456-1-130802015611-phpapp01 (1)
November 13, 2017 | Author: Saraporn Noomdee | Category: N/A
Short Description
worksheet...
Description
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
¤íÒá¹Ð¹íÒ : เอกสารนี้เป็นสรุปสูตรวิชาคณิตศาสตร์พน้ื ฐาน รวม ม.4-5-6 ทําแจกสําหรับ น้องๆ สมาชิก Dektalent.com เรียนเรือ่ งไหนสามารถเลือกพิมพ์เฉพาะเรือ่ งทีต่ อ้ งการได้เลย
ÊÒúÑÞ ÊÃØ»Êٵä³ÔµÈÒʵþ×é¹°Ò¹ Á.4/Á.5/Á.6 เรื่อง หน้ า ม.4 เทอมต้น บทที่ 1 เซต บทที่ 2 การให้เหตุผล บทที่ 3 จํานวนจริง บทที่ 4 เลขยกกําลัง ม.4 เทอมปลาย บทที่ 5 ฟงั ก์ชนั บทที่ 6 อัตราส่วนตรีโกณมิติ ม.5 เทอมต้น บทที่ 7 ลําดับและอนุ กรม บทที่ 8 ความน่ าจะเป็ น ม.5 เทอมปลาย บทที่ 9 สถิตแิ ละข้อมูล บทที่ 10 การวิเคราะห์ขอ้ มูลเบือ้ งต้น ม.6 ไม่มเี นื้อหาคณิตศาสตร์พน้ื ฐาน
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
2 3 4 6 7 9 10 11 12 12
หน้ า 1
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 1 ૵ ความรู้เบือ้ งต้นเรื่องเซต 1) เซตเป็นคําอนิยาม สิง่ ทีอ่ ยูใ่ นเซตเรียก “สมาชิก” สมาชิกแต่ละตัวคันด้ ่ วยเครือ่ งหมายคอมม่า 2) สัญลักษณ์ ∈ แทนการเป็ นสมาชิกของเซต / สัญลักษณ์ ∉ แทนการไม่เป็นสมาชิกของเซต 3) วิธกี ารเขียนเซต มี 2 แบบ (แบบบอกเงือ่ นไข / แบบแจกแจงสมาชิก) 4) เซตว่าง คือ เซตทีไ่ ม่มสี มาชิก สัญลักษณ์ { } หรือ φ 5) เซตจํากัด คือ เซตทีบ่ อกจํานวนสมาชิกได้ว่ามีกต่ี วั 6) เซตอนันต์ คือ เซตทีไ่ ม่ใช่เซตจํากัด หรือ เซตทีม่ สี มาชิกมากมายนับไม่ถว้ น เช่น เซตของจํานวนนับ 7) เซตทีเ่ ท่ากัน คือ เซตทีม่ จี าํ นวนสมาชิกเหมือนกันทุกตัว แต่ถา้ เป็นเซตทีม่ จี าํ นวนสมาชิกเท่ากัน จะเรียก “เซต เทียบเท่ากัน” สับเซต 1) สัญลักษณ์ ⊂ แทน การเป็ นสับเซต เช่น A เป็นสับเซต B เขียนแทนด้วย A ⊂ B 2) สัญลักษณ์ ⊄ แทน การไม่เป็ นสับเซต 3) เซตว่างเป็นสับเซตของทุกเซต 4) จํานวนสับเซตทัง้ หมด = 2𝑛𝑛 โดย n คือ จํานวนสมาชิกของเซต 5) จํานวนสับเซตแท้ = สับเซตทุกตัวยกเว้นตัวมันเอง = 2𝑛𝑛 − 1 ( n คือ จํานวนสมาชิกของเซต) เพาเวอร์เซต 1) เพาเวอร์เซต คือ เซตของสับเซต สัญลักษณ์ P(A) แทน เพาเวอร์เซต A 2) เวลาเขียนเพาเวอร์เซต ให้เขียนสับเซตให้หมดทุกตัวก่อน แล้วเขียน ปีกกา คลุมหัวท้ายก็จะได้เพาเวอร์เซตแล้ว 3) φ ∈ P(A) เซตว่างเป็ นสมาชิกของเพาเวอร์เซตเสมอ 4) จํานวนสมาชิกของเพาเวอร์เซต คือ จํานวนสับเซตทัง้ หมด การกระทําของเซต 1) มี 4 แบบ ยูเนียน /อินเตอร์เซคชัน/ ผลต่าง/ คอมพลีเมนต์ 2) ยูเนียน คือ เอาสมาชิกมารวมกัน สัญลักษณ์ ∪ 3) อินเตอร์เซคชัน คือ เอาสมาชิกทีซ่ ้าํ กัน สัญลักษณ์ ∩ 4) ผลต่าง คือ เอามาลบกัน โดยดูตวั ตัง้ เป็ นหลัก สัญลักษณ์ เครือ่ งหมายลบ (-) 5) คอมพลีเมนท์ คือ ไม่เอา เช่น A′หมายถึง ไม่เอาสมาชิกทีอ่ ยูใ่ น A สัญลักษณ์ ( ′ ) โจทย์ปัญหาเรื่องเซต 1) อ่านโจทย์แล้ววาดรูปก่อน 2) สูตรสําหรับ 2 เซต n(A∪B) = n(A) + n(B) – n(A∩B) 3) สูตรสําหรับ 3 เซต n(A∪B∪C) = n(A)+n(B)+n(C)–n(A∩B)-n(A∩C)-n(B∩C) +n(A∩B∩C)
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 2
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 2 ¡ÒÃãËŒà˵ؼŠการให้เหตุผล การให้เหตุผลทางคณิตศาสตร์ทส่ี าํ คัญมี 2 วิธ ี 1) การให้เหตุผลแบบอุปนัย 2) การให้เหตุผลแบบนิรนัย การให้เหตุผลแบบอุปนัย 1) เป็นการให้เหตุผลโดยยึดความจริงจากส่วนย่อยทีพ่ บเห็น ไปสู่ความจริงทีเ่ ป็ นส่วนรวม 2) วิธกี ารสรุปผลในการค้นหาความจริงจากการสังเกตหรือทดลองหลายครัง้ จากกรณียอ่ ยๆแล้วนํามาสรุป เป็นความรูแ้ บบทัวไป ่ การให้เหตุผลแบบนิ รนัย เป็นการนําความรูพ้ น้ื ฐานซึง่ อาจเป็ นความเชื่อ ข้อตกลง กฎ หรือ บทนิยาม ซึง่ เป็นสิง่ ทีร่ มู้ าก่อนและ ยอมรับว่าเป็ น จริง เพื่อหาเหตุผลนําไปสู่ขอ้ สรุป ข้อความที่ใช้ในการอ้างเหตุผล มีอยู่ 6 แบบ คือ ข้อความ 1) สมาชิกของ A ทุกตัวเป็ นสมาชิกของ B ตัวอย่าง สัตว์เลีย้ งลูกด้วยนมทุกตัวเป็ นสัตว์เลือดอุ่น
รูปวาด B A
2) ไม่มสี มาชิกของ A ตัวใด เป็ นสมาชิกของ B ตัวอย่าง ไม่มงี ตู วั ใดทีม่ ขี า 3) สมาชิกบางตัวของ A เป็ นสมาชิกของ B ตัวอย่าง รถโดยสารบางคันเป็ นรถปรับอากาศ 4) สมาชิกของ A บางตัวไม่เป็ นสมาชิกของ B ตัวอย่าง รถโดยสารบางคันไม่ได้เป็ นรถปรับอากาศ 5) มีสมาชิก A หนึ่งตัวทีเ่ ป็ นสมาชิกของ B ตัวอย่าง สุนขั ของฉันเป็ นสุนขั พันธุไ์ ทยแท้ 6) มีสมาชิกของ A หนึ่งตัวไม่เป็ นสมาชิกของ B ตัวอย่าง สุนขั ของแตงไม่ใช่สนุ ขั พันธุไ์ ทยแท้
B
A B A B A B A B A
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 3
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 3 ¨íҹǹ¨ÃÔ§ โครงสร้างของระบบจํานวนจริง จํานวนตรรกยะ และจํานวนอตรรกยะ จํานวนตรรกยะ คือ จํานวนทีส่ ามารถเขียนให้อยู่ในรูป เศษส่วน
a
b
ได้ เมื่อ a, b เป็ นจํานวนเต็มและ b ≠ 0
จํานวนอตรรกยะ คือ จํานวนจริงทีไ่ ม่สามารถเขียนให้อยู่ใน รูปเศษส่วนของจํานวนเต็มได้
เปรียบเทียบจํานวนตรรกยะและจํานวนอตรรกยะ ได้ตามตารางด้านล่าง
การเปลี่ยนเศษส่วนเป็ นทศนิ ยม และการเปลี่ยนทศนิ ยมเป็ นเศษส่วน 1) การเปลีย่ นเศษส่วนเป็ นทศนิยมใช้วธิ กี ารตัง้ หาร จะหารสัน้ หรือ หารยาวก็ได้ตามใจเลย 2) การเปลีย่ นทศนิยมเป็ นเศษส่วน - ถ้าเป็นทศนิยมธรรมดา ก็สามารถทําได้เลย เช่น 0.2 = 4
2
10 23−2
21 31 - ถ้าเป็นทศนิยมซํ้า เช่น 0. 4̇ = , 0.23̇ = = , 0. 3̇ 1̇ = เป็ นต้น 9 90 90 99 การแก้สมการ 1) แก้สมการด้วยวิธกี ารแยกตัวประกอบของพหุนาม (มักจะใช้การแยกตัวประกอบแบบ 2 วงเล็บ) - การดึงตัวร่วม - การแยกตัวประกอบสองวงเล็บ - กําลังสองสมบูรณ์ - ผลต่างกําลังสอง - ผลบวก หรือ ผลต่างกําลังสาม - วิธเี พิม่ เข้า-ลบออก - จับคู่ ดึงตัวร่วม - การหารสังเคราะห์ 2) หรือใช้สตู รสําหรับแก้สมการกําลังสอง ทีอ่ ยูใ่ นรูป 𝑎𝑎𝑎𝑎 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 ดังนี้
−𝑏𝑏 ± √𝑏𝑏 2 − 4𝑎𝑎𝑎𝑎 𝑥𝑥 = 2𝑎𝑎
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 4
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
ช่วง (Interval) กําหนดให้ a,b เป็นจํานวนจริง และ a < b 1) ช่วง แบ่งเป็ น 4 แบบ ช่วงปิด ช่วงเปิด ช่วงครึง่ เปิด และ ช่วงอนันต์ 2) ช่วงปิด สัญลักษณ์ [a,b] ถ้าวาดกราฟจะเป็ นวงกลมทึบ 3) ช่วงเปิด สัญลักษณ์ (a,b) ถ้าวาดกราฟจะเป็นวงกลมโปร่ง 4) ช่วงครึง่ เปิด มี 2 แบบ สัญลักษณ์ คือ [a, b) หรือ [a, b) ถ้าวาดกราฟตรงทีเ่ ป็นวงเล็บ [, ] จะเป็นวงกลมทึบ และถ้าเป็ น (,) จะเป็ นวงกลมโปร่ง 5) ช่วงอนันต์ มี 2 แบบ สัญลักษณ์ คือ (a, ∞) หรือ (-∞, a) 6) การเขียนช่วงอนันต์ ด้านทีเ่ ป็ นตัวอินฟินีตเ้ี ป็ นช่วงเปิดเสมอ การแก้อสมการ 1) ขัน้ ตอนการแก้อสมการ มี 3 ส่วนคือ แยกตัวประกอบ ตีเส้นจํานวน และ เลือกช่วงของคําตอบ 2) ถ้าย้ายจํานวนทีต่ ดิ ลบ ไปคูณหรือหาร เครือ่ งหมาย >, - 3 ค่าสัมบูรณ์ (Absolute value) 1) ค่าสัมบูรณ์ของจํานวนจริง a ใดๆ หมายถึง ระยะห่างระหว่าง 0 (ศูนย์) กับจุด a บนเส้นจํานวน 2) ค่าสัมบูรณ์เป็นบวกเสมอ เพราะเป็ นระยะห่าง 3) สมบัตขิ องค่าสัมบูรณ์ • x ≥ 0 เสมอ • x = −x • x− y = y−x • x 2 = x2 = x2 •
xy = x y
•
x x = y y
• x+ y ≤ x + y • x− y ≥ x − y 4) การแก้สมการค่าสัมบูรณ์ มี 3 วิธ ี ดังนี้ 4.1 แปลตามนิยาม 4.2 ยกกําลังสอง 4.3 แปลค่าทีละค่าสัมบูรณ์ 5) การแก้อสมการค่าสัมบูรณ์ ทฤษฎีบท เมือ่ a เป็ นจํานวนจริงบวก จะได้ - ถ้า |x| ≤ a หมายถึง –a ≤ x ≤ a - ถ้า |x| < a หมายถึง –a < x < a - ถ้า |x| > a หมายถึง x < -a หรือ x > a - ถ้า |x| ≥ a หมายถึง x ≤ -a หรือ x ≥ a
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 5
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 4 àŢ¡¡íÒÅѧ สมบัติของเลขยกกําลัง 1) สมบัตขิ องเลขยกกําลัง • 𝑎𝑎m ∙ 𝑎𝑎n = 𝑎𝑎m+n • 𝑎𝑎m ÷ 𝑎𝑎n = 𝑎𝑎m−n • 𝑎𝑎0 = 1 1 • 𝑎𝑎−n = n m n
𝑎𝑎
• (𝑎𝑎 ) = 𝑎𝑎mn • (𝑎𝑎𝑎𝑎)m = 𝑎𝑎m 𝑏𝑏 m 𝑎𝑎
• ( )m = 𝑏𝑏
m n
• 𝑎𝑎 =
𝑎𝑎 m
𝑏𝑏 m n √𝑎𝑎m
การหารากที่สองของจํานวนอตรรกยะ
1) ( 2) (
) = ( a) +2 b) = ( a) − 2
a+ b a−
2
2
2
2
( b ) = a + b + 2 ab b + ( b ) = a + b − 2 ab
a b+ a
2
2
การแก้สมการที่ติดเครื่องหมายราก 1) การแก้สมการทีม่ เี ครือ่ งหมายราก โดยทัวไปใช้ ่ วธิ ยี กกําลัง และจะต้องตรวจคําตอบด้วยว่าคําตอบทีไ่ ด้มานัน้ ใช้ได้ ทุกค่าหรือไม่
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 6
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 5 ¿˜§¡ªÑ¹ คู่อนั ดับ นิ ยาม คู่อนั ดับ (a , b) = (c , d) ก็ต่อเมือ่ a = c และ b = d ผลคูณคาร์ทีเชียน นิ ยาม ผลคูณคาร์ทเี ชียนของเซต A และเซต B คือ เซตของคู่อนั ดับ (a , b) ทัง้ หมด โดยที่ a ∈ A และ b ∈ B สัญลักษณ์ A×B เช่น A = {1,2} , B = {3,4,5} จะได้ AxB = {(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)} สมบัตทิ สี ่ าํ คัญของผลคูณคาร์ทเี ชียน 1) ถ้า A มีสมาชิก m ตัว และ B มีสมาชิก n ตัว ∴ A×B มีสมาชิก mn ตัว 2) A × B = φ ก็ต่อเมือ่ A = φ หรือ B = φ 3) A × (B ∪ C) = (A × B) ∪ (A × C) 4) A × (B ∩ C) = (A × B) ∩ (A × C) 5) A × (B – C) = (A × B) – (A × C) 6) A × B ≠ B × A ความสัมพันธ์ นิ ยาม r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมือ่ r ⊂ A × B ถ้า A × B มีสมาชิก n ตัว เราสามารถสร้างความสัมพันธ์จาก A ไป B ได้ 2n วิธ ี การหาโดเมน และ การหาเรนจ์ จากความสัมพันธ์ r - เรียก เซตของสมาชิกตัวหน้าของคู่อนั ดับใน r ว่า โดเมน - เรียก เซตของสมาชิกตัวหลังของคู่อนั ดับใน r ว่า เรนจ์ การหาโดเมน มีหลักการคิด ดังนี้ - จัดรูปสมการ ให้อยู่ในรูป y ในเทอม x - พิจารณาเทอมของ x ว่า ค่า x มีขอ้ ยกเว้นใดหรือไม่โดยดูจาก
การหาเรนจ์ มีหลักการคิด ดังนี้ - จัดรูปสมการ ให้อยู่ในรูป x ในเทอม y - พิจารณาเทอมของ y ว่า ค่า y มีขอ้ ยกเว้นใดหรือไม่โดยดูจาก
1. ถ้าเป็ นรูปเศษส่วน ∴ส่วนต้อง ≠ 0 2. ถ้าติดเครื่องหมายรากเลขคู่
1. ถ้าเป็ นรูปเศษส่วน ∴ส่วนต้อง ≠ 0 2. ถ้าติดเครื่องหมายรากเลขคู่
∴ภายในเครื่องหมายรากต้อง ≥ 0
∴ภายในเครื่องหมายรากต้อง ≥ 0
ฟังก์ชนั
นิยาม
𝑓𝑓 จะเป็ นฟังก์ชน ั ก็ต่อเมื่อ 𝑓𝑓 เป็ นความสัมพันธ์ ซึ่งมีเงื่อนไขว่า
(𝑥𝑥 , 𝑦𝑦2 ) ∈ 𝑓𝑓
แล้ว
𝑦𝑦1 = 𝑦𝑦2
ถ้า (𝑥𝑥 , 𝑦𝑦1 ) ∈ 𝑓𝑓 และ
สรุปง่ายๆ ว่า ถ้าสมาชิ กตัวหน้ าของคู่อนั ดับใดๆ เหมือนกันแล้ว สมาชิ กตัวหลังต้องเหมือนกันด้วย วิธตี รวจสอบว่าเป็นฟงั ก์ชนั โดยใช้กราฟ คือ ถ้าลากเส้นตรงขนานแกน y แล้วตัดกราฟ 1 จุด แปลว่าเป็นฟงั ก์ชนั เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 7
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
ฟังก์ชนั ที่ควรรู้จกั ฟงั ก์ชนั เชิงเส้น รูปสมการทัวไป ่ คือ 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 หรือ 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 ฟงั ก์ชนั ค่าสัมบูรณ์ รูปสมการทัวไป ่ คือ 𝑦𝑦 = 𝑎𝑎|𝑥𝑥 − 𝑏𝑏| + 𝑐𝑐 ฟงั ก์ชนั ขัน้ บันได เป็ นฟงั ก์ชนั ทีเ่ ป็ นฟงั ก์ชนั คงทีเ่ ป็นช่วงๆ กราฟของฟงั ก์ชนั มีรปู คล้ายขัน้ บันได เช่น อัตราค่าไฟฟ้า ่ 𝑦𝑦 = 𝑎𝑎𝑥𝑥 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 ฟงั ก์ชนั กําลังสอง รูปสมการทัวไป ่ 𝑦𝑦 = 𝑎𝑎1 𝑥𝑥𝑛𝑛 + 𝑎𝑎2 𝑥𝑥𝑛𝑛−1 + 𝑎𝑎3 𝑥𝑥𝑛𝑛−2 + ⋯ ฟงั ก์ชนั พหุนาม รูปสมการทัวไป เช่น 𝑦𝑦 = 2𝑥𝑥 3 − 5𝑥𝑥 + 2 ฟงั ก์ชนั ทีเ่ ป็ นคาบ เป็ นฟงั ก์ชนั ทีไ่ ม่ใช่ฟงั ก์ชนั คงตัว เช่น ฟงั ก์ชนั ตรีโกณมิติ
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 8
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 6 ÍѵÃÒʋǹµÃÕ⡳ÁÔµÔ สามเหลี่ยมมุมฉาก จากรูปจะได้ ฉาก2 = ข้าม2 + ชิด2 อัตราส่วนด้านของ ∆ มุมฉากทีค่ วรจํา 1) 3 : 4 : 5 2) 5 : 12 : 13 3) 7 : 24 : 25 4) 8 : 15 : 17 อัตราส่วนตรีโกณมิ ติ มี 6 อัตราส่วนสําคัญ ดังนี้
1) sin 𝐴𝐴
=
ข้ามฉาก
=
ชิดฉาก
3) tan 𝐴𝐴
=
ข้ามชิด
2) cos 𝐴𝐴
สูตรพื้นฐาน 8 สูตร
=
ชิดข้าม
5) sec 𝐴𝐴 =
ฉากชิด
4) cot 𝐴𝐴
6) cosec 𝐴𝐴 =
ฉากข้าม
1. sin𝐴𝐴 cosec𝐴𝐴 = 1
2. cos 𝐴𝐴 sec𝐴𝐴 = 1
5. sec 2 𝐴𝐴 − tan2 𝐴𝐴 = 1
6. cosec 2 𝐴𝐴 − cot 2 𝐴𝐴 = 1
3. tan𝐴𝐴 cot𝐴𝐴 = 1 7. tan 𝐴𝐴 =
sin 𝐴𝐴
cos 𝐴𝐴
อัตราส่วนตรีโกณมิ ติของมุม 30° , 45° และ 60°
4. sin2 𝐴𝐴 + cos 2 𝐴𝐴 = 1 8. cot 𝐴𝐴 =
cos 𝐴𝐴 sin 𝐴𝐴
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 9
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 7 ÅíҴѺáÅÐ͹ءÃÁ ลําดับ 1) ลําดับเลขคณิต คือ ลําดับทีม่ ผี ลต่างของพจน์ท่ี n+1 กับพจน์ท่ี n เป็นค่าคงตัว พจน์ทวไป ั ่ an = a1 + (n − 1)d เมือ่ d คือ ผลต่างร่วม, 𝑎𝑎1 คือ พจน์ท่ี 1 2) ลําดับเรขาคณิต คือ ลําดับทีม่ อี ตั ราส่วนของพจน์ท่ี n+1 ต่อพจน์ท่ี n เป็นค่าคงตัว พจน์ทวไป ั ่ an = a1r n−1 เมือ่ r คือ อัตราส่วนร่วม, 𝑎𝑎1 คือ พจน์ท่ี 1 อนุกรม 1) สัญลักษณ์แทนการบวก ( ∑ อ่านว่า ซิกมา ) สมบัตขิ อง ∑ N
1. ∑ c = c+ c + c +... +c = cN i =1
N
N
N
i =1 N
i =1
2. ∑ cxi = c ∑ xi
(ดึงค่าคงทีไ่ ปอยูห่ น้า ∑ ได้) N
N
i =1 N
i =1 N
i =1 N
i =1
i =1
i =1
3. ∑ ( xi + yi ) = ∑ xi + ∑ yi
(∑ ผลบวก สามารถกระจายได้)
4. ∑ ( xi − yi ) =∑ xi −∑ yi
(∑ ผลลบ สามารถกระจายได้)
n
5. ∑ i = 1 + 2 + 3 + ... + n = i =1
n(n + 1) 2
n
6. ∑ i 2 = 12 + 2 2 + 32 + ... + n 2 = i =1
n(n + 1)(2n + 1) 6 2
n n(n + 1) 7. ∑ i = 1 + 2 + 3 + ... + n = ∑ i = i =1 i =1 2 n
3
3
3
3
2) อนุ กรมเลขคณิต (Arithmetic Series) สูตรผลบวก
Sn =
2
3
n [2a1 + (n − 1)d ] 2
หรือ
Sn =
n [a1 + a n ] 2
มี 2 สูตร ต้องจําได้เลือกใช้ตามสะดวกเลยจ้า
3) อนุกรมเรขาคณิต (Geometric Series) สูตรผลบวก
Sn =
a1 (1 − r n ) a1 (r n − 1) = r −1 1− r
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 10
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 8 ¤ÇÒÁ¹‹Ò¨Ð໚¹ กฎเกณฑ์เบือ้ งต้นเกี่ยวกับการนับ กฎข้อ 1 ในการทํางาน 2 อย่าง โดยทีง่ านอย่างแรกสามารถทําได้ n1 วิธ ี และในแต่ละวิธขี องงานอย่างแรก สามารทํางานอย่างทีส่ องได้อกี n2 วิธ ี ∴จํานวนวิธกี ารทํางานทัง้ 2 อย่าง = n1⋅n2 วิธ ี กฎข้อ 2 ในการทํางาน k อย่าง ถ้างานอย่างแรก มีวธิ ที าํ ได้ n1 วิธ ี ในแต่ละวิธ ี ของงานอย่างแรก สามารถทํางานที่ 2 ได้อกี n2 วิธแี ละในแต่ละวิธขี องงานอย่างแรกและงานอย่างที่ 2 สามารถทํางานอย่างที่ 3 ได้อกี n3 วิธ ี เป็ นเช่นนี้ไปเรือ่ ยๆ ∴จํานวนวิธกี ารทํางานทัง้ k อย่าง = n1⋅n2⋅n3⋅ … ⋅nk วิธ ี ความน่ าจะเป็ น 1) การทดลองสุ่ม คือ การทดลองหรือการกระทําทีท่ ราบว่าผลลัพธ์อาจเป็นอะไรได้บา้ ง แต่ไม่สามารถบอกได้อย่าง แน่นอนว่า ในแต่ละครัง้ ทีท่ ดลองนัน้ ผลจะเกิดเป็นอะไร เช่น การโยนเหรียญ, การทอดลูกเต๋า 2) แซมเปิลสเปซ(S) คือ เซตของผลลัพธ์ทอ่ี าจเป็ นไปได้ทงั ้ หมดจากการทดลองสุ่ม 3) เหตุการณ์(E) คือ สับเซตของแซมเปิลสเปซ 4) สูตรความน่าจะเป็ นของเหตุการณ์ ความน่ าจะเป็ นของเหตุการณ์ E
= P( E ) =
n( E ) n( S )
สมบัติของความน่ าจะเป็ น 1) 0 ≤ P(E) ≤ 1 2) ถ้า P(E) = 0 แสดงว่า E = φ นันคื ่ อ เหตุการณ์นัน้ ไม่มีโอกาสเกิ ดขึ้นเลย 3) ถ้า P(E) = 1 แสดงว่า E = S นันคื ่ อ เหตุการณ์นนั ้ เกิ ดขึ้นแน่ นอน 4) P(E′) = 1 – P(E) 5) P(A∪B) = P(A) + P(B) – P(A∩B) 6) P(A∪B) = P(A) + P(B) เมือ่ A และ B เป็ นเหตุการณ์ทไ่ี ม่เกิดร่วมกัน 7) P(A - B) = P(A) – P(A∩B)
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 11
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
º··Õè 9-10 ʶԵÔáÅТŒÍÁÙÅ áÅСÒÃÇÔà¤ÃÒÐË¢ŒÍÁÙÅàº×éͧµŒ¹ สถิ ติเบือ้ งต้น 1. ความหมายของสถิ ติ สถิติ หมายถึง ตัวเลขทีบ่ อกข้อเท็จจริงต่างๆ ซึง่ ตัวเลขนี้จะอยู่ในลักษณะ รวบยอดทีไ่ ด้มาจากการวิเคราะห์การเปรียบเทียบ หรือ การคํานวณ หรือ หมายถึง ศาสตร์ทเ่ี ป็ นทัง้ วิทยาศาสตร์และศิลปะ ซึง่ เกีย่ วข้องกับ กระบวนการ 4 ขัน้ ตอน ดังนี้ 1.1 การเก็บรวบรวมข้อมูล 1.2 การนําเสนอข้อมูล 1.3 การวิเคราะห์ขอ้ มูล 1.4 การตีความหมายของข้อมูล 2. การเก็บรวบรวมข้อมูล ข้อมูลสถิติ หรือ ข้อมูล หมายถึง ข้อความจริงในเรื่องใด เรื่องหนึ่งที่ เราสนใจศึกษา ซึง่ อาจเป็ นตัวเลข หรือข้อความก็ได้ ข้อสําคัญ ข้อมูลเพียงหน่วยเดียวไม่ถอื เป็ นข้อมูลสถิติ ประเภทของข้อมูล ถ้าจําแนกตามวิธกี ารเก็บรวบรวมข้อมูล แบ่งได้ 2 ประเภท คือ 1) ข้อมูลปฐมภูมิ คือ ข้อมูลทีเ่ ก็บรวบรวมจากผูใ้ ห้ขอ้ มูล หรือ สังเกตจากแหล่งข้อมูลโดยตรง เช่น ดช. วีกจิ สํารวจส่วนสูงของเพื่อนในชัน้ เรียนโดยการเดินถามทีละคน 2) ข้อมูลทุตยิ ภูมิ คือ ข้อมูลทีไ่ ด้จากข้อมูลทีผ่ อู้ ่นื เก็บรวบรวมไว้แล้ว เช่น จากรายงานต่างๆ ของหน่วยงานราชการ องค์การ หรือ เอกชน บทความจากหนังสือพิมพ์ วารสาร เป็ นต้น ลักษณะของข้อมูล แบ่งเป็ น 2 ลักษณะ คือ 1) ข้อมูลเชิงปริมาณ เป็ นข้อมูลทีใ่ ช้แทนขนาด หรือ ปริมาณ ซึง่ สามารถ ชัง่ ตวง วัด ออกมาเป็ นตัวเลขได้โดยตรง 2) ข้อมูลเชิงคุณภาพ เป็ นข้อมูลทีไ่ ม่สามารถวัดออกมาเป็ นตัวเลขได้โดยตรง แต่วดั ออกมาโดยอาศัยคุณลักษณะของสิง่ นัน้ ๆแต่ใน บางกรณี ข้อมูลเชิงคุณภาพวัดออกมาเป็ นตัวเลขได้ แต่ตวั เลขเหล่านัน้ ไม่สามารถนํามาหาค่าเฉลีย่ ได้ เช่น เบอร์เสือ้ เบอร์รองเท้า วิ ธีการเก็บรวบรวมข้อมูล มีวธิ เี ก็บได้หลายวิธี คือ 1) จากทะเบียนประวัติ เป็ นการเก็บรวบรวมจากฝา่ ยทะเบียนต่างๆ เช่น ฝา่ ยทะเบียนของโรงเรียน เขต โรงพยาบาล หน่วยงานของ รัฐ การเก็บรวบรวมโดยทําการคัดลอกซึง่ ข้อมูลทีไ่ ด้มคี วามเชื่อถือค่อนข้างสูง ประหยัดเวลาและค่าใช้จ่าย 2) จากการสํารวจ บางครัง้ ข้อมูลจากทะเบียนประวัตมิ ไี ม่ครบตามทีต่ อ้ งการ หรือไม่ได้เก็บรวบรวมไว้จงึ จําเป็ นต้องใช้วธิ สี าํ รวจเอง โดยใช้แบบสอบถาม หรือ การสัมภาษณ์ 3) จากการสังเกต ข้อมูลบางประเภทใช้แบบสอบถามหรือ สัมภาษณ์ อาจไม่ได้ขอ้ เท็จจริง ก็ตอ้ งใช้วธิ แี อบดูหรือสังเกตเอง 4) จากการทดลอง ส่วนใหญ่เป็ นการเก็บรวบรวมข้อมูลทางวิทยาศาสตร์ เป็ นข้อมูลทีถ่ ูกต้องและ เชื่อถือได้มาก ถ้าไม่เกิดความ คลาดเคลื่อนจากการวัด หรือ การวางแผนการทดลอง 3. การนําเสนอข้อมูล การนําเสนออย่างไม่เป็ นแบบแผน เช่น - การนําเสนอในรูปข้อความ คือ การนําข้อมูลมาเสนอเป็ นส่วนหนึ่งของข้อความ - การนําเสนอในรูปกึง่ ตาราง คือ การนําเสนอข้อมูลโดยแยกตัวเลขออกจากข้อความ การนําเสนอข้อมูลอย่างเป็ นแบบแผน เช่น - การนําเสนอด้วยตาราง แผนภูมิ หรือ แผนภาพ กราฟเส้น 4. การวิ เคราะห์ข้อมูลเบือ้ งต้น - ตารางแจกแจงความถี่ - ฮิสโตแกรม - รูปหลายเหลีย่ มของความถี่ - เส้นโค้งความถี่ - เส้นโค้งความถีส่ ะสม
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 12
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
สัญลักษณ์แทนการบวก ( ∑ อ่านว่า ซิ กมา) สมบัตขิ อง ∑ N
1. ∑ c = c+ c + c +... +c = cN i =1
N
N
N
i =1 N
i =1
2. ∑ cxi = c ∑ xi
(ดึงค่าคงทีไ่ ปอยูห่ น้า ∑ ได้) N
N
i =1 N
i =1 N
i =1 N
i =1
i =1
i =1
3. ∑ ( xi + yi ) = ∑ xi + ∑ yi
(∑ ผลบวก สามารถกระจายได้)
4. ∑ ( xi − yi ) =∑ xi −∑ yi
(∑ ผลลบ สามารถกระจายได้)
ค่ากลางของข้อมูล ค่ากลางของข้อมูล 1) ค่าเฉลีย่ เลขคณิต (𝑥𝑥̅ ) • ค่าเฉลีย ่ เลขคณิต •
•
ค่าเฉลีย่ เลขคณิตแบบถ่วง นํ้าหนัก ค่าเฉลีย่ เลขคณิตรวม
𝑥𝑥̅ = 𝑥𝑥̅ =
ข้อมูลไม่แจกแจงความถี่
ข้อมูลแจกแจงความถี่
∑ 𝑥𝑥 𝑥𝑥̅ = 𝑁𝑁
∑ 𝑓𝑓𝑓𝑓 𝑁𝑁 ∑ 𝑓𝑓𝑓𝑓 𝑥𝑥̅ = 𝐴𝐴 + � 𝑁𝑁 � 𝐼𝐼
𝑤𝑤1 𝑥𝑥1 + 𝑤𝑤2 𝑥𝑥2 + ⋯ + 𝑤𝑤𝑛𝑛 𝑥𝑥𝑛𝑛 𝑤𝑤1 + 𝑤𝑤2 + ⋯ + 𝑤𝑤𝑛𝑛 𝑁𝑁1 𝑥𝑥1 + 𝑁𝑁2 𝑥𝑥2 + ⋯ + 𝑁𝑁𝑛𝑛 𝑥𝑥𝑛𝑛 𝑁𝑁1 + 𝑁𝑁2 + ⋯ + 𝑁𝑁𝑛𝑛
2) มัธยฐาน (Median = Med.)
1) เรียงข้อมูลจากน้อยไปหามาก 2) ข้อมูลทีอ่ ยูต่ รงกลางคือ มัธยฐาน
3) ฐานนิยม (Mode = Mo.)
ข้อมูลทีซ่ ้าํ กันมากทีส่ ุด คือ ฐานนิยม
4) ค่ากึง่ กลางพิสยั (Mid - range) 5) ค่าเฉลีย่ ฮาร์โมนิก (Harmonic Mean = H.M.) 6) ค่าเฉลีย่ เรขาคณิต (Geometric Mean = G.M.)
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐻𝐻. 𝑀𝑀. =
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 2 𝑁𝑁
1 1 1 𝑥𝑥1 + 𝑥𝑥2 + ⋯ + 𝑥𝑥𝑁𝑁
𝐺𝐺. 𝑀𝑀. = 𝑁𝑁�𝑥𝑥1 ∙ 𝑥𝑥2 ∙ … ∙ 𝑥𝑥𝑁𝑁
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หรือ
𝑥𝑥̅ =
-
𝑁𝑁 − ∑ 𝑓𝑓𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀. = 𝐿𝐿 + � 2 � 𝐼𝐼 𝑓𝑓𝑚𝑚 𝑑𝑑1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿 + � � 𝐼𝐼 𝑑𝑑1 + 𝑑𝑑2
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
-
ขอบบน + ขอบล่าง 2
-
หน้ า 13
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
การวัดตําแหน่ งที่ของข้อมูล การวัดตําแหน่ งทีข่ องข้อมูล 1) ควอไทล์(แบ่ง 4 ส่วน)
2) เดไซล์ (แบ่ง 10 ส่วน)
3) เปอร์เซ็นไทล์ (แบ่ง 100 ส่วน)
ข้อมูลไม่แจกแจงความถี่
ข้อมูลแจกแจงความถี่
1)เรียงข้อมูลจากค่าน้อยไปหาค่ามาก 2)หาตําแหน่ง สูตร Qr = ( N + 1) × r 4 3)เทียบคะแนนจาก คะแนน = ค่าของข้อมูลทีต่ รงกับตําแหน่ง + (เศษ x ช่วงห่างของข้อมูล)
1)สร้างช่องความถีส่ ะสมของข้อมูลที่
1)เรียงข้อมูลจากค่าน้อยไปหาค่ามาก 2) หาตําแหน่ง สูตร Dr = ( N + 1) × r 10 3)เทียบคะแนนจาก คะแนน = ค่าของข้อมูลทีต่ รงกับตําแหน่ง + (เศษ x ช่วงห่างของข้อมูล)
1)สร้างช่องความถีส่ ะสมของข้อมูลที่
1)เรียงข้อมูลจากค่าน้อยไปหาค่ามาก 2) หาตําแหน่ง สูตร Pr = ( N + 1) × r 100 3)เทียบคะแนนจาก คะแนน = ค่าของข้อมูลทีต่ รงกับตําแหน่ง + (เศษ x ช่วงห่างของข้อมูล)
1)สร้างช่องความถีส่ ะสมของข้อมูลที่
เมือ่ 𝐿𝐿 คือ ขอบล่างของชัน้ ที่ Qr, Dr, Pr อยู่ ∑ 𝑓𝑓𝐿𝐿 คือ ความถีส ่ ะสมของชัน้ ทีอ่ ยูก่ ่อนจะถึงชัน้ ที่ Qr, Dr, Pr อยู่ 𝑓𝑓𝑚𝑚 คือ ความถีข ่ องอันตรภาคชัน้ ที่ Qr, Dr, Pr อยู่ 𝐼𝐼 คือ ความกว้างของอันตรภาคชัน้ ที่ Qr, Dr, Pr อยู่ 𝑛𝑛 คือ จํานวนข้อมูลทัง้ หมด
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
กําหนดให้ N 2)หาตําแหน่ง สูตร Qr = × r 4 3)เทียบคะแนน สูตร
𝑁𝑁𝑁𝑁 − ∑ 𝑓𝑓𝐿𝐿 𝑄𝑄𝑟𝑟 = 𝐿𝐿 + � 4 � 𝐼𝐼 𝑓𝑓𝑚𝑚
กําหนดให้ N 2)หาตําแหน่ง สูตร Dr = × r 10 3)เทียบคะแนน สูตร
𝑁𝑁𝑁𝑁 − ∑ 𝑓𝑓𝐿𝐿 𝐷𝐷𝑟𝑟 = 𝐿𝐿 + � 10 � 𝐼𝐼 𝑓𝑓𝑚𝑚
กําหนดให้ N ×r 2)หาตําแหน่ง สูตร Pr = 100 3)เทียบคะแนน สูตร
𝑁𝑁𝑁𝑁 − ∑ 𝑓𝑓𝐿𝐿 𝑃𝑃𝑟𝑟 = 𝐿𝐿 + �100 � 𝐼𝐼 𝑓𝑓𝑚𝑚
หน้ า 14
DekTalent.com เอกสารสรุปสูตร คณิตศาสตร์พื ้นฐาน รวม ม.4-5-6
สรุปโดยพี่โต๋
การวัดการกระจายของข้อมูล การวัดการกระจายสัมบูรณ์
การวัดการกระจายสัมพัทธ์ 1) สัมประสิทธิ ์ของพิสยั
1) พิสยั ( ข้อมูลไม่แจกแจงความถี)่
=
พิสยั = xmax − xmin ( ข้อมูลแจกแจงความถี)่ พิสยั = ขอบบนชัน้ สูงสุด – ขอบล่างชัน้ ตํ่าสุด
2) ส่วนเบีย่ งเบนควอไทล์
2) สัมประสิทธิ ์ของส่วนเบีย่ งเบนควอไทล์
Q3 − Q1 2
Q.D. =
xmax − xmin xmax + xmin
=
3) ส่วนเบีย่ งเบนเฉลีย่ ส่วนเบีย่ งเบนเฉลีย่ ( ข้อมูลไม่แจกแจงความถี)่ ∑ x −x M .D =
Q3 − Q1 Q3 + Q1
3) สัมประสิทธิ ์ของส่วนเบีย่ งเบนเฉลีย่ =
i
M .D. x
N
( ข้อมูลแจกแจงความถี)่ ∑fx M .D =
−x
i
N
4) ส่วนเบีย่ งเบนมาตรฐาน ( ข้อมูลไม่แจกแจงความถี)่ N
∑ ( x − x) i
i =1
N
N
S .D. =
∑ f ( x − x) i =1
i
i
หรือ
N
2
N
S .D. =
∑x
2
N
S .D. =
2
∑x = − N
2
N
2
ความแปรปรวน (𝑆𝑆 2 ) 1) ความแปรปรวน ∑ ( x − x) = ∑ x S = 2
=
2
หรือ ( ข้อมูลแจกแจงความถี)่ S .D. =
4) สัมประสิทธิ ์ของการแปรผัน ∑x − N
∑ fx N
2
2
∑ fx − N
S .D. x
2
∑ x − (x ) 2
2
N
2) ความแปรปรวนรวม
∑x +∑x = 2 1
N1 + N 2
2 2
∑ x1 + ∑ x2 − N +N 1 2
2
เรี ยนคณิตศาสตร์ ม.4-5-6/O-Net/PAT1 ออนไลน์ได้ ที่ www.dektalent.com
หน้ า 15
View more...
Comments