4G RF Planning and Optimization (Day One) - 6 Sep 2014

Share Embed Donate


Short Description

4G RF Planning and Optimization...

Description

Paragon Hotel, Jakarta - Day One 4 January 2014

Training Material

4G RF Planning & Optimization

Our Product and Service

Learning Center Research and Development

Industrial Product www.floatway.com

4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue

3

1G to 4G 1G 2G

3G

4G

Wireline and Wireless: Milestones

FTTH 100 Mbps

100 Mbps

3.9G

ADSL2+ 25 Mbps

10 Mbps ADSL 3 to 5 Mbps

1 Mbps

100 Kbps

LTE 10 Mbps

3.5G 3.5G

ADSL 1 Mbps ISDN 128 Kbps

3G 2.5G

2G

HSPA+ 5 Mbps

HSDPA 1 Mbps

UMTS 350 Kbps

EDGE 100 Kbps GPRS 40 Kbps

10 Kbps 2000

2005

2010

Mobile throughput follows landline throughput by approx. factor 10

Wireline and Wireless: Milestones (Update)

6

Participant Introduction

• Name • Current Job Profile • Previous Experience • Expectations, etc.

Alfin Hikmaturokhman.,MT

7

RADIO CELLULAR TECHNOLOGY

8

2G & 3G Radio Technology (Need Update) from GSM to UMTS Evolution: Data rates EDGE Enhanced Data rates for the GSM Evolution •8PSK instead of GMSK (Gaussian Minimum Shift Keying) •Bundling 1-8 channels

GPRS General Packet Radio Services •Packet-switched •New infrastructure (new protocol architecture: prerequisite for UMTS!) •Bundling 1-8 channels

HSCSD High Speed Circuit Switched Data •Circuit-switched •No new network elements: SW modifications •Bundling 1-8 channels

UMTS (WCDMA) Terrestrial Radio Access

2G & 3G Radio Technology (Update) from GSM to UMTS Evolution: Data rates

10

Wireless Broadband Technology Evolution

WCDMA 3G R99

HSDPA Rel 4

HSDPA Rel 5

DL up to 384 Kbps

DL up to 3.6 Mbps

DL up to 7.2 Mbps

HSPA Rel 6

HSPA+ Rel 7

HSPA+ Rel 8

4G (WiMAX and LTE)

DL up to 14 Mbps, UL up to 5.8 Mbps

DL up to 21 Mbps, UL up to 8.3 Mbps

DL up to 35 Mbps, UL up to 8.3 Mbps

DL up to 48 Mbps, UL up to 24 Mbps

Wireless Broadband Technology Evolution (Update)

12

Towards to 4G (Adding Slide)

13

Towards to 4G (Cont-1)

14

Towards to 4G (Cont-2)

15

NETWORK ARCHITECTURE

16

3GPP architecture evolution towards flat architecture Release 6

Release 7 Direct Tunnel

GGSN SGSN

Release 7 Direct Tunnel and RNC in NB

GGSN SGSN

RNC NB

Control Plane

GGSN SGSN

Release 8 SAE and LTE SAE GW MME

RNC

RNC NB

NB

User Plane

eNB

3GPP architecture evolution towards flat architecture (Update1)

18

3GPP architecture evolution towards flat architecture (Update2)

19

LTE Network Architecture UMTS 3G: UTRAN

GGSN

EPC

MME S-GW / P-GW

MME S-GW / P-GW

SGSN

RNC

RNC eNB

eNB

eNB NB

NB

NB

NB

UMTS : Universal Mobile Telecommunications System UTRAN : Universal Terrestrial Radio Access Network GGSN : Gateway GPRS Support Node GPRS: General Packet Radio Service SGSN : Serving GPRS Support Node RNC: Radio Network Controller NB: Node B

eNB E-UTRAN

EPC ; Evolved Packet Core MME : Mobility Management Entity S-GC : Serving Gateway P-GW : PDN Gateway PDN : Packet Data Network eNB : E-UTRAN Node B / Evolved Node B E-UTRAN ; Evolved-UTRAN

Simplified LTE network elements and interfaces 3GPP TS 36.300 Figure 4: Overall Architecture EPC

MME S-GW / P-GW

MME S-GW / P-GW

S1

eNB

eNB

X2 eNB

eNB E-UTRAN

EPC ; Evolved Packet Core MME : Mobility Management Entity S-GC : Serving Gateway P-GW : PDN Gateway PDN : Packet Data Network eNB : E-UTRAN Node B / Evolved Node B E-UTRAN ; Evolved-UTRAN

eNB = All radio interface-related functions MME = Manages mobility, UE identity, and security parameters. S-GW = Node that terminates the interface towards E-UTRAN. P-GW = Node that terminates the interface towards PDN Simple Architecture Flat IP-Based Architecture Reduction in latency and cost Split between EPC and E-UTRAN Compatibility with 3GPP and non-3GPP technologies

System architecture for E-UTRAN only network

System architecture for 3GPP access networks

CELLULAR FREQUENCY ALLOCATION

24

2G Frequency Allocation in Indonesia GSM 900

DCS 1800

3G Frequency Allocation in Indonesia Frequency Spectrum Update March 2013

3G Frequency Allocation in Indonesia Frequency Spectrum Plan September 2013

900 (CDMA & GSM) and 2100 Mhz Frequency (3G WCDMA) Allocation in Indonesia (Update) Uplink Frequency per operator 890

895

900

907.5

ISAT

915

TSEL

825

XL

ESIA

830

835

FLEXI

840

Fren

845

Star1

Downlink Frequency per Operator 935

940

945

952.5

ISAT TSEL Before bidding in 2100 Mhz Frequency Block 2100 Mhz Operator

1

2

HCPT Axis

960

870

XL

5

6

875

ESIA

FLEXI

7

8

3

4

Axis

Tsel

Tsel HCPT Isat

4 Tsel

5 Tsel

880

885

Fren

Star1

9

10

11

12

Isat

XL

XL

New (Tsel)

New (XL)

8 XL

9 XL

10 XL

11 Axis

12 Axis

After bidding in 2100 Mhz Frequency Block 2100 Mhz 1 2 3 Operator HCPT HCPT Tsel

6 Isat

7 Isat

Note: The winner for bidding are PT Telkomsel and PT XL Axiata

1800 and 2100 Mhz Frequency (3G WCDMA) Allocation in Indonesia (Update) Uplink Frequency per operator 1710

1717.5

XL

1722.5

ISAT

1730

TSEL

1735

1740

NTS

1745

1750

TSEL

1755

1760

1765

1770

ISAT

1775

TSEL

1780

1785

HCPT

Downlink Frequency per Operator 1805

1812.5

XL

1817.5

ISAT

1825

1830

TSEL

1835

NTS

1840

1845

TSEL

1850

1855

1860

1865

ISAT

1870

TSEL

1875

1880

HCPT

Before bidding in 2100 Mhz Frequency Block 2100 Mhz Operator

1

2

HCPT Axis

3

4

5

6

7

Axis

Tsel

Tsel HCPT Isat

4 Tsel

5 Tsel

8

9

10

11

12

Isat

XL

XL

New (Tsel)

New (XL)

8 XL

9 XL

10 XL

11 Axis

12 Axis

After bidding in 2100 Mhz Frequency Block 2100 Mhz 1 2 3 Operator HCPT HCPT Tsel

6 Isat

7 Isat

Note: The winner for bidding are PT Telkomsel and PT XL Axiata

4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue

30

OFDM 

Single Carrier Transmission (e.g. WCDMA)



Orthogonal Frequency Division Multiplexing

OFDM Concept: Mengapa OFDM 

Sinyal OFDM (Orthogonal Frequency Division Multiplexing) dapat mendukung kondisi NLOS (Non Line of Sight) dengan mempertahankan efisiensi spektral yang tinggi dan memaksimalkan spektrum yang tersedia.



Mendukung lingkungan propagasi multi-path.



Scalable bandwidth : menyediakan fleksibilitas dan potensial mengurangi CAPEX (capital expense). 32

OFDM Concept: NLOS Performance

33

OFDM Concept : Mutipath Propagation



Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima.



Propagasi multipath berpengaruh terhadap performansi link dan coverage.



Selubung (envelop) sinyal Rx berfluktuasi secara acak. 34

OFDM Concept: FFT



Multi-carrier modulation/multiplexing technique



Available bandwidth is divided into several subchannels



Data is serial-to-parallel converted



Symbols are transmitted on different subcarriers 35

OFDM Concept: IFFT

Basic ideas valid for various multicarrier techniques: •

OFDM: Orthogonal Frequency Division Multiplexing



OFDMA: Orthogonal Frequency Division Multiple Access 36

OFDM Concept: Single-Carrier Vs. OFDM

Single-Carrier Mode: •

Serial Symbol Stream Used to Modulate a Single Wideband Carrier



Serial Datastream Converted to Symbols (Each Symbol Can Represented 1 or More Data Bits)

OFDM Mode: •

Each Symbol Used to Modulate a Separate Sub-Carrier

37

OFDM Concept: Single-Carrier Vs. OFDM

Single-Carrier Mode

OFDM Mode



Dotted Area Represents Transmitted Spectrum



Solid Area Represents Receiver Input



OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga dapat meningkatkan throughput data rate yang lebih tinggi.



Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.

38

OFDM Concept: Motivation for Multi-carrier Approaches 

Multi-carrier transmission offers various advantages over traditional single carrier approaches: ◦ Highly scalable ◦ Simplified equalizer design in the frequency domain, also in cases of large delay spread ◦ High spectrum density ◦ Simplified the usage of MIMO



Weakness of multi-carrier systems: ◦ Increased peak to average power ratio (PAPR)

39

OFDM Concept: Peak to Average Power Ratio (PAPR)

Tipe Sub-Carrier OFDM

Data Sub-carriers



Membawa simbol BPSK, QPSK, 16QAM, 64QAM

Pilot Sub-carriers •

Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver.

Null Subcarrier •

Guard Sub-carriers



DC Sub-carrier 41

Guard Interval (Cyclic Prefix)



Untuk mengatasi multipath delay spread



Contoh pada WiMAX Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32

42

OFDM Transceiver

43

OFDM & OFDMA OFDM

OFDMA



Semua subcarrier dialokasikan untuk satu • user



Misal : 802.16-2004 •

Subcarrier dialokasikan secara fleksibel untuk banyak user tergantung pada kondisi radio.

Misal : 802.16e-2005 dan 802.16m

44

Difference between OFDM and OFDMA 

OFDM allocates users in time domain only



OFDMA allocates users in time and frequency domain

OFDMA time-frequency multiplexing

LTE Downlink Physical Layer Design: Physical Resource The physical resource can be seen as a time-frequency grid



LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink



In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division Multiple Access) to reduced power consumption

47

LTE Downlink Resource Grid



Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu durasi slot 0.5 ms.



Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180

kHz per RB.

48

Parameters for DL generic frame structure

Bandwidth (MHz)

1.25

2.5

5.0

Subcarrier bandwidth (kHz)

15

Physical resource block (PRB) bandwidth (kHz)

180

Number of available PRBs

6

12

25

10.0

15.0

20.0

50

75

100

49

Parameters for DL generic frame structure Transmission BW

1.25 MHz

2.5 MHz

5 MHz

Sub-frame duration

0.5 ms

Sub-carrier spacing

15 kHz

10 MHz

15 MHz

20 MHz

Sampling frequency

192 MHz (1/2x3.84 MHz)

3.84 MHz

7.68 MHz (2x3.84 MHz)

15.36 MHz (4x3.84 MHz)

23.04 MHz (6x3.84 MHz)

30.72 MHz (8x3.84 MHz)

FFT size

128

256

512

1024

1536

2048

(4.69/72) x 6, (5.21/80) x 1

(4.69/108) x 6, (5.21/120) x 1

(4.69/144) x 6, (5.21/160) x 1

OFDM sym per slot (short/long CP)

CP length (usec/ samples)

7/6

Short

(4.69/9) x 6, (5.21/10) x 1

Long

(16.67/32)

(4.69/18) x 6, (5.21/20) x 1

(16.67/64)

(4.69/36) x 6, (5.21/40) x 1

(16.67/128)

(16.67/256)

(16.67/384)

(16.67/512)

50

LTE – Spectrum Flexibility   

LTE physical layer supports any bandwidth from 1.4 MHz to 20 MHz in steps of 180 kHz (resource block). Current LTE specification supports a subset of 6 different system bandwidths. All UEs must support the maximum bandwidth of 20 MHz.

E-UTRA channel bandwidth

Case Study LTE Signal Spectrum (20 MHz case)



The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used subcarriers. 15 kHz subcarrier spacing is the constant factor!



18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band.



LTE used spectrum radio = 90%



WiMAX used spectrum radio = 82%

53

TDD & FDD



Time Division Duplex (TDD)



Frequency Division Duplex (FDD)



Durasi Frame : 2.5 - 20ms

54

Generic LTE Frame Structure type 1 (FDD) Tf = 307200 x Ts = 10 ms Tslot = 15360 x Ts = 0.5 ms



Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms.



Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 subframe.



Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz.



Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.

55

LTE Frame Structure type 1 (FDD)

• •



2 slots form one subframe = 1 ms For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions. For TDD, a subframe is either located to downlink or uplink transmission.The 0th and 5th subframe in a radio frame is always allocated for downlink transmission. 56

Downlink LTE Frame Structure type 1 (FDD)

Generic LTE Frame Structure type 2 (TDD)



Struktur frame tipe-2 hanya digunakan untuk transmisi TDD.



Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi UL. 58

LTE Frame Structure type 2 (TDD)

59

Mobile WiMAX Frame Structure

60

LTE Frame Structure type 2 (TDD)

DL Peak rates for E-UTRA FDD/TDD frame structure type 1

Assumptions Unit Requirement 2x2 MIMO 4x4 MIMO

Downlink 64 QAM Signal overhead for reference signals and control channel occupying one OFDM symbol Mbps in 20 MHz b/s/Hz 100 5.0 172.8 8.6 326.4 16.3

UL Peak rates for E-UTRA FDD/TDD frame structure type 1 Assumptions

Unit Requirement 16QAM 64QAM

Uplink Single TX UE Signal overhead for reference signals and control channel occupying 2RB Mbps in 20 MHz b/s/Hz 50 2.5 57.6 2.9 86.4 4.3

Peak rates for E-UTRA TDD frame structure type 2 Downlink Assumptions

64 QAM, R=1

Uplink Single TX UE, 64 QAM, R=1

Mbps Mbps b/s/Hz in 20 MHz in 20 MHz 50 Requirement 100 5.0 2x2 MIMO in DL 142 7.1 62.7 4x4 MIMO in DL 270 13.5

Unit

b/s/Hz 2.5 3.1

SC-FDMA

65

LTE Uplink Transmission Scheme: SC-FDMA 









Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE pada arah downlink, tetapi OFDMA memiliki properti yang kurang menguntungkan pada arah Uplink. Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink. Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik. Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL dapat diharmonisasi. Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT-spread-OFDM (DFT-s-OFDM).

66

OFDMA and SC-FDMA 

The symbol mapping in OFDM happens in the frequency domain.



In SC-FDMA, the symbol mapping is done in the time domain.



Appropriate subscriber mapping in the frequency domain allows to control the PAPR.



SC-FDMA enable frequency domain equalizer approaches like OFDMA 67

How does a SC-FDMA signal look like? 

Similar to OFDM signal, but… ◦ …in OFDMA, each sub-carrier only carries information related to one specific symbol, ◦ …in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols.

SC-FDMA parameterization (FDD and TDD) LTE FDD •Same as in downlink

TD-LTE •Usage of UL depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink transmission, •Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP, 69

Improved UL Performance SC-FDMA compared to ordinary OFDM

Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link budget and reduced power consumption compared to OFDM

70

LTE Uplink SC-FDMA Physical Layer Parameters

71

4G RF Planning & Optimization Training Day 1 Trainer: Jonny Giffly Radio Cellular Technology Network Architecture Cellular Frequency Allocation Multiple Access OFDMA & OFDMA SC-FDMA RF Planning Coverage Planning Capacity Planning Feature based on 3GPP Release Deployment Issue

72

A Game of Avoiding Extremes

Pendimensian Jaringan dalam Analisis Techno-Economics

Cakupan sel

Dimensi suatu jaringan Kapasitas sel

Memaksimalkan Coverage dan Capacity Memaksimalkan coverage



Pilih teknologi akses Gunakan band frekuensi yang rendah Tingkatkan tinggi antena Naikan daya pancar



Kurangi persyaratan kualitas



 

Memaksimalkan kapasitas  Pilih teknologi akses  Perbesar band frekuensi  Gunakan re-use frequency    

Kurangi persyaratan C/I Rendahkan tinggi antena Gunakan fitur software Gunakan antena adaptif

LTE Dimensioning Definition LTE Spectrum Usage Parameters LTE Duplex Frequency Frequency DL Frequency UL Bandwidth Modulation &Coding Schemes Scheduling

Value FDD 2100 MHz (BAND 1) 2110-2170 MHz 1920-1980 MHz 10 MHz (50 Resource Block) AMC (QPSK,16QAM,64QAM) & ½ ,¾ Proportional Fair

LTE Dimensioning Definition LTE eNodeB Configuration

Parameters

Value

PTx (dbm)

46 dbm

Gain Antena Tx

18 dbi

Jumper Cable

0.2 db/m

Feeder Cable

0,4db/km

Rx Sensitivity (dbm)

-100 dbm

Gain Antena Rx

18 dbi

TMA / MHA

13 db

Sector

3

Sistem Antena Base Station (BTS)

Gain antenna, Beam antenna

Feeder Loss

Tx Power Receiver Sensitivity Noise Figure, dll

LTE Nominal Planning

COVERAGE PLANNING

80

Link Budget path loss

TXer Txer component

RXer Rxer component

link budget component

LINK BUDGET Gain Sistem

Margin Sistem

Radius Sel

Daya Pancar

Fading Margin

Model Propagasi

Gain Antena

Interference Margin

Frekuensi Operasi

Sensitivitas Penerima

Loss penetrasi bangunan

Tinggi Antena pemancar/ penerima

SNR threshold tiap modulasi

Gain/loss sistem lainnya

Jarak Referensi

Dasar Pemahaman Link Budget

Link Budget: Up Link 





Frequency range, MHz

Mobile parameters - Tx PA output (max) - Cable loss - Antenna gain -------- (Subsc. ERP max, dB) Environmental margins - Fading margin - Environmental attenuation - Cell overlap -------------------- (dB)

• Base station parameters - Rx ant. gain Rx jumper loss - Rx tower top amp gain (net) - Rx cable loss - Rx ligthning arrester loss

- Rx duplexer loss - Rx diversity gain - Rx coding gain - Rx sensitivity ------- Up-link budget, dB

Link Budget: Down Link • Frequency range, MHz • Base station parameters - Tx PA output power - Tx combiner loss - Tx duplexer loss - Tx ligthning arrester loss - Tx cable loss - Tx jumper loss - Tx tower top amp gain - Tx antenna gain

(Cell ERP, dB)

• Environmental margins - Tx diversity gain - Fading margin - Environmental attenuation - Cell overlap (dB) • Mobile parameters - Antenna gain - Rx diversity gain - Antenna cable loss - Coding gain - Rx sensitivity ---------- Down-link budget, dB

Maximum Allowed Path Loss

Uplink Budget

MAPL Calculation (Uplink Link) Maximum Allowed Path Loss Uplink Link Budget LTE Unit Kbps

Value 1024

Info

dBm dB dB

23 0 0

a b c

d. EIRP

dBm

23

a+b+c

Receiver - eNodeB e. Noise Figure f. Thermal Noise g. SINR h. Receiver Sensitivity i. Interference Margin j. TMA Gain k. Rx antenna gain l. Loss System

dB dBm dB dBm dB dB dBi dB

2.2 -107.13 -1.95 -106.88 1.81 2 18 0.4

e k*T*B g e+f+g i j k l

MAPL

dB

147.67

d-h-i+j+k-l

Data Rate Transmitter - UE a. Tx Power b. Tx Antenna Gain c. Body Loss

• MAPL = 147.67 • Radius = 0.99 Km

MAPL Calculation (Downlink Link) Maximum Allowed Path Loss

Data Rate Transmitter - eNodeB a. Tx Power b. Tx Antenna Gain c. Loss System d. EIRP

Downlink Link Budget LTE Unit Value kbps 1000

Info

dBm dB dB dBm

46 18 3 61

a b c a+b+c

Receiver - UE e. Ue Noise Figure f. Thermal Noise g. SINR h. Receiver Sensitivity i. Interference Margin

dB dBm dB dBm dB

7 -102.7 -5 -100.7 3

e k*T*B g e+f+g i

j. Control Channel Overhead k. Rx antenna gain l. Body Loss

dB dBi dB

1 0 0

j k l

MAPL

dB

157.7

d-h-i-j+k-l

ENGINEERING MODEL Example of WCDMA RLB for Voice Link budget of AMR 12.2 kbps voice service (120 km/h, in-car users, Vehicular A type channel, with soft handover)

Example of WCDMA RLB for Data Link budget of 144 kbps real-time data service (3 km/h, indoor user covered by outdoor BS, Vehicular A type channel, with soft handover)

Link Budget Tipikal

Link Budget Tipikal

Link Budget UPLINK

DOWNLINK

MA

https://sites.google.com/site/lteencyclopedia/lte-radio-link-budgeting-and-rf-planning/lte-link-budget-comparison

Contoh Perhitungan Link Budget

COVERAGE PLANNING MODEL PROPAGASI

96

Model Propagasi Suatu model propagasi menggambarkan hubungan redaman jarak rata-rata yang terjadi yang sekaligus dapat digunakan untuk perhitungan radius/jangkauan sel.  Model propagasi bergantung pada: 

◦ Enironment: urban, rural, dense urban, suburban, open, forest, sea… ◦ Jarak ◦ Frequency ◦ Kondisi atmosfer ◦ Indoor/outdoor

Contoh Model Propagasi Free space  Wakfish-Ikegami  Okumura-Hatta  Longley-Rice  Lee 

Propagation Model 

LTE – 700 MHz ◦ Okumura-Hatta Lp  69,55  26,16 log f – 13,82 log hB - CH  [44,9 – 6,55 log hB] log d



LTE – 2100 MHz ◦ Cost 231-Hatta

Lp  46,3  33,9 (logfc )  13,82 loghT  a(hR )  (44,9  6,55loghT )logd CM



LTE – 2600 MHz ◦ SUI Lp  109.78  47.9 log (d/100)

Nominal Planning By Coverage 

PROPAGATION MODEL : COST231-Hata

L  46,3  33,9 logfc  13,82 loghT  a(hR )  (44,9  6,55loghT )logd CM 

Element: Frequency 150 - 1500 MHz

A B 69.55 26.16

1500 - 2000 MHz

46.3

33.9

0 dB

For Rural and suburban

3 dB

For Dense Urban and Urban

CM =

Pathloss SUI Lp = 109.78 + 47.9 log (d/100)

47.9 log( d / 100)  Lp  109.78 log( d / 100)  ( Lp  109.78) / 47.9 (d / 100)  10( Lp109.78) / 47.9 d  100 x10( Lp109.78) / 47.9 (157.7 109.78) / 47.9 d  100 x10 1.00042 d  100x10 d  1000.966 meters

COVERAGE PLANNING CELL RADIUS

102

Radius Calculation

L = 2,6 d2

L = 1,3 . 2,6 . d2

For 2-sectoral

L = 1,95 . 2,6 . d2

For 3-sectoral

Radius Calculation For Omni directional

For trisectoral

L = 2,6 d2

L = 1,95 . 2,6 . d2

L  2.6 x (1) L  2.6 km2

2

L  1.95 x 2.6 x (1) L  5.07 km2

2

Number of eNodeB 

Urban Area (3 sector) ◦ total area 242.928 km2 ◦ NeNodeB  242.928 / 5.07 ◦ N eNodeB  48

Nominal Planning By Coverage Balance Site Radius R = 0.98 km Coverage Site = 4.98 KM² Coverage Area = 125 KM²



• 25 Site

L = 2,6 d2

L = 1,3. 2.6 . d2

For 2-sectoral L = 1,95 . 2.6 . d2

For 3-sectoral

Quiz : LTE Nominal Planning Sebuah operator seluler berencana untuk menggelar jaringan Lte di 5 kota besar di Indonesia yaitu : Jakarta, Bandung, Yogyakarta, Surabaya dan Denpasar. Apabila diketahui luas daerah kota besar tersebut, hitung berapa jumlah eNodeB 3 sektor yang dibutuhkan pada setiap kota? (f = 1800 MHz) Kota

Luasan*

Jakarta

662,33 km2

Bandung

167,67 km2

Yogyakarta

32,5 km2

Surabaya

374,78 km2

Denpasar

123,98 km2

*Sumber : wikipedia

CAPACITY PLANNING

108

Nominal Planning By Capacity: Number of user Un = Uo (1 + gf)n

Uo is Uou or Uosub Where:

UoN = a x b x d x N • • • • • • • • •

Un Uo a b d N gf n u/sub

: num of user on year ‘n’ : initial num of user (based on urban/sub-urban) : percent of cellular user (%) : penetration of operator A (%) : Percent of LTE user : num of civilian in the object area : num of user growth factor : planned year : urban or sub-urban penetration (%)

Uou = u x UoN Uosub = sub x UoN

Nominal Planning By Capacity: Number of user Ex : • Population • Cellular penetration • LTE penetration • LTE provider A penetration Population

= 1445892 people = assumption 80% = assumption 10 % = assumption 50 % 1445892

people

Customer cellular (80%)

1156713

user

Customer LTE (10%)

115671

user

Customer LTE provider A (50%)

57835

user

User prediction in 5th years • U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user

Nominal Planning By Capacity: User Density Cu = Un/ Lu

Lu = L x u

• Lu • L

: urban area wide : object area wide

• Cu : Urban area density • Csub : sub-urban area density

Ex : • urban area penetration

= assumption 40 %

=> Urban area wide (Lu)

: 242,928 km2

=> Cu = 44288 / 242,928

= 182,31232 user/km2

Nominal Planning By Capacity: Traffic user prediction

Nominal Planning By Capacity : Traffic user prediction - Avg. Traffic user / BH = 10 MB - Avg. Traffic user / Sub = 10 MB / 3600 s *8 bit = 22.75 Kbps - Total Offered Traffic = 73814 * 22.75 = 1679268.5 Kbps

= (1680 Mbps)

Nominal Planning By Capacity 

Calculate Cell by Capacity Element Cell Capacity Sector enodeB Capacity Congestion Control Total Offered Traffic No. Of Site



No. Of Site = 25 Site

Value 18 3 54 80 1680 24.88889

Unit Mbps sector Mbps % Mbps Site

Nominal Planning By Capacity Number of User Un = Uo (1 + gf)n

Uo is Uou or Uosub

UoN = a x b x d x N Where: 

 

  

 



Un Uo a b d N gf n u/sub

: num of user on year ‘n’ : initial num of user (based on urban/sub-urban) : percent of cellular user (%) : penetration of operator A (%) : Percent of LTE user : num of civilian in the object area : num of user growth factor : planned year : urban or sub-urban penetration (%)

Uou = u x UoN Uosub = sub x UoN

Customer Prediction Parameter Nominal Planning By Capacity Ex :  Population  Cellular penetration  LTE penetration  LTE provider A penetration Population

= 1445892 people = assumption 80% = assumption 10 % = assumption 50 % 1445892

people

Customer cellular (80%)

1156713

user

Customer LTE (10%)

115671

user

Customer LTE provider A (50%)

57835

user

User prediction in 5th years  U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user

Example User Calculation Ex :    

urban penetration = assumption 60 % suburban penetration = assumption 40 % Urban user = 73814 x 60 % = 44288 user Suburban user = 73814 x 40 % = 29525 user

User Density Lu = L x u

  

Lu : urban area wide Lsub : sub-urban area wide L : object area wide

Cu = Un/ Lu

 

Lsub = L x sub

Cu : Urban area density Csub : sub-urban area density

Csub = Un/Lsub

Example User Density Calculation Ex : urban area penetration  suburban area penetration  Openarea

= assumption 40 % = assumption 40 % = assumption 20 %

=> Urban area wide (Lu) Sub-urban area wide (Lsub)

: 242,928 km2 : 242,928 km2



=> Cu

= 44288 / 242,928

= 182,31232 user/km2

Csub = 29525 / 242,928 = 121,54155 user/km2

Services and Type 

Services (Rb) ◦ VoIP : 64 kbps ◦ FTP : 1000 kbps ◦ Video : 384 kbps



Type (c) ◦ Building : 50 % ◦ Vehicular : 30 % ◦ Pedestrian : 20 %

Penetration (p) per type per service e.g: BUILDING VoIP usage penetration = 0.5 BUILDING FTP usage penetration = 0.4 PEDESTRIAN Video usage penetration = 0.3 

BHCA (B) per type per service e.g: BUILDING VoIP usage penetration = 0.008 BUILDING FTP usage penetration = 0.009 PEDESTRIAN Video usage penetration = 0.008 

Call duration (h) per type per service (ms) e.g: BUILDING VoIP usage penetration = 60 BUILDING FTP usage penetration = 50 PEDESTRIAN Video usage penetration = 50 

Penetrasi User (p)

Building 0,5 0,3 0,4

Voip Video FTP

type

Vehicula Pedestrian r 0,5 0,2 0,3 0,2 0,4 0,3

call duration (h)

voip

video

ftp

building

60

40

50

pedestrian

60

50

70

vehicular

60

40

80

service

net user bit rate (Rb)

VoIP

64000

FTP

1000000

Video

384000

BHCA (B) Service

Building

Pedestrian

Vehicular

Voip

0,008

0,008

0,009

Video

0,007

0,008

0,009

FTP

0,009

0,008

0,008

OBQ (Offered Bit Quantity) 

VoIP OBQT = cT x Cu;T x pT x RbVoIP x BT x hT



FTP OBQT = cT x Cu;T x pT x RbFTP x BT x hT



Video OBQT = cT x Cu;T x pT x RbVid x BT x hT Note: if T= pedestrian, then “OBQT “ is pedestrian OBQ, “BT “ is pedestrian BHCA, etc. T : Type (Building; Vehicular; Pedestrian)

OBQ cont’d OBQ total = OBQVoIP + OBQFTP + OBQVideo Where: OBQVoIP

= OBQvehicular + OBQbuilding + OBQ pedestrian

OBQFTP

= OBQvehicular + OBQbuilding + OBQ pedestrian

OBQVideo = OBQvehicular + OBQbuilding + OBQ pedestrian

OBQ cont’d OBQ Service

Building

Pedestrian

Vehicular

Voip

1,400158616

0,5600634

0,252029

Video

2,940333094

5,2505948

1,008114

FTP

16,40810878

8,1675919

7,000793



20,74860049

13,97825

8,260936

OBQtotal= 20,74860049 + 13,97825 + 8,260936 = 42,98779

Site Calculation 

Site (L) L

= (50.4 x 3) / OBQtotal

= (50.4 x 3) / 42,98779 = 3,5172778

km2

50.4 Mbps ---> (asumption: using 64 QAM 1/1, BW = 10 MHz)



Radius (d) d

= (L / 2.6 / 1.95) ^ 0.5 = (3,5172778 / 2.6 / 1.95) ^ 0.5 = 0,832912489 km

Site Calculation Con’t 

Number of eNodeB (M) M = Lu / L = 242,928 km2 / 3,5172778 km2 = 69,06704366 We use “Lu” JUST IN CASE we count urban capacity only

Perhitungan Dimensioning Capacity: Traffic volume based approach 

Hitung dimensioning capacity (subscriber/site) dengan pendekatan traffic volume pada sistem LTE dengan 3 sector/site dengan performansi minimum (a) dan sistem LTE dengan performansi maksimum(b); dengan kondisi: ◦ Busy hour average loading is 50%. ◦ Busy hour is assumed to carry 15% of the daily traffic ◦ Offering Monthly Package to subscriber: 5 GBps 128

Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach

Cell capacity (biasanya dalam Mbps) Rubah cell capacity ke GBps (1k = 1024, 1Byte = 8 bits).  Rubah ke satuan waktu (detik, jam, waktu)  Perhatikan statistic/prediksi/asumsi traffic volume yang ada, seperti:  Busy hour average loading is 50%.  Busy hour is assumed to carry 15% of the daily traffic  Hitung kemampuan dalam setiap sector dan site.  

129

Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach

130

Quiz 1 

Hitung dimensioning capacity (subscriber/site) dengan pendekatan traffic volume pada sistem LTE pada kondisi di contoh perhitungan dengan performansi minimum (a) dan sistem LTE dengan performansi maksimum(b)

131

Contoh Perhitungan Dimensioning Capacity Data rate based approach

132

Peak capacity of LTE 



LTE cell will provide 100 Mbps of throughput while in reality can only do 50 Mbps, the operator will be short by 50% of capacity in the access network resulting in poor user experience (e.g. slow download, blocking, etc.) and will be 50% over the required capacity for backhaul in which case it’s investment in capacity that’s sitting idle. This is why it is important to get capacity expectations right. Peak capacity of LTE is the maximum possible capacity which in reality can only be achieved in lab conditions. To understand the calculations below, one needs to be familiar with the technology 133

Review on Data Rate (MIMO 2X2) 2×5 MHz LTE system.:  Number of resource elements (RE) in a subframe (a subframe is 1 msec):  12 Subcarriers x 7 OFDMA Symbols x 25 Resource Blocks x 2 slots = 4,200 REs Calculate the data rate assuming 64 QAM with no coding (64QAM is the highest modulation for downlink LTE):  6 bits per 64QAM symbol x 4,200 Res / 1 msec = 25.2 Mbps  The MIMO data rate is then 2 x 25.2 = 50.4 Mbps.

134

Overhead Overhead related to control signaling such as channels, reference & synchronization signals, and coding.  The channels such as: 

◦ ◦ ◦ ◦ ◦

PSS (primary synchronization signal) SSS (secondary synchronization signal) PDCCH (Physical Downlink Control Channel) PBCH(Physical Broadcast Channel) PCFICH (Physical Control Format Indicator Channel) ◦ PHICH (Physical Hybrid-ARQ Indicator Channel) 135

Overhead Estimation (1/2) 20MHz band, so the number of PRBs in the frequency domain is: PRB no = 100  1 OFDM symbol for control region (for PHICH, PCFICH and PDCCH) in each subframe, 

◦ number of OFDM symbols per subframe for user plane data (PDSCH) is: No OFDMSymbols = 13 (for normal CP)



SISO case (one antenna),

◦ number of Cell RS for the PDSCH per 2PRBs is: NoRS = 6

the number of subcarriers per PRB is: NoSubcarriers = 12  The number of RE (resource elements) available for carrying PDSCH per 2PRBs is: NoREs = NoOFDMSymbols * NoSubcarriers – NoRS = 13 * 12 – 6 = 150 

136

Overhead Estimation (2/2)    

 





The number of RE (resource elements) : 150 The number of REs for subframe is: NoREPDSCH = NoREs * PRBno = 150 * 100 = 15000 For peak datarate we use 64QAM, which gives the number of bits per RE: bitsRE = 6 The number of bits for the whole subframe is: NoBitsPDSCH = NoREPDSCH * bitsRE = 15000 * 6 = 90 000 The number of subframes in one sec is: NoSFs = 1000 [SFs/Sec] The max throughput then (raw, ie. without FEC) is: RawThrpt = NoBitsPDSCH [bits/SF] * NoSFs [SFs/Sec] = 90 000 * 1000 = 90 000 000 bits/sec = 90 Mbits/s If we add then the typical FEC rate for good channel conditions of: FECrate = 5/6 We end up at: PHYThrpt = RawThrpt * FECrate = 90 Mbits/s * 5/6 = 75Mbit/s

137

Overhead Estimation in percentage (MIMO 2X2) 



 

 

PDCCH channel can take 1 to 3 symbols out of 14 in a subframe. Assuming that on average it is 2.5 symbols, the amount of overhead due to PDCCH becomes 2.5/14 = 17.86 %. Downlink RS signal uses 4 symbols in every third subcarrier resulting in 16/336 = 4.76% overhead for 2×2 MIMO configuration The other channels (PSS, SSS, PBCH, PCFICH, PHICH) added together amount to ~2.6% of overhead The total approximate overhead for the 5 MHz channel is 17.86% + 4.76% + 2.6% = 25.22%. The peak data rate is then 0.75 x 50.4 Mbps = 37.8 Mbps. Note that the uplink would have lower throughput because the modulation scheme for most device classes is 16QAM in SISO mode only. 138

Overhead Estimation in percentage (MIMO 4X4)

There is another technique to calculate the peak capacity which I include here as well for a 2×20 MHz LTE system with 4×4 MIMO configuration and 64QAM code rate 1:  Overhead at Downlink: 

◦ Pilot overhead (4 Tx antennas) = 14.29% ◦ Common channel overhead (adequate to serve 1 UE/subframe) = 10% ◦ CP overhead = 6.66% ◦ Guard band overhead = 10%



Downlink data rate = 4 x 6 bps/Hz x 20 MHz x (1-14.29%) x (1-10%) x (1-6.66%) x (1-10%) = 298 Mbps 139

Sample of Features LTE (Typical) 2015Q2 eRAN8.1 (3GPP Release11/12)

2014Q2 eRAN7.0 (3GPP Release 11)

Radio & Performance Convergence

Smart DRX

4x4 MIMO

4x4 MIMO (Trial)

Enhanced PDCCH FeICIC Soft Split Resource Duplex (for 8T8R) Coordinated Scheduling (Cloud BB) 15 Mhz (8T8R) Evolved Wireless Local Loop (eWLL) Access Solution

Enhanced Intra-LTE Load Balancing

Radio & Performance

VoLTE

Voice & Service

Networking&Transport& Security LTE Advanced

eMBMS Scheduling based on Max Bit Rate Guaranteed Bit Rate for Internet Service Security Level Setting (OSS) Ipsec redundancy CA for Downlink 2CC from Multiple Carriers

Voice&Service

VoLTE Enhancement O&M

Intra-LTE MLB based on interference CA (DL 3/4 CC)

LTE Advanced

CA (UL 2CC) TDD+FDD CA 2CC CA+4x4 MIMO Inter-eNB DL CoMP (Cloud BB)

140

Feature 4G Smartphone

Requirement

Smartphone

Other

VOLTE

License ID

License Description

LLT1TDDRX01

Dynamic DRX

LLT1TCCIRC01 LLT1TRAOP01

Control Channel IRC RACH optimization

Remarks Reduce signalling auto reconnect/idle mode Interference rejection control RACH optimization for access control

LLT1TEAC01 LLT1TUMIMO02 LLT1TCPRICP01 LLT1TIEUC01 LLT1TDCEP01 LLT1TILLB02 LLT1TMUBF01

Enhanced Admission Control UL 2x4 MU-MIMO CPRI Compression Intra-eNodeB UL CoMP Intra-eNodeB DL CoMP in Adaptive Mode(per Cell)(TDD) Adaptive Inter-Cell Interference Coordination Intra-LTE Load Balancing(TDD) MU-Beamforming(per Cell)(TDD)

Admission control for rejection Increase UL throughput by 2x4 MU MIMO Dual carrier for 15MHZ UL Interference combining DL Interference combining Adaptive ICIC Dual carrier Increase throughput for cell edge

LLT1TVSPS01 LLT1TROHC01 LLT1TTTIB01

VoIP Semi-persistent Scheduling RObust Header Compression TTI Bundling

VOLTE scheduling VOLTE scheduling VOLTE scheduling

141

Transformation of Mobile Broadband Devices

142

Further Evolution in Mobile Broadband Devices

143

LTE Advanced Brings Different Dimensions of Improvements – Most Gain from HetNets

144

PCI Planning There are 504 PCI available: 1. For Macro eNodeB we use 0-464 (155 site’s) 2. Equipment trial reserve 465-494 for PCI Planning (10 site’s) 3. IBS/ Indoor eNodeB will use 495-503 (3 site’s)

145

TA (Tracking Area) Planning

146

TA Planning Principle

TAC = Tracking Area Code (1~65533, and 65535) (0 and 65534 are reserved by 3GPP) TAI = Tracking Area ID = MCC + MNC + TAC

For MCC and MNC below is temporary until get official value from government MCC = 460 MNC= 10 TAL = Tracking Area List Mutual agree on 10 June 2013, with operator Z

1 TAL = up to 16 TAC

TAL value range: 0~ 65534 Max number of TALs per USN = 20000

One TAL = One TAC 

One TAL is same with one TAC, with this design when the UE in idle condition then move to another TAC it will be generate TAU to report MME where is last position for this UE. When there is downlink packet data need to be deliver for that UE, MME can easily to find latest position.

S-GW

Internet

MME

TAU

TAC 2 TAU Procedure

The tracking area update (TAU) procedure is triggered if one of the following conditions is met: 

The UE detects that the current TA does not exist in the TA list on the UEregistered network.



It is a periodic TAU.



The TAU procedure is triggered during a handover procedure.



On an EPS network, the basic unit of location management is TA List. A TA List consists of one or multiple TAs. A TA list prevents a UE from initiating the TAU procedure frequently. In USN1.1, a TA is regarded as a TA List by default.

TAC 1

TAC 4 TAC 3

One TAL = Multiple TAC 

One TAL contains multiple TAC, with this design when UE in idle condition move to different TAC under one TAL there is no TAU. When MME want to deliver downlink packet data for that UE MME will send to latest TAC where the UE located. If the UE is unreachable MME will try to paging another TAC under one TAL until found. This design will take a time compare with the previous design.

S-GW

Internet

MME

UE Under move One to TAL new TAL no need needTAU TAU

TAL 1

TAC 2

TAC 1

TAC 4 TAC 3

TAL 2

TAC 6

TAC 5

TAC 8 TAC 7

Last TAC is 8 but UE move to TAC 7, MME will try paging another TAC under TAL2

TAL Planning For Jabodetabek area TAL planning, HUAWEI Propose for First Media that:

eNB Distribution on TAL and TAC



Capacity Per TAL is 46 eNB if using 1 ESU board .

109



HUAWEI assume there are 1200 BBU for 3603 sites ( 1 BBU consist of maximum 3 site)

108





The paging configuration in One TAL consist of multiple TAC ( FM proposed 1 TAL minimum 3 TAC based on area type ) Based on geographic consideration we get 9 TAL

3 16 5 41 5

107

32 4

106

TAL



35 4

105

40

3

104

To define the boundary of TAL, we follow this consideration: 1. main road or Highway which is have high Mobility 2. distribution of user 3. Capacity on TAC Maximum 46 eNB

41 3

103

41 3

102

45 3

101

37 0

10

Number of TAC per TAL

20

30

40

Avg. number of eNB per TAC

50

TAL & TAC Planning 1 TAL consist of multiple TAC we can use 5 letters of number using this rule ABC&XY For example in FM 1 TAL split become 3 TAC

We have define 9 TAL, and 1 TAL minimum 3 TAC. Our suggestion is using 3 letters of number, range value for TAC name from 101 to 109

TAL Planning Distribution Map 108

105

104 101 103

102

106

TAL

107

109

DEPLOYMENT PLANNING

153

LTE Deployment Options: Backhaul

Bandwidth Efficiency 700 MHz

LTE

Available Licensed Bandwidth (MHz)

6+6

Usable Bandwidth (MHz)

5+5

Spectral efficiency, downlink (bps/Hz)

1.67

Spectral efficiency, uplink (bps/Hz)

0.89

Average Throughput per 3-sector site, downlink (Mbps)

25.05

Average Throughput per 3-sector site, uplink (Mbps)

13.35

Loading Factor, downlink

70%

Loading Factor, uplink

60%

* Performance data is averaged from various vendors’ claims as of 2011.

Traffic Forecasting: Subscriber Traffic Model 700 MHz Traffic per Subscriber per Month (GB)

LTE 30

Downlink Traffic (%)

70%

Uplink Traffic (%)

30%

Hours in the Busy Period per Day Percent of Daily Traffic Carried in Busy Period

4 25%

Downlink Busy Hour Traffic per Subscriber

97 kbps

Uplink Busy Hour Traffic per Subscriber

42 kbps

Subscribers Supported per Sector

60

Subscribers Supported per Base Station (3 sectors)

180

* Performance data is averaged from various vendors’ claims as of 2011.

Estimate of Investment 700 MHz Access Network 3-Sector Single-5MHz-Carrier Macro Cell Investment per Subscriber Core Network Broadband Data-Only Core Network Incremental for VoIP Core Network CPE Terminals Desktop/Fixed CPE USB Dongle * Pricing data is averaged from various vendors’ proposals as of 2011.

LTE $55,000 $306

$3,000,000 $1,400,000 $395 $200

Pricing - Example Network #1 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber

LTE 50 9000 $9,827,500 $1,092

* Pricing data is averaged from various vendors’ proposals as of 2011.

Pricing - Example Network #2 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber

LTE 100 18,000 $15,255,000 $848

* Pricing data is averaged from various vendors’ proposals as of 2011.

Pricing - Example Network #3 700 MHz Base Stations Subscribers Supported Total Investment Investment per Subscriber

LTE 200 36,000 $26,110,000 $725

* Pricing data is averaged from various vendors’ proposals as of 2011.

LTE Deployment Business Consideration: When & How?

Relative Adoption of Technologies

3.9G

3G

2G

Rysavy Research projection based on historical data.

The reuse of existing 2G and 3G sites for NGMN will keep site cost flat

LTE Deployment Scenario

Femtocell @ LTE

165

Femtocell Motivation

166

Most Mobile Data Use Occurs Indoors

Source: Informa’s Mobile Access at Home Report 167

End of Training Day One

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF