4G-LTE Vs 5G-NR

November 28, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download 4G-LTE Vs 5G-NR...

Description

 

  G LTE vs 5G NR Technology & System RATMA WAHYUDI

 

ITU Perspective – IMT 2020  Early 2012, ITU-R embarked on a global program

to develop “IMT for 2020 and beyond”.

 

Setting the stage for 5G research activities that are emerging around the world Report ITU-R M.2320 – technology trends of M.2320 – “Future technology terrestrial IMT systems” (Nov 2014)

 September 2015, ITU-R ITU-R finalized finalized “Vision” of the

5G mobile broadband connected society. M.2083 –  – “Framework “Framework  Recommendation Recommendation ITU-R M.2083 and overall objectives of 2020 the future development of IMT for and beyond” (Sep 2015).  

Defined the “usage scenarios” for IMT 2020 and beyond Instrumental Instrument al in setting the agenda for the World Radiocommunication Conference 2019

 

ITU Perspective – IMT 2020 2017 – ITU completed a cycle of studies  February 2017 – on the key performance requirements of 5G technologies for IMT-2020.

2017 – adopted Report ITU-R M.2410, M.2410,  November 2017 – “Minimum requirements related to technical performance for IMT-2020 radio interface(s)” interface(s)”.. 

describes those key requirements for the minimum technical performance performan ce of IMT-2020 candidate radio interface technologies

technologies – including 3GPP NR  Candidate radio technologies –

and a combination of LTE +NR - will be evaluated against these performance requirements utilizing M.2412, (Nov 2017) “Guidelines Report ITU-R M.2412, “Guidelines for evaluation of radio interface technologies for IMT-

2020”, which establishes defined evaluation evaluation criteria & scenarios.

 

REQUIREMENT COMPARISON IMT 2020 VS IMT Advanced vs 3GPP Parameters

ITU-R IMT-2020

ITU-R IMT-Advanced

3GPP LTE-A Pro

3GPP New radio (NR)

Technology Bandwidth

Up to 1GHz

Up to 100 MHz

Up to 640MHz

Up to 1 GHz

Peak data rate

DL 20 Gbps UL 10 Gbps

DL 1.5 Gbps UL 0.675 Gbps

DL 3 Gbps UL 1.5 Gbps

DL 20 Gbps UL 10 Gbps

Peak spectral efficiency

DL 30 bit/s/Hz UL 15 bit/s/Hz

DL 15 bit/s/Hz UL 6.75 bit/s/Hz

DL 30 bps/Hz UL 15 bps/Hz

DL 30 bit/s/Hz UL 15 bit/s/Hz

User plane latency

Max: 4 ms

Max: 10 ms

Max: 2ms

Max: 0.5 ms

Control plane latency

Max: 20 ms

Max: 100 ms

Max: 50 ms

Max: 10 ms

 

LTE/NR Architecture AMF/UPF

AMF/UPF 5GC 

MME / S-GW

MME / S-GW

 S  1  

 S  1  

S      1     

 

E-UTRAN

  G   N

    G     N  NG-RAN 

gNB

gNB

eNB

  n    X

X    n  

   2    X

X    2   

N   G   Xn

X2

eNB

 N  G

N     G    

     1 S

 N G

N G 

 N  G

Xn

ng-eNB

eNB

• •

The eNBs are intercon interconnected nected with each othe otherr by means of the X2 interface The eNBs are also connec connected ted by means of the S1 interfaces to the EPC

• •

ng-eNB

The gNBs and ng-eN ng-eNBs Bs are inter interconnected connected with each other by means of the Xn interface The gNBs and ng-eNBs are also cconnected onnected by means of th the e

NG interfaces to the 5GC

 

LTE/NR Waveform 1. LTE W Wav avef eform orm wave veffor orm m : OFD OFDM M  DL wa  UL wave wavefo form rm : OFDM OFDM or SC-F SC-FDMA DMA  OFDM targeted at high throughput scenarios  SC-FDMA targeted targeted at power limited scenarios

2. LTE Mu Multi ltiple ple Acces Accesss  Orthogonal multiple access

1. NR W Wav avef efor orm m wavefo form rm : O OFD FDM M  DL wave  UL wave wavefo form rm : OF OFDM DM or SC-F SC-FDM DMA A  OFDM targeted at high throughput scenarios  SC-FDMA targeted at power limited scenarios

2. NR Multip Multiple le Acc Access ess  Orthogonal multiple access  Non - Orthogonal multiple access (NOMA) (NOMA) not

supported in Rel.15

3. LTE Bandwid Bandwidth th  Maximum CC bandwidth is 20 MHz

number of sub-carrier is 1200  Maximum number 

2048-FFT is needed  Maximum number number of CC is 5 (current) or 32 (later)

3. NR Ba Band ndwi widt dth h 

Maximum CC bandwidth is 400 MHz

 Maximum number number of sub-carrier is 3300  4097-FFT is needed

4. LTE M Modu odulat lation ion  Data : QPSK, 16-QAM, 64-QAM for DL/UL and 256-QAM

for DL only (plan supported 1024-QAM in R16)  Non-Data : BPSK, QPSK, ZC

 Maximum number number of CC is i s 16

4. NR M Mod odul ulat atio ion n  Data : QPSK, 16-QAM, 64-QAM for DL/UL and 256-QAM

for DL only  Non-Data : BPSK, QPSK, ZC

 

LTE/NR - Basic Numerol Numerology ogy 



LTE: LT E: A single 15 KHz subcarrier spacing  Normal and extended cyclic prefix

Re Rel-1 l-15 5 supports the follow ing numerologies

NR suppor ts s ub-1GHz ub-1GHz to several 10 GHz GHz spectrum range 

Multiple OFDM numerologies required Flexible subcarrier spacing (SCS) always a factor of      

15KHz where µ varie varies s from from 0 to 4 ( Δf  = 2µ ∙15 KHz ) Scaled from LTE numerology Higher subcarrier spacing  Shorter symbols and cyclic prefix Extended cyclic prefix only standardized for 60 KHz

µ

∆f = µ . 15 KHz

Cyclic Prefix

0

15 KHz

Normal

1

30 KHz

Normal

2

60 KHz

Normal, Extended

3

120 KHz

Normal

4

240 KHz

Normal

Spectrum

Data [KHz]

SSB [KHz]

< 6 GHz

15, 30, 60

15, 30

> 6 GHz

60, 120

120, 240

NR SCS : Symbol length

71.36 µs

35.67 µs

17.84 µs

8.92 µs

4.46 µs

 

Frame Structure One frame, Tframe = 10 ms

One subframe, Tsubframe = 1 ms #0

 Δf =15 =15

#1

#2

#3

#4

#5

kHz One slot, 0.5 ms

 Δf =60 =60

#7

#8

Frame structure for LTE

kHz One slot, 1 ms

 Δf =30 =30

#6

kHz One slot, 0.25 ms

 Δf =120 =120 kHz

One slot, 0.125 ms  Δf =240 =240 kHz

One slot, 0.0625 ms

#9

 

Operating g Bands LTE Operatin Upli Up link nk (U (UL) L) op oper erat atin ing g band band BS receive

Down Do wnli link nk (D (DL) L) op oper erat atin ing g band band BS transmit

1 2 3 4 5 6 7 8

UE transmit FUL_low  – FUL_high 1920 MHz  – 1980 MHz 1850 MHz  – 1910 MHz 1710 MHz  – 1785 MHz 1710 MHz  – 1755 MHz 824 MHz  – 849 MHz 830 MHz  – 840 MHz 2500 MHz  – 2570 MHz 880 MHz  – 915 MHz

UE receive FDL_low  – FDL_high 2110 MHz  – 2170 MHz 1930 MHz  – 1990 MHz 1805 MHz  – 1880 MHz 2110 MHz  – 2155 MHz 869 MHz  – 894MHz 875 MHz  – 885 MHz 2620 MHz  – 2690 MHz 925 MHz  – 960 MHz

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1749.9 MHz  – 1784.9 M MH Hz 1710 MHz  – 1770 MHz 1427.9 MHz  – 1447.9 MHz 699 MHz  – 716 MHz 777 MHz  – 787 MHz 788 MHz  – 798 MHz Reserved Reserved 704 MHz  – 716 MHz 815 MHz  – 830 MHz 830 MHz  – 845 MHz 832 MHz  – 862 MHz 1447.9 MHz  – 1462.9 M MH Hz 3410 MHz  – 3490 MHz 2000 MHz  – 2020 MHz 1626.5 MHz  – 1660.5 MHz 1850 MHz  – 1915 MHz 814 MHz  – 849 MHz 807 MHz  – 824 MHz 703 MHz  – 748 MHz

E-UTRA Operatin g Band

1844.9 M MH Hz  – 2110 MHz  – 1475.9 MHz  – 729 MHz  – 746 MHz  – 758 MHz  – Reserved Reserved 734 MHz  – 860 MHz  – 875 MHz  – 791 MHz  – 1495.9 M MH Hz  – 3510 MHz  – 2180 MHz  – 1525 MHz  – 1930 MHz  – 859 MHz  – 852 MHz  – 758 MHz  –

1879.9 MH z 2170 MHz 1495.9 MHz 746 MHz 756 MHz 768 MHz

746 MHz 875 MHz 890 MHz 821 MHz 1510.9 MH z 3590 MHz 2200 MHz 1559 MHz 1995 MHz 894 MHz 869 MHz 803 MHz

Mode

E-UTRA Operatin g Band

FDD FDD FDD FDD FDD FDD FDD FDD

29 30 31 32 33 34 35 36

FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD

37 38 39 40 41 42 43 44 45 46 47 48 … 64 65 66 67 68 69 70

Duplex

Upli Up link nk (U (UL) L) op oper erati ating ng ba band nd BS receive

Down Do wnli link nk (D (DL) L) op oper erat atin ing g ban band d BS transmit

Duplex

UE transmit FUL_low  – FUL_high N/A 2305 MHz  – 2315 MHz 452.5 MHz  – 457.5 MHz N/A 1900 MHz  – 1920 MHz 2010 MHz  – 2025 MHz 1850 MHz  – 1910 MHz 1930 MHz  – 1990 MHz

UE receive FDL_low  – FDL_high 717 MHz  – 728 MHz 2350 MHz  – 2360 MHz 462.5 MHz  – 467.5 MHz 1452 MHz  – 1496 MHz 1900 MHz  – 1920 MHz 2010 MHz  – 2025 MHz 1850 MHz  – 1910 MHz 1930 MHz  – 1990 MHz

Mode

1910 MHz 2570 MHz 1880 MHz 2300 MHz 2496 MHz 3400 MHz 3600 MHz 703 MHz 1447 MHz 5150 MHz 5855 MHz 3550 MHz

1910 MHz 2570 MHz 1880 MHz 2300 MHz 2496 MHz 3400 MHz 3600 MHz 703 MHz 1447 MHz 5150 MHz 5855 MHz 3550 MHz

 –  –  –  –  –  –  –

1930 MHz 2620 MHz 1920 MHz 2400 MHz 2690 MHz 3600 MHz 3800 MHz 803 MHz 1467 MHz 5925 MHz 5925 MHz 3700 MHz

T DD T DD T DD T DD T DD T DD T DD T DD TDD TDD8 TDD11 TDD

Reserved 2010 MHz 2110 MHz 1780 MHz 2110 MHz 738 MHz 728 MHz 753 MHz 2570 MHz 1710 MHz 1995 MHz

 –  –  –  –  –  –

2200 MHz 2200 MHz 758 MHz 783 MHz 2620 MHz 2020 MHz

FDD FDD4 FDD2 FDD FDD2 FDD10

1920 MHz 1710 MHz

 –  –  –  –  –  –  –  –  –  –  –

 –  – N/A 698 MHz  – N/A 1695 MHz  –

1930 MHz 2620 MHz 1920 MHz 2400 MHz 2690 MHz 3600 MHz 3800 MHz 803 MHz 1467 MHz 5925 MHz 5925 MHz 3700 MHz

 –  –  –  –

FDD2 FDD FDD FDD2 T DD T DD T DD T DD

 

NR Operatin g Bands in in FR1 & FR2 FR2 Operating NR operatin

Uplink (UL) operating band BS receive / UE transmit

Downlink (DL) operating band BS transmit / UE receive

Duplex Mode

g band

FUL_low  – FUL_high

FDL_low  – FDL_high

n1 n2 n3 n5 n7 n8 n12 n20

1920 MHz – MHz – 1980 MHz 1850 MHz – MHz – 1910 MHz 1710 MHz – MHz – 1785 MHz 824 MHz – MHz – 849 MHz 2500 MHz – MHz – 2570 MHz 880 MHz – MHz – 915 MHz 699 MHz – MHz – 716 MHz 832 MHz – MHz – 862 MHz

2110 MHz – 2170 MHz 1930 MHz – 1990 MHz 1805 MHz – 1880 MHz 869 MHz – 894 MHz 2620 MHz – 2690 MHz 925 MHz – 960 MHz 729 MHz – 746 MHz 791 MHz – 821 MHz

FDD FDD FDD FDD FDD FDD FDD FDD

n25 n28 n34 n38 n39 n40 n41 n50 n51 n66

1850 MHz – MHz – 1915 MHz 703 MHz – MHz – 748 MHz 2010 MHz – MHz – 2025 MHz 2570 MHz – MHz – 2620 MHz 1880 MHz – MHz – 1920 MHz 2300 MHz – MHz – 2400 MHz 2496 MHz – MHz – 2690 MHz 1432 MHz – MHz – 1517 MHz 1427 MHz – MHz – 1432 MHz 1710 MHz – MHz – 1780 MHz

1930 MHz – 1995 MHz 758 MHz – 803 MHz 2010 MHz – 2025 MHz 2570 MHz – 2620 MHz 1880 MHz – 1920 MHz 2300 MHz – 2400 MHz 2496 MHz – 2690 MHz 1432 MHz – 1517 MHz 1427 MHz – 1432 MHz 2110 MHz – 2200 MHz

FDD FDD T DD T DD T DD T DD T DD TDD1 T DD FDD

n70 n71 n74 n75 n76 n77 n78 n79 n80 n81

1695 MHz – MHz – 1710 MHz 663 MHz – MHz – 698 MHz 1427 MHz – MHz – 1470 MHz N/A N/A 3300 MHz – MHz – 4200 MHz 3300 MHz – MHz – 3800 MHz 4400 MHz – MHz – 5000 MHz 1710 MHz – MHz – 1785 MHz 880 MHz – MHz – 915 MHz

1995 MHz – 2020 MHz 617 MHz – 652 MHz 1475 MHz – 1518 MHz 1432 MHz – 1517 MHz 1427 MHz – 1432 MHz 3300 MHz – 4200 MHz 3300 MHz – 3800 MHz 4400 MHz – 5000 MHz N/A N/A

FDD FDD FDD S DL S DL T DD T DD T DD SUL SUL

n82 n83 n84 n86

832 MHz – MHz – 862 MHz 703 MHz – MHz – 748 MHz 1920 MHz – MHz – 1980 MHz 1710 MHz – MHz – 1780MHz

N/A N/A N/A N/A

SUL SUL SUL SUL

Operating Band

Uplink (UL) operating band BS receive/ UE transmit transmit

Downlink (DL) operating band BS transmit / UE receive

FUL_low  – FUL_high

FDL_low  – FDL_high

Duplex Mode

n257

26500 MHz  – 29500 MHz

26500 MHz

 –

29500 MHz

TDD

n258

24250 MHz  – 27500 MHz

24250 MHz

 –

27500 MHz

TDD

n260

37000 MHz  – 40000 MHz

37000 MHz

 –

40000 MHz

TDD

n261

27500 MHz  – 28350 MHz

27500 MHz

 –

28350 MHz

TDD

NOTE 1:

UE that comp complies lies with th the e NR Band n50 minimum requ requiremen irements ts in this specif specificati ication on shall al also so comply with the NR Band n51 minimum requirements.

 

LTE/NR Channel bandwidth LTE Maximum transmission bandwidth configuration N RB SCS (kHz)

1.4MHz NRB

3MHz NRB

5MHz NRB

10MHz NRB

15MHz NRB

20 MHz NRB

15

6

15

25

50

75

100

NR Maximum transmission bandwidth configuration configuration N RB FR1 SCS (kHz)

5MHz NRB

10MHz NRB

15MHz NRB

20 MHz NRB

25 MHz NRB

30 MHz NRB

40 MHz NRB

50MHz NRB

60 MHz NRB

80 MHz NRB

90 MHz NRB

100 MHz NRB

15 30

25 11

52 24

79 38

106 51

133 65

160 78

216 106

270 133

N/A 162

N/A 217

N/A 245

N/A 273

60

N/A

11

18

24

31

38

51

65

79

107

121

135

50MHz NRB 66 32

100MHz NRB 132 66

FR2 SC S (kHz) 60 120

200MHz NRB 264 132

400 MHz NRB N.A 264

 

Support Wider Bandwidth  LTE



18

18

18

18

18

MHz

MHz

MHz

MHz

MHz



To get 100MHz bandwidth should aggregate 5 carrier of 20MHz Total PRB will be 5 x 100PRB = 500PRB

100MHz (5x20MHz)



 NR



98.31 MHz



To get 100MHz bandwidth can be achieved only 1 carrier of 100MHz Total PRB will be ~ 540PRB 8% improvement for spectrum usage

100MHz

5G NR support wider bandwidth, higher spectrum usage and less guard band

 

Carrier Aggregation and Supplementary Uplink 

Carrier aggregation (up to 16 carriers) 

Main use case: bandwidth extension



Supplementary uplink



To improve UL coverage for high frequency scenarios

Carrier aggregation

DL+UL coverage DL only coverage

SUL coverage

Cell #1

Cell #2 UL

DL + UL

SUL

High NR frequency

 frequency

CA_n3A-n77A

NR Band (Table 5.2-1) n3, n77

CA_n3A-n78A CA_n3A-n79A CA_n8A-n75A CA n8-n78A CA_n8A-n79A CA_n28A-n75A 2 CA_n28A_n78A CA_n41A-n78A CA_n75A-n78A 1

n3, n78 n3, n79 n8, n75 n8, n78 n8, n79 n28, n75 n28, n78 n41, n78 n75, n78

NR Band combination for SUL SUL_n78-n802 SUL_n78-n812 SUL_n78-n822 SUL_n78-n832 SUL_n78-n842 SUL_n78-n862

NR Band (Table 5.2-1) n78, n80 n78, n81 n78, n82 n78, n83 n78, n84 n78, n86

CA_n77A-n79A CA_n78A-n79A

n77, n79 n78, n79

SUL_n79-n802 SUL_n79-n812

n79, n80 n79, n81

NR CA Band

 

Bandwidth Parts     

To support UEs not capable of full carrier bandwidth To support bandwidth adaptation (reduced UE power consumption) Up to 4 bandwidth parts per carrier, one of which is active A UE is not supposed to receive/transmit receive/transmit outside the active a ctive bandwidth part Many parameters are configured per bandwidth part

 

Ultra Lean Design LTE     Very limited capability for base station power savings due to continuous transmission of cell reference signals

Cell specific reference reference signal transmission 4x every ms Synchronization Synchroniz ation every 5 ms Broadcast every 10 ms Example in 20MHz bandwidth, there are 33,104 symbol will be occupied by PBCH/SSS/PSS/RS

NR     5G enables advanced base station power savings

No cell specific reference reference signals Synchronization Synchroniz ation every 20 ms Broadcast every 20 ms Example in 20MHz bandwidth, there are 3,388 symbol will be occupied by PBCH/SSS/PSS

 

Downlink MIMO Framework : Beam Management

 

Mini Slot Transmission Basic Principle

 Slot transmission  Can start at every 7th (14th) symbol

DL data

 Have a fixed length of 7 (14) symbols

UL data

 Mini-slot transmission  Can start at any OFDM symbol

DL data

 Can have an arbitrary length • up to some maximum value

UL data

 Have a length 2, 4, 7 OFDM symbol

 

Downlink & Uplink Physical Channel/Signal NR vs LTE

 

The mapping between logical, transport channels and physical channels LTE

NR

RADIO LINK CONTROL (RLC) LAYER Control Plane PCCH

BCCH

CCCH

RADIO LINK CONTROL (RLC) LAYER Control Plane

User Plane DTCH

DCCH

PCCH

BCCH

CCCH

User Plane DTCH

DCCH

Logical Channel

MEDIUM ACCES CONTROL (MAC) LAYER

MEDIUM ACCES CONTROL (MAC) LAYER

Transport Channel

PCH

BCH

PCH

DL-SCH

BCH

PHYSICAL LAYER

DL-SCH

PHYSICAL LAYER

DCI

DCI

Physical Channel PSS

PSS

PBCH

PDSCH

PDCCH

PHICH

PCFICH

PSS

PSS

PBCH DMRS

PDSCH DMRS PT-RS

PDCCH DMRS

CSI-RS

 

PDCCH (Physical Downlink Control Channel) 

PDCCH is carries information of Downlink Control Information, DCI for a particular UE or group of UEs.

 

DCI provides : Downlink resource scheduling, Uplink power control instructions, uplink resourc resource e grant. DCI format has different types which are defined with differen differentt sizes and function.

LTE

NR  Frequency domain

Control Region in LTE is always  spread across the whole channel band width,  There is no parameters defining the frequency domain region for LTE control region  Time Domain Control region is defined by the physical channel called PCFICH  1-3 first symbol in every TTI  Resource Allocation  1 REG = 4 RE  1 CCE = 9 REG  Aggregation Level 



1/2/4/8

 Frequency domain 

Need a parameter defining the frequency domain width for CORESET  Frequency domain width can be set in any value in the multiples of 2, 3, and 6 RBs.  Time Domain  Need the parameter for time domain length both in LTE in NR  Flexible within TTI 14 symbol (max consecutive is 3 symbol)  Resource Allocation  1 REG = 12 RE  1 CCE = 6 REG  Aggregation Level 

1/2/4/8/16

 

5G NR Reference Signal To increase protocol efficiency, and to keep transmissions contained within a slot or beam without having to depend on other slots and beams, NR introduces the following four main reference signals.    

Demodulation Reference Signal (DMRS) Phase Tracking Reference Signal (PTRS) Sounding Reference Signal (SRS) Channel State Information Reference Signal (CSI-RS)

Reference Refer ence Signals Mapping with associated with different physical channel is depicted iin n following figure. What’s new in NR compare to LTE : 1. 2. 3. 4.

In NR, NR, ther there e is not Cell Cell sspecif pecific ic Refer Reference ence Signa Signall (C-RS) New Referen Reference ce S Signal ignal PTR PTRS S has has been been introduce introduced d for Time/Frequency tracking DMRS DMRS has b been een intr introdu oduced ced for for both both do downl wnlink ink and uplink channels In NR, referen reference ce ssignals ignals are tran transmit smitted ted only when it is necessary where as in LT LTE E constantly exchanging exchangin g reference signals to manage the link

 

LTE/NR 4-Bit Mapping CQI Table 4-b i t CQI Tab l e f o r s u p p o r t ed 64-QAM CQI index 0 1 2

modulation

3 4 5 6 7 8 9

QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM

10 11 12 13 14 15

64QAM 64QAM 64QAM 64QAM 64QAM 64QAM

QPSK QPSK

4-b i t CQI Tab l e f o r s u p p o r t ed 256-QA M modulation

0.1523 0.2344

CQI index 0 1 2

193 308 449 602 378 490 616

0.3770 0.6016 0.8770 1.1758 1.4766 1.9141 2.4063

3 4 5 6 7 8 9

QPSK 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM

449 378 490 616 466 567 666

0.8770 1.4766 1.9141 2.4063 2.7305 3.3223 3.9023

466 567 666 772 873 948

2.7305 3.3223 3.9023 4.5234 5.1152 5.5547

10 11 12 13 14 15

64QAM 64QAM 256QAM 256QAM 256QAM 256QAM

772 873 711 797 885 948

4.5234 5.1152 5.5547 6.2266 6.9141 7.4063

code rate x 1024 out of range 78 120

efficiency

LTE and NR have same CQI mapping table

QPSK QPSK

code rate x 1024 out of range 78 193

efficiency

0.1523 0.3770

 

NR Slot Format D = Downlink Format 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

U = Uplink

X = Flexible, can be D/U

Symbol Number in a slot 6 7 8

0

1

2

3

4

5

9

10

11

12

13

 

D

D

D

D

D

D

D

D

D

D

D

D

D

D

 

U

U

U

U

U

U

U

U

U

U

U

U

U

U

 

X

X

X

X

X

X

X

X

X

X

X

X

X

 

D

D

D

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

 

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U U

 

X  

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

 

 

 

X

X

 

D

X  

 

X  

U

 

X

 

X

X

 

X

X

X

 

X

X

X

X

 

X

X

X

X

X

 

X

X

X

X

X

X

 

D

X

X

X

X

X

X

X

X

X

X

X

X

X

 

D

X

X

X

X

X

X

X

X

X

X

X

X

 

D

 

 

 

D

 

D

 

D

D

 

D

D

D

 

D

X

 

D

D

 

D

D

D

 

D

X

 

D

D

 

D

D

D

 

D

D

 

D

D

 

 

 

D

D

X

X  

 

 

 

 

 

 

 

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

 

U

U

X

X

X

X

X

X

X

X

X

X

 

U

U

X

X

X

X

X

X

X

X

X

 

U

U

X

X

X

X

X

X

X

X

X

 

U

U

U

X

X

X

X

X

X

X

X

X

 

U

U

U

X

X

X

X

X

X

X

X

 

U

U

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

X  

 

 

D  

X

 

X  

U

X

 

U

X

 

U

U

X

 

U

X

 

U

29 30

 

D

 

D

 

D

D

D

D

D

D

D

D

 

X

X

X

 

U

 

NR Slot Format D = Downlink Format 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

U = Uplink

X = Flexible, can be D/U

0

1

2

3

4

Symbol Number in a slot 5 6 7 8

9

10

 

D

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

D

 

D

D

D

D

D

D

D

D

D

 

D

U

U

U

U

U

 

U

U

U

U

U

U U

 

12

13

X

 

U

U

X

X

 

U

U

X

X

X

 

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

 

U

U

U

U

U

U

U

U

U

 

U U

U U

U U

U U

U U

U U

U U

U U

U U

X

 

U

D

D

 

X

 

U

 

D

D

D

 

X

 

D

X

X

 

U

 

D

D

 

D

D

D

   

D D

X D

X X

 

D

D

D

X

X

X

 

D

D

D

D

D

D

 

D

D

D

D

D

D

 

D

D

D

D

D

 

D

D

D

D

D

 

D

D

D

D

D

 

D

D

X

X

 

D

 

X

X

 

X

 

U

U

 

X

X

 

X

X

X

 

X

X

X

X

 

D

D

D

D

D

 

D

D

 

X

U

U

 

D

X

 

U

U

 

D

D

D

D

 

D

D

 

X

X

 

D

 

X

 

U

 

D

 

X

 

D

 

 

 

D

 

 

 

 

 

X

X  

U

 

X X X

 

 

X  

U X

U

U

U

D

D

D

 

X

X

D

 

X

X

D

 

X

 

X

X

X

X

X

X

U

U

 

 

 

 

11  

U

U

U

U

X

X

X

X

X

X

X

X

U

U

U

U

U

D

D

D

D

D

D

 

D

D

D

D

D

X

 

D

D

X

X

X

X

X

 

D

U

U

 

 

 

 

 

 

U  

U

U U U

 

X

X

X

X

X

X

X

X

X

X

X

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

 

X

X

U

U

U

U

 

X

X

X

U

U

U

 

X

X

X

X

U

D

D

D

D

D

U

U

U

U

XU

U

U

U

U

U

U

D

U

U

U

U

 

X

X

U

D

D

D

D

 

X

X

 

U

U

U

D

D

 

X

X

 

U

U

U

U

U

U

D

 

X

 

U

U

U

U

X

X

X

X

 

U

D

 

X

X

X

X

X

 

U

X

X

X

X

 

U

D

X

X

X

X

 

U

 

 

 

 

X

 

 

 

X

D

 

   

 

U  

 

 

X

U  

U U U

 

U U U

 

NR Spectral Efficiency Peak spectral efficiency:  DL: 8 layer for FR1; 6 layer for FR2; 256QAM



(NR, LTE) / 1024QAM (LTE), max code rate = 0.9258 (NR) / 0.93 (LTE) UL: 4 layer, 256QAM, max code rate = 0.9258 (NR) / 0.93 (LTE)

Contributing Technical Component:  

NR large CC bandwidth introduces reduced guard band ratio NR small overhead for DL: 



For PDCCH, as low as 0.6%@100 MHz for low load; 8-layer DMRS overhead reduced to 9.5%; no CRS NR small overhead for UL:  4-layer DMRS overhead reduced to 7% under UL OFDMA; “Special sub-frame sub-frame”” can be used to transmit UL data -> Overhead reduced.

 

NR Spectral Efficiency NR FDD FDD DL peak sp ectral efficienc y (bit/s/Hz) SCS [kHz]

FR1

5 MHz

10 MHz

15 MHz

20 MHz

25 MHz

30 MH MHzz

40 MHz

50 MHz

60 MHz

80 MHz

90 MH MHzz

100 MHz

Req.

15

40 .8 .8~ 42 42. 8

4 4. 4. 5~ 5~ 45 45 .5 .5

4 5. 5. 1~ 1~ 46 46. 5

4 5. 5. 4~ 4~ 47 47. 0

45.5~47.2

45.7~47.4

46.2~48.2

46.2~48.3

-

-

-

-

30

30

32 .1 .1~ 37 37. 7

3 9. 9. 4~ 4~ 41 41 .1 .1

4 3. 3. 0~ 0~ 44 44. 2

43 .7 .7 ~4 ~4 4. 4. 8

44.5~45.9

44.5~46.1

45.4~47.1

45.5~47.4

46.2~48.2

46.4~48.5

48.5~48.7

46.7~48.9

30

60

-

32.4~37.7

38.4~41.1

39.6~41.3

41.8~43.1

43.2~44.3

43.7~44.9

44.5~46.0

45. 1 1~ ~46.8

45.8~47.7

47.6~47.8

46.2~48.2

30

FDD generally assume : 8-layer downlink transmission, with 256QAM modulation, and a maximum coding rate of 0.9258

NR TDD TDD DL peak spectral eff icienc y for FR1 (bit/s/Hz) (bit/s/Hz) (Frame structure: DDDSU; a DL=0.7643; with OH1 and OH2) SCS [kHz]

FR1

5 MHz

10 MHz

15 MHz

20 MHz

25 MHz

30 MH MHzz

40 MHz

50 MHz

60 MHz

80 MHz

90 MH MHzz

100 MHz

Req.

15

39 .6 .6~ 41 41. 5

4 3. 3. 6~ 6~ 44 44 .5 .5

4 4. 4. 9~ 9~ 45 45. 6

4 5. 5. 6~ 6~ 46 46. 1

46.1~ 46.4

46.3~46.6

47.1~47.3

47.2~47.4

-

-

-

-

30

30

31 .7 .7~ 35 35. 2

3 8. 8. 4~ 4~ 40 40 .3 .3

4 2. 2. 1~ 1~ 43 43. 3

4 3. 3. 1~ 1~ 44 44. 0

44.4~ 45.1

44.6~45.3

45.9~46.3

46.3~46.6

47. 1~ 1~47.4

47.5~47.7

47.7~47.9

47.9~48.1

30

60

-

31.8~35.3

37.5~40.1

38.7~40.5

40.9~ 42.3

42.3~43.5

43.3~44.2

44.5~45.3

45. 4 4~ ~46.0

46.4~46.9

46.8~47.2

47.1~47.4

30

TDD generally assume : 8-layer downlink transmission, with 256QAM modulation, and a maximum coding rate of 0.9258. The DL/UL configurations of DDDSU (with ‘S’ slot = 11DL:1GP:2UL) and DSUUD (with ‘S’ slot = 6DL:2GP:6UL and 11DL:1GP:2UL respectively)

SCS [kHz] FR2

60

50 MHz

100 MHz

200 MHz

400 MHz

Req.

33.7

34.5

34.9

-

30 30

For NR TDD in FR2, the DL/UL configurations of DDDSU (with ‘S’ slot = 11DL:1GP:2UL) and DSUUD (with ‘S’ slot = 6DL:2GP:6UL and 11DL:1GP:2UL respectively respectively), ), the number of layers is 6 with 256QAM modulation and maximum coding rate of 0.9258

120

31.7

34.7

34.0

35.0

 

Peak Data NR Peak Data Rate Rate - Downl Downlink ink NR DL peak data rate Duplexing

FDD

TDD (DDDSU)

SCS [kHz]

FR1

FR1 FR2 (Nlayer=6)

Perr CC BW Pe BW (MHz (MHz))

15 30 60 15 30 60 60 120 15

50 100 100 50 100 100 200 400 50

Required DL Req. Peak Pe ak dat data a rate rate pe perr CC Aggregated peak data rate over 16 CCs bandwidth to meet (Gbit/s) (Gbit/s) (Gbit/s) the requirement (MHz)1

2.31~2.41 4.67~4.89 4.62~4.82 1.81 3.68 3.62 5.33 10.7 1.32

FR1 TDD (DSUUD, S slot= 11DL:2GP:2UL)

TDD (DSUUD,

FR2 (Nlayer=6) FR1

S slot= 6DL:2GP:6UL) FR2 (Nlayer=8)

3 60 0 60 120 15 30 60

1 10 00 0 200 400 50 100 100

2 2..6 69 4 3.86 7.81 1.13 2.30 2.26

60 120

200 400

4.38 8.76

37.0~38.6 74.7~78.2 73.9~77.1

414~433 409~428 415~433

29.0

552

58.9

543

57.9

552

85.3

750

171.2

748

21.1

757

43.0

745

42.3

757

61.8

1036

125.0

1024

18.1

885

36.8

870

36.2

885

70.1 140.2

913 913

NOTE 1: The value only indicates the required bandwidth to meet the DL peak data rate. It is not necessarily supported as NR Transmission bandwidth.

20

 

Peak Data NR Peak Data Rate Rate - Uplin Uplink k NR UL peak data rate Duplexing

SCS [kHz]

FDD

FR1

TDD (DDDSU) + SUL

FR1

TDD (DSUUD,

FR1

S slot =11DL:2GP:2UL)

FR2

TDD (DSUUD, S slot =6DL:2GP:6UL)

FR1 FR2

15 30 60 15 30 60 30 60 60 120 30 60 60 120

Per CC BW BW (MHz) (MHz)

Peak data Peak data rate rate per per CC (Gbit/s)

Aggregated peak data rate over 16 CCs (Gbit/s)

Required UL Req. bandwidth to meet (Gbit/s) the requirement (MHz)1

50 100 100 50 100 100 100 100 200 400 100 100 200 400

1.12~1.18 2.28~2.39 2.27~2.38 1.12~1.18 2.28~2.39 2.27~2.38 1.06 1.05 1.91 3.85 1.05 1.04 2.02 4.04

17.9~18.9 36.5~38.2 36.3~38.1 17.9~18.9 36.5~38.2 36.3~38.1

424~446 418~439 420~441 424~446 418~439 420~441

17.0

943

16.8

952

30.6

1047

61.6

1039

16.8

952

16.6

962

32.3

990

64.6

990

NOTE 1: The value only indicates the required bandwidth to meet the DL peak data rate. It is not necessarily supported as NR Transmission bandwidth.

10

 

Average and 5% Percentile user SE Preliminary NR evaluation results for Dense Urban: 



Larger CC bandwidth brings improved SE (~30%) due to guard band ratio reduction and PDCCH overhead reduction NR Massive MIMO: 64 TXRU brings additional gain over 32 TXRU in TDD.

 

Latency, Control Plane and User Plane URLLC User Plane (1ms requirement)

Control Plane (20ms requirement) UE

gNB

1. Delay for RACH Scheduling Period 2. RACH Preamble 3. Processing delay in gNB 4. RA response er u d

5. Processing delay in UE e c ro p

6. RRC Resume Request e n la p

7. Processing delay in gNB 8. RRC Resume

l rot n o C

9. Processing delay in UE

10. RRC Resume Complete

Control plane latencyNR lat encyNR FDD Allocation Mapping 4 symbols Type Ty pe A 7 symbols Mapping 2 symbols 4 symbols Type Ty pe B 7 symbols

DLuser pla plane ne lat latenc ency y NR FDD Allocation 4 sym bo bols



UE capability 1 Subcarrier spacing 15 kHz 30 kHz 60 kHz 120kHz 15.6 13.5 12.4 11.7 15.8 13.6 12.5 11.7 13.7 14.2 15.3

12.3 12.5 13.0

11.9 12.0 12.3

11.4 11.5 11.6

UE capa  bility 2 Subcarrier spacing 15 kHz 30 kHz 60 kHz 15.1 13.0 12.1 15.3 13.1 12.2 13.4 13.9 14.8

12.0 12.3 12.8

11.7 11.8 12.1

Mapping TypeA Ty peA

Mapping TypeB Ty peB

Re-Tx p=0 p=0.1 7 sym bo bols p=0 p=0.1 14 sym symbo bols ls p= p=0 0 p=0.1 2 sym bo bols p=0 p=0.1 4 sy symbols p=0 p=0.1 7 sym bo bols p=0 p=0.1

UE capability 1 Subcarrier spacing 15 kHz 30 kHz 60 kHz 120 kHz 1.37 0.76 0.54 0.34 1.58 0.87 0.64 0.40 1.49 0.82 0.57 0.36 1.70 0.93 0.67 0.42 2 .1 3 1.14 0.72 0.44 2 .4 3 1.29 0.82 0.51 0 .9 8 0.56 0.44 0.29 1.16 0.67 0.52 0.35 1.11 0.63 0.47 0.31 1.30 0.74 0.56 0.36 1.30 0.72 0.52 0.33 1.49 0.83 0.61 0.39

UE capability 2 Subcarrier spacing 15 kHz 30 kHz 60 kHz 1 .0 0 0 .5 5 0.36 1.12 0 .6 5 0.41 1.12 0 .6 1 0.39 1.25 0 .7 1 0.44 1.80 0 .9 4 0.56 2 .0 0 1 .0 4 0.63 0 .4 9 0 .2 9 0.23 0 .6 0 0 .3 5 0.28 0.66 0.37 0.27 0 .7 8 0 .4 5 0.32 0 .9 3 0 .5 1 0.34 1.08 0 .5 9 0.40

 

Global Connection Trend

Source : GSMA intelligent



5G continues to occupy thought space as the next big thing in i n mobile. 4G, however, however, will dominate in volume terms for at least the next 10 years.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF