............................

]

..............................

= arcsin =

p ) 3

3 2

O

.................... p .................... 2 p  .................... 4 p .................... 3 p  .................... 2 5p  .................... 6

Ê 2 pˆ = cos Á ˜ Ë 3¯ 1 =  2 4) arcsin (sin



p .............................. 3

X

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

190 p 5) arccos cos (  ) 4 2 arccos = 2 p = 4

..............................

3p 4 arcsin (1) =

..............................

= 

[

8.

]

[

6) arcsin tan

]

.............................. p .............................. 2

®ßÀ“§à“¢Õß 3 ) 5 3 arcsin 5

2 2) sin arccos ( ) 3 2 arccos ( ) =  3

[

1) cos (arcsin

«‘∏’∑” „Àâ

= 

«‘∏’∑” „Àâ

2 ........... 3

3 ........... 5

sin  = 

]

p p    2 2

cos  =  0    p Y

Y

3

5

 O

5

3 4

®“°√Ÿª cos [arcsin 35 ]

= sin 

4 .................... 5

=

3 3) tan arcsin ( ) 4 3 arcsin ( ) =  4

[

]

«‘∏’∑” „Àâ

5 .................... 3

1 4) sin arctan ( ) 3 1 arctan ( ) =  3

[

]

«‘∏’∑” „Àâ

3 ............... 4

sin  =  

X

®“°√Ÿª sin [arccos ( 23 )]

= cos  =

 O

2

X

p p    2 2

1 ............... 3

tan  =  

p p    2 2 Y

Y 7

O  4

X 3

®“°√Ÿª tan [arcsin ( 43 )]

O

3 

X 1

10

®“°√Ÿª sin [arctan ( 13 )] ......................................................................

191

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 = sin 

= tan 

......................................................................

1 =  10

3 ................................................................... 7

= 

3 ) 5 3 arccos =  5 3 cos  = 5 4 sin  = 5

...................................................................... 1 3 1 arctan =  3 1 tan  = 3

[

5) sin (2 arccos

6) sin 2 arctan

«‘∏’∑” „Àâ

«‘∏’∑” „Àâ

............... ...............

3 ) 5

sin (2 arccos

]

...............

sin (2 arctan =

1 ) 3

sin 2

2 tan 

= sin 2

=

2 sin  cos  = ................................... 4 3 2  = ................................... 5 5 24 = ................................... 25

Ê 1ˆ 2Á ˜ Ë 3¯ = ................................... 2 Ê 1ˆ 1 Á ˜ Ë 3¯

2

1  tan 

2 3 = ................................... 10 3

= 1................................... 5 12 ) 13 12 arcsin =  13 12 sin  = 13 12 cos (2 arcsin ) 13

7) cos (2 arcsin

8) cos (2 arctan

3)

«‘∏’∑” „Àâ

«‘∏’∑” „Àâ

3 = 

arctan

tan  =

....................

= cos 2

cos (2 arctan =

3)

cos 2 2

2

= 12 sin 

=

2

Ê 12ˆ 1 2 Á ˜ = ................................... Ë 13¯

=

Ê 144ˆ 1 2 Á = ................................... ˜ Ë 169¯

=

288 = ................................... 1 169 119 = ...................................  169

=

1  tan  2

1  tan  2 1  ( 3) ..... .............................. 2 1  ( 3)

1 .............................. 3 ..... 1 3 .....1..............................  2

3 ....................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

192 9.

®ßÀ“§à“¢Õß 1) sin (arcsin

12 4 arcsin ) 13 5 Y

Y

13

5

12



«‘∏’∑” „Àâ arcsin

O

5

12 13

=

sin =

·≈–

12 13

4

X

O

4 5

arcsin

X

3

= 4 5

sin =

sin (  ) = sin cos cos sin

12 3 5 4    = ............................................. 13 5 13 5 36 20  = ............................................. 65 65 56 = ............................................. 65 2) cos (arctan

15 7 arcsin ) 8 25 Y Y 17 15

25

O

«‘∏’∑”

X

8

„Àâ arctan

15 8

=

tan =

·≈–

15 .......... 8

7

O

arcsin

24

7 25

=

sin =

cos (  ) = cos cos sin sin 8 24 15 7 = .............................................    17 25 17 25 192 105 = .............................................  425 425 297 = ............................................. 425

7 .......... 25

X

193

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

3) cos (arcsin

77 3 arcsin ) 85 5 Y Y 85 77

5

O

«‘∏’∑” „Àâ arcsin

36

77 85

=

sin = cos (  ) =

·≈–

3

X

O

arcsin

77 ..........

3 5

X

4

=

sin =

85 cos cos sin sin

=

.................................................. 36 4 77 3 ..................................................   

=

..................................................

=

..................................................

=

..................................................

3 .......... 5

85 5 85 5 144 231  425 425 375 425 15 17

5 1 arctan ) 13 2 12 «‘∏’∑” „Àâ arcsin 13 = 5 sin = ,  p2   p2 ..................................................................................................................... 13 1 arctan = 2 1 tan = ,  p2   p2 ..................................................................................................................... 2 4) sin (arcsin

1 5 arctan ) 2 13 sin ( 

) = .............................................................................................. sin cos cos sin = .............................................................................................. sin (arcsin

5 2 12 1    = .............................................................................................. 13 5 13 5 10  12 = .............................................................................................. 13 5

22 5 = .............................................................................................. 65

13

5

12 5

1

2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

194

5) cos (arcsin

1 4 arccos ) 5 2

«‘∏’∑” „Àâ arcsin

1 2

=

sin  = arccos

4 5

1



1 2

1

...................................................

=

cos = cos (arcsin

2

 ...................................................

4 ................................................... 5

4 3

5

4 1 arccos ) 5 2

= cos  cos sin  sin .............................................................................................. 1 4 1 3    = .............................................................................................. 2 5 2 5

43 = .............................................................................................. 5 2 2 = .............................................................................................. 10

6) sin (arccos aarcsin b)

«‘∏’∑”

„Àâ arccos a

= A

1

a cos A = .......... 0  A  p arcsin b = B

1 a

A a

p p b sin B = ..........  B  2 2

1

b

sin (arccos aarcsin b) = sin (AB) sin A cos B cos A sin B = .................................................................................... 2 2 1  a  1  b  a b = ....................................................................................

2 2 (1  a )(1  b )  ab = ....................................................................................

1 3 arccos ) 2 5 „Àâ arcsin 12 =  1 sin  = ............................................. ,  p2    p2 2 3 arccos = 5

7) sin (arcsin

«‘∏’∑”

B 1 b

2

2

195

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 3 0 p cos = ............................................. 5 1 3 sin (arcsin arccos ) 2 5

,

2



= sin ( )

3

sin  cos cos  sin = ...................................................................................

3 4 1 3 = ...................................................................................    2 5 2 5

5 4

34 3 = ................................................................................... 10 10.

3

®ß· ¥ß«à“ 2

1) cos (2 arcsin x) = 12x

«‘∏’∑”

„Àâ

arcsin x = 

·≈–  p2

sin  = x

  

p 2

cos (2 arcsin x) = cos 2 2

sin  = 12 .................................................. 2

= 12x .................................................. 2) sin (2 arccos x) = 2 x 1  x

«‘∏’∑”

„Àâ

2

arccos x =  cos  = x

·≈– 0    p

sin (2 arccos x) = sin 2 2 sin  cos  = .................................................. 2 1x 2 x = .................................................. 2

2 x 1x = .................................................. 3) sin (2 arcsin x) = 2 x 1  x

«‘∏’∑”

„Àâ

2

arcsin x = 

·≈–  p2

sin  = x

  

p 2

sin (2 arcsin x) = sin 2 2 sin  cos  = .................................................. 2

2 x 1x = .................................................. 4) arctan xarctan (x) = 0

«‘∏’∑”

1

„Àâ

arctan x =  

,

tan  = x

p p    2 2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

196

arctan (x) = 

,

p p   2 2

tan = x tan  tan tan ( ) = .................................................. 1 tan  tan x(x ) = .................................................. 1x(x ) 0 = ..................................................

 = 0

¥—ßπ—Èπ

5) arcsin xarccos x =

«‘∏’∑”

„Àâ

p 2

arcsin x =  

,

p p    2 2

sin  = x arccos  = cos = x 0   p

,

sin ( ) = sin  cos cos  sin = xx 1  x 2

2

1 x

2

2

x (1x ) = .................................................. 1 = .................................................. p sin = .................................................. 2 p  = .................................................. 2

¥—ßπ—Èπ arcsin xarccos x 3 24 = arctan 4 7 3 „Àâ arctan 4

=

p 2

6) 2 arctan

«‘∏’∑”

=  

,

tan  = tan (2 arctan

p p    2 2

3 4

3 ) = tan 2 4 2 tan  = 2 1  tan  3 2Ê ˆ Ë 4¯ = .................................................. 2 3 1 Ê ˆ Ë 4¯

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

197

3 2 = ...................................................................................................................................................... 7 16

3 16  = ...................................................................................................................................................... 2 7 24 = ...................................................................................................................................................... 7 3 24 2 arctan = arctan ...................................................................................................................................................... 4 7

¥—ßπ—Èπ

11.

®ßÀ“§à“¢Õß arcsin 45 arcsin

12 16 arcsin 13 65 4 p p arcsin = A   A  5 2 2

«‘∏’∑” „Àâ

,

sin A =

®–‰¥â

arcsin

12 13

= B 

,

sin B = arcsin

16 65

4 3 .......... ·≈– cos A = .......... 5 5

12 5 .......... ·≈– cos B = .......... 13 13

= C 

sin C =

p p  B  2 2

,

p p  C  2 2

16 63 .......... ·≈– cos C = .......... 65 65

= sin (ABC) = sin (AB)C

[

]

= sin (AB) cos Ccos (AB) sin C = (sin A cos Bcos A sin B) cos C(cos A cos Bsin A sin B) sin C 3 5 4 12 16 Ê 4 5 3 12ˆ 63 = Á    ˜  Ê    ˆ  Ë 5 13 5 13¯ 65 Ë 5 13 5 13¯ 65

..................................................

=

56 63 Ê 33ˆ 16     .................................................. 65 65 Ë 65¯ 65

=

3528528 ..................................................

4225 3000 = .................................................. 4225 120 = .................................................. 169

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

198

12.

xy 1  xy

®ßÀ“§à“¢Õß arctan xarctan yarctan «‘∏’∑” „Àâ

arctan x = A

x ·≈–  p ®–‰¥â tan A = .......... 2

„Àâ

arctan y = B

y ·≈– ®–‰¥â tan B = ..........

‡¡◊ËÕ  p2

 A 

p 2

·≈–  p2

 B 

p 2 p p   B  2 2

 A 

p 2

p  AB  .......... p ®–‰¥â .......... p ·µà arctan xarctan y  p2 ®–‰¥â AB  .......... 2

π—Ëπ§◊Õ

p  AB  2

p ..........

·∑π§à“ ®–‰¥â

tan (AB) =

tan A  tan B 1  tan A tan B

tan (AB) =

xy ........................................ 1  xy

AB =

arctan ........................................ 1  xy

arctan xarctan yarctan

xy 1  xy

=

xy

0 ........................................

2.9 ‡Õ°≈—°…≥å·≈– ¡°“√µ√’ ‚°≥¡‘µ‘ 2.9.1 ‡Õ°≈—°…≥å ‡Õ°≈—°…≥åæ◊Èπ∞“π sin  = cos  = tan  = tan  = cot  =

1 csc  1 sec  1 cot  sin  cos  cos  sin 

2

2

sin cos  = 1 2

2

2

2

sec tan  = 1 csc cot  = 1

199

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

tan x csc x

µ—«Õ¬à“ß∑’Ë 1 ®ßæ‘ Ÿ®πå«à“ 2

tan x csc x

«‘∏’∑”

= cot x

2

1  tan x

2

1  tan x

=

=

sin x 1  2 cos x sin x 2

sec x

tan x =

1 sin x cos x 1

csc x = 2

cos x sin x

2

=

2

1tan x = sec x

2

cos x =

sin x cos x 1 sin x

cos x sin x cos x cos x sin x

= cot x

= cot x

µ—«Õ¬à“ß∑’Ë 2 ®ßæ‘ Ÿ®πå«à“ (sec xtan x)(1sin x) = cos x «‘∏’∑”

(sec xtan x)(1sin x) = =

sin x ˆ Ê 1  Á ˜ (1  sin x) Ë cos x cos x¯ (1  sin x)(1  sin x) cos x 2

1  sin x = cos x

tan x =

2

=

cos x sec x = 1

sin x cos x 2

(ab)(ab) = a b

cos x cos x

2

2

sin xcos x = 1

= cos x

°‘®°√√¡∑’Ë 2.9.1 (1) 1.

®ßæ‘ Ÿ®πå‡Õ°≈—°…≥å 1) sin  cot  = cos 

«‘∏’∑”

sin  cot  = sin 

cos  sin 

cos  = ........................................

2) cos  tan  = sin 

«‘∏’∑”

cos  tan  = cos 

sin  cos 

sin  = ........................................

2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

200 3) sin sec  = tan 

«‘∏’∑”

4) sec  cot  = csc 

sin sec 

sec  cot 

«‘∏’∑”

1 cos   cos  sin  1 = ........................................ sin 

1 cos  sin  = cos  tan  = ........................................

= sin

2

2

2

2

2

tan  cot sin 

«‘∏’∑”

2

2

= cos sec 

= 1sin 

1 = ........................................

cos  = ........................................

2

7) (csc 1)(csc 1) = cot 

«‘∏’∑”

(csc 1)(csc 1)

2

2

2

tan  cot cos 

«‘∏’∑”

2

2

1cos  = ........................................

2

sin  = ........................................

2

cot  = ........................................ 2

2

2

9) sin (1cot ) = 1 2

2

2

10) (1tan ) sin  = tan 

2

sin (1cot ) 2

«‘∏’∑”

2

2

2

(1tan ) sin  2

2

= sin csc 

= sec  sin 

1 = ........................................

=

11) cos  (tan cot ) = csc 

«‘∏’∑”

2

8) tan  cot cos  = sin 

= csc 1

«‘∏’∑”

2

6) tan  cot sin  = cos 

cos (1tan ) 2

csc  = ........................................ 2

5) cos (1tan ) = 1

«‘∏’∑”

=

cos  (tan cot ) =

Ê sin  cos  ˆ cos  Á  ˜ Ë cos  sin  ¯

2 1 2 sin  cos  2 tan  = ........................................ 2

2

«‘∏’∑”

2

cos  sin  2

sin   cos  sin  1 = ........................................ sin  =

csc  = ........................................

2

2

2

cot cos  2

=

2

= sin 

2

12) cot cos  = cot  cos 

=

cos  2

sin 

2

cos 

Ê 1 ˆ 2 Á 2  1˜ cos  Ë sin  ¯ 2

2

= (csc 1) cos  2

2

cot  cos  = ........................................

201

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 13) sec cos  = sin  tan 

«‘∏’∑”

14) csc sin  = cot  cos 

sec cos 

«‘∏’∑”

=

1 cos  cos 

=

1  cos  cos 

=

sin  cos 

=

1  sin  = ........................................ sin 

2

2

cos  = ........................................ sin  cos  = ........................................ cos  sin 

sin  cos 

sin  tan  = ........................................ 2

2

2

cot  cos  = ........................................

2

2

15) sec  csc  = sec csc 

«‘∏’∑”

2

1 sin  sin  2

2

= sin 

csc sin 

2

sec  csc 

«‘∏’∑”

2

2

2

2

2

2

(sin 1)(cot 1) 2

= sec (1cot ) 2

2

16) (sin 1)(cot 1) = 1csc  2

= (sin 1)csc  2

2

2

2

sin  csc  csc  = ........................................

sec sec  cot  = ........................................ 2

2 1 cos  sec   2 = ........................................ 2 cos  sin 

2

1csc  = ........................................

2 1 sec  2 = ........................................ sin  2

2

sec csc  = ........................................ 2

17)

2

sin   cos 

2

= sec 

2

cos  2

«‘∏’∑”

18)

2  sec  2 sin  = tan  csc 

2

sin   cos 

«‘∏’∑”

2

cos 

1

=

=

2

cos  2 sec  = ........................................ 4

19)

4

4

20)

sin x = csc cot  1 cos 

4

sin   cos  sin   cos  2

«‘∏’∑” 2

2

2 sec  2   csc  csc  sin 

tan  = ........................................

sin   cos  = sin cos  sin   cos 

«‘∏’∑”

2  sec  2 sin  csc 

sin x 1 cos 

2

=

(sin   cos  )(sin   cos  ) (sin   cos  )

=

=

(sin   cos  )(sin   cos  ) 1 sin   cos 

=

sin x 1  cos   1 cos  1  cos  sin  (1  cos  ) 2

1  cos 

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

202 cos  = sin ........................................

=

sin  (1  cos  ) sin 2 

=

1  cos  sin 

=

1 cos   sin  sin 

cot  = csc ........................................ 21)

tan   1 1  cot  = tan   1 1  cot  tan   1 tan   1

22)

«‘∏’∑”

=

1 1 cot  1 1 cot 

=

1  cot  cot  1  cot  cot 

cot   1 tan   1 = cot   1 tan   1 cot   1 cot   1

«‘∏’∑”

2 1  sin  = (sec tan ) 1  sin  1  sin  1  sin  1  sin  1  sin  =  1  sin  1  sin 

24)

«‘∏’∑”

=

(1  sin  )

=

1  tan  tan  1  tan  tan 

1 tan  = ........................................ 1 tan 

 cot  = 1........................................ 1  cot  23)

=

1 1 tan  1 1 tan 

1  sec  = csc  sin   tan  1  sec  sin   tan  1  sec  = sin   sin  sec 

«‘∏’∑”

2

1  sec  = ........................................ sin  (1  sec  )

2

1  sin  2

(1  sin  ) = ........................................ 2 cos 

1 = ........................................ sin 

csc  = ........................................

2

Ê 1 sin  ˆ = ........................................  Á ˜ Ë cos  cos  ¯ 2

(sec tan) = ........................................ 2

25)

tan   cot  sec  = 2 tan   cot  tan   1

«‘∏’∑”

tan   cot  tan   cot 

26)

sin 

4

2

csc (1  cot  )

«‘∏’∑”

= sin 

sin  2

csc (1  cot  )

203

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 1 tan  1 tan   tan  tan  

=

=

2

2

sin  = ........................................ 2 csc 

tan   1 2 tan   1

=

2

sec  = ........................................ 2 tan   1 27)

(1  cos  ) 2

sin 

«‘∏’∑”

2

sec   1 sec   1

=

(1  cos  )

4

sin  = ........................................ 2

28) (sec tan ) =

1  sin  1  sin 

2

«‘∏’∑”

2

sin  =

sin  2 1  (csc  ) sin 

(1  cos  )(1  cos  )

(sec tan ) =

2

1  cos 

(1  cos  )(1  cos  ) = ........................................ (1  cos  )(1  cos  )

=

2

Ê 1 sin  ˆ  Á ˜ Ë cos  cos  ¯

(1  sin  )

2

2

2

cos  (1  sin  )(1  sin  ) = ........................................ 2 1  sin 

(1  cos  ) = ........................................ (1  cos  )

(1  sin  )(1  sin  ) = ........................................ (1  sin  )(1  sin  )

1 1 sec  = ........................................ 1 1 sec 

(1  sin  ) = ........................................ (1  sin  )

sec   1 = ........................................ sec   1

sec x  tan x sec x  tan x

2

29) (sec x  tan x) =

«‘∏’∑”

2

(sec x  tan x) =

sin x ˆ Ê 1  Á ˜ Ë cos x cos x¯

=

Ê 1  sin xˆ Á ˜ Ë cos x ¯

= = =

2

30) (csc xcot x) =

«‘∏’∑” 2

2

csc x  cot x csc x  cot x 2

(csc xcot x)

2

cos x ˆ Ê 1  = ........................................ Á ˜ Ë sin x sin x ¯ 2

Ê 1  cos x ˆ = ........................................ ˜ Á Ë sin x ¯ 2

2

(1  cos x ) = ........................................ 2 sin x

2

1  sin x

(1  cos x ) = ........................................ 2 1  cos x

(1  sin x)(1  sin x) (1  sin x)(1  sin x)

(1  cos x )(1  cos x ) = ........................................ (1  cos x )(1  cos x )

(1  sin x) 2

cos x (1  sin x) 2

2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

204

=

1  sin x 1  sin x

1  cos x = ........................................ 1  cos x

=

1  sin x cos x 1  sin x cos x

1  cos x sin x = ........................................ 1  cos x sin x

=

1 sin x  cos x cos x 1 sin x  cos x cos x

1 cos x  sin x sin x = ........................................ 1 cos x  sin x sin x csc x  cot x = ........................................ csc x  cot x

sec x  tan x = ........................................ sec x  tan x 31) (tan x1) cos x = sin xcos x

«‘∏’∑”

(tan x1) cos x =

32) (csc xcot x)(sec x1) = tan x

«‘∏’∑”

Ê sin x ˆ 1˜ cos x Á Ë cos x ¯

.............................................. (csc xcot x)(sec x1) cos x ˆ Ê 1 ˆ Ê 1 = ........................................   1˜ ˜Á Á ¯ Ë sin x sin x ¯ Ë cosx

sin x = ........................................ cos xcos x cos x

= ........................................ Ê 1  cos x ˆ Ê 1  cos x ˆ ˜ ˜Á Á Ë sin x ¯ Ë cos x ¯

xcos x = sin ........................................

2

1  cos x = ........................................ sin x cos x 2

sin x = ........................................ sin x cos x sin x = ........................................ cos x = ........................................ tan  33)

1 1  = 2tan x sec x 1  sin x 1  sin x

«‘∏’∑”

1 1  1  sin x 1  sin x (1  sin x)  (1  sin x) = (1  sin x)(1  sin x) 2 sin x = ........................................ 2 1 sin x 2 sin x = ........................................ 2 cos x

2 sin x 1 = ........................................  cos x cos x = ........................................ 2 tan x sec x

4

2

4

34) sec xtan x =

«‘∏’∑”

4

1  sin x 2

cos x 4

sec xtan x 2

2

2

2

= (sec xtan x)(sec xtan x) 2 Ê 1 sin x ˆ = ........................................ 1 Á  2 ˜ 2 Ë cos x cos x ¯

2

1  sin x = ........................................ 2 cos x

205

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

35) (1sin x)(sec xtan x) = cos x

cos x = 1sin x 1  sin x

36)

2

«‘∏’∑”

«‘∏’∑”

(1sin x)(sec xtan x)

cos x 1  sin x

sin x ˆ Ê 1 (1  sin x )Á  ˜ = ........................................ Ë cos cos x ¯

=

Ê 1  sin x ˆ (1  sin x )Á ˜ = ........................................ Ë cos x ¯

(1  sin x )(1  sin x ) = ........................................ 1  sin x

2

2

1  sin x = ........................................ cos x

1  sin x 1  sin x

1sin x = ........................................

2

cos x = ........................................ cos x cos x = ........................................ 4

4

2

37) cos xsin x = 12 sin x

«‘∏’∑”

4

4

2

2

2

2

cos xsin x = (cos xsin x)(cos xsin x) 2

2

((1sin x)sin x)1 = ................................................................................ 2

12 sin x = ................................................................................ 38)

sin x 1  cos x = 2 csc x  1  cos x sin x

«‘∏’∑”

sin x 1  cos x  1  cos x sin x

2

2

sin x  (1  cos x) (1  cos x) sin x 2 2 ( 1  cos x )  (1  2 cos x  cos x ) = ................................................................................ (1  cos x ) sin x

=

2  2 cos x = ................................................................................ (1  cos x ) sin x 2 (1  cos x ) = ................................................................................ 1 (1  cos x )  csc x 2 csc x = ................................................................................ 39)

csc x = cos x tan x  cot x

«‘∏’∑”

csc x tan x  cot x

=

csc x sin x cos x  cos x sin x

csc x = ................................................................................ 2 2 sin x  cos x sin x cos x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

206

csc x = ................................................................................ 1 sin x cos x

csc x sin x cos x = ................................................................................ 1cos x = ................................................................................ cos x = ................................................................................ 3

40)

3

2 2 sec x  cos x = 1cos xsec x sec x  cos x 3

«‘∏’∑”

3

sec x  cos x sec x  cos x

2

=

2

(sec x  cos x)(sec x  sec x cos x  cos x) (sec x  cos x) 2

2

sec x1cos x = ................................................................................ 2

2

1cos xsec x = ................................................................................ 2

41)

cos x 2

1  sin x  cos x

1  sin x 2  sin x

= 2

«‘∏’∑”

2

cos x 1  sin x ........................................ = ...................................................... 2 2 2  sin x  sin x 1  sin x  (1  sin x ) (1  sin x )(1  sin x ) = ...................................................... (1  sin x )(2  sin x ) 1  sin x = ...................................................... 2  sin x 2

2

42) (1tan x) = sec x(12 cos x sin x) 2 2 (1tan x) = ...................................................... 12 tan x tan x ...................................

«‘∏’∑”

2

sin x sin x 1 2  = ...................................................... cos x cos 2 x 2

2

cos x  2 sin x cos x  sin x = ...................................................... 2 cos x 2

2

(sin x  cos x )  2 sin x cos x = ...................................................... 2 cos x 1  2 sin x cos x = ...................................................... 2 cos x 2

sec x(12 sin x cos x) = ......................................................

207

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

2

43) (1cot x) = csc x (12 cos x sin x)

«‘∏’∑”

(1cot x)

2

2

12 cot xcot x = ................................................................................ 2

2 cos x cos x 1  = ................................................................................ 2 sin x sin x 2

2

sin x  2 cos x sin x  cos x = ................................................................................ 2 sin x 2

2

(sin x  cos x )  2 cos x sin x = ................................................................................ 2 sin x

1  2 cos x sin x = ................................................................................ 2 sin x 2

csc x (12 cos x sin x) = ................................................................................ 44)

2

1  sin x Ê cos x ˆ = Á ˜ Ë 1  sin x¯ 1  sin x

Ê cos x ˆ Á ˜ Ë 1  sin x¯

«‘∏’∑”

2

2

cos x

=

(1  sin x)

2

2

1  sin x

=

(1  sin x)

2

(1  sin x )(1  sin x ) = ................................................................................ (1  sin x )(1  sin x ) 1  sin x = ................................................................................ 1  sin x

45)

2 1  cos x = (csc xcot x) 1  cos x

«‘∏’∑”

(csc xcot x)

2

Ê 1  cos xˆ Ë sin x sin x ¯

=

Ê 1  cos xˆ Á ˜ Ë sin x ¯ (1  cos x) 2

tan x = csc x sec x  cos x

«‘∏’∑”

=

=

46)

2

2

2

sin x 2 (1  cos x ) = ........................................ 2 1  cos x

tan x ............................................... sec x  cos x

tan x = ........................................ 1  cos x cos x tan x = ........................................ 2 1  cos x cos x

tan x cos x = ........................................ 2 1  cos x sin x = ........................................ 2 sin x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

208 (1  cos x )(1  cos x ) = ........................................ (1  cos x )(1  cos x )

1 = ........................................ sin x csc x = ........................................

1  cos x = ........................................ 1  cos x 47) sec x csc x2 cos x csc x = tan xcot x

«‘∏’∑”

sec x csc x2 cos x csc x =

1 2 cos x  cos x sin x sin x 2

=

1  2 cos x cos x sin x

=

(1  cos x)  cos x cos x sin x

2

2

2

2

sin x  cos x = .......................................................... cos x sin x 2

2

sin x cos x = ..........................................................  cos x sin x cos x sin x sin x cos x = ..........................................................  cos x sin x tan xcot x = .......................................................... 48)

sin x tan x = sin x  cos x 1 tan x

«‘∏’∑”

sin x sin x  cos x

=

sin x cos x sin x  cos x cos x

tan x = .......................................................... sin x cos x  cos x cos x tan x = .......................................................... tan x  1

‡Õ°≈—°…≥åº≈∫«°·≈–º≈µà“ߢÕß®”π«π®√‘ßÀ√◊Õ¡ÿ¡ sin (  ) = sin cos  cos sin cos (  ) = cos cos  sin sin tan (  ) =

tan  tan 1  tan tan

209

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

sin 2 = 2 sin cos 2

2

cos 2 = cos sin 2

= 2 cos 1 2

= 12 sin tan 2 =

2 tan 2

1  tan

sin 2 =

2 tan 2 1  tan

cos 2 =

2 1  tan 2 1  tan

 ˆ  ˆ cos Ê Ë 2 ¯ 2 ¯

sin sin =

2 sin Ê Ë

sin sin =

2 cos Ê Ë

 ˆ  ˆ sin Ê ¯ Ë 2 2 ¯

cos cos =

2 cos Ê Ë

 ˆ  ˆ cos Ê Ë 2 ¯ 2 ¯

cos cos =

2 sin Ê Ë

 ˆ  ˆ sin Ê ¯ Ë 2 2 ¯

µ—«Õ¬à“ß°“√æ‘ Ÿ®πå‡Õ°≈—°…≥å 1. 1sin  = (cos

«’∏’∑”

  2 sin ) 2 2

1sin 

2.

cos   sin  = sec 2tan 2 cos   sin    sin  «‘∏’∑” cos cos   sin 

2  2  = Ê cos sin ˆ sin  Ë 2 2¯

=

㪉 cos2 Asin2 A = 1)

=

(

2  2    = Ê cos sin ˆ 2 sin cos Ë 2 2¯ 2 2

(

2

=

2

2

cos   sin 

1  2 cos  sin  cos 2 2

(cos Asin A = 1

ˆ 2 2¯

[(ab)2 = a22abb2]

2

cos   2 cos  sin   sin 

2

㪉 sin 2A = 2 sin A cos A)

 = Ê cos sin Ë 2

(cos   sin  )(cos   sin  ) (cos   sin  )(cos   sin  )

2

2

cos 2 = cos sin )

1sin 2 (sin 2A = 2 sin A cos A) cos 2 1 sin 2  = cos 2 cos 2 =

= sec 2tan 2

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

210 1  sin 2 1  sin 2 1 1

3.

«‘∏’∑”

 cos  cos sin 2 sin 2

2 = cot  2  cos 2  cos 2

4.

cos 3  cos  = cot  sin 3  sin  cos 3  cos  sin 3  sin 

«‘∏’∑”

3   ˆ 3   ˆ cos Ê Ë 2 ¯ 2 ¯ = 3   ˆ 3   ˆ 2 cos Ê sin Ê Ë 2 ¯ Ë 2 ¯ 2 cos Ê Ë

(1  cos 2 )  sin 2 = (1  cos 2 )  sin 2 2

2 cos 2 cos  2 cos 2 sin 

2 cos   2 sin  cos  2 2 sin   2 sin  cos 

=

[cos 2A = 2 cos2 A1

= cot 

=

2

cos 2A = 12 sin A sin 2A = 2 sin A cos A

]

2 cos  (cos   sin  ) 2 sin  (cos   sin  )

=

= cot 

°‘®°√√¡∑’Ë 2.9.1 (2) 1.

®ßæ‘ Ÿ®πå‡Õ°≈—°…≥å cos 3  cos = cot 2 sin 3  sin

1)

«‘∏’∑”

cos 3  cos sin 3  sin

2 cos Ê 3  ˆ cos Ê 3  ˆ Ë 2 ¯ Ë 2 ¯ = 3  ˆ 3  ˆ 2 sin Ê cos Ê Ë 2 ¯ Ë 2 ¯ =

cos 2 sin 2

cot 2 = ........................................

2)

«‘∏’∑”

sin 2  sin 2 = tan (  ) cos 2  cos 2 sin 2  sin 2 cos 2  cos 2

=

=

2 sin Ê 2 2 ˆ cos Ê 2 2 ˆ Ë 2 ¯ Ë 2 ¯ 2 cos Ê Ë

2 2 ˆ 2 2 ˆ cos Ê 2 ¯ Ë 2 ¯

sin (  ) cos (  )

tan (  ) = ........................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

3)

sin x  sin y Ê x  yˆ = tanÁ ˜ Ë 2 ¯ cos x  cos y

«‘∏’∑”

sin x  sin y cos x  cos y

x  yˆ x  yˆ 2 sin Ê cos Ê Ë 2 ¯ Ë 2 ¯ = ................................................................................ x  yˆ x  yˆ cos Ê 2 cos Ê Ë 2 ¯ Ë 2 ¯ Ê x  yˆ sin Á ˜ Ë 2 ¯ = ................................................................................ Ê x  yˆ cos Á ˜ Ë 2 ¯

Ê x  yˆ tan Á ˜ Ë 2 ¯ = ................................................................................ 4)

sin 6x  sin 4 x = tan x cos 6x  cos 4 x Ê 6x  4xˆ Ê 6x  4xˆ 2 cos Á ˜ sin Á ˜ Ë Ë 2 ¯ 2 ¯ sin 6x  sin 4 x = ................................................................................ cos 6x  cos 4 x Ê 6x  4xˆ Ê 6x  4xˆ 2 cos Á ˜ cos Á ˜ Ë Ë 2 ¯ 2 ¯

«‘∏’∑”

sin x = ................................................................................ cos x

tan x = ................................................................................ 5) cos 7xcos 5x2 cos x cos 2x = 4 cos 4x cos 2x cos x

«‘∏’∑”

cos 7xcos 5x2 cos x cos 2x =

2 cos Ê Ë

7x  5xˆ 7x  5xˆ cos Ê  2 cos x cos 2 x ¯ Ë ¯ 2 2

= 2 cos 6x cos x2 cos x cos 2x = 2 cos x cos 6xcos 2x

[

]

6x  2xˆ 6x  2xˆ ˘ È 2 cos x Í2 cos Ê cos Ê = .................................................................................................... Ë ¯ Ë ¯ ˙˚ 2 2 Î

[

]

2 cos x 2 cos 4x cos 2x = .................................................................................................... 4 cos 4x cos 2x cos x = .................................................................................................... 6)

cos 2 x  cos 4 x = tan x sin 2 x  sin 4 x

«‘∏’∑”

cos 2 x  cos 4 x sin 2 x  sin 4 x

=

=

Ê 2 x  4xˆ Ê 2 x  4xˆ 2 sin Á ˜ sin Á ˜ Ë 2 ¯ Ë 2 ¯ Ê 2 x  4xˆ Ê 2 x  4xˆ 2 sin Á ˜ ˜ cos Á Ë 2 ¯ Ë 2 ¯

sin (x) cos (x)

211

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

212

(sin x) cos x tan x = ................................................................................

=

7)

sin x  sin 3x = tan 2x cos x  cos 3x

«‘∏’∑”

8)

sin x  sin 3x = cos x  cos 3x

Ê x  3xˆ Ê x  3xˆ 2 sin Á ˜ cos Á ˜ Ë 2 ¯ Ë 2 ¯ Ê x  3xˆ Ê x  3xˆ 2 cos Á ˜ ˜ cos Á Ë 2 ¯ Ë 2 ¯

=

sin 2 x ................................................................................ cos 2 x

=

tan 2x ................................................................................

sin (x  y)  sin (x  y) = tan x cot y sin (x  y)  sin (x  y)

«‘∏’∑”

1 {sin (x  y)  sin (x  y)} 2 1 {sin (x  y)  sin (x  y)} 2 sin x cos y = ................................................................ cos x sin y

sin (x  y)  sin (x  y) = sin (x  y)  sin (x  y)

tan x cot y = ................................................................ 9)

cos 5x  2 cos 3x  cos x = cot 3x sin 5x  2 sin 3x  sin x 5x  2 cos 3x  cos x «‘∏’∑” cos = sin 5x  2 sin 3x  sin x

(cos 5x  cos x)  2 cos 3x (sin 5x  sin x)  2 sin 3x

Ê 5x  xˆ Ê 5x  xˆ 2 cos Á ˜ cos Á ˜  2 cos 3 x Ë ¯ Ë 2 ¯ 2 = ............................................................................. Ê 5x  xˆ Ê 5x  xˆ 2 cos Á ˜ sin Á ˜  2 sin 3 x Ë 2 ¯ Ë 2 ¯

2 cos 3 x cos 2 x  2 cos 3 x = ............................................................................. 2 cos 3 x sin 2 x  2 sin 3 x 2 cos 3 x (cos 2 x  1) = ............................................................................. 2 sin 3 x (cos 2 x  1)

cos 3 x = ............................................................................. sin 3 x = cot ............................................................................. 3x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

10)

sin 3 cos 3 = 2  sin  cos  sin 3 cos 3 =  sin  cos 

sin 3 cos   cos 3 sin  sin  cos  sin (3   ) = ................................................................................ sin  cos  sin 2 = ................................................................................ sin  cos 

«‘∏’∑”

2 sin  cos  = ................................................................................ sin  cos  2 = ................................................................................ 11)

cos 3  cos  = tan 2 sin 3  sin 

«‘∏’∑”

cos 3  cos  sin 3  sin 

=

Ê 3   ˆ Ê 3   ˆ 2 sin Á ˜ sin Á ˜ Ë 2 ¯ Ë 2 ¯ Ê 3   ˆ Ê 3   ˆ 2 cos Á ˜ sin Á ˜ Ë 2 ¯ Ë 2 ¯

2 sin 2 sin  = ................................................................................ 2 cos 2 sin  2 = tan ................................................................................ 12)

cos 3  cos  = cot 2 sin 3  sin 

«‘∏’∑”

cos 3  cos  sin 3  sin 

Ê 3   ˆ Ê 3   ˆ 2 cos Ë ¯ cos Ë 2 ¯ 2 = ................................................................................ 2 sin Ê 3   ˆ cos Ê 3   ˆ Ë 2 ¯ Ë 2 ¯ 2 cos 2 cos  = ................................................................................ 2 sin 2 cos  cos 2 = ................................................................................ sin 2

cot 2 = ................................................................................ 13)

sin   sin 2  sin 3 = tan 2 cos   cos 2  cos 3 sin   sin 2  sin 3 «‘∏’∑” cos =   cos 2  cos 3

(sin 3  sin  )  sin 2 (cos 3  cos  )  cos 2 2 sin 2 cos   sin 2 = ................................................................................ 2 cos 2 cos   cos 2 sin 2 (2 cos   1) = ................................................................................ cos 2 (2 cos   1)

2 = tan ................................................................................

213

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

214

14)

1  sin 1  sin 1 1

«‘∏’∑”

2  2   sin  sin

cos 2 = tan cos 2 2  cos 2 = 2  cos 2

(1  cos 2 )  sin 2 (1  cos 2 )  sin 2 2 2 sin   2 sin  cos  = ................................................................................ 2 2 cos   2 sin  cos  2 sin  (sin   cos  ) = ................................................................................ 2 cos  (sin   cos  )

 = tan ................................................................................ 2.

®ßæ‘ Ÿ®πå‡Õ°≈—°…≥å 2

1) (sin cos ) = 1sin 2 (sin cos )

«‘∏’∑”

2

2

2

= sin 2 sin  cos cos  2

2

= (sin cos )2 sin  cos  1sin 2 = ..................................................................... 2

2) sin 4 = 4 cos  sin (12 sin ) sin 4 = 2 sin 2 cos 2

«‘∏’∑”

2

= 2(2 sin  cos )(12 sin ) 2

sin  cos (12 sin ) = 4..................................................................... 4

2

3) cos 4 = 8 cos 8 cos 1

«‘∏’∑”

2

cos 4  = 2 cos 21 2

2

2(2 cos 1) 1 = ..................................................................... 4

2

2(4 cos 4 cos 1)1 = ..................................................................... 4

2

8 cos 8 cos 1 = ..................................................................... 4)

1  tan x 1  sin 2 x = 1  tan x cos 2 x

«‘∏’∑”

1  tan x 1  tan x 1  tan x =  1  tan x 1  tan x 1  tan x 2

=

1  2 tan x  tan x 2

1  tan x 2

1  tan x tan 2x 1  tan x 1 sin 2 x =  cos 2 x cos 2 x

=

1  sin 2x = ..................................................................... cos 2x

215

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 5)

2

2

tan xcos 2x = 1cos 2x tan x

«‘∏’∑”

2

2

2

tan xcos 2x = tan x(12 sin x) 2

2

= 1(2 sin xtan x) 2 Ê 2 sin x ˆ = 1  Á 2 sin x  2 ˜ cos x¯ Ë

Ê 2 cos 2 x sin 2 x  sin 2 xˆ = 1 Á ˜ 2 cos x Ë ¯ 2

2

= 1(2 cos x1)

sin x 2

cos x

2

1cos 2x tan x = ............................................................ 6)

2 2 tan x = 1tan x tan 2 x

2 tan x tan 2 x

«‘∏’∑”

=

2 tan x 2 tan x 2

1  tan x 2

1  tan x 2 tan x 2 x 1tan = ............................................................ = 2 tan x

7)

2 2 cos 3x sin x = cos 2xsin 2x  sec x csc 3x cos 3x sin x  sec x csc 3x

«‘∏’∑”

= cos 3x cos xsin 3x sin x cos (3xx) = ............................................................ cos 4x = ............................................................ 2

2

cos 2xsin 2x = ............................................................ 8)

csc xsec x 1  sin 2 x = csc xsec x cos 2 x

«‘∏’∑”

csc xsec x csc xsec x

=

1 1  sin x cos x 1 1  sin x cos x

=

cos x  sin x sin x cos x cos x  sin x sin x cos x

=

cos xsin x cos xsin x  cos xsin x cos xsin x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

216

2

=

2

cos x  2 cos x sin x  sin x 2

2

cos x  sin x 2

2

(cos x  sin x)  2 sin x cos x cos 2 x 1  sin 2x = ............................................................ cos 2x =

2

9) sin 4 sin 2 sin =

1 (1cos 6) 2 2

2 1 cos 6 cos 2 sin 2 2 2 1 =  cos 6 (12 sin sin 2

sin 4 sin 2 sin = 

«‘∏’∑”

[

]

[

]

2 2 1 1  cos 6  sin sin = ............................................................ 2 2 1 1  cos 6 = ............................................................ 2 2 1 (1cos 6 ) = ............................................................ 2 3

10)

3

sin x cos x 1 = 1 sin 2x sin x cos x 2 3

«‘∏’∑”

3

sin x cos x = sin x cos x

2

2

(sin x cos x )(sin xsin x cos x cos ) (sin x cos x)

2 2 1 = (sin xcos x) (2 sin x cos x) 2

1 1 sin 2 x = ...................................................................... 2 4

11) cos 4x = 4 cos 2x38 sin x

«‘∏’∑”

2

cos 4x = 12 sin 2x = 12(2 sin x cos x) 2

2

2

= 12(4 sin x cos x) 2

2

2

4

= 18 sin x(1sin x) = 18 sin x8 sin x 4 Ê 1  cos 2 xˆ = 1  8Á ˜  8 sin x Ë ¯ 2 4

14(1cos 2x)8 sin x = ...................................................................... 4

144 cos 2x8 sin x = ...................................................................... 4

4 cos 2x38 sin x = ......................................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 3.

®ßæ‘ Ÿ®πå«à“ (sin 2sin )(12 cos ) = sin 3 «‘∏’∑” (sin 2sin )(12 cos ) = (2 sin  cos sin )(12 cos ) 2 cos 1 cos 1) = sin  (....................)(2 2 sin  = ..........(4 cos 1) 2

1sin  = sin  4(....................)1

[

sin  44 sin 1 = .......... 2

[

]

]

2

34 sin  = sin (....................) 3 sin 4sin3 = .......... sin 3 = .................... 4.

®ßæ‘ Ÿ®πå«à“ cos 3 sin 2cos 4 sin = cos 2 sin  «‘∏’∑” cos 3 sin 2cos 4 sin 1 1 sin (4)sin (4) = [sin (32)sin(32)] [.......................................... ] 2 2 1 sin 5sin 3 (sin 5sin ..............................) 2 1 sin  = (sin 3...............) 2 3   ˆ ˘ 1È 3   ˆ sin Ê ............... = 2 cosÊ .......... Í 2 Ë 2 ¯ Ë ............... ¯ ˙˚ 2Î

=

cos 2 sin  = ........................................ 5.

∂â“ A, B, C ‡ªìπ¢π“¥¢Õß¡ÿ¡¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC ®ßæ‘ Ÿ®πå«à“ tan Atan Btan C = tan Atan Btan C

æ‘ ®Ÿ πå ‡π◊ËÕß®“° A, B, C ‡ªìπ¢π“¥¢Õß¡ÿ¡¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC ¥—ßπ—Èπ ABC = 180 180 C AB = ................................................ tan(180 C) tan (AB) = ................................................ tan A  tan B tan C = ................................................ t  tan A tan B tan C(1tan A tan B) tan Atan B = ................................................ ................................................

tan Ctan Ctan Atan B tan Atan B = ................................................ ................................................ tan Atan Btan C tan Atan Btan C = ................................................ ................................................

217

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

218 6.

∂â“ ABC = 180 ®ßæ‘ Ÿ®πå«à“ sin Asin B sin C = cos B sin C æ‘ ®Ÿ πå ABC = 180 A = 180 (BC) sin A = sin 180 (BC)

[

]

sin A = ................................................ sin(BC) ................................................ sin A = ................................................ sin B cos Ccos B sin C ................................................ sin Asin B sin C = ................................................ cos B sin C ................................................ 7.

®ßæ‘ Ÿ®πå«à“ «‘∏’∑”

2  cos   2 cos 2  cos 3 = cot cos   2 cos 2  cos 3 2 cos   2 cos 2  cos 3 (cos 3  cos  )  2cos 2 = cos   2 cos 2  cos 3 (cos 3  cos  )  2cos 2

= =

2 cos 2 cos   2 cos 2 2 cos 2 cos   2 cos 2 2 cos 2 (cos   1) 2 cos 2 (cos   1)

Ê ˆ 2  Á 2 cos  1˜  1 Ë ¯ 2 = ................................................ 2 ˆ Ê Á 1  2 sin ˜  1 Ë 2¯ 2  2 cos 2 = ................................................ 2  2 sin 2 2  = cot ................................................ 2

8.

®ß· ¥ß«à“ tan A (cosec 2Acot 2A) = 1 «‘∏’∑”

tan A (cosec 2Acot 2A) = =

cos 2 A ˆ Ê 1 tan A Á  ˜ Ë sin 2 A sin 2 A ¯ 1  cos 2Aˆ ..................... tan A Ê Ë sin 2 A ¯

sin A Ê 1  cos 2 A ˆ = ................................................ ˜ Á cos A Ë 2 sin A cos A¯ 1  cos 2A = ................................................ 2 2 cos A 2

1  (2 cos A  1) = ................................................ 2 2 cos A 1 = ................................................

219

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 9.

°”Àπ¥ A = BC ®ßæ‘ Ÿ®πå«à“ tan Atan Btan C = tanAtan Btan C «‘∏’∑” A = BC tan A = tan (BC) tan B  tan C tan A = ............................................ ............................................ 1  tan B  tan C tan A(1tan Btan C) = ............................................ tan Btan C ............................................ tan Atan Atan Btan C = ............................................ tan Btan C ............................................ tan Atan Btan C = ............................................ tan Atan Btan C ............................................

10.

®ßæ‘ Ÿ®πå«à“ cot Atan 2A = cot A sec 2A 1 2 tan A  «‘∏’∑” cot Atan 2A = 2 tan A

1  tan A

2

=

(1  tan A )  2 tan A  tan A 2

tan A (1  tan A ) 2

2

1  tan A  2 tan A = .......................................................... 2 tan A (1  tan A ) 2

1 1 tan A = ..........................................................  tan A 1 tan 2 A 1 1 ............................................ = tan A 1  tan 2 A 2 1  tan A

1 = cot A............................................ cos 2A = cot Asec 2A

11.

®ß· ¥ß«à“ «‘∏’∑”

o sin 12  o o = 0 sin 48 sin 81 o o o o o o sin 9 sin 12 sin 9 sin 81  sin 12 sin 48  = o o o o sin 48 sin 81 sin 48 sin 81 sin 9

o

= =

=

1 1 o o o o (cos 72  cos 90 ) ..........................................  (cos 36  cos 60 ) 2 2 o o sin 48 sin 81 o o o o cos 72  cos 90 .................................  cos 36  cos 60 o o 2 sin 48 sin 81 Ê 5  1ˆ Ê 5  1ˆ 1 ˜ Á ˜  0  Á...................... Ë 4 ¯ 2 Ë 4 ¯ o o 2 sin 48 sin 81

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

220

0 = ................................................................. o o 2 sin 48 sin 81 0 = ................................................................. 12.

®ßæ‘ Ÿ®πå«à“ tan 75 tan 30 tan 75 tan 30 = tan 45 «‘∏’∑” ®“° tan 45 = 1 tan (75 30 ) = 1 o o tan 75  tan 30 o o 1  tan 75 tan 30

= 1

1tan 75 tan 30 tan 75 tan 30 = ........................................ tan 75 tan 30 tan 75 tan 30 = ........................................ 1 ............................................................. tan 75 tan 30 tan 75 tan 30 = ........................................ tan 45 .............................................................. 13.

®ßæ‘ Ÿ®πå«à“ cos 10 sin 40 = «‘∏’∑” cos 10 sin 40 =

3 sin 70 sin 40 cos (90 80 ) ...............

= sin 80 sin 40 =

Ê 80o  40o ˆ Ê 80o  40o ˆ cos 2 sin Á ................................. Á ˜ ˜ 2 2 Ë ¯ Ë ¯

cos 20 = 2 sin 60 ...................

Ê 3ˆ o o 2 Á ˜ cos (90  70 ) = .......................................................... Ë 2¯ 3 sin 70 = ..........................................................

14.

®ßæ‘ Ÿ®πå«à“ cos 80 sin 50 cos 20 = 0 «‘∏’∑” cos 80 sin 50 cos 20 = (cos 80 cos 20 )sin 50 Ê 80o  20o ˆ Ê 80o20o ˆ o sin = 2 sin Á Á ˜  sin 50 ˜ 2 2 Ë ¯ Ë ¯

..................................................

= 2 sin 50 sin 30 sin 50

..................................................

= 2 sin 50 ÊÁ 1 ˆ˜ sin 50 Ë 2¯

..................................................

= sin 50 sin 50 =

.................................................. 0 ..................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 15.

®ßæ‘ Ÿ®πå«à“ tan 20 tan 40 tan 80 = «‘∏’∑” tan 20 tan 40 tan 80 =

3

o o o (sin 20 sin 40 ) sin 80 o o o (cos 20 cos 40 ) cos 80

o o o o 1 (cos 20  cos 60 ) sin (90  10 ) = 2 o o o 1 (cos 20  cos 60 ) cos 80 2

=

o o o (cos 20  cos 60 ) cos 10 o o o (cos 20  cos 60 ) cos 80

=

o o cos 60 cos 10 cos 20 cos 10 ............................. o cos 60 cos 80 o cos 20 cos 80 ................................

o o o o 1 1 (cos 30  cos 10 )  (cos 70  cos 50 ) ............................... 2 = 2 o o o o 1 1 (cos 100  cos 60 )  (cos 140  cos 20 ) ............................... 2 2 =

o o o o cos 30 (cos 10  cos 70 ) cos 50 o o o o (cos 100  cos 140 ) cos 60  cos 20

=

o o o o sin 60 ............................. 2 sin 30 sin 40  cos 50 o o o o 2 cos 120 cos 20  cos 60  cos 20 ...............................

=

o o o Ê 1ˆ sin 60 2Á ˜ cos 50  cos 50 Ë 2¯

[cos 50 = sin 40 ] o o o Ê 1ˆ 2 Á ˜ cos 20  cos 60  cos 20 Ë 2¯ o o o sin 60  cos 50  cos 50 = ................................................................................ o o o cos 60  cos 20  cos 20 60 = tan ................................................................................ 3 = ................................................................................

16.

p 2p 4p 8p 1 cos cos cos =  15 15 15 15 6 p 2p 4p 8p cos cos cos cos 15 15 15 15

®ßæ‘ Ÿ®πå«à“ cos «‘∏’∑”

4p p 8p 2 pˆ cos ˆ Ê cos cos = Ê cos Ë ¯ Ë 15 15 15 15 ¯

=

p p 1 2p 2 pˆ 1Ê cos  cos ˆ Ê cos  cos 3 5¯ 2 Ë 3 5¯ 2Ë

=

2p 2 pˆ p p Ê 1Ê cos cos  cos ˆ Ë cos Ë ¯ 3 5¯ 3 5 4

..................................................

221

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

222

=

5  1ˆ 1Ê 1 5  1ˆ Ê 1 Á  ˜ Á  ˜ ........................................ 4 ¯ 4Ë 2 4 ¯ Ë 2

=

5 1ˆ 1Ê 1 5 1ˆ Ê 1  ˜ Á  Á   ˜ ........................................ 4 4¯ 4Ë 2 4 4¯ Ë 2

1Ê 5 3ˆ Ê 5 3ˆ  ˜ Á  ˜ ........................................ Á 4Ë 4 4¯ Ë 4 4¯ 1Ê 5 9ˆ = ........................................ Á  ˜ 4Ë 16 16¯ =

1Ê 4 ˆ Á ˜ = ........................................ 4Ë 16¯ 1 = ........................................  16

17.

∂â“

tan tan 1  = 1 tan 1 tan 2

tan tan  1 tan 1 tan

=

1 2

tan tan 1 tan  tan  tan tan

=

1 2

«‘∏’∑”

2 tan tan tan tan ........................................

tan  tan ........................................ 1 tan tan tan (  ) ........................................  18.

∂â“  = «‘∏’∑”

5p 4

5p 4

®ßæ‘ Ÿ®πå«à“  =

= 1tan tan tan tan 1tan tan = ........................................ 1 = ........................................

5p tan = ........................................ 4 5 p = ........................................ 4

®ßæ‘ Ÿ®πå (1tan )(1tan ) = 2  =

5p 4

 = p

p 4

p tan (  ) = tan Ê p ˆ Ë 4¯ p tan  tan = tan 4 1 tan tan tan  tan 1 .............................................. = ........................................ 1 tan tan

1tan tan tan  tan = ........................................ .............................................. 1 tan tan tan tan = ........................................ ..............................................

223

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 (1tan )tan (1tan ) = .................................................. 11 ( 1 ) ..................................................

∫«° ∑—Èß Õߢâ“ß

(1tan )(1tan ) = .................................................. 2 .................................................. 19.

®ßæ‘ Ÿ®πå«à“ (12 sin 2)(cos sin) = sin 3cos 3 «‘∏’∑” (12 sin 2)(cos sin ) (12 sin 2) sin  = (12 sin 2) cos .................................................. (sin 2 sin 2 sin ) = (cos 2 sin 2 cos ).................................................. 2 sin 2 sin = cos 2 sin 2 cossin.................................................. sin[cos (2)cos(2)] = cos [sin (2)sin (2)]............................................................ sin cos 3cos  = cos sin 3sin .................................................. = sin 3cos 3

20.

®ßæ‘ Ÿ®πå«à“ cos 3sin 3 = (cos sin )(14 cos  sin ) «‘∏’∑” cos 3sin 3 3

3 (3 sin 4 sin ) = (4 cos 3 cos ).................................................. 3 3 3(cos sin ) = 4(cos sin ).................................................. 2

2

(cos cos  sin sin ) = 4(cos sin )..................................................3(cos sin ) 2

2

[4(cos sin cos  sin )3] = (cos sin )............................................................

sin )[4(1cos  sin )3] = (cos ............................................................ sin )(44 cos  sin 3) = (cos ............................................................ sin )(14 cos  sin ) = (cos ............................................................

2.9.2  ¡°“√µ√’ ‚°≥¡‘µ‘ °“√·°â ¡°“√µ√’ ‚°≥¡‘µ‘„™â«‘∏’°“√‡¥’¬«°—∫°“√·°â ¡°“√æ’™§≥‘µ  ¡°“√≈Õ°“√‘∑÷¡À√◊Õ  ¡°“√‡Õ°´å‚æ‡ππ‡™’¬≈ ‚¥¬Õ“»—¬§«“¡√Ÿâ‡°’ˬ«°—∫øíß°å™—πµ√’ ‚°≥¡‘µ‘ øíß°å™π— µ√’ ‚°≥¡‘µ‰‘ ¡à‡ªìπøíß°å™π— 1-1 §à“¢Õßøíß°å™π— µ√’ ‚°≥¡‘µ¢‘ Õß®”π«π®√‘ßÀ√◊Õ¡ÿ¡„¥Ê Õ“®®–´È”°—π ∂â“‚®∑¬å ‰¡à ‰¥â°”Àπ¥„À⧔µÕ∫Õ¬Ÿà „π™à«ß„¥™à«ßÀπ÷Ëß §«√µÕ∫„π√Ÿª¢Õߧà“∑—Ë«‰ª µ—«Õ¬à“ß∑’Ë 1 ®ß·°â ¡°“√ 2 sin2sin 1 = 0 ∂â“ 0    2p 2 «‘∏’∑” 2 sin sin 1 = 0 (2 sin 1)(sin 1) = 0 2 sin 1 = 0

À√◊Õ sin 1

= 0

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

224

¥—ßπ—Èπ

1 2 7p 11p  = 6 6 p 7p 11p  = 2 6 6

sin  = 

À√◊Õ sin 

,

À√◊Õ 

,

= 1 p 2

=

,

µÕ∫

∂â“‚®∑¬å ‰¡à ‰¥â°”Àπ¥™à«ß¢Õß  ¡“„Àâ §à“∑—Ë«‰ª§◊Õ 

p 2 7p  = 2np 6 11p  = 2np 6

= 2np

‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡

°‘®°√√¡∑’Ë 2.9.2 2

1. tan 3 = 1 0    p

«‘∏’∑”

,

2

tan 3 = 1 tan 3 = 1 tan 3 = 1

‡¡◊ËÕ tan 3

= 1

3 =

‡¡◊ËÕ tan 3

p 5p 9p 4 4 4

,

¥—ßπ—Èπ ‡∑à“°—∫ ®ß·°â ¡°“√ «‘∏’∑”

,

, ,

,

, ,

,

= 1

3 =

,

p 5p 9p = .............................. 12 12 12 p p 5 p 7 p 9 p 11p  .................................................. 12 4 12 12 12 12 2 sin x cos x = cos x 0  x  360



2.

tan 3 = 1

À√◊Õ

3p 4

,

7p 11p 4 4

,

3 p 7 p 11p , ,  = .............................. 12 12 12

,

2 sin x cos x = cos x

2 sin x cos xcos x = 0 2 sin x1 cos x (....................) = 0 0 cos x = ............... 90 270 x = ...............

,

À√◊Õ

0 2 sin x1 = .................... 1 sin x = .................... 2

,

30 150 x = .................... 30 , 90 , 150 , 270 ¥—ßπ—Èπ x ‡∑à“°—∫ ..................................................

225

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 3.

®ß·°â ¡°“√ 2 sin x = csc x, 0  x  360 «‘∏’∑” 2 sin x =

csc x

1 sin x 1 2 sin x = 2 1 sin x =  2

2 sin x =

....................

sin x =

1 2

....................

À√◊Õ

sin x =

1  .................... 2

x =

225 , 315 ....................

x =

45 , 135 .................... 45 , 135 , 225 , 315 ¥—ßπ—Èπ x ‡∑à“°—∫ .................................................. 4.

®ß·°â ¡°“√ 6 sin2sin 2 = 0, 0    360 2 «‘∏’∑” 6 sin sin 2 = 0 3 sin 2 2 sin 1 (....................)(....................) = 0 0 3 sin 2 = .................... 2 sin  = ....................  3 0.6667 = ....................

À√◊Õ

0 2 sin 1 = .................... 1 sin  = .................... 2 30 , 150  = ....................

318 11  = 221 49, ....................

, 150 , 221 49, 318 11 ¥—ßπ—Èπ  ‡∑à“°—∫ 30 .................................................. 5.

®ß·°â ¡°“√  ”À√—∫ 0  x  360 1) sin (2x10 ) = 0.7660 2x10 = 50 130 360 50 360 130 = 2x = x =

, , , 410 , 490 50 , 130 , .............................. , 480 40 , 120 , 400 .............................. 220 , 240 20 , 60 , ..............................

2) cos (3x30 ) = 0.8660 3x30 = = 3x = x =

°”Àπ¥ sin 50 = 0.7660

°”Àπ¥ cos 30 = 0.8660 150 , 210 , 360 150 , 360 210 , 720 150 , 720 210 150 , 210 , 510 , 570 , 870 , 930 180 , 240 540 , 600 , 900 , 960 ...................................................................... 60 , 80 , 180 , 200 , 300 , 320 ......................................................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

226 6.

®ß·°â ¡°“√ 3 sin2 2 cos  = 2, 0    360 2 «‘∏’∑” 3 sin 2 cos  = 2 2 2 2 3(1cos )2 cos 2 = 0 („™â sin cos  = 1) 2

33 cos 2 cos 2 = 0 2

3 cos 2 cos 1 = 0 cos 1 = 0 (3 cos 1)(...............) 3 cos 1 = 0

cos 1 = 0

À√◊Õ

...............

1

 = 0.333 .................... .......... À√◊Õ 3 109 28, 250 32  = .................... .................... , 109 28, 250 32, 360 ¥—ßπ—Èπ  ‡∑à“°—∫ 0 ..................................................

cos  =

7.

cos  =

...............

=

.................... 1 0, 360 ....................

®ß·°â ¡°“√ ‡¡◊ËÕ 0    360 1)

cos 2 = cos 1

«‘∏’∑”

cos 2 = cos 1 2

2 cos 1 = cos 1 2 cos 2cos  = 0 cos  (2 cos 1) = 0 0 cos  = ....................

À√◊Õ

90 , 270  = ....................

0 2 cos 1 = .................... 1 cos  = .................... 2 60 , 300  = ....................

¥—ßπ—Èπ  ‡∑à“°—∫ 60 , 90 , 270 , 300 2)

sin  cos  =

3 4

«‘∏’∑”

sin  cos  =

3 4

1 (2 sin  cos ) = 2

3 4

1 sin 2 = 2

3 4

sin 2 =

3 2

2 = 60 120 360 60 360 120 2 =

 =

, , , 60 , 120 , 420 , 480 .................................................. 30 , 60 , 210 , 240 ..................................................

227

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 3)

(12 sin ) cos 2 = 0

«‘∏’∑”

(12 sin ) cos 2 = 0 12 sin  = 0

cos 2 = 0

À√◊Õ

1  sin  = .................... 2

cos 2 = 0

210 , 330  = ....................

90 270 450 660 2 = .....................................

 =

, , , 45 , 135 , 225 , 330 .....................................

45 , 135 , 210 , 225 , 315 , 330 ¥—ßπ—Èπ  ‡∑à“°—∫ ............................................................ 4)

sin  = 2 cos (30 )

«‘∏’∑”

sin  = 2 cos (30 ) sin  = 2 cos  cos 30 sin  sin 30

[

]

Ê 3 ˆ 1 2Á cos   sin ˜ 2 2 Ë ¯

sin  =

3 cos sin  sin  = .................................................. 3 cos   = .................................................. 0 cos  = .................................................. 90 , 270  = .................................................. 5)

sin cos (30 ) = 0

«‘∏’∑”

sin cos (30 ) = 0 sin cos  cos 30 sin  sin 30 = 0 sin 

3 1 cos  sin  = 0 2 2 3 1 cos  sin  = 0 2 2

 3 cos  sin  = .........................

sin  cos 

 3 = .........................

 3 tan  = ......................... 120 , 300  = ......................... cos 2 = cos sin 

6)

«‘∏’∑”

2

2

cos sin  = cos sin  (cos sin )(cos sin ) = (cos sin )

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

228

cos sin  cos sin  (cos sin )(.........................)(.........................) = 0 cos sin 1 (cos sin )(..............................) = 0 cos sin  = 0 sin  = sin  = cos 

............... cos  ............... 1 ...............

cos sin 1 = 0

À√◊Õ

cos sin  = 1 1 1 cos  sin  = 2 2

1 ( 2 1 cos  cos 45 sin  sin 45 = .......... 2

tan  = 1

...............

π”

1 2

§Ÿ≥∑—Èß Õߢâ“ß)

[„Àâ cos (  )]

1 cos (45 ) = .......... 2

135 , 315  = ....................

45 , 315 , 405 45 = .............................. 0 , 270 , 360  = .............................. 0 , 135 , 270 , 315 , 360 ¥—ßπ—Èπ  ‡∑à“°—∫ ............................................................ 7)

«‘∏’∑”

tan 2 = 3 tan 

2 tan  2

1  tan 

= 3 tan  2

2 tan  = 3 tan  (1tan ) 2

2 tan 3 tan  (1tan ) = 0 2

tan  23(1tan )

[

]

= 0

2

3 tan 1 = 0 tan  (....................) 0 tan  = ....................

À√◊Õ

0 , 180 , 360  = .........................

2 0 3 tan 1 = .................... 2 1 tan  = .................... 3 1 1 tan  = tan  =  3 3

........ À√◊Õ

, 210  = 30 ........................

................

150 , 330  = .....................

0 , 30 , 150 , 180 , 210 , 330 , 360 ¥—ßπ—Èπ  ‡∑à“°—∫ ................................................................. cos 3 = cos 

8)

«‘∏’∑”

cos 3cos  = 0 Ê 3   ˆ Ê 3   ˆ 2 sin Á ˜ sin Á ˜ = 0 Ë 2 ¯ Ë 2 ¯ 2 sin 2 sin  = 0 sin 2 =

0 ..........

À√◊Õ

sin  =

0 ..........

229

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 , , , , 0 , 90 , 180 , 270 , 360  = ................................................ 0 , 90 , 180 , 270 , 360 ¥—ßπ—Èπ  ‡∑à“°—∫ ............................................................ 0 180 360 540 720 2 = ................................................

sin 5sin  = 0

9)

«‘∏’∑”

0 , 180 , 360  = ..............................

Ê 5   ˆ Ê 5   ˆ 2 cosÁ ˜ sin Á ˜ Ë 2 ¯ Ë 2 ¯

= 0

2 cos 3 sin 2 = 0 0 cos 3 = ..................

À√◊Õ sin 2 = 0.................. 90 , 270 , 450 , 630 , 990 0 , 180 , 360 , 540 , 720 3 = ........................................................... 2 = .......................................... 30 , 90 , 150 , 210 , 270 , 330 0 , 90 , 180 , 270 , 360  = ...........................................................  = .......................................... 0 , 30 , 90 , 150 , 180 , 210 , 270 , 330 , 360 ¥—ßπ—Èπ  ‡∑à“°—∫ ..............................................................................

10)

«‘∏’∑”

sin sin 3sin 5 = 0 (sin 5sin )sin 3 = 0 2 sin 3 cos 2sin 3 = 0 sin 3 (2 cos 21) = 0 sin 3 = 0

, , , , , , 0 , 60 , 120 , 180 , 240 , 300 , 360 ................................................................................

0 180 360 540 720 900 1080 3 = ................................................................................

 =

0 2 cos 21 = ................................................................................

1 cos 2 = ................................................................................  2 120 240 480 600 2 = ................................................................................

,

,

,

60 , 120 , 240 , 300  = ................................................................................ 0 , 60 , 120 , 180 , 240 , 300 , 360 ¥—ßπ—Èπ  ‡∑à“°—∫ .................................................................................. 11)

«‘∏’∑”

1  tan  1  tan  o tan 45  tan  o 1  tan 45 tan 

=

3

=

3

tan (45 ) =

3

45  =

 =

60 , 240 .............................. 15 , 195 ..............................

(tan 45 = 1) tan (AB) =

tan A  tan B 1  tan A tan B

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

230 12)

tan 3 = tan 

«‘∏’∑”

sin 3 cos 3

sin  cos 

=

sin 3 cos  = cos 3 sin  0 sin 3 cos cos 3 sin  = .................................................. 0 sin (3) = .................................................. 0 sin 2 = ..................................................

, , , , 0 , 90 , 180 , 270 , 360 ..................................................

0 180 360 540 720 2 = ..................................................

 = 13)

sin x = 2 sin(60 x)

«‘∏’∑”

sin x = 2(sin 60 cos xcos 60 sin x) sin x = sin x =

°”Àπ¥ tan 40 54 = 0.8660

Ê 3 ˆ 1 2Á cos x sin x˜ 2 Ë 2 ¯ 3 cos xsin x

3 cos x 2 sin x = .................................................. sin x cos x

3 = .................................................. 2

3 tan x = .................................................. 2 = 0.8660 ..................................................

,

54 220 54 x = 40 .................................................. 14)

«‘∏’∑”

sin (60 ) = 2 cos (30 ) sin  cos 60 cos  sin 60 = 2(cos  cos 30 sin  sin 30 )

3 1 sin  cos  = 2 2

Ê 3 ˆ 1 2Á cos   sin ˜ 2 Ë 2 ¯

3 1 sin  cos  = 2 2 3 sin  = 2 sin  = cos 

3 cos  ........................................ 2

tan  =

1 ........................................ 3

 =

30 , 210 ........................................

3 cos sin 

3 2  ........................................ 2 3

231

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 sin (20 ) = cos (20 )

15)

«‘∏’∑”

sin  cos 20 cos  sin 20 = cos  cos 20 sin  sin 20 o o o o sin  cos 20  cos  sin 20 cos  cos 20  sin  sin 20 = o o cos  cos 20 cos  cos 20 o o sin  sin 20 sin  sin 20  = 1 o cos  cos 20o cos  cos 20 tan tan 20 = 1........................... tan  tan 20 ........................................ tan tan  tan 20 = ................................. 1tan 20 ........................................ tan (1tan 20 ) = ................................. 1tan 20 ........................................ 0 1tan 20 = ................................. tan (1tan 20 )(....................) 0 (tan 1)(1tan 20 ) = ................................. 0 tan 1 = ..........

0 1tan 20 = ..........

À√◊Õ

1 tan 20 = ..........

1 tan  = .................... 45 , 225  = ....................

‡π◊ËÕß®“° tan 20  0

45 ·≈– 225 ¥—ßπ—Èπ  ‡∑à“°—∫ .................................................. 16)

2 sin x = tan x 0  x  360

«‘∏’∑”

2 sin x = tan x

,

2 sin x =

sin x cos x π 0 cos x

,

2 sin x cos x = sin x 2 sin x cos xsin x = sin x(2 cos x1) sin x = x =

0 .......... 0 , 180 , 360 ..............................

0 .................... 0 = .................... À√◊Õ 2 cos x1

=

cos x = x =

0 , 60 , 180 , 300 , 360 ¥—ßπ—Èπ x ‡∑à“°—∫ .................................................. 17)

2 cos x = cot x 0  x  360

«‘∏’∑”

2 cos x = cot x

,

2 cos x =

cos x sin x π 0 sin x

2 sin x cos x = cos x 2 sin x cos xcos x = 0 2 sin x1 = 0 cos x(..................)

,

0 .......... 1 ..........

2

60 , 300 ....................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

232 0 cos x = ....................

0 2 sin x1 = .................... 1 sin x = .................... 2

À√◊Õ

90 270 x = ....................

,

30 150 x = ....................

,

30 , 90 , 150 , 270 ¥—ßπ—Èπ x ‡∑à“°—∫ .................................................. 18)

cos (3x75 ) =

3 0  x  360 2

«‘∏’∑”

cos (3x75 ) =

3 2

,

3x75 = 30 330 390 690 750

,

,

,

,

,

,

,

,

405 465 765 825 3x = 105 ..................................................

,

,

,

,

135 155 255 275 x = 35 .................................................. 19)

sin xcos x = 0

«‘∏’∑”

sin xcos x = 0 sin x = cos x

sin x cos x

=

cos x , cos x π 0 cos x

tan x = 1

,

135 315 x = .................... 2

20)

2 tan  = 3 sec 

«‘∏’∑”

2 tan  = 3 sec 

2

2

2(sec 1) = 3 sec  2

2 sec 23 sec  = 0 2

2 sec 3 sec 2 = 0 2 sec 1 sec 2 (....................)(....................) 0 0 2 sec 1 = ............

0 sec 2 = .................

À√◊Õ

1 sec  = ............  2

2 sec  = ................. 60 , 300  = .................

‡π◊ËÕß®“° sec   1 À√◊Õ sec  1 60 , 360 ¥—ßπ—Èπ  = ................. 2

21)

4 sin  = 3

«‘∏’∑”

4 sin  = 3

2 2

sin  =

3 4

233

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

3 sin  = ............... 2 p 2p  = ............... 3 3

3 sin  =  ............... 2

3 sin  =  ............... 2 4 p 5p  = ............... 3 3

À√◊Õ

,

,

§à“∑—Ë«‰ª¢Õß  ∑’Ë∑”„Àâ ¡°“√‡ªìπ®√‘ߧ◊Õ p 2p 5p 4p 2np , 2np.........., 2np.........., 2np.......... ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ 3 3 3 3

p

np §”µÕ∫√«¡§◊Õ .................... ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ 3 2

22)

tan 1 = 0

«‘∏’∑”

tan 1 = 0

2

2

tan  = 1 tan  = 1

....................

tan  =

 =

1 .................... p 5p , .................... 4 4

À√◊Õ

tan  =

 =

1 .................... 3p 7p .................... , 4 4

§à“∑—Ë«‰ª¢Õß  ∑’Ë∑”„Àâ ¡°“√‡ªìπ®√‘ߧ◊Õ p 5p 3p 7p .........., 2np.........., 2np.........., 2np.......... ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ 4 4 4 4 p np §”µÕ∫√«¡§◊Õ .................... ‡¡◊ Õ Ë n ‡ªìπ®”π«π‡µÁ¡ 4

2np

23)

tan  sin tan  = 0

«‘∏’∑”

tan  sin tan  = 0 sin 1 tan (....................) = 0 0 tan  = ...............

À√◊Õ

0, p  = ...............

0 sin 1 = ............... 1 sin  = ............... 3p  = ............... 2

´÷Ëß tan  À“§à“‰¡à ‰¥â 2np0 , ............... 2npp ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ §à“∑—Ë«‰ª¢Õß  ∑’Ë∑”„Àâ ¡°“√‡ªìπ®√‘ß §◊Õ ............... np ¥—ßπ—Èπ  = .......... ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ 24)

cos 2 = cos 

«‘∏’∑”

cos 2 = cos  2

2 cos 1 = cos 

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

234 2

2 cos cos 1 = 0 (2 cos 1)(cos 1) = 0 ..................................................................................................................................................... 0 2 cos 1 = ............... 1 cos  = ...............  2 2p 4p  = ............... 3 3

0 cos 1 = ...............

À√◊Õ

1 cos  = ............... 0, 2p  = ...............

,

4p 2p p §à“∑—Ë«‰ª¢Õß  §◊Õ 2np.........., 2np.........., 2np, 2np.......... ‡¡◊ËÕ n ‡ªìπ®”π«π‡µÁ¡ 3 3

2.10 °Æ¢Õß‚§‰´πå·≈–‰´πå °Æ¢Õß‚§‰´πå „π√Ÿª “¡‡À≈’ˬ¡ ABC „¥Ê ∂â“ a, b, c ‡ªì𧫓¡¬“«¢Õߥâ“πµ√ߢⓡ¡ÿ¡ A, B ·≈– C µ“¡≈”¥—∫ 2

2

2

2

2

2

2

2

2

a = b c 2bc cos A b = c a 2ca cos B c = a b 2ab cos C Ÿ

µ—«Õ¬à“ß∑’Ë 1 °”Àπ¥ A = 60 , b = 40 ·≈– c = 60 ®ßÀ“ a 2 2 2 «‘∏’∑” ®“°°Æ¢Õß‚§‰´πå a = b c 2bc cos A 2

2

= 40 60 2(40)(60) cos 60 Ê 1ˆ = 1 6003 6002(2 400) Á ˜ Ë 2¯

,

,

,

= 2 800

,

¥—ßπ—Èπ

a =

20 7

= 52.915

µÕ∫

235

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 µ—«Õ¬à“ß∑’Ë 2 °”Àπ¥ a = 4, b = «‘∏’∑” ®“°°Æ¢Õß‚§‰´πå

2 19 b

2

·≈– c = 6 ®ßÀ“ 2

Ÿ

B

2

= c a 2ca cos B

cos B = =

2

2

2

2

c a b 2ca

2

6  4  (2 19) 2(6)( 4)

2

36  16  76 48 1 =  2 =

Ÿ

B = 120

¥—ßπ—Èπ

µÕ∫

°“√„™â‡§√◊ËÕߧ”π«≥À“§«“¡¬“«¢Õߥâ“π·≈–¢π“¥¢Õß¡ÿ¡ ®“°

a

2

2

2

= b c 2bc cos A

À“ a ®“°‡§√◊ËÕߧ”π«≥¥—ßπ’È b x

2

 c x

2

 2  b  c  A cos = 2

cos A =

2

b  c  a 2 bc

x

2

À“¢π“¥¢Õß A ®“°‡§√◊ËÕߧ”π«≥¥—ßπ’È ( b x

2

∂â“

 c x

2

 a x

a b = sin A sin B

2

)

1

 2  b  c = cos

®–‰¥â a =

b sin A sin B

À“ a ®“°‡§√◊ËÕߧ”π«≥¥—ßπ’È b  A sin

 B sin

=

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

236

a b = sin A sin B

∂â“

®–‰¥â sin A =

a sin B b

À“¢π“¥¢Õß A ®“°‡§√◊ËÕߧ”π«≥¥—ßπ’È a  B sin  b =

æ◊Èπ∑’Ë¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC

1

sin

1 bc sin A 2 1 (20)(17.93) sin 45 2

= =

= (10)(17.93)(0.707) = 126.7651

µ“√“ßÀπ૬

°“√„™â‡§√◊ËÕߧ”π«≥ ®“°µ—«Õ¬à“ß∑’Ë 1 2

a

2

2

= b c 2b cos A 2

2

= 40 60 2(40)(60) cos 60 a =

2

2

40  60  2( 40)(60) cos 60

o

≈”¥—∫°“√„™â‡§√◊ËÕߧ”π«≥À“ a ¥—ßπ’È 2

a = 40 x

 60 x

2

 2  40  60  60.0 cos =

= 52.91502622

®“°µ—«Õ¬à“ß∑’Ë 2 2

cos A =

2

6  4  (2 19) 2(6)( 4)

cos A = 6 x

2

 4 x

2

2

 2 x

2

 19

 2  6  4 = = 0.5 1

A =  0.5 = 2nd cos = 120

®“°µ—«Õ¬à“ß∑’Ë 3 c =

20 sin 60 o sin 75

o

c = 20  60 sin  75 sin = = 17.93150944

x

2

x

=

x

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

°‘®°√√¡∑’Ë 2.10.1 1.

®ß„™â°Æ¢Õß‚§‰´πåÀ“§«“¡¬“«¢Õߥâ“π∑’ˇÀ≈◊Õ ‚¥¬„™â‡§√◊ËÕߧ”π«≥ 1) a = 45, b = 67, C = 35 2

= a b 2ab cos C

2

= 45 67 2(45)(67) cos 35

c

c

2

2

c = 2)

a =

2

2

= 20 40 2(20)(40) cos 28

b =

2

2

=

a = b = 2

=

2

=

a a

a = c = 2

=

2

=

b = 6)

c = b b

24.23394007 ........................................................................................ 10.5, c = 40.8, A = 120

= b c 2bc cos A

a

b

2

2

a

b

2

2

c =

5)

39.68013575 ........................................................................................ 20, b = 40, C = 28

= a b 2ab cos C

c

4)

2

2

c

3)

2

2

=

2

=

b =

2

2

2

(10.5) (40.8) 2(10.5)(40.8)cos 120 ........................................................................................ 46.93921601 ........................................................................................ 12.9, c = 15.3, A = 104.2 2 2 b c 2bc cos A ........................................................................................ 2 2 (12.9 )(15.3) 2(12.9)(15.3) cos 104.2 ........................................................................................ 22.30095598 ........................................................................................ 38, a = 42, B = 135.3 2 2 c a 2ca cos B ........................................................................................ 2 2 38 42 2(38)(42)cos 135.3 ........................................................................................ 74.00589112 ........................................................................................ 3.49, a = 3.54, B = 5.4 2 2 c a 2ca cos B ........................................................................................ 2 2 (3.49) (3.54) 2(3.49)(3.54) cos 5.4 ........................................................................................ 0.334903425 ........................................................................................

237

238

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

2.

®ß„™â°Æ¢Õß‚§‰´πåÀ“¢π“¥¢Õß¡ÿ¡∑’Ë „À≠à∑’Ë ÿ¥ (µ√ߢⓡ¥â“π∑’ˬ“«∑’Ë ÿ¥) ‚¥¬„™â‡§√◊ËÕߧ”π«≥ 1) a = 7.23, b = 6.00, c = 8.61 2) a = 16.0, b = 17.0, c = 18.0 2

®“°

2

a b c 2ab

cos C =

2

2

2

®“°

2

(7.23)  6  (8.61) 2(7.23)(6)

=

cos C =

2

2

= 0.163 80.6 .................................

C =

3.

2

0.40625 ................................. 66 .................................

,

2

b c a ................................. 2bc

= =

2

2

2

cos B =

c a b ................................. 2ca

14 10 18 .................................

=

500 300 600 .................................

0.1 ................................. 95.7 .................................

= 0.067

2

2

®“°

2

2(14)(10)

B =

2

2

2

2(500)(300)

................................. 93.8 .................................

®ßÀ“ à«π∑’ˇÀ≈◊Õ¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC ‚¥¬„™â°Æ¢Õß‚§‰´πå ‡¡◊ËÕ°”Àπ¥ 1) a = 4.21, b = 1.84, C = 30.7 2 2 2 ®“° c = a b 2ab cos C 2

2

= (4.21) (1.84) 2(4.21)(1.84) cos 30.7 =

7.788180727 ....................................................... 2.79 .......................................................

c =

2

2

b c a 2 bc

cos A =

2

2

2

(1.84)  (2.79)  ( 4.21) 2(1.84)(2.79)

=

2

= 0.638382422

....................................................... 129.7 ....................................................... 180 129.7 30.7 ....................................................... 19.6 .......................................................

A = B = =

2) a = 2 b = 3 c = 4

,

,

2

®“°

cos A =

2

=

,

cos A =

A =

2

16 17 18

................................. 2(16)(17)

4) a = 300 b = 600 c = 500

,

2

®“°

2

=

C =

3) a = 18 b = 14 c = 10

,

2

a b c 2ab

2

b c a 2 bc

2

2

cos B =

2

c a b 2ca

2

239

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 2

= = A = C = =

2

3 4 2 2(3)( 4)

2

2

=

2

4 2 3 2( 4)(2)

2

= 0.6875

24.833 ........................................ 29 ........................................ 180 29 46.6 ........................................ 104.4 ........................................

B =

°Æ¢Õ߉´πå „π√Ÿª “¡‡À≈’ˬ¡ ABC „¥Ê ∂â“ a, b, A, B ·≈– C µ“¡≈”¥—∫

c

........................................ 46.6 ........................................

‡ªì𧫓¡¬“«¢Õߥâ“πµ√ߢⓡ¡ÿ¡

sin A sin B sin C = = a b c

Y

Y

C(b cos A, b sin A)

C(b cos A, b sin A) b

a

A(0, 0)

c

a

B(c, 0)

X

B

æ◊Èπ∑’Ë¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC

= =

Ÿ

µ—«Õ¬à“ß∑’Ë 3 °”Àπ¥ A «‘∏’∑” ®“°°Æ¢Õ߉´πå ‡π◊ËÕß®“°

Ÿ

= 45 C = 60

,

sin B b Ÿ

Ÿ

Ÿ

A  B C Ÿ

=

X

·≈– b = 20 ®ßÀ“ c ·≈–æ◊Èπ∑’Ë¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC sin C c

= 180

Ÿ

B = 75 o o sin 75 sin 60 = 20 c c =

A

1 b sin Ac 2 1 bc sin A 2

45  B 60 = 180

·∑π§à“®–‰¥â

c

b

20 sin 60 o sin 75

o

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

240

=

3 2 31 2 2

20 

=

10 3  2 2 31  31 31

=

10 6 ( 3  1) ( 6 = 2.449

,

3 = 1.732)

= 17.93

µÕ∫

°‘®°√√¡∑’Ë 2.10.2 1.

®ßÀ“ à«π∑’ˇÀ≈◊Õ¢Õß√Ÿª “¡‡À≈’ˬ¡ ABC ‚¥¬„™â°Æ¢Õ߉´πå·≈–‡§√◊ËÕߧ”π«≥ 100 1) A = 32 , B = 48 , a = 10 ®–‰¥â C = .................... ®“° sina A = sinb B ®“° sina A = sinc C b = =

a sin B sin A

c =

a sin C .............................. sin A

=

10 sin 100 .............................. o

o

10 sin 48 .............................. o sin 32

c =

b sin C .............................. sin B

=

40 sin 110 .............................. o

..............................

a sin A

=

40 sin 20 .............................. o

=

17.9 ..............................

= 49.1

b sin A sin B o 15 sin 50 = .............................. o sin 40 = 17.9

..............................

b sin B b sin A .............................. sin B

sin 50

a =

=

a =

o

.............................. 90 3) A = 50 , B = 40 , b = 15 ®–‰¥â C = .................... ®“° sina A = sinb B ®“°

sin 32

= 18.6

= 14

.............................. 20 2) C = 110 , B = 50 , b = 40 ®–‰¥â A = .................... ®“° ®“° sinb B = sinc C

o

b sin B

o

sin 50

c sin C b sin C c = sin B o 15 sin 90 = .............................. o sin 40 =

= 23.3

..............................

241

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 4) a = 4 b = 8 A =

,

,

30 ....................

®“°

a sin A

®–‰¥â

sin B =

b sin B b sin A a

sin B =

8 sin 30 .............................. 4

=

5) C = 70 b = 100 c = 100

,

=

a = =

c =

c sin C a sin C sin A

c =

4 sin 60 .............................. o

=

o

sin 30 6.9 =

.............................. 90 .............................. 180 30 90 = 60 .............................................

C =

a sin A

®–‰¥â

1

B =

®“°

a sin A

o

=

,

®“°

..............................

70 40 ®–‰¥â B = ...................., A = ....................

b sin B b sin A .............................. sin B

100 sin 40 o sin 70

o

..............................

= 68.4

..............................

2.11 °“√À“√–¬–∑“ß·≈–§«“¡ Ÿß ¡ÿ¡°â¡ ¡ÿ¡‡ß¬

°“√«—¥¡ÿ¡ N

¡ÿ¡‡ß¬

A



∑‘»∑“ß Õß»“ ∑‘»µ–«—πµ°‡©’¬ß‡Àπ◊Õ √–¥—∫ “¬µ“

¡ÿ¡°â¡

A

E

∑‘»∑“ß Õß»“ ∑‘»µ–«—πÕÕ°‡©’¬ß„µâ

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

242

°‘®°√√¡∑’Ë 2.11 1.

„Àâπ—°‡√’¬πÀ“§à“¢Õß x ´÷Ëß·∑𧫓¡¬“«¢Õߥâ“π 1)

2) 30

a

100



¡.

a

32 x

100

58

¡.

¡.

¡.

55

= sin 58 = a =

58 32 = 26 ..............................

=

100 a

=

100 .............................. o sin 58

=

x = = =

a

sin 32 a sin o sin 32

.............................................

= 97.56

‡¡µ√ .............................................

=

a =

o

o 100 sin 26 o o sin 58 sin 32 100  0.4384 0.8480  0.5299

55 30 = 25 .............................. 90 30 = 120 ..............................

‚¥¬°Æ¢Õ߉´πå 100 sin

‚¥¬°Æ¢Õ߉´πå x sin

x

a sin

100 sin sin

x = a sin 55

·∑π§à“ a,

x =

o 100 sin sin 55 sin o o 100 sin 120 sin 55 o sin 25

=

.............................................

=

1000.86600.8192 ............................................. 0.4226

= 167.87

‡¡µ√ .............................................

2.

‡§√◊ËÕß∫‘π 2 ≈” ∫‘πÕÕ°®“° π“¡∫‘π‡¥’¬«°—π·≈–‡«≈“‡¥’¬«°—π ≈”Àπ÷Ëß∫‘π‰ª∑“ß∑‘»µ–«—π ÕÕ°‡©’¬ß‡Àπ◊ե⫬§«“¡‡√Á« 400 ‰¡≈åµàÕ™—Ë«‚¡ß ≈”∑’Ë Õß∫‘π‰ª∑“ß∑‘»µ–«—πµ°¥â«¬§«“¡‡√Á« 300 ‰¡≈åµàÕ™—Ë«‚¡ß ®ßÀ“«à“À≈—ß®“°∑’ˇ§√◊ËÕß∫‘π Õß≈”π’ÈÕÕ°®“° π“¡∫‘π‰ª‰¥â 2 ™—Ë«‚¡ß ®– Õ¬ŸàÀà“ß°—π°’Ë ‰¡≈å

243

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 «‘∏’∑”

B

800

‰¡≈å

135 C 600

‰¡≈å A

„Àâ A ‡ªìπµ”·ÀπàߢÕß π“¡∫‘π ‡¡◊ËÕ‡«≈“ºà“π‰ª 2 ™—Ë«‚¡ß 800 ‡§√◊ËÕß∫‘π≈”·√°Õ¬Ÿà∑’Ë B ·≈– AB = ...............‰¡≈å 600 ‡§√◊ËÕß∫‘π≈”∑’Ë ÕßÕ¬Ÿà∑’Ë C ·≈– AC = ...............‰¡≈å Ÿ 135 BAC = ............... ®“°°Æ¢Õß‚§‰´πå 2

BC

2

2

= AB AC 2ABAC cos A 2

2

= 800 600 2(800)(600) cos 135 = 1678822.51 .............................. BC = 1295.693833 .............................. 1,295.69 ¥—ßπ—Èπ ‡¡◊ËÕ‡«≈“ºà“π‰ª 2 ™—Ë«‚¡ß ‡§√◊ËÕß∫‘πÕ¬ŸàÀà“ß°—π ..................... °‘‚≈‡¡µ√ 3.

∑’Ë®ÿ¥®ÿ¥Àπ÷Ëß¡Õ߇ÀÁπ¬Õ¥‡ “‰øøÑ“·√ß Ÿß‡ªìπ¡ÿ¡‡ß¬ 30 ‡¡◊ËÕ‡¥‘πµ√߇¢â“‰ª¬—߇ “‰øøÑ“·√ß  Ÿßπ—Èπ‡ªìπ√–¬–∑“ß 40 ‡¡µ√ ®–¡Õ߇ÀÁπ¬Õ¥‡ “‰øøÑ“·√ß Ÿß‡ªìπ¡ÿ¡‡ß¬ 75 ®ßÀ“«à“‡ “ ‰øøÑ“·√ß Ÿßµâππ—Èπ Ÿß‡∑à“‰√ «‘∏’∑” „Àâ A ‡ªìπ®ÿ¥∑’Ë¡Õ߬ե‡ “‰øøÑ“·√ß Ÿß§√—Èß·√°‡ªìπ¡ÿ¡‡ß¬ 30 B ‡ªìπ®ÿ¥∑’Ë¡Õ߬ե‡ “‰øøÑ“·√ß Ÿß§√—Èß∑’Ë Õ߇ªìπ¡ÿ¡‡ß¬ 75 CD ‡ªì𧫓¡ Ÿß¢Õ߇ “‰øøÑ“·√ß Ÿß D

75 A

30

40

¡.

AB =

„π√Ÿª “¡‡À≈’ˬ¡ ACD; tan 30

=

B

C

40 ............... ‡¡µ√ CD AC

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

244

1 = 3

CD AB  BC

1 = 3

CD 40  BC

„π√Ÿª “¡‡À≈’ˬ¡ BCD; tan 75

=

2 3

=

CD BC CD BC

CD .............................. 2 

BC =

3

1 = 3

·∑π§à“ BC „π (1);

CD CD 40  2 3

CD 2 3

=

3 CD

CD 2  3  2 3 2 3

=

3 CD

40(2 3 )CD =

3 CD

40 40

.....(1)

40 .............. 40 .............. CD ..............

= ( 3 2 3 )CD

CD ..............

= 10( 3 1)

............................................ 2( 3 1)CD ............................................ 31 20 ............................................ 

= =

31

31

............................................ 102.732 = ............................................ 27.32 = ............................................ 27.32 ‡¡µ√ ¥—ßπ—Èπ ‡ “‰øøÑ“·√ß Ÿß Ÿß ............... E

Ÿ

Ÿ

BAC = DAE

®“°√Ÿª

4.

Ÿ

36

BAD

=  =

BC = 9 CD = 72 DE = 36

D

,

,

®ßÀ“ AB 72



«‘∏’∑”

A





C 9 B

tan ( ) =

BE =

BE AB

=

............... ·≈–„Àâ AB = x 117 117 ............... x

245

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 BD AB BC tan  = AB

tan =

=

81 ............... x

=

9 ............... x

tan ( ) =

¥—ßπ—Èπ

117 x

117 x

tan  tan  1 tan tan 

=

81 9  x x 81 9 1  x x

=

90 x 2 x  729 x

117 x

2

=

2

117(x 729) = 2

117x 117729 = 2

=

2

=

27x x

= x = ⬇

¥—ßπ—Èπ

AB =

90 x  x x 2  729 2

90x .............................. 2 90x .............................. 117729 .............................. 11727 .............................. 8139 .............................. 9 39 .............................. 56.20 .............................. 56.2 ..............................

¡.

™“¬§πÀπ÷Ë߬◊πÕ¬Ÿà∫πÀπ⓺“´÷Ëß Ÿß 300 ‡¡µ√  —߇°µ‡ÀÁπ‡√◊Õ Õß≈”§◊Õ A ·≈– B ‡√◊Õ A Õ¬Ÿà ∑‘»µ–«—πµ°¢Õ߇¢“ ‡ªìπ¡ÿ¡°¥≈ß 28 ‡√◊Õ B Õ¬Ÿà „π∑‘»∑“ß 20 ∑‘»µ–«—πµ°‡©’¬ß„µâ ‡ªìπ¡ÿ¡ °¥≈ß 19 ®ßÀ“√–¬–∑“ß√–À«à“߇√◊Õ∑—Èß Õß «‘∏’∑” „Àâ P ‡ªìπ®ÿ¥ —߇°µ‡√◊Õ A ·≈– B P PC ‡ªì𧫓¡ Ÿß¢ÕßÀπ⓺“ N 300 ‡¡µ√ PC = .......... 300

5.

2

tan 28 =

28

A

C 19

20

AC =

PC AC PC

o tan 28

=

300 ........................................ o tan 28

=

300 = 564.23 ........................................ 0.5317

B

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

246

N P P

A

28

B

C

„π∑”πÕ߇¥’¬«°—π BC

= =

Ÿ

ACB

A

19

300 tan 19

C

B

o

300 = 871.33 ............................................. 0.3443

= 90 20 = 70

.......................

‚¥¬°Æ¢Õß‚§‰´πå AB

2

2

2

= AC BC 2ACBC cos 70 2

2

= (564.23) (871.33) 2564.23871.330.3420

6.

.......................................................................................... ,296.1821 = 741 .......................................................................................... AB = 860.98 .......................................................................................... 861 ¥—ßπ—Èπ ‡√◊Õ∑—Èß ÕßÀà“ß°—πª√–¡“≥ ............... ‡¡µ√ ®“°®ÿ¥ Õß®ÿ¥§◊Õ A ·≈– B Õ¬Ÿà∫πÕ“§“√‡¥’¬«°—πÀà“ß°—π 19 ‡¡µ√ „π·π«µ—Èß ¡Õ߇ÀÁπ √∂¬πµå§—πÀπ÷Ë߮ելŸàÀπâ“Õ“§“√™—Èπ≈à“߇ªìπ¡ÿ¡°â¡ 58 ·≈– 34 µ“¡≈”¥—∫ ®ßÀ“«à“®ÿ¥ B Õ¬Ÿà  Ÿß®“°æ◊Èπ√–¥—∫‡¥’¬«°—∫√∂¬πµå‡∑à“‰√ «‘∏’∑” ®“°√Ÿª C ‡ªìπµ”·ÀπàߢÕß√∂¬πµå A 58 19 AB = .......... ‡¡µ√ 19 ¡. „π√Ÿª “¡‡À≈’ˬ¡ ABC 34

Ÿ

B

BAC Ÿ

ACB C

‚¥¬°Æ¢Õ߉´πå

90 58 = 32 = .............................. 58 34 = 24 = ..............................

D

BC sin 32

o

=

AB o sin 24

o 19 sin 32 BC = .................................... o sin 24

„π√Ÿª “¡‡À≈’ˬ¡ BCD;

BD = BC sin 34 o o 19 sin 32 sin 34 = .................................... o sin 24

247

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 =

190.52990.5592 .................................................. 0.4067

= 13.84

.................................................. 13.8..... ‡¡µ√ ¥—ßπ—Èπ ®ÿ¥ B Õ¬Ÿà Ÿß®“°æ◊Èπ .......... 7.

∂ππ¢÷Èπ‡π‘π∑”¡ÿ¡°—∫·π«√“∫ 32 ™“¬§πÀπ÷Ëß∂’∫®—°√¬“π®“°®ÿ¥∑’Ë¡Õ߇ÀÁπ¬Õ¥‡¢“·ÀàßÀπ÷Ëß ‡ªìπ¡ÿ¡‡ß¬ 47 ‡¡◊ËÕ∂’∫®—°√¬“π¢÷Èπ‡π‘π‰ª‰¥â 1 °‘‚≈‡¡µ√ ¡Õ߇ÀÁπ¬Õ¥‡¢“‡ªìπ¡ÿ¡‡ß¬ 77 ®ßÀ“«à“¬Õ¥‡¢“Õ¬Ÿà Ÿß®“°·π«√“∫‡∑à“‰√ °”Àπ¥„Àâ sin 47 = 0.731 «‘∏’∑”

„Àâ P ‡ªìπ¬Õ¥‡¢“ A ·≈– B ‡ªìπ®ÿ¥ —߇°µ¬Õ¥‡¢“ Ÿ Ÿ PAC = 47 , BAC = 32

P

77 B

E

Ÿ

PDC

=

Ÿ

P BE = 77

AB = 1 000

,

47 32 A

77 D

‡¡µ√

C

„Àâ x ‡ªì𧫓¡ Ÿß¢Õ߬ե‡¢“®“°æ◊Èπ√“∫ Ÿ sin PAC „π√Ÿª “¡‡À≈’ˬ¡ PAC; x = PA ........................................ sin 47 = PA ........................................

„π√Ÿª “¡‡À≈’ˬ¡ PAB;

Ÿ

PAB Ÿ

APB

¥—ßπ—Èπ ®“°°Æ¢Õ߉´πå

Ÿ

ABP PA Ÿ

sin ABP

= 15 = 47 32 ........................................ = 77 47 ........................................ = 30 = 135 ........................................ AB = Ÿ sin APB Ÿ

AB sin A BP PA = ........................................ Ÿ sin A P B o 1000 sin 135 = ........................................ o sin 30

Ê 1ˆ 1000Á ˜ Ë 2¯ = ........................................ 1 2 1000 2 = ........................................

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

248

x = = =

PA sin 47 ........................................ 1000 2 0.731 ........................................ 731 2 ........................................

731 2 ¥—ßπ—Èπ ¬Õ¥‡¢“ Ÿß ....................‡¡µ√ 8.

¡ÿ¡¬°¢÷Èπ¢Õ߬եµ÷°À≈—ßÀπ÷Ëß®“°®ÿ¥ A ·≈– B ∫πæ◊Èπ√“∫‡ªìπ 22 ·≈– 40.5 µ“¡≈”¥—∫ ∂â“ A ·≈– B Àà“ß°—π 180 ‡¡µ√ ®ßÀ“§«“¡ Ÿß¢Õ߬եµ÷°À≈—ßπ’È «‘∏’∑” ®“°√Ÿª A ·≈– B ‡ªìπ®ÿ¥ —߇°µ¢Õ߬եµ÷° D CD ‡ªì𧫓¡ Ÿß¢Õ߬եµ÷° Ÿ

= 22

CAD 22

A

40.5

Ÿ

CBD = 40.5

C

B

AB = 180 Ÿ

ADB = BD o = sin 22

„π√Ÿª “¡‡À≈’ˬ¡ ABD, ‚¥¬°Æ¢Õ߉´πå

BD =

‡¡µ√

18.5 ..............................

AB sin 18.5

o

.......... o 180 sin 22 .............................................

„π√Ÿª “¡‡À≈’ˬ¡ BCD;

o sin 18.5 CD = BD sin 40.5

·∑π§à“ BD ®–‰¥â

CD =

o

o

180 sin 22 sin 40.5 ............................................. o sin 18.5

=

1800.37460.6494 ............................................. 0.3173

= 138.00

.............................................

¥—ßπ—Èπ ¬Õ¥µ÷° Ÿß ............... ‡¡µ√ 138 ·≈– B Õ¬Ÿà∫πæ◊Èπ√“∫Àà“ß°—π 200 ‡¡µ√ ∑’Ë®ÿ¥ B ¡Õ߇ÀÁπ®ÿ¥ P ∫π¬Õ¥µ÷°‡ªìπ¡ÿ¡¬°¢÷Èπ 25 Ÿ Ÿ ∂â“ PQ ‡ªì𧫓¡ Ÿß¢Õßµ÷° BAQ = 60 ·≈– ABQ = 40 ®ßÀ“ 1) §«“¡ Ÿß¢Õßµ÷° 2) ¡ÿ¡¬°¢÷Èπ¢Õ߬եµ÷°∑’Ë®ÿ¥ P P «‘∏’∑”

9. A

P

A



P

Q Q

25

Q

A



25

60

40

B

®“°√Ÿª

Ÿ

AQB = 180 60 40 = 80

............................................

B

249

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1 1)

„π√Ÿª “¡‡À≈’ˬ¡ ABQ ‚¥¬°Æ¢Õ߉´πå BQ sin 60

„π√Ÿª “¡‡À≈’ˬ¡ BPQ;

o

=

200 sin 80

o o

BQ =

200 sin 60 .................................................. o

=

200 sin 60 tan 25 .................................................. o

=

2000.86600.4663 ..................................................

sin 80 PQ = BQ tan 25

o

o

sin 80

0.9848

= 82.01

..................................................

2)

82 ¥—ßπ—Èπ µ÷° Ÿß ............... ‡¡µ√ „Àâ  ‡ªìπ¡ÿ¡¬°¢÷Èπ¢Õ߬եµ÷°∑’Ë®ÿ¥ A tan  =

PQ AQ

„π√Ÿª “¡‡À≈’ˬ¡ ABQ ‚¥¬°Æ¢Õ߉´πå AQ sin 40

o

=

200 sin 80

o

o 200 sin 40 AQ = ............................................................ o sin 80 o o o 200 sin 60 tan 25 sin 80 tan  = ............................................................  o o 200 sin 40 sin 80 0.6283 = ............................................................ 32.1  = ............................................................ 32.1 ¥—ßπ—Èπ ¡ÿ¡¬°¢÷Èπ∑’Ë®ÿ¥ A ‡∑à“°—∫ ...............

10.

™“¬§πÀπ÷ßË Õ¬Ÿà „π‡√◊Õ —߇°µ‡ÀÁπ¥«ß‰ø∫π¬Õ¥Õ“§“√√‘¡Ωíßò ·¡àπÈ”‰ª∑“ß∑‘»‡Àπ◊Õ‡ªìπ¡ÿ¡¬°¢÷πÈ ‡¡◊ËÕ‡√◊Õ·≈àπ‰ª∑“ß∑‘»µ–«—πÕÕ° 500 ‡¡µ√  —߇°µ‡ÀÁπ¥«ß‰ø∫π¬Õ¥Õ“§“√‡¥‘¡‡ªìπ¡ÿ¡¬° ¢÷Èπ ®ßÀ“ 1) §«“¡ Ÿß¢Õߥ«ß‰ø¬Õ¥Õ“§“√ 2) ¢π“¥¢Õß¡ÿ¡∫πÕ“§“√√‘¡Ωíòß·¡àπÈ”√Õß√—∫√–¬–∑“ß∑’ˇ√◊Õ‡≈àπ «‘∏’∑”

1)

„À⥫߉ø¬Õ¥Õ“§“√Õ¬Ÿà Ÿß h ‡¡µ√ „π√Ÿª “¡‡À≈’ˬ¡ ACD;

·∫∫Ωñ° §≥‘µ»“ µ√å‡æ‘Ë¡‡µ‘¡ ¡.5 ¿“§‡√’¬π∑’Ë 1

250

D

h AC

N

= tan

AC = C

„π√Ÿª “¡‡À≈’ˬ¡ BCD;



h BC B

A 500

h .................... tan

= tan

BC =

¡.

h .................... tan

„π√Ÿª “¡‡À≈’ˬ¡ ABC; 2

2

h ˆ Ê Ë tan ¯

2

BC AC

Ê h ˆ Á ˜ Ë tan ¯

2

2

2

=

500 ....................

1 1 ˆ 2 Ê  h Á 2 2 ˜ Ë tan tan ¯

=

2 500 ....................

2 2 2 Ê tan  tan ˆ h Á 2 2 ˜ Ë tan tan ¯

=

500 ....................

........................................ ........................................

2)

= AB

2

h =

500 tan tan .................................................. 2 2

BC =

h ..................................................

Ÿ

sin ACB

tan  tan

tan

=

500 ..................................................

=

500 ..................................................

=

500 tan .................................................. h

BC

h tan

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF