4G RF Planning and Optimization (Day One) - 6 Sep 2014
Short Description
4G RF Planning and Optimization...
Description
Paragon Hotel, Jakarta - Day One 4 January 2014
Training Material
4G RF Planning & Optimization
Our Product and Service
Learning Center Research and Development
Industrial Product www.floatway.com
4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue
3
1G to 4G 1G 2G
3G
4G
Wireline and Wireless: Milestones
FTTH 100 Mbps
100 Mbps
3.9G
ADSL2+ 25 Mbps
10 Mbps ADSL 3 to 5 Mbps
1 Mbps
100 Kbps
LTE 10 Mbps
3.5G 3.5G
ADSL 1 Mbps ISDN 128 Kbps
3G 2.5G
2G
HSPA+ 5 Mbps
HSDPA 1 Mbps
UMTS 350 Kbps
EDGE 100 Kbps GPRS 40 Kbps
10 Kbps 2000
2005
2010
Mobile throughput follows landline throughput by approx. factor 10
Wireline and Wireless: Milestones (Update)
6
Participant Introduction
• Name • Current Job Profile • Previous Experience • Expectations, etc.
Alfin Hikmaturokhman.,MT
7
RADIO CELLULAR TECHNOLOGY
8
2G & 3G Radio Technology (Need Update) from GSM to UMTS Evolution: Data rates EDGE Enhanced Data rates for the GSM Evolution •8PSK instead of GMSK (Gaussian Minimum Shift Keying) •Bundling 1-8 channels
GPRS General Packet Radio Services •Packet-switched •New infrastructure (new protocol architecture: prerequisite for UMTS!) •Bundling 1-8 channels
HSCSD High Speed Circuit Switched Data •Circuit-switched •No new network elements: SW modifications •Bundling 1-8 channels
UMTS (WCDMA) Terrestrial Radio Access
2G & 3G Radio Technology (Update) from GSM to UMTS Evolution: Data rates
10
Wireless Broadband Technology Evolution
WCDMA 3G R99
HSDPA Rel 4
HSDPA Rel 5
DL up to 384 Kbps
DL up to 3.6 Mbps
DL up to 7.2 Mbps
HSPA Rel 6
HSPA+ Rel 7
HSPA+ Rel 8
4G (WiMAX and LTE)
DL up to 14 Mbps, UL up to 5.8 Mbps
DL up to 21 Mbps, UL up to 8.3 Mbps
DL up to 35 Mbps, UL up to 8.3 Mbps
DL up to 48 Mbps, UL up to 24 Mbps
Wireless Broadband Technology Evolution (Update)
12
Towards to 4G (Adding Slide)
13
Towards to 4G (Cont-1)
14
Towards to 4G (Cont-2)
15
NETWORK ARCHITECTURE
16
3GPP architecture evolution towards flat architecture Release 6
Release 7 Direct Tunnel
GGSN SGSN
Release 7 Direct Tunnel and RNC in NB
GGSN SGSN
RNC NB
Control Plane
GGSN SGSN
Release 8 SAE and LTE SAE GW MME
RNC
RNC NB
NB
User Plane
eNB
3GPP architecture evolution towards flat architecture (Update1)
18
3GPP architecture evolution towards flat architecture (Update2)
19
LTE Network Architecture UMTS 3G: UTRAN
GGSN
EPC
MME S-GW / P-GW
MME S-GW / P-GW
SGSN
RNC
RNC eNB
eNB
eNB NB
NB
NB
NB
UMTS : Universal Mobile Telecommunications System UTRAN : Universal Terrestrial Radio Access Network GGSN : Gateway GPRS Support Node GPRS: General Packet Radio Service SGSN : Serving GPRS Support Node RNC: Radio Network Controller NB: Node B
eNB E-UTRAN
EPC ; Evolved Packet Core MME : Mobility Management Entity S-GC : Serving Gateway P-GW : PDN Gateway PDN : Packet Data Network eNB : E-UTRAN Node B / Evolved Node B E-UTRAN ; Evolved-UTRAN
Simplified LTE network elements and interfaces 3GPP TS 36.300 Figure 4: Overall Architecture EPC
MME S-GW / P-GW
MME S-GW / P-GW
S1
eNB
eNB
X2 eNB
eNB E-UTRAN
EPC ; Evolved Packet Core MME : Mobility Management Entity S-GC : Serving Gateway P-GW : PDN Gateway PDN : Packet Data Network eNB : E-UTRAN Node B / Evolved Node B E-UTRAN ; Evolved-UTRAN
eNB = All radio interface-related functions MME = Manages mobility, UE identity, and security parameters. S-GW = Node that terminates the interface towards E-UTRAN. P-GW = Node that terminates the interface towards PDN Simple Architecture Flat IP-Based Architecture Reduction in latency and cost Split between EPC and E-UTRAN Compatibility with 3GPP and non-3GPP technologies
System architecture for E-UTRAN only network
System architecture for 3GPP access networks
CELLULAR FREQUENCY ALLOCATION
24
2G Frequency Allocation in Indonesia GSM 900
DCS 1800
3G Frequency Allocation in Indonesia Frequency Spectrum Update March 2013
3G Frequency Allocation in Indonesia Frequency Spectrum Plan September 2013
900 (CDMA & GSM) and 2100 Mhz Frequency (3G WCDMA) Allocation in Indonesia (Update) Uplink Frequency per operator 890
895
900
907.5
ISAT
915
TSEL
825
XL
ESIA
830
835
FLEXI
840
Fren
845
Star1
Downlink Frequency per Operator 935
940
945
952.5
ISAT TSEL Before bidding in 2100 Mhz Frequency Block 2100 Mhz Operator
1
2
HCPT Axis
960
870
XL
5
6
875
ESIA
FLEXI
7
8
3
4
Axis
Tsel
Tsel HCPT Isat
4 Tsel
5 Tsel
880
885
Fren
Star1
9
10
11
12
Isat
XL
XL
New (Tsel)
New (XL)
8 XL
9 XL
10 XL
11 Axis
12 Axis
After bidding in 2100 Mhz Frequency Block 2100 Mhz 1 2 3 Operator HCPT HCPT Tsel
6 Isat
7 Isat
Note: The winner for bidding are PT Telkomsel and PT XL Axiata
1800 and 2100 Mhz Frequency (3G WCDMA) Allocation in Indonesia (Update) Uplink Frequency per operator 1710
1717.5
XL
1722.5
ISAT
1730
TSEL
1735
1740
NTS
1745
1750
TSEL
1755
1760
1765
1770
ISAT
1775
TSEL
1780
1785
HCPT
Downlink Frequency per Operator 1805
1812.5
XL
1817.5
ISAT
1825
1830
TSEL
1835
NTS
1840
1845
TSEL
1850
1855
1860
1865
ISAT
1870
TSEL
1875
1880
HCPT
Before bidding in 2100 Mhz Frequency Block 2100 Mhz Operator
1
2
HCPT Axis
3
4
5
6
7
Axis
Tsel
Tsel HCPT Isat
4 Tsel
5 Tsel
8
9
10
11
12
Isat
XL
XL
New (Tsel)
New (XL)
8 XL
9 XL
10 XL
11 Axis
12 Axis
After bidding in 2100 Mhz Frequency Block 2100 Mhz 1 2 3 Operator HCPT HCPT Tsel
6 Isat
7 Isat
Note: The winner for bidding are PT Telkomsel and PT XL Axiata
4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue
30
OFDM
Single Carrier Transmission (e.g. WCDMA)
Orthogonal Frequency Division Multiplexing
OFDM Concept: Mengapa OFDM
Sinyal OFDM (Orthogonal Frequency Division Multiplexing) dapat mendukung kondisi NLOS (Non Line of Sight) dengan mempertahankan efisiensi spektral yang tinggi dan memaksimalkan spektrum yang tersedia.
Mendukung lingkungan propagasi multi-path.
Scalable bandwidth : menyediakan fleksibilitas dan potensial mengurangi CAPEX (capital expense). 32
OFDM Concept: NLOS Performance
33
OFDM Concept : Mutipath Propagation
Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima.
Propagasi multipath berpengaruh terhadap performansi link dan coverage.
Selubung (envelop) sinyal Rx berfluktuasi secara acak. 34
OFDM Concept: FFT
•
Multi-carrier modulation/multiplexing technique
•
Available bandwidth is divided into several subchannels
•
Data is serial-to-parallel converted
•
Symbols are transmitted on different subcarriers 35
OFDM Concept: IFFT
Basic ideas valid for various multicarrier techniques: •
OFDM: Orthogonal Frequency Division Multiplexing
•
OFDMA: Orthogonal Frequency Division Multiple Access 36
OFDM Concept: Single-Carrier Vs. OFDM
Single-Carrier Mode: •
Serial Symbol Stream Used to Modulate a Single Wideband Carrier
•
Serial Datastream Converted to Symbols (Each Symbol Can Represented 1 or More Data Bits)
OFDM Mode: •
Each Symbol Used to Modulate a Separate Sub-Carrier
37
OFDM Concept: Single-Carrier Vs. OFDM
Single-Carrier Mode
OFDM Mode
•
Dotted Area Represents Transmitted Spectrum
•
Solid Area Represents Receiver Input
•
OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga dapat meningkatkan throughput data rate yang lebih tinggi.
•
Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.
38
OFDM Concept: Motivation for Multi-carrier Approaches
Multi-carrier transmission offers various advantages over traditional single carrier approaches: ◦ Highly scalable ◦ Simplified equalizer design in the frequency domain, also in cases of large delay spread ◦ High spectrum density ◦ Simplified the usage of MIMO
Weakness of multi-carrier systems: ◦ Increased peak to average power ratio (PAPR)
39
OFDM Concept: Peak to Average Power Ratio (PAPR)
Tipe Sub-Carrier OFDM
Data Sub-carriers
•
Membawa simbol BPSK, QPSK, 16QAM, 64QAM
Pilot Sub-carriers •
Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver.
Null Subcarrier •
Guard Sub-carriers
•
DC Sub-carrier 41
Guard Interval (Cyclic Prefix)
•
Untuk mengatasi multipath delay spread
•
Contoh pada WiMAX Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32
42
OFDM Transceiver
43
OFDM & OFDMA OFDM
OFDMA
•
Semua subcarrier dialokasikan untuk satu • user
•
Misal : 802.16-2004 •
Subcarrier dialokasikan secara fleksibel untuk banyak user tergantung pada kondisi radio.
Misal : 802.16e-2005 dan 802.16m
44
Difference between OFDM and OFDMA
OFDM allocates users in time domain only
OFDMA allocates users in time and frequency domain
OFDMA time-frequency multiplexing
LTE Downlink Physical Layer Design: Physical Resource The physical resource can be seen as a time-frequency grid
•
LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink
•
In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division Multiple Access) to reduced power consumption
47
LTE Downlink Resource Grid
•
Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu durasi slot 0.5 ms.
•
Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180
kHz per RB.
48
Parameters for DL generic frame structure
Bandwidth (MHz)
1.25
2.5
5.0
Subcarrier bandwidth (kHz)
15
Physical resource block (PRB) bandwidth (kHz)
180
Number of available PRBs
6
12
25
10.0
15.0
20.0
50
75
100
49
Parameters for DL generic frame structure Transmission BW
1.25 MHz
2.5 MHz
5 MHz
Sub-frame duration
0.5 ms
Sub-carrier spacing
15 kHz
10 MHz
15 MHz
20 MHz
Sampling frequency
192 MHz (1/2x3.84 MHz)
3.84 MHz
7.68 MHz (2x3.84 MHz)
15.36 MHz (4x3.84 MHz)
23.04 MHz (6x3.84 MHz)
30.72 MHz (8x3.84 MHz)
FFT size
128
256
512
1024
1536
2048
(4.69/72) x 6, (5.21/80) x 1
(4.69/108) x 6, (5.21/120) x 1
(4.69/144) x 6, (5.21/160) x 1
OFDM sym per slot (short/long CP)
CP length (usec/ samples)
7/6
Short
(4.69/9) x 6, (5.21/10) x 1
Long
(16.67/32)
(4.69/18) x 6, (5.21/20) x 1
(16.67/64)
(4.69/36) x 6, (5.21/40) x 1
(16.67/128)
(16.67/256)
(16.67/384)
(16.67/512)
50
LTE – Spectrum Flexibility
LTE physical layer supports any bandwidth from 1.4 MHz to 20 MHz in steps of 180 kHz (resource block). Current LTE specification supports a subset of 6 different system bandwidths. All UEs must support the maximum bandwidth of 20 MHz.
E-UTRA channel bandwidth
Case Study LTE Signal Spectrum (20 MHz case)
•
The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used subcarriers. 15 kHz subcarrier spacing is the constant factor!
•
18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band.
•
LTE used spectrum radio = 90%
•
WiMAX used spectrum radio = 82%
53
TDD & FDD
•
Time Division Duplex (TDD)
•
Frequency Division Duplex (FDD)
•
Durasi Frame : 2.5 - 20ms
54
Generic LTE Frame Structure type 1 (FDD) Tf = 307200 x Ts = 10 ms Tslot = 15360 x Ts = 0.5 ms
•
Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms.
•
Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 subframe.
•
Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz.
•
Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.
55
LTE Frame Structure type 1 (FDD)
• •
•
2 slots form one subframe = 1 ms For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions. For TDD, a subframe is either located to downlink or uplink transmission.The 0th and 5th subframe in a radio frame is always allocated for downlink transmission. 56
Downlink LTE Frame Structure type 1 (FDD)
Generic LTE Frame Structure type 2 (TDD)
•
Struktur frame tipe-2 hanya digunakan untuk transmisi TDD.
•
Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi UL. 58
LTE Frame Structure type 2 (TDD)
59
Mobile WiMAX Frame Structure
60
LTE Frame Structure type 2 (TDD)
DL Peak rates for E-UTRA FDD/TDD frame structure type 1
Assumptions Unit Requirement 2x2 MIMO 4x4 MIMO
Downlink 64 QAM Signal overhead for reference signals and control channel occupying one OFDM symbol Mbps in 20 MHz b/s/Hz 100 5.0 172.8 8.6 326.4 16.3
UL Peak rates for E-UTRA FDD/TDD frame structure type 1 Assumptions
Unit Requirement 16QAM 64QAM
Uplink Single TX UE Signal overhead for reference signals and control channel occupying 2RB Mbps in 20 MHz b/s/Hz 50 2.5 57.6 2.9 86.4 4.3
Peak rates for E-UTRA TDD frame structure type 2 Downlink Assumptions
64 QAM, R=1
Uplink Single TX UE, 64 QAM, R=1
Mbps Mbps b/s/Hz in 20 MHz in 20 MHz 50 Requirement 100 5.0 2x2 MIMO in DL 142 7.1 62.7 4x4 MIMO in DL 270 13.5
Unit
b/s/Hz 2.5 3.1
SC-FDMA
65
LTE Uplink Transmission Scheme: SC-FDMA
Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE pada arah downlink, tetapi OFDMA memiliki properti yang kurang menguntungkan pada arah Uplink. Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink. Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik. Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL dapat diharmonisasi. Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT-spread-OFDM (DFT-s-OFDM).
66
OFDMA and SC-FDMA
The symbol mapping in OFDM happens in the frequency domain.
In SC-FDMA, the symbol mapping is done in the time domain.
Appropriate subscriber mapping in the frequency domain allows to control the PAPR.
SC-FDMA enable frequency domain equalizer approaches like OFDMA 67
How does a SC-FDMA signal look like?
Similar to OFDM signal, but… ◦ …in OFDMA, each sub-carrier only carries information related to one specific symbol, ◦ …in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols.
SC-FDMA parameterization (FDD and TDD) LTE FDD •Same as in downlink
TD-LTE •Usage of UL depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink transmission, •Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP, 69
Improved UL Performance SC-FDMA compared to ordinary OFDM
Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link budget and reduced power consumption compared to OFDM
70
LTE Uplink SC-FDMA Physical Layer Parameters
71
4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue
72
A Game of Avoiding Extremes
Pendimensian Jaringan dalam Analisis Techno-Economics
Cakupan sel
Dimensi suatu jaringan Kapasitas sel
Memaksimalkan Coverage dan Capacity Memaksimalkan coverage
Pilih teknologi akses Gunakan band frekuensi yang rendah Tingkatkan tinggi antena Naikan daya pancar
Kurangi persyaratan kualitas
Memaksimalkan kapasitas Pilih teknologi akses Perbesar band frekuensi Gunakan re-use frequency
Kurangi persyaratan C/I Rendahkan tinggi antena Gunakan fitur software Gunakan antena adaptif
LTE Dimensioning Definition LTE Spectrum Usage Parameters LTE Duplex Frequency Frequency DL Frequency UL Bandwidth Modulation &Coding Schemes Scheduling
Value FDD 2100 MHz (BAND 1) 2110-2170 MHz 1920-1980 MHz 10 MHz (50 Resource Block) AMC (QPSK,16QAM,64QAM) & ½ ,¾ Proportional Fair
LTE Dimensioning Definition LTE eNodeB Configuration
Parameters
Value
PTx (dbm)
46 dbm
Gain Antena Tx
18 dbi
Jumper Cable
0.2 db/m
Feeder Cable
0,4db/km
Rx Sensitivity (dbm)
-100 dbm
Gain Antena Rx
18 dbi
TMA / MHA
13 db
Sector
3
Sistem Antena Base Station (BTS)
Gain antenna, Beam antenna
Feeder Loss
Tx Power Receiver Sensitivity Noise Figure, dll
LTE Nominal Planning
COVERAGE PLANNING
80
Link Budget path loss
TXer Txer component
RXer Rxer component
link budget component
LINK BUDGET Gain Sistem
Margin Sistem
Radius Sel
Daya Pancar
Fading Margin
Model Propagasi
Gain Antena
Interference Margin
Frekuensi Operasi
Sensitivitas Penerima
Loss penetrasi bangunan
Tinggi Antena pemancar/ penerima
SNR threshold tiap modulasi
Gain/loss sistem lainnya
Jarak Referensi
Dasar Pemahaman Link Budget
Link Budget: Up Link
Frequency range, MHz
Mobile parameters - Tx PA output (max) - Cable loss - Antenna gain -------- (Subsc. ERP max, dB) Environmental margins - Fading margin - Environmental attenuation - Cell overlap -------------------- (dB)
• Base station parameters - Rx ant. gain Rx jumper loss - Rx tower top amp gain (net) - Rx cable loss - Rx ligthning arrester loss
- Rx duplexer loss - Rx diversity gain - Rx coding gain - Rx sensitivity ------- Up-link budget, dB
Link Budget: Down Link • Frequency range, MHz • Base station parameters - Tx PA output power - Tx combiner loss - Tx duplexer loss - Tx ligthning arrester loss - Tx cable loss - Tx jumper loss - Tx tower top amp gain - Tx antenna gain
(Cell ERP, dB)
• Environmental margins - Tx diversity gain - Fading margin - Environmental attenuation - Cell overlap (dB) • Mobile parameters - Antenna gain - Rx diversity gain - Antenna cable loss - Coding gain - Rx sensitivity ---------- Down-link budget, dB
Maximum Allowed Path Loss
Uplink Budget
MAPL Calculation (Uplink Link) Maximum Allowed Path Loss Uplink Link Budget LTE Unit Kbps
Value 1024
Info
dBm dB dB
23 0 0
a b c
d. EIRP
dBm
23
a+b+c
Receiver - eNodeB e. Noise Figure f. Thermal Noise g. SINR h. Receiver Sensitivity i. Interference Margin j. TMA Gain k. Rx antenna gain l. Loss System
dB dBm dB dBm dB dB dBi dB
2.2 -107.13 -1.95 -106.88 1.81 2 18 0.4
e k*T*B g e+f+g i j k l
MAPL
dB
147.67
d-h-i+j+k-l
Data Rate Transmitter - UE a. Tx Power b. Tx Antenna Gain c. Body Loss
• MAPL = 147.67 • Radius = 0.99 Km
MAPL Calculation (Downlink Link) Maximum Allowed Path Loss
Data Rate Transmitter - eNodeB a. Tx Power b. Tx Antenna Gain c. Loss System d. EIRP
Downlink Link Budget LTE Unit Value kbps 1000
Info
dBm dB dB dBm
46 18 3 61
a b c a+b+c
Receiver - UE e. Ue Noise Figure f. Thermal Noise g. SINR h. Receiver Sensitivity i. Interference Margin
dB dBm dB dBm dB
7 -102.7 -5 -100.7 3
e k*T*B g e+f+g i
j. Control Channel Overhead k. Rx antenna gain l. Body Loss
dB dBi dB
1 0 0
j k l
MAPL
dB
157.7
d-h-i-j+k-l
ENGINEERING MODEL Example of WCDMA RLB for Voice Link budget of AMR 12.2 kbps voice service (120 km/h, in-car users, Vehicular A type channel, with soft handover)
Example of WCDMA RLB for Data Link budget of 144 kbps real-time data service (3 km/h, indoor user covered by outdoor BS, Vehicular A type channel, with soft handover)
Link Budget Tipikal
Link Budget Tipikal
Link Budget UPLINK
DOWNLINK
MA
https://sites.google.com/site/lteencyclopedia/lte-radio-link-budgeting-and-rf-planning/lte-link-budget-comparison
Contoh Perhitungan Link Budget
COVERAGE PLANNING MODEL PROPAGASI
96
Model Propagasi Suatu model propagasi menggambarkan hubungan redaman jarak rata-rata yang terjadi yang sekaligus dapat digunakan untuk perhitungan radius/jangkauan sel. Model propagasi bergantung pada:
◦ Enironment: urban, rural, dense urban, suburban, open, forest, sea… ◦ Jarak ◦ Frequency ◦ Kondisi atmosfer ◦ Indoor/outdoor
Contoh Model Propagasi Free space Wakfish-Ikegami Okumura-Hatta Longley-Rice Lee
Propagation Model
LTE – 700 MHz ◦ Okumura-Hatta Lp 69,55 26,16 log f – 13,82 log hB - CH [44,9 – 6,55 log hB] log d
LTE – 2100 MHz ◦ Cost 231-Hatta
Lp 46,3 33,9 (logfc ) 13,82 loghT a(hR ) (44,9 6,55loghT )logd CM
LTE – 2600 MHz ◦ SUI Lp 109.78 47.9 log (d/100)
Nominal Planning By Coverage
PROPAGATION MODEL : COST231-Hata
L 46,3 33,9 logfc 13,82 loghT a(hR ) (44,9 6,55loghT )logd CM
Element: Frequency 150 - 1500 MHz
A B 69.55 26.16
1500 - 2000 MHz
46.3
33.9
0 dB
For Rural and suburban
3 dB
For Dense Urban and Urban
CM =
Pathloss SUI Lp = 109.78 + 47.9 log (d/100)
47.9 log( d / 100) Lp 109.78 log( d / 100) ( Lp 109.78) / 47.9 (d / 100) 10( Lp109.78) / 47.9 d 100 x10( Lp109.78) / 47.9 (157.7 109.78) / 47.9 d 100 x10 1.00042 d 100x10 d 1000.966 meters
COVERAGE PLANNING CELL RADIUS
102
Radius Calculation
L = 2,6 d2
L = 1,3 . 2,6 . d2
For 2-sectoral
L = 1,95 . 2,6 . d2
For 3-sectoral
Radius Calculation For Omni directional
For trisectoral
L = 2,6 d2
L = 1,95 . 2,6 . d2
L 2.6 x (1) L 2.6 km2
2
L 1.95 x 2.6 x (1) L 5.07 km2
2
Number of eNodeB
Urban Area (3 sector) ◦ total area 242.928 km2 ◦ NeNodeB 242.928 / 5.07 ◦ N eNodeB 48
Nominal Planning By Coverage Balance Site Radius R = 0.98 km Coverage Site = 4.98 KM² Coverage Area = 125 KM²
• 25 Site
L = 2,6 d2
L = 1,3. 2.6 . d2
For 2-sectoral L = 1,95 . 2.6 . d2
For 3-sectoral
Quiz : LTE Nominal Planning Sebuah operator seluler berencana untuk menggelar jaringan Lte di 5 kota besar di Indonesia yaitu : Jakarta, Bandung, Yogyakarta, Surabaya dan Denpasar. Apabila diketahui luas daerah kota besar tersebut, hitung berapa jumlah eNodeB 3 sektor yang dibutuhkan pada setiap kota? (f = 1800 MHz) Kota
Luasan*
Jakarta
662,33 km2
Bandung
167,67 km2
Yogyakarta
32,5 km2
Surabaya
374,78 km2
Denpasar
123,98 km2
*Sumber : wikipedia
CAPACITY PLANNING
108
Nominal Planning By Capacity: Number of user Un = Uo (1 + gf)n
Uo is Uou or Uosub Where:
UoN = a x b x d x N • • • • • • • • •
Un Uo a b d N gf n u/sub
: num of user on year ‘n’ : initial num of user (based on urban/sub-urban) : percent of cellular user (%) : penetration of operator A (%) : Percent of LTE user : num of civilian in the object area : num of user growth factor : planned year : urban or sub-urban penetration (%)
Uou = u x UoN Uosub = sub x UoN
Nominal Planning By Capacity: Number of user Ex : • Population • Cellular penetration • LTE penetration • LTE provider A penetration Population
= 1445892 people = assumption 80% = assumption 10 % = assumption 50 % 1445892
people
Customer cellular (80%)
1156713
user
Customer LTE (10%)
115671
user
Customer LTE provider A (50%)
57835
user
User prediction in 5th years • U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user
Nominal Planning By Capacity: User Density Cu = Un/ Lu
Lu = L x u
• Lu • L
: urban area wide : object area wide
• Cu : Urban area density • Csub : sub-urban area density
Ex : • urban area penetration
= assumption 40 %
=> Urban area wide (Lu)
: 242,928 km2
=> Cu = 44288 / 242,928
= 182,31232 user/km2
Nominal Planning By Capacity: Traffic user prediction
Nominal Planning By Capacity : Traffic user prediction - Avg. Traffic user / BH = 10 MB - Avg. Traffic user / Sub = 10 MB / 3600 s *8 bit = 22.75 Kbps - Total Offered Traffic = 73814 * 22.75 = 1679268.5 Kbps
= (1680 Mbps)
Nominal Planning By Capacity
Calculate Cell by Capacity Element Cell Capacity Sector enodeB Capacity Congestion Control Total Offered Traffic No. Of Site
No. Of Site = 25 Site
Value 18 3 54 80 1680 24.88889
Unit Mbps sector Mbps % Mbps Site
Nominal Planning By Capacity Number of User Un = Uo (1 + gf)n
Uo is Uou or Uosub
UoN = a x b x d x N Where:
Un Uo a b d N gf n u/sub
: num of user on year ‘n’ : initial num of user (based on urban/sub-urban) : percent of cellular user (%) : penetration of operator A (%) : Percent of LTE user : num of civilian in the object area : num of user growth factor : planned year : urban or sub-urban penetration (%)
Uou = u x UoN Uosub = sub x UoN
Customer Prediction Parameter Nominal Planning By Capacity Ex : Population Cellular penetration LTE penetration LTE provider A penetration Population
= 1445892 people = assumption 80% = assumption 10 % = assumption 50 % 1445892
people
Customer cellular (80%)
1156713
user
Customer LTE (10%)
115671
user
Customer LTE provider A (50%)
57835
user
User prediction in 5th years U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user
Example User Calculation Ex :
urban penetration = assumption 60 % suburban penetration = assumption 40 % Urban user = 73814 x 60 % = 44288 user Suburban user = 73814 x 40 % = 29525 user
User Density Lu = L x u
Lu : urban area wide Lsub : sub-urban area wide L : object area wide
Cu = Un/ Lu
Lsub = L x sub
Cu : Urban area density Csub : sub-urban area density
Csub = Un/Lsub
Example User Density Calculation Ex : urban area penetration suburban area penetration Openarea
= assumption 40 % = assumption 40 % = assumption 20 %
=> Urban area wide (Lu) Sub-urban area wide (Lsub)
: 242,928 km2 : 242,928 km2
=> Cu
= 44288 / 242,928
= 182,31232 user/km2
Csub = 29525 / 242,928 = 121,54155 user/km2
Services and Type
Services (Rb) ◦ VoIP : 64 kbps ◦ FTP : 1000 kbps ◦ Video : 384 kbps
Type (c) ◦ Building : 50 % ◦ Vehicular : 30 % ◦ Pedestrian : 20 %
Penetration (p) per type per service e.g: BUILDING VoIP usage penetration = 0.5 BUILDING FTP usage penetration = 0.4 PEDESTRIAN Video usage penetration = 0.3
BHCA (B) per type per service e.g: BUILDING VoIP usage penetration = 0.008 BUILDING FTP usage penetration = 0.009 PEDESTRIAN Video usage penetration = 0.008
Call duration (h) per type per service (ms) e.g: BUILDING VoIP usage penetration = 60 BUILDING FTP usage penetration = 50 PEDESTRIAN Video usage penetration = 50
Penetrasi User (p)
Building 0,5 0,3 0,4
Voip Video FTP
type
Vehicula Pedestrian r 0,5 0,2 0,3 0,2 0,4 0,3
call duration (h)
voip
video
ftp
building
60
40
50
pedestrian
60
50
70
vehicular
60
40
80
service
net user bit rate (Rb)
VoIP
64000
FTP
1000000
Video
384000
BHCA (B) Service
Building
Pedestrian
Vehicular
Voip
0,008
0,008
0,009
Video
0,007
0,008
0,009
FTP
0,009
0,008
0,008
OBQ (Offered Bit Quantity)
VoIP OBQT = cT x Cu;T x pT x RbVoIP x BT x hT
FTP OBQT = cT x Cu;T x pT x RbFTP x BT x hT
Video OBQT = cT x Cu;T x pT x RbVid x BT x hT Note: if T= pedestrian, then “OBQT “ is pedestrian OBQ, “BT “ is pedestrian BHCA, etc. T : Type (Building; Vehicular; Pedestrian)
OBQ cont’d OBQ total = OBQVoIP + OBQFTP + OBQVideo Where: OBQVoIP
= OBQvehicular + OBQbuilding + OBQ pedestrian
OBQFTP
= OBQvehicular + OBQbuilding + OBQ pedestrian
OBQVideo = OBQvehicular + OBQbuilding + OBQ pedestrian
OBQ cont’d OBQ Service
Building
Pedestrian
Vehicular
Voip
1,400158616
0,5600634
0,252029
Video
2,940333094
5,2505948
1,008114
FTP
16,40810878
8,1675919
7,000793
∑
20,74860049
13,97825
8,260936
OBQtotal= 20,74860049 + 13,97825 + 8,260936 = 42,98779
Site Calculation
Site (L) L
= (50.4 x 3) / OBQtotal
= (50.4 x 3) / 42,98779 = 3,5172778
km2
50.4 Mbps ---> (asumption: using 64 QAM 1/1, BW = 10 MHz)
Radius (d) d
= (L / 2.6 / 1.95) ^ 0.5 = (3,5172778 / 2.6 / 1.95) ^ 0.5 = 0,832912489 km
Site Calculation Con’t
Number of eNodeB (M) M = Lu / L = 242,928 km2 / 3,5172778 km2 = 69,06704366 We use “Lu” JUST IN CASE we count urban capacity only
Perhitungan Dimensioning Capacity: Traffic volume based approach
Hitung dimensioning capacity (subscriber/site) dengan pendekatan traffic volume pada sistem LTE dengan 3 sector/site dengan performansi minimum (a) dan sistem LTE dengan performansi maksimum(b); dengan kondisi: ◦ Busy hour average loading is 50%. ◦ Busy hour is assumed to carry 15% of the daily traffic ◦ Offering Monthly Package to subscriber: 5 GBps 128
Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach
Cell capacity (biasanya dalam Mbps) Rubah cell capacity ke GBps (1k = 1024, 1Byte = 8 bits). Rubah ke satuan waktu (detik, jam, waktu) Perhatikan statistic/prediksi/asumsi traffic volume yang ada, seperti: Busy hour average loading is 50%. Busy hour is assumed to carry 15% of the daily traffic Hitung kemampuan dalam setiap sector dan site.
129
Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach
130
Quiz 1
Hitung dimensioning capacity (subscriber/site) dengan pendekatan traffic volume pada sistem LTE pada kondisi di contoh perhitungan dengan performansi minimum (a) dan sistem LTE dengan performansi maksimum(b)
131
Contoh Perhitungan Dimensioning Capacity Data rate based approach
132
Peak capacity of LTE
LTE cell will provide 100 Mbps of throughput while in reality can only do 50 Mbps, the operator will be short by 50% of capacity in the access network resulting in poor user experience (e.g. slow download, blocking, etc.) and will be 50% over the required capacity for backhaul in which case it’s investment in capacity that’s sitting idle. This is why it is important to get capacity expectations right. Peak capacity of LTE is the maximum possible capacity which in reality can only be achieved in lab conditions. To understand the calculations below, one needs to be familiar with the technology 133
Review on Data Rate (MIMO 2X2) 2×5 MHz LTE system.: Number of resource elements (RE) in a subframe (a subframe is 1 msec): 12 Subcarriers x 7 OFDMA Symbols x 25 Resource Blocks x 2 slots = 4,200 REs Calculate the data rate assuming 64 QAM with no coding (64QAM is the highest modulation for downlink LTE): 6 bits per 64QAM symbol x 4,200 Res / 1 msec = 25.2 Mbps The MIMO data rate is then 2 x 25.2 = 50.4 Mbps.
134
Overhead Overhead related to control signaling such as channels, reference & synchronization signals, and coding. The channels such as:
◦ ◦ ◦ ◦ ◦
PSS (primary synchronization signal) SSS (secondary synchronization signal) PDCCH (Physical Downlink Control Channel) PBCH(Physical Broadcast Channel) PCFICH (Physical Control Format Indicator Channel) ◦ PHICH (Physical Hybrid-ARQ Indicator Channel) 135
Overhead Estimation (1/2) 20MHz band, so the number of PRBs in the frequency domain is: PRB no = 100 1 OFDM symbol for control region (for PHICH, PCFICH and PDCCH) in each subframe,
◦ number of OFDM symbols per subframe for user plane data (PDSCH) is: No OFDMSymbols = 13 (for normal CP)
SISO case (one antenna),
◦ number of Cell RS for the PDSCH per 2PRBs is: NoRS = 6
the number of subcarriers per PRB is: NoSubcarriers = 12 The number of RE (resource elements) available for carrying PDSCH per 2PRBs is: NoREs = NoOFDMSymbols * NoSubcarriers – NoRS = 13 * 12 – 6 = 150
136
Overhead Estimation (2/2)
The number of RE (resource elements) : 150 The number of REs for subframe is: NoREPDSCH = NoREs * PRBno = 150 * 100 = 15000 For peak datarate we use 64QAM, which gives the number of bits per RE: bitsRE = 6 The number of bits for the whole subframe is: NoBitsPDSCH = NoREPDSCH * bitsRE = 15000 * 6 = 90 000 The number of subframes in one sec is: NoSFs = 1000 [SFs/Sec] The max throughput then (raw, ie. without FEC) is: RawThrpt = NoBitsPDSCH [bits/SF] * NoSFs [SFs/Sec] = 90 000 * 1000 = 90 000 000 bits/sec = 90 Mbits/s If we add then the typical FEC rate for good channel conditions of: FECrate = 5/6 We end up at: PHYThrpt = RawThrpt * FECrate = 90 Mbits/s * 5/6 = 75Mbit/s
137
Overhead Estimation in percentage (MIMO 2X2)
PDCCH channel can take 1 to 3 symbols out of 14 in a subframe. Assuming that on average it is 2.5 symbols, the amount of overhead due to PDCCH becomes 2.5/14 = 17.86 %. Downlink RS signal uses 4 symbols in every third subcarrier resulting in 16/336 = 4.76% overhead for 2×2 MIMO configuration The other channels (PSS, SSS, PBCH, PCFICH, PHICH) added together amount to ~2.6% of overhead The total approximate overhead for the 5 MHz channel is 17.86% + 4.76% + 2.6% = 25.22%. The peak data rate is then 0.75 x 50.4 Mbps = 37.8 Mbps. Note that the uplink would have lower throughput because the modulation scheme for most device classes is 16QAM in SISO mode only. 138
Overhead Estimation in percentage (MIMO 4X4)
There is another technique to calculate the peak capacity which I include here as well for a 2×20 MHz LTE system with 4×4 MIMO configuration and 64QAM code rate 1: Overhead at Downlink:
◦ Pilot overhead (4 Tx antennas) = 14.29% ◦ Common channel overhead (adequate to serve 1 UE/subframe) = 10% ◦ CP overhead = 6.66% ◦ Guard band overhead = 10%
Downlink data rate = 4 x 6 bps/Hz x 20 MHz x (1-14.29%) x (1-10%) x (1-6.66%) x (1-10%) = 298 Mbps 139
Sample of Features LTE (Typical) 2015Q2 eRAN8.1 (3GPP Release11/12)
2014Q2 eRAN7.0 (3GPP Release 11)
Radio & Performance Convergence
Smart DRX
4x4 MIMO
4x4 MIMO (Trial)
Enhanced PDCCH FeICIC Soft Split Resource Duplex (for 8T8R) Coordinated Scheduling (Cloud BB) 15 Mhz (8T8R) Evolved Wireless Local Loop (eWLL) Access Solution
Enhanced Intra-LTE Load Balancing
Radio & Performance
VoLTE
Voice & Service
Networking&Transport& Security LTE Advanced
eMBMS Scheduling based on Max Bit Rate Guaranteed Bit Rate for Internet Service Security Level Setting (OSS) Ipsec redundancy CA for Downlink 2CC from Multiple Carriers
Voice&Service
VoLTE Enhancement O&M
Intra-LTE MLB based on interference CA (DL 3/4 CC)
LTE Advanced
CA (UL 2CC) TDD+FDD CA 2CC CA+4x4 MIMO Inter-eNB DL CoMP (Cloud BB)
140
Feature 4G Smartphone
Requirement
Smartphone
Other
VOLTE
License ID
License Description
LLT1TDDRX01
Dynamic DRX
LLT1TCCIRC01 LLT1TRAOP01
Control Channel IRC RACH optimization
Remarks Reduce signalling auto reconnect/idle mode Interference rejection control RACH optimization for access control
LLT1TEAC01 LLT1TUMIMO02 LLT1TCPRICP01 LLT1TIEUC01 LLT1TDCEP01 LLT1TILLB02 LLT1TMUBF01
Enhanced Admission Control UL 2x4 MU-MIMO CPRI Compression Intra-eNodeB UL CoMP Intra-eNodeB DL CoMP in Adaptive Mode(per Cell)(TDD) Adaptive Inter-Cell Interference Coordination Intra-LTE Load Balancing(TDD) MU-Beamforming(per Cell)(TDD)
Admission control for rejection Increase UL throughput by 2x4 MU MIMO Dual carrier for 15MHZ UL Interference combining DL Interference combining Adaptive ICIC Dual carrier Increase throughput for cell edge
LLT1TVSPS01 LLT1TROHC01 LLT1TTTIB01
VoIP Semi-persistent Scheduling RObust Header Compression TTI Bundling
VOLTE scheduling VOLTE scheduling VOLTE scheduling
141
Transformation of Mobile Broadband Devices
142
Further Evolution in Mobile Broadband Devices
143
LTE Advanced Brings Different Dimensions of Improvements – Most Gain from HetNets
144
PCI Planning There are 504 PCI available: 1. For Macro eNodeB we use 0-464 (155 site’s) 2. Equipment trial reserve 465-494 for PCI Planning (10 site’s) 3. IBS/ Indoor eNodeB will use 495-503 (3 site’s)
145
TA (Tracking Area) Planning
146
TA Planning Principle
TAC = Tracking Area Code (1~65533, and 65535) (0 and 65534 are reserved by 3GPP) TAI = Tracking Area ID = MCC + MNC + TAC
For MCC and MNC below is temporary until get official value from government MCC = 460 MNC= 10 TAL = Tracking Area List Mutual agree on 10 June 2013, with operator Z
1 TAL = up to 16 TAC
TAL value range: 0~ 65534 Max number of TALs per USN = 20000
One TAL = One TAC
One TAL is same with one TAC, with this design when the UE in idle condition then move to another TAC it will be generate TAU to report MME where is last position for this UE. When there is downlink packet data need to be deliver for that UE, MME can easily to find latest position.
S-GW
Internet
MME
TAU
TAC 2 TAU Procedure
The tracking area update (TAU) procedure is triggered if one of the following conditions is met:
The UE detects that the current TA does not exist in the TA list on the UEregistered network.
It is a periodic TAU.
The TAU procedure is triggered during a handover procedure.
On an EPS network, the basic unit of location management is TA List. A TA List consists of one or multiple TAs. A TA list prevents a UE from initiating the TAU procedure frequently. In USN1.1, a TA is regarded as a TA List by default.
TAC 1
TAC 4 TAC 3
One TAL = Multiple TAC
One TAL contains multiple TAC, with this design when UE in idle condition move to different TAC under one TAL there is no TAU. When MME want to deliver downlink packet data for that UE MME will send to latest TAC where the UE located. If the UE is unreachable MME will try to paging another TAC under one TAL until found. This design will take a time compare with the previous design.
S-GW
Internet
MME
UE Under move One to TAL new TAL no need needTAU TAU
TAL 1
TAC 2
TAC 1
TAC 4 TAC 3
TAL 2
TAC 6
TAC 5
TAC 8 TAC 7
Last TAC is 8 but UE move to TAC 7, MME will try paging another TAC under TAL2
TAL Planning For Jabodetabek area TAL planning, HUAWEI Propose for First Media that:
eNB Distribution on TAL and TAC
Capacity Per TAL is 46 eNB if using 1 ESU board .
109
HUAWEI assume there are 1200 BBU for 3603 sites ( 1 BBU consist of maximum 3 site)
108
The paging configuration in One TAL consist of multiple TAC ( FM proposed 1 TAL minimum 3 TAC based on area type ) Based on geographic consideration we get 9 TAL
3 16 5 41 5
107
32 4
106
TAL
◦
35 4
105
40
3
104
To define the boundary of TAL, we follow this consideration: 1. main road or Highway which is have high Mobility 2. distribution of user 3. Capacity on TAC Maximum 46 eNB
41 3
103
41 3
102
45 3
101
37 0
10
Number of TAC per TAL
20
30
40
Avg. number of eNB per TAC
50
TAL & TAC Planning 1 TAL consist of multiple TAC we can use 5 letters of number using this rule ABC&XY For example in FM 1 TAL split become 3 TAC
We have define 9 TAL, and 1 TAL minimum 3 TAC. Our suggestion is using 3 letters of number, range value for TAC name from 101 to 109
TAL Planning Distribution Map 108
105
104 101 103
102
106
TAL
107
109
DEPLOYMENT PLANNING
153
LTE Deployment Options: Backhaul
Bandwidth Efficiency 700 MHz
LTE
Available Licensed Bandwidth (MHz)
6+6
Usable Bandwidth (MHz)
5+5
Spectral efficiency, downlink (bps/Hz)
1.67
Spectral efficiency, uplink (bps/Hz)
0.89
Average Throughput per 3-sector site, downlink (Mbps)
25.05
Average Throughput per 3-sector site, uplink (Mbps)
13.35
Loading Factor, downlink
70%
Loading Factor, uplink
60%
* Performance data is averaged from various vendors’ claims as of 2011.
Traffic Forecasting: Subscriber Traffic Model 700 MHz Traffic per Subscriber per Month (GB)
LTE 30
Downlink Traffic (%)
70%
Uplink Traffic (%)
30%
Hours in the Busy Period per Day Percent of Daily Traffic Carried in Busy Period
4 25%
Downlink Busy Hour Traffic per Subscriber
97 kbps
Uplink Busy Hour Traffic per Subscriber
42 kbps
Subscribers Supported per Sector
60
Subscribers Supported per Base Station (3 sectors)
180
* Performance data is averaged from various vendors’ claims as of 2011.
Estimate of Investment 700 MHz Access Network 3-Sector Single-5MHz-Carrier Macro Cell Investment per Subscriber Core Network Broadband Data-Only Core Network Incremental for VoIP Core Network CPE Terminals Desktop/Fixed CPE USB Dongle * Pricing data is averaged from various vendors’ proposals as of 2011.
LTE $55,000 $306
$3,000,000 $1,400,000 $395 $200
Pricing - Example Network #1 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber
LTE 50 9000 $9,827,500 $1,092
* Pricing data is averaged from various vendors’ proposals as of 2011.
Pricing - Example Network #2 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber
LTE 100 18,000 $15,255,000 $848
* Pricing data is averaged from various vendors’ proposals as of 2011.
Pricing - Example Network #3 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber
LTE 200 36,000 $26,110,000 $725
* Pricing data is averaged from various vendors’ proposals as of 2011.
LTE Deployment Business Consideration: When & How?
Relative Adoption of Technologies
3.9G
3G
2G
Rysavy Research projection based on historical data.
The reuse of existing 2G and 3G sites for NGMN will keep site cost flat
LTE Deployment Scenario
Femtocell @ LTE
165
Femtocell Motivation
166
Most Mobile Data Use Occurs Indoors
Source: Informa’s Mobile Access at Home Report 167
End of Training Day One
View more...
Comments