4G-LTE Vs 5G-NR
November 28, 2022 | Author: Anonymous | Category: N/A
Short Description
Download 4G-LTE Vs 5G-NR...
Description
G LTE vs 5G NR Technology & System RATMA WAHYUDI
ITU Perspective – IMT 2020 Early 2012, ITU-R embarked on a global program
to develop “IMT for 2020 and beyond”.
Setting the stage for 5G research activities that are emerging around the world Report ITU-R M.2320 – technology trends of M.2320 – “Future technology terrestrial IMT systems” (Nov 2014)
September 2015, ITU-R ITU-R finalized finalized “Vision” of the
5G mobile broadband connected society. M.2083 – – “Framework “Framework Recommendation Recommendation ITU-R M.2083 and overall objectives of 2020 the future development of IMT for and beyond” (Sep 2015).
Defined the “usage scenarios” for IMT 2020 and beyond Instrumental Instrument al in setting the agenda for the World Radiocommunication Conference 2019
ITU Perspective – IMT 2020 2017 – ITU completed a cycle of studies February 2017 – on the key performance requirements of 5G technologies for IMT-2020.
2017 – adopted Report ITU-R M.2410, M.2410, November 2017 – “Minimum requirements related to technical performance for IMT-2020 radio interface(s)” interface(s)”..
describes those key requirements for the minimum technical performance performan ce of IMT-2020 candidate radio interface technologies
technologies – including 3GPP NR Candidate radio technologies –
and a combination of LTE +NR - will be evaluated against these performance requirements utilizing M.2412, (Nov 2017) “Guidelines Report ITU-R M.2412, “Guidelines for evaluation of radio interface technologies for IMT-
2020”, which establishes defined evaluation evaluation criteria & scenarios.
REQUIREMENT COMPARISON IMT 2020 VS IMT Advanced vs 3GPP Parameters
ITU-R IMT-2020
ITU-R IMT-Advanced
3GPP LTE-A Pro
3GPP New radio (NR)
Technology Bandwidth
Up to 1GHz
Up to 100 MHz
Up to 640MHz
Up to 1 GHz
Peak data rate
DL 20 Gbps UL 10 Gbps
DL 1.5 Gbps UL 0.675 Gbps
DL 3 Gbps UL 1.5 Gbps
DL 20 Gbps UL 10 Gbps
Peak spectral efficiency
DL 30 bit/s/Hz UL 15 bit/s/Hz
DL 15 bit/s/Hz UL 6.75 bit/s/Hz
DL 30 bps/Hz UL 15 bps/Hz
DL 30 bit/s/Hz UL 15 bit/s/Hz
User plane latency
Max: 4 ms
Max: 10 ms
Max: 2ms
Max: 0.5 ms
Control plane latency
Max: 20 ms
Max: 100 ms
Max: 50 ms
Max: 10 ms
LTE/NR Architecture AMF/UPF
AMF/UPF 5GC
MME / S-GW
MME / S-GW
S 1
S 1
S 1
E-UTRAN
G N
G N NG-RAN
gNB
gNB
eNB
n X
X n
2 X
X 2
N G Xn
X2
eNB
N G
N G
1 S
N G
N G
N G
Xn
ng-eNB
eNB
• •
The eNBs are intercon interconnected nected with each othe otherr by means of the X2 interface The eNBs are also connec connected ted by means of the S1 interfaces to the EPC
• •
ng-eNB
The gNBs and ng-eN ng-eNBs Bs are inter interconnected connected with each other by means of the Xn interface The gNBs and ng-eNBs are also cconnected onnected by means of th the e
NG interfaces to the 5GC
LTE/NR Waveform 1. LTE W Wav avef eform orm wave veffor orm m : OFD OFDM M DL wa UL wave wavefo form rm : OFDM OFDM or SC-F SC-FDMA DMA OFDM targeted at high throughput scenarios SC-FDMA targeted targeted at power limited scenarios
2. LTE Mu Multi ltiple ple Acces Accesss Orthogonal multiple access
1. NR W Wav avef efor orm m wavefo form rm : O OFD FDM M DL wave UL wave wavefo form rm : OF OFDM DM or SC-F SC-FDM DMA A OFDM targeted at high throughput scenarios SC-FDMA targeted at power limited scenarios
2. NR Multip Multiple le Acc Access ess Orthogonal multiple access Non - Orthogonal multiple access (NOMA) (NOMA) not
supported in Rel.15
3. LTE Bandwid Bandwidth th Maximum CC bandwidth is 20 MHz
number of sub-carrier is 1200 Maximum number
2048-FFT is needed Maximum number number of CC is 5 (current) or 32 (later)
3. NR Ba Band ndwi widt dth h
Maximum CC bandwidth is 400 MHz
Maximum number number of sub-carrier is 3300 4097-FFT is needed
4. LTE M Modu odulat lation ion Data : QPSK, 16-QAM, 64-QAM for DL/UL and 256-QAM
for DL only (plan supported 1024-QAM in R16) Non-Data : BPSK, QPSK, ZC
Maximum number number of CC is i s 16
4. NR M Mod odul ulat atio ion n Data : QPSK, 16-QAM, 64-QAM for DL/UL and 256-QAM
for DL only Non-Data : BPSK, QPSK, ZC
LTE/NR - Basic Numerol Numerology ogy
LTE: LT E: A single 15 KHz subcarrier spacing Normal and extended cyclic prefix
Re Rel-1 l-15 5 supports the follow ing numerologies
NR suppor ts s ub-1GHz ub-1GHz to several 10 GHz GHz spectrum range
Multiple OFDM numerologies required Flexible subcarrier spacing (SCS) always a factor of
15KHz where µ varie varies s from from 0 to 4 ( Δf = 2µ ∙15 KHz ) Scaled from LTE numerology Higher subcarrier spacing Shorter symbols and cyclic prefix Extended cyclic prefix only standardized for 60 KHz
µ
∆f = µ . 15 KHz
Cyclic Prefix
0
15 KHz
Normal
1
30 KHz
Normal
2
60 KHz
Normal, Extended
3
120 KHz
Normal
4
240 KHz
Normal
Spectrum
Data [KHz]
SSB [KHz]
< 6 GHz
15, 30, 60
15, 30
> 6 GHz
60, 120
120, 240
NR SCS : Symbol length
71.36 µs
35.67 µs
17.84 µs
8.92 µs
4.46 µs
Frame Structure One frame, Tframe = 10 ms
One subframe, Tsubframe = 1 ms #0
Δf =15 =15
#1
#2
#3
#4
#5
kHz One slot, 0.5 ms
Δf =60 =60
#7
#8
Frame structure for LTE
kHz One slot, 1 ms
Δf =30 =30
#6
kHz One slot, 0.25 ms
Δf =120 =120 kHz
One slot, 0.125 ms Δf =240 =240 kHz
One slot, 0.0625 ms
#9
Operating g Bands LTE Operatin Upli Up link nk (U (UL) L) op oper erat atin ing g band band BS receive
Down Do wnli link nk (D (DL) L) op oper erat atin ing g band band BS transmit
1 2 3 4 5 6 7 8
UE transmit FUL_low – FUL_high 1920 MHz – 1980 MHz 1850 MHz – 1910 MHz 1710 MHz – 1785 MHz 1710 MHz – 1755 MHz 824 MHz – 849 MHz 830 MHz – 840 MHz 2500 MHz – 2570 MHz 880 MHz – 915 MHz
UE receive FDL_low – FDL_high 2110 MHz – 2170 MHz 1930 MHz – 1990 MHz 1805 MHz – 1880 MHz 2110 MHz – 2155 MHz 869 MHz – 894MHz 875 MHz – 885 MHz 2620 MHz – 2690 MHz 925 MHz – 960 MHz
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1749.9 MHz – 1784.9 M MH Hz 1710 MHz – 1770 MHz 1427.9 MHz – 1447.9 MHz 699 MHz – 716 MHz 777 MHz – 787 MHz 788 MHz – 798 MHz Reserved Reserved 704 MHz – 716 MHz 815 MHz – 830 MHz 830 MHz – 845 MHz 832 MHz – 862 MHz 1447.9 MHz – 1462.9 M MH Hz 3410 MHz – 3490 MHz 2000 MHz – 2020 MHz 1626.5 MHz – 1660.5 MHz 1850 MHz – 1915 MHz 814 MHz – 849 MHz 807 MHz – 824 MHz 703 MHz – 748 MHz
E-UTRA Operatin g Band
1844.9 M MH Hz – 2110 MHz – 1475.9 MHz – 729 MHz – 746 MHz – 758 MHz – Reserved Reserved 734 MHz – 860 MHz – 875 MHz – 791 MHz – 1495.9 M MH Hz – 3510 MHz – 2180 MHz – 1525 MHz – 1930 MHz – 859 MHz – 852 MHz – 758 MHz –
1879.9 MH z 2170 MHz 1495.9 MHz 746 MHz 756 MHz 768 MHz
746 MHz 875 MHz 890 MHz 821 MHz 1510.9 MH z 3590 MHz 2200 MHz 1559 MHz 1995 MHz 894 MHz 869 MHz 803 MHz
Mode
E-UTRA Operatin g Band
FDD FDD FDD FDD FDD FDD FDD FDD
29 30 31 32 33 34 35 36
FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD
37 38 39 40 41 42 43 44 45 46 47 48 … 64 65 66 67 68 69 70
Duplex
Upli Up link nk (U (UL) L) op oper erati ating ng ba band nd BS receive
Down Do wnli link nk (D (DL) L) op oper erat atin ing g ban band d BS transmit
Duplex
UE transmit FUL_low – FUL_high N/A 2305 MHz – 2315 MHz 452.5 MHz – 457.5 MHz N/A 1900 MHz – 1920 MHz 2010 MHz – 2025 MHz 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz
UE receive FDL_low – FDL_high 717 MHz – 728 MHz 2350 MHz – 2360 MHz 462.5 MHz – 467.5 MHz 1452 MHz – 1496 MHz 1900 MHz – 1920 MHz 2010 MHz – 2025 MHz 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz
Mode
1910 MHz 2570 MHz 1880 MHz 2300 MHz 2496 MHz 3400 MHz 3600 MHz 703 MHz 1447 MHz 5150 MHz 5855 MHz 3550 MHz
1910 MHz 2570 MHz 1880 MHz 2300 MHz 2496 MHz 3400 MHz 3600 MHz 703 MHz 1447 MHz 5150 MHz 5855 MHz 3550 MHz
– – – – – – –
1930 MHz 2620 MHz 1920 MHz 2400 MHz 2690 MHz 3600 MHz 3800 MHz 803 MHz 1467 MHz 5925 MHz 5925 MHz 3700 MHz
T DD T DD T DD T DD T DD T DD T DD T DD TDD TDD8 TDD11 TDD
Reserved 2010 MHz 2110 MHz 1780 MHz 2110 MHz 738 MHz 728 MHz 753 MHz 2570 MHz 1710 MHz 1995 MHz
– – – – – –
2200 MHz 2200 MHz 758 MHz 783 MHz 2620 MHz 2020 MHz
FDD FDD4 FDD2 FDD FDD2 FDD10
1920 MHz 1710 MHz
– – – – – – – – – – –
– – N/A 698 MHz – N/A 1695 MHz –
1930 MHz 2620 MHz 1920 MHz 2400 MHz 2690 MHz 3600 MHz 3800 MHz 803 MHz 1467 MHz 5925 MHz 5925 MHz 3700 MHz
– – – –
FDD2 FDD FDD FDD2 T DD T DD T DD T DD
NR Operatin g Bands in in FR1 & FR2 FR2 Operating NR operatin
Uplink (UL) operating band BS receive / UE transmit
Downlink (DL) operating band BS transmit / UE receive
Duplex Mode
g band
FUL_low – FUL_high
FDL_low – FDL_high
n1 n2 n3 n5 n7 n8 n12 n20
1920 MHz – MHz – 1980 MHz 1850 MHz – MHz – 1910 MHz 1710 MHz – MHz – 1785 MHz 824 MHz – MHz – 849 MHz 2500 MHz – MHz – 2570 MHz 880 MHz – MHz – 915 MHz 699 MHz – MHz – 716 MHz 832 MHz – MHz – 862 MHz
2110 MHz – 2170 MHz 1930 MHz – 1990 MHz 1805 MHz – 1880 MHz 869 MHz – 894 MHz 2620 MHz – 2690 MHz 925 MHz – 960 MHz 729 MHz – 746 MHz 791 MHz – 821 MHz
FDD FDD FDD FDD FDD FDD FDD FDD
n25 n28 n34 n38 n39 n40 n41 n50 n51 n66
1850 MHz – MHz – 1915 MHz 703 MHz – MHz – 748 MHz 2010 MHz – MHz – 2025 MHz 2570 MHz – MHz – 2620 MHz 1880 MHz – MHz – 1920 MHz 2300 MHz – MHz – 2400 MHz 2496 MHz – MHz – 2690 MHz 1432 MHz – MHz – 1517 MHz 1427 MHz – MHz – 1432 MHz 1710 MHz – MHz – 1780 MHz
1930 MHz – 1995 MHz 758 MHz – 803 MHz 2010 MHz – 2025 MHz 2570 MHz – 2620 MHz 1880 MHz – 1920 MHz 2300 MHz – 2400 MHz 2496 MHz – 2690 MHz 1432 MHz – 1517 MHz 1427 MHz – 1432 MHz 2110 MHz – 2200 MHz
FDD FDD T DD T DD T DD T DD T DD TDD1 T DD FDD
n70 n71 n74 n75 n76 n77 n78 n79 n80 n81
1695 MHz – MHz – 1710 MHz 663 MHz – MHz – 698 MHz 1427 MHz – MHz – 1470 MHz N/A N/A 3300 MHz – MHz – 4200 MHz 3300 MHz – MHz – 3800 MHz 4400 MHz – MHz – 5000 MHz 1710 MHz – MHz – 1785 MHz 880 MHz – MHz – 915 MHz
1995 MHz – 2020 MHz 617 MHz – 652 MHz 1475 MHz – 1518 MHz 1432 MHz – 1517 MHz 1427 MHz – 1432 MHz 3300 MHz – 4200 MHz 3300 MHz – 3800 MHz 4400 MHz – 5000 MHz N/A N/A
FDD FDD FDD S DL S DL T DD T DD T DD SUL SUL
n82 n83 n84 n86
832 MHz – MHz – 862 MHz 703 MHz – MHz – 748 MHz 1920 MHz – MHz – 1980 MHz 1710 MHz – MHz – 1780MHz
N/A N/A N/A N/A
SUL SUL SUL SUL
Operating Band
Uplink (UL) operating band BS receive/ UE transmit transmit
Downlink (DL) operating band BS transmit / UE receive
FUL_low – FUL_high
FDL_low – FDL_high
Duplex Mode
n257
26500 MHz – 29500 MHz
26500 MHz
–
29500 MHz
TDD
n258
24250 MHz – 27500 MHz
24250 MHz
–
27500 MHz
TDD
n260
37000 MHz – 40000 MHz
37000 MHz
–
40000 MHz
TDD
n261
27500 MHz – 28350 MHz
27500 MHz
–
28350 MHz
TDD
NOTE 1:
UE that comp complies lies with th the e NR Band n50 minimum requ requiremen irements ts in this specif specificati ication on shall al also so comply with the NR Band n51 minimum requirements.
LTE/NR Channel bandwidth LTE Maximum transmission bandwidth configuration N RB SCS (kHz)
1.4MHz NRB
3MHz NRB
5MHz NRB
10MHz NRB
15MHz NRB
20 MHz NRB
15
6
15
25
50
75
100
NR Maximum transmission bandwidth configuration configuration N RB FR1 SCS (kHz)
5MHz NRB
10MHz NRB
15MHz NRB
20 MHz NRB
25 MHz NRB
30 MHz NRB
40 MHz NRB
50MHz NRB
60 MHz NRB
80 MHz NRB
90 MHz NRB
100 MHz NRB
15 30
25 11
52 24
79 38
106 51
133 65
160 78
216 106
270 133
N/A 162
N/A 217
N/A 245
N/A 273
60
N/A
11
18
24
31
38
51
65
79
107
121
135
50MHz NRB 66 32
100MHz NRB 132 66
FR2 SC S (kHz) 60 120
200MHz NRB 264 132
400 MHz NRB N.A 264
Support Wider Bandwidth LTE
18
18
18
18
18
MHz
MHz
MHz
MHz
MHz
To get 100MHz bandwidth should aggregate 5 carrier of 20MHz Total PRB will be 5 x 100PRB = 500PRB
100MHz (5x20MHz)
NR
98.31 MHz
To get 100MHz bandwidth can be achieved only 1 carrier of 100MHz Total PRB will be ~ 540PRB 8% improvement for spectrum usage
100MHz
5G NR support wider bandwidth, higher spectrum usage and less guard band
Carrier Aggregation and Supplementary Uplink
Carrier aggregation (up to 16 carriers)
Main use case: bandwidth extension
Supplementary uplink
To improve UL coverage for high frequency scenarios
Carrier aggregation
DL+UL coverage DL only coverage
SUL coverage
Cell #1
Cell #2 UL
DL + UL
SUL
High NR frequency
frequency
CA_n3A-n77A
NR Band (Table 5.2-1) n3, n77
CA_n3A-n78A CA_n3A-n79A CA_n8A-n75A CA n8-n78A CA_n8A-n79A CA_n28A-n75A 2 CA_n28A_n78A CA_n41A-n78A CA_n75A-n78A 1
n3, n78 n3, n79 n8, n75 n8, n78 n8, n79 n28, n75 n28, n78 n41, n78 n75, n78
NR Band combination for SUL SUL_n78-n802 SUL_n78-n812 SUL_n78-n822 SUL_n78-n832 SUL_n78-n842 SUL_n78-n862
NR Band (Table 5.2-1) n78, n80 n78, n81 n78, n82 n78, n83 n78, n84 n78, n86
CA_n77A-n79A CA_n78A-n79A
n77, n79 n78, n79
SUL_n79-n802 SUL_n79-n812
n79, n80 n79, n81
NR CA Band
Bandwidth Parts
To support UEs not capable of full carrier bandwidth To support bandwidth adaptation (reduced UE power consumption) Up to 4 bandwidth parts per carrier, one of which is active A UE is not supposed to receive/transmit receive/transmit outside the active a ctive bandwidth part Many parameters are configured per bandwidth part
Ultra Lean Design LTE Very limited capability for base station power savings due to continuous transmission of cell reference signals
Cell specific reference reference signal transmission 4x every ms Synchronization Synchroniz ation every 5 ms Broadcast every 10 ms Example in 20MHz bandwidth, there are 33,104 symbol will be occupied by PBCH/SSS/PSS/RS
NR 5G enables advanced base station power savings
No cell specific reference reference signals Synchronization Synchroniz ation every 20 ms Broadcast every 20 ms Example in 20MHz bandwidth, there are 3,388 symbol will be occupied by PBCH/SSS/PSS
Downlink MIMO Framework : Beam Management
Mini Slot Transmission Basic Principle
Slot transmission Can start at every 7th (14th) symbol
DL data
Have a fixed length of 7 (14) symbols
UL data
Mini-slot transmission Can start at any OFDM symbol
DL data
Can have an arbitrary length • up to some maximum value
UL data
Have a length 2, 4, 7 OFDM symbol
Downlink & Uplink Physical Channel/Signal NR vs LTE
The mapping between logical, transport channels and physical channels LTE
NR
RADIO LINK CONTROL (RLC) LAYER Control Plane PCCH
BCCH
CCCH
RADIO LINK CONTROL (RLC) LAYER Control Plane
User Plane DTCH
DCCH
PCCH
BCCH
CCCH
User Plane DTCH
DCCH
Logical Channel
MEDIUM ACCES CONTROL (MAC) LAYER
MEDIUM ACCES CONTROL (MAC) LAYER
Transport Channel
PCH
BCH
PCH
DL-SCH
BCH
PHYSICAL LAYER
DL-SCH
PHYSICAL LAYER
DCI
DCI
Physical Channel PSS
PSS
PBCH
PDSCH
PDCCH
PHICH
PCFICH
PSS
PSS
PBCH DMRS
PDSCH DMRS PT-RS
PDCCH DMRS
CSI-RS
PDCCH (Physical Downlink Control Channel)
PDCCH is carries information of Downlink Control Information, DCI for a particular UE or group of UEs.
DCI provides : Downlink resource scheduling, Uplink power control instructions, uplink resourc resource e grant. DCI format has different types which are defined with differen differentt sizes and function.
LTE
NR Frequency domain
Control Region in LTE is always spread across the whole channel band width, There is no parameters defining the frequency domain region for LTE control region Time Domain Control region is defined by the physical channel called PCFICH 1-3 first symbol in every TTI Resource Allocation 1 REG = 4 RE 1 CCE = 9 REG Aggregation Level
1/2/4/8
Frequency domain
Need a parameter defining the frequency domain width for CORESET Frequency domain width can be set in any value in the multiples of 2, 3, and 6 RBs. Time Domain Need the parameter for time domain length both in LTE in NR Flexible within TTI 14 symbol (max consecutive is 3 symbol) Resource Allocation 1 REG = 12 RE 1 CCE = 6 REG Aggregation Level
1/2/4/8/16
5G NR Reference Signal To increase protocol efficiency, and to keep transmissions contained within a slot or beam without having to depend on other slots and beams, NR introduces the following four main reference signals.
Demodulation Reference Signal (DMRS) Phase Tracking Reference Signal (PTRS) Sounding Reference Signal (SRS) Channel State Information Reference Signal (CSI-RS)
Reference Refer ence Signals Mapping with associated with different physical channel is depicted iin n following figure. What’s new in NR compare to LTE : 1. 2. 3. 4.
In NR, NR, ther there e is not Cell Cell sspecif pecific ic Refer Reference ence Signa Signall (C-RS) New Referen Reference ce S Signal ignal PTR PTRS S has has been been introduce introduced d for Time/Frequency tracking DMRS DMRS has b been een intr introdu oduced ced for for both both do downl wnlink ink and uplink channels In NR, referen reference ce ssignals ignals are tran transmit smitted ted only when it is necessary where as in LT LTE E constantly exchanging exchangin g reference signals to manage the link
LTE/NR 4-Bit Mapping CQI Table 4-b i t CQI Tab l e f o r s u p p o r t ed 64-QAM CQI index 0 1 2
modulation
3 4 5 6 7 8 9
QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM
10 11 12 13 14 15
64QAM 64QAM 64QAM 64QAM 64QAM 64QAM
QPSK QPSK
4-b i t CQI Tab l e f o r s u p p o r t ed 256-QA M modulation
0.1523 0.2344
CQI index 0 1 2
193 308 449 602 378 490 616
0.3770 0.6016 0.8770 1.1758 1.4766 1.9141 2.4063
3 4 5 6 7 8 9
QPSK 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM
449 378 490 616 466 567 666
0.8770 1.4766 1.9141 2.4063 2.7305 3.3223 3.9023
466 567 666 772 873 948
2.7305 3.3223 3.9023 4.5234 5.1152 5.5547
10 11 12 13 14 15
64QAM 64QAM 256QAM 256QAM 256QAM 256QAM
772 873 711 797 885 948
4.5234 5.1152 5.5547 6.2266 6.9141 7.4063
code rate x 1024 out of range 78 120
efficiency
LTE and NR have same CQI mapping table
QPSK QPSK
code rate x 1024 out of range 78 193
efficiency
0.1523 0.3770
NR Slot Format D = Downlink Format 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
U = Uplink
X = Flexible, can be D/U
Symbol Number in a slot 6 7 8
0
1
2
3
4
5
9
10
11
12
13
D
D
D
D
D
D
D
D
D
D
D
D
D
D
U
U
U
U
U
U
U
U
U
U
U
U
U
U
X
X
X
X
X
X
X
X
X
X
X
X
X
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U U
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
X
X
D
X
X
U
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D
X
X
X
X
X
X
X
X
X
X
X
X
X
D
X
X
X
X
X
X
X
X
X
X
X
X
D
D
D
D
D
D
D
D
D
X
D
D
D
D
D
D
X
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
U
U
X
X
X
X
X
X
X
X
X
X
U
U
X
X
X
X
X
X
X
X
X
U
U
X
X
X
X
X
X
X
X
X
U
U
U
X
X
X
X
X
X
X
X
X
U
U
U
X
X
X
X
X
X
X
X
U
U
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
X
D
X
X
U
X
U
X
U
U
X
U
X
U
29 30
D
D
D
D
D
D
D
D
D
D
X
X
X
U
NR Slot Format D = Downlink Format 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
U = Uplink
X = Flexible, can be D/U
0
1
2
3
4
Symbol Number in a slot 5 6 7 8
9
10
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
U
U
U
U
U
U
U
U
U
U
U U
12
13
X
U
U
X
X
U
U
X
X
X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U U
U U
U U
U U
U U
U U
U U
U U
U U
X
U
D
D
X
U
D
D
D
X
D
X
X
U
D
D
D
D
D
D D
X D
X X
D
D
D
X
X
X
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
X
X
D
X
X
X
U
U
X
X
X
X
X
X
X
X
X
D
D
D
D
D
D
D
X
U
U
D
X
U
U
D
D
D
D
D
D
X
X
D
X
U
D
X
D
D
X
X
U
X X X
X
U X
U
U
U
D
D
D
X
X
D
X
X
D
X
X
X
X
X
X
X
U
U
11
U
U
U
U
X
X
X
X
X
X
X
X
U
U
U
U
U
D
D
D
D
D
D
D
D
D
D
D
X
D
D
X
X
X
X
X
D
U
U
U
U
U U U
X
X
X
X
X
X
X
X
X
X
X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
X
X
U
U
U
U
X
X
X
U
U
U
X
X
X
X
U
D
D
D
D
D
U
U
U
U
XU
U
U
U
U
U
U
D
U
U
U
U
X
X
U
D
D
D
D
X
X
U
U
U
D
D
X
X
U
U
U
U
U
U
D
X
U
U
U
U
X
X
X
X
U
D
X
X
X
X
X
U
X
X
X
X
U
D
X
X
X
X
U
X
X
D
U
X
U
U U U
U U U
NR Spectral Efficiency Peak spectral efficiency: DL: 8 layer for FR1; 6 layer for FR2; 256QAM
(NR, LTE) / 1024QAM (LTE), max code rate = 0.9258 (NR) / 0.93 (LTE) UL: 4 layer, 256QAM, max code rate = 0.9258 (NR) / 0.93 (LTE)
Contributing Technical Component:
NR large CC bandwidth introduces reduced guard band ratio NR small overhead for DL:
For PDCCH, as low as 0.6%@100 MHz for low load; 8-layer DMRS overhead reduced to 9.5%; no CRS NR small overhead for UL: 4-layer DMRS overhead reduced to 7% under UL OFDMA; “Special sub-frame sub-frame”” can be used to transmit UL data -> Overhead reduced.
NR Spectral Efficiency NR FDD FDD DL peak sp ectral efficienc y (bit/s/Hz) SCS [kHz]
FR1
5 MHz
10 MHz
15 MHz
20 MHz
25 MHz
30 MH MHzz
40 MHz
50 MHz
60 MHz
80 MHz
90 MH MHzz
100 MHz
Req.
15
40 .8 .8~ 42 42. 8
4 4. 4. 5~ 5~ 45 45 .5 .5
4 5. 5. 1~ 1~ 46 46. 5
4 5. 5. 4~ 4~ 47 47. 0
45.5~47.2
45.7~47.4
46.2~48.2
46.2~48.3
-
-
-
-
30
30
32 .1 .1~ 37 37. 7
3 9. 9. 4~ 4~ 41 41 .1 .1
4 3. 3. 0~ 0~ 44 44. 2
43 .7 .7 ~4 ~4 4. 4. 8
44.5~45.9
44.5~46.1
45.4~47.1
45.5~47.4
46.2~48.2
46.4~48.5
48.5~48.7
46.7~48.9
30
60
-
32.4~37.7
38.4~41.1
39.6~41.3
41.8~43.1
43.2~44.3
43.7~44.9
44.5~46.0
45. 1 1~ ~46.8
45.8~47.7
47.6~47.8
46.2~48.2
30
FDD generally assume : 8-layer downlink transmission, with 256QAM modulation, and a maximum coding rate of 0.9258
NR TDD TDD DL peak spectral eff icienc y for FR1 (bit/s/Hz) (bit/s/Hz) (Frame structure: DDDSU; a DL=0.7643; with OH1 and OH2) SCS [kHz]
FR1
5 MHz
10 MHz
15 MHz
20 MHz
25 MHz
30 MH MHzz
40 MHz
50 MHz
60 MHz
80 MHz
90 MH MHzz
100 MHz
Req.
15
39 .6 .6~ 41 41. 5
4 3. 3. 6~ 6~ 44 44 .5 .5
4 4. 4. 9~ 9~ 45 45. 6
4 5. 5. 6~ 6~ 46 46. 1
46.1~ 46.4
46.3~46.6
47.1~47.3
47.2~47.4
-
-
-
-
30
30
31 .7 .7~ 35 35. 2
3 8. 8. 4~ 4~ 40 40 .3 .3
4 2. 2. 1~ 1~ 43 43. 3
4 3. 3. 1~ 1~ 44 44. 0
44.4~ 45.1
44.6~45.3
45.9~46.3
46.3~46.6
47. 1~ 1~47.4
47.5~47.7
47.7~47.9
47.9~48.1
30
60
-
31.8~35.3
37.5~40.1
38.7~40.5
40.9~ 42.3
42.3~43.5
43.3~44.2
44.5~45.3
45. 4 4~ ~46.0
46.4~46.9
46.8~47.2
47.1~47.4
30
TDD generally assume : 8-layer downlink transmission, with 256QAM modulation, and a maximum coding rate of 0.9258. The DL/UL configurations of DDDSU (with ‘S’ slot = 11DL:1GP:2UL) and DSUUD (with ‘S’ slot = 6DL:2GP:6UL and 11DL:1GP:2UL respectively)
SCS [kHz] FR2
60
50 MHz
100 MHz
200 MHz
400 MHz
Req.
33.7
34.5
34.9
-
30 30
For NR TDD in FR2, the DL/UL configurations of DDDSU (with ‘S’ slot = 11DL:1GP:2UL) and DSUUD (with ‘S’ slot = 6DL:2GP:6UL and 11DL:1GP:2UL respectively respectively), ), the number of layers is 6 with 256QAM modulation and maximum coding rate of 0.9258
120
31.7
34.7
34.0
35.0
Peak Data NR Peak Data Rate Rate - Downl Downlink ink NR DL peak data rate Duplexing
FDD
TDD (DDDSU)
SCS [kHz]
FR1
FR1 FR2 (Nlayer=6)
Perr CC BW Pe BW (MHz (MHz))
15 30 60 15 30 60 60 120 15
50 100 100 50 100 100 200 400 50
Required DL Req. Peak Pe ak dat data a rate rate pe perr CC Aggregated peak data rate over 16 CCs bandwidth to meet (Gbit/s) (Gbit/s) (Gbit/s) the requirement (MHz)1
2.31~2.41 4.67~4.89 4.62~4.82 1.81 3.68 3.62 5.33 10.7 1.32
FR1 TDD (DSUUD, S slot= 11DL:2GP:2UL)
TDD (DSUUD,
FR2 (Nlayer=6) FR1
S slot= 6DL:2GP:6UL) FR2 (Nlayer=8)
3 60 0 60 120 15 30 60
1 10 00 0 200 400 50 100 100
2 2..6 69 4 3.86 7.81 1.13 2.30 2.26
60 120
200 400
4.38 8.76
37.0~38.6 74.7~78.2 73.9~77.1
414~433 409~428 415~433
29.0
552
58.9
543
57.9
552
85.3
750
171.2
748
21.1
757
43.0
745
42.3
757
61.8
1036
125.0
1024
18.1
885
36.8
870
36.2
885
70.1 140.2
913 913
NOTE 1: The value only indicates the required bandwidth to meet the DL peak data rate. It is not necessarily supported as NR Transmission bandwidth.
20
Peak Data NR Peak Data Rate Rate - Uplin Uplink k NR UL peak data rate Duplexing
SCS [kHz]
FDD
FR1
TDD (DDDSU) + SUL
FR1
TDD (DSUUD,
FR1
S slot =11DL:2GP:2UL)
FR2
TDD (DSUUD, S slot =6DL:2GP:6UL)
FR1 FR2
15 30 60 15 30 60 30 60 60 120 30 60 60 120
Per CC BW BW (MHz) (MHz)
Peak data Peak data rate rate per per CC (Gbit/s)
Aggregated peak data rate over 16 CCs (Gbit/s)
Required UL Req. bandwidth to meet (Gbit/s) the requirement (MHz)1
50 100 100 50 100 100 100 100 200 400 100 100 200 400
1.12~1.18 2.28~2.39 2.27~2.38 1.12~1.18 2.28~2.39 2.27~2.38 1.06 1.05 1.91 3.85 1.05 1.04 2.02 4.04
17.9~18.9 36.5~38.2 36.3~38.1 17.9~18.9 36.5~38.2 36.3~38.1
424~446 418~439 420~441 424~446 418~439 420~441
17.0
943
16.8
952
30.6
1047
61.6
1039
16.8
952
16.6
962
32.3
990
64.6
990
NOTE 1: The value only indicates the required bandwidth to meet the DL peak data rate. It is not necessarily supported as NR Transmission bandwidth.
10
Average and 5% Percentile user SE Preliminary NR evaluation results for Dense Urban:
Larger CC bandwidth brings improved SE (~30%) due to guard band ratio reduction and PDCCH overhead reduction NR Massive MIMO: 64 TXRU brings additional gain over 32 TXRU in TDD.
Latency, Control Plane and User Plane URLLC User Plane (1ms requirement)
Control Plane (20ms requirement) UE
gNB
1. Delay for RACH Scheduling Period 2. RACH Preamble 3. Processing delay in gNB 4. RA response er u d
5. Processing delay in UE e c ro p
6. RRC Resume Request e n la p
7. Processing delay in gNB 8. RRC Resume
l rot n o C
9. Processing delay in UE
10. RRC Resume Complete
Control plane latencyNR lat encyNR FDD Allocation Mapping 4 symbols Type Ty pe A 7 symbols Mapping 2 symbols 4 symbols Type Ty pe B 7 symbols
DLuser pla plane ne lat latenc ency y NR FDD Allocation 4 sym bo bols
UE capability 1 Subcarrier spacing 15 kHz 30 kHz 60 kHz 120kHz 15.6 13.5 12.4 11.7 15.8 13.6 12.5 11.7 13.7 14.2 15.3
12.3 12.5 13.0
11.9 12.0 12.3
11.4 11.5 11.6
UE capa bility 2 Subcarrier spacing 15 kHz 30 kHz 60 kHz 15.1 13.0 12.1 15.3 13.1 12.2 13.4 13.9 14.8
12.0 12.3 12.8
11.7 11.8 12.1
Mapping TypeA Ty peA
Mapping TypeB Ty peB
Re-Tx p=0 p=0.1 7 sym bo bols p=0 p=0.1 14 sym symbo bols ls p= p=0 0 p=0.1 2 sym bo bols p=0 p=0.1 4 sy symbols p=0 p=0.1 7 sym bo bols p=0 p=0.1
UE capability 1 Subcarrier spacing 15 kHz 30 kHz 60 kHz 120 kHz 1.37 0.76 0.54 0.34 1.58 0.87 0.64 0.40 1.49 0.82 0.57 0.36 1.70 0.93 0.67 0.42 2 .1 3 1.14 0.72 0.44 2 .4 3 1.29 0.82 0.51 0 .9 8 0.56 0.44 0.29 1.16 0.67 0.52 0.35 1.11 0.63 0.47 0.31 1.30 0.74 0.56 0.36 1.30 0.72 0.52 0.33 1.49 0.83 0.61 0.39
UE capability 2 Subcarrier spacing 15 kHz 30 kHz 60 kHz 1 .0 0 0 .5 5 0.36 1.12 0 .6 5 0.41 1.12 0 .6 1 0.39 1.25 0 .7 1 0.44 1.80 0 .9 4 0.56 2 .0 0 1 .0 4 0.63 0 .4 9 0 .2 9 0.23 0 .6 0 0 .3 5 0.28 0.66 0.37 0.27 0 .7 8 0 .4 5 0.32 0 .9 3 0 .5 1 0.34 1.08 0 .5 9 0.40
Global Connection Trend
Source : GSMA intelligent
5G continues to occupy thought space as the next big thing in i n mobile. 4G, however, however, will dominate in volume terms for at least the next 10 years.
View more...
Comments