4149_765_103_ecomat 2 +
Short Description
ZF ECOMAT 2+...
Description
Technical Manual For Installation, Functions, And Initial Start-Up
HP 502 / HP 592 / HP 602 for city buses, buses running in line service, and coaches 4149 765 103
Subject to alterations in design
Copyright by ZF This documentation is protected by copyright. Any reproduction or dissemination in whatever form which does not comply fully with the intended purpose of this documentation is prohibited without the consent of ZF Friedrichshafen AG. Printed in Germany ZF Friedrichshafen AG, MC-C
Edition: 2004-12
4149 765 103
ZF-Ecomat 2 plus
Important Information
Important Information
Safety instructions
This Ecomat Technical Manual provides a technical basis for the Ecomat 2 plus system and has been produced for the benefit of vehicle and body manufacturers as well as ZF employees. This manual contains answers to questions ranging from specifications to installation inspection and commissioning.
The following safety instructions appear in this manual: NOTE Refers to special processes, techniques, data, use of auxiliary, etc. CAUTION This is used when incorrect, unprofessional working practices could damage the product.
This manual provides the basis for specifications of the transmission and peripheral units. Optimum procedure leading up to volume production delivery: • Specification of transmission, automatic electronic shift control unit and peripheral units performed by vehicle manufacturer and ZF using the “Questionnaire for parts list preparation”. • Documentation by ZF. • Initial installation. • Initial installation inspection carried out by ZF staff. • Start-up carried out by ZF staff. • ZF release certificate. • Authorization conform to certificate release.
! DANGER This is used when lack of care could lead to personal injury or death.
! THREATS to the environment ! Lubricants and cleaning agents must not be allowed to enter the soil, ground water, or sewage system. • Request safety information for the products concerned from your local environmental protection authority, and follow any instructions herein at all times. • Collect used oil in a suitably large container. • Dispose of waste oil, used filters, lubricants, and detergents in compliance with the stipulations of the environmental protection laws. • Always observe manufacturer instructions when dealing with lubricants and cleaning agents.
ZF can bear responsibility for any errors in the initial installation only if sign-off has been performed by authorized ZF personnel and if all defects found by ZF have been rectified by the vehicle or bodywork manufacturer. The vehicle or bodywork manufacturer shall bear sole responsibility for any damage caused by defects attributable to the vehicle or body manufacturer which could not be detected by ZF personnel during initial sign-off. If you require additional information concerning installation and the installation inspection, we have prepared an "Installation Guidelines" manual in addition to the Ecomat technical manual. When installing the transmission, these installation guidelines must be observed. If you have any questions or improvement suggestions, please contact our department: BPE1 - ECOMAT Application Engineering department.
4149 765 103 - 2004-12
3
ZF-Ecomat 2 plus
4149 765 103 - 2004-12
Contents
1
System solution Ecomat 2 plus
2
Description of transmission and technical data
3
Ecomat 2 plus installation position in vehicle
4
Installation arrangement and mountings
5
Guidelines for propshaft installation
6
Engine connection
7
Converter
8
Retarder
9
Cooling system
10
Transmission specification
11
Hydraulic circuit diagrams
12
Periperal equipment
13
Neutral at standstill
14
Temperature monitoring
15
Electronic automatic control system EST 146 / 147
16
Wiring
17
ZF documentation
18
Calculations and conversion tables
19
Oil grades and oil filters
5
ZF-Ecomat 2 plus
Contents
1 1.1 1.2 1.3
System solution Ecomat 2 plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System solution Ecomat 2 plus (with CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System solution Ecomat 2 plus (with load sensor, without CAN) . . . . . . . . . . . . . . . . . . . . . . . . System solution Ecomat 2 plus (with PWM signal, without CAN) . . . . . . . . . . . . . . . . . . . . . . .
1-1 1-1 1-2 1-3
2 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.6.8 2.7
Description of transmission and technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission brief description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission structure and auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission ratios and powerflow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque assignment - vehicle weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torsional vibration in driveline - inertia torques - vibration substitution model . . . . . . . . . . . . Weights and inertia torque values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coaxial output without heat exchanger J08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coaxial output with heat exchanger J01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coaxial output with heat exchanger J05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coaxial output with heat exchanger J10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle drive 80° without offset, with heat exchanger J05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle drive 80° without offset, with heat exchanger J10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle drive 80° RHD (with right offset), with heat exchanger J05 . . . . . . . . . . . . . . . . . . . . . . . Angle drive 80° RHD (with right offset), without heat exchanger J08 . . . . . . . . . . . . . . . . . . . . Clutch combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1 2-1 2-3 2-5 2-7 2-8 2-12 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20
3
Ecomat installation position in vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
4 4.1
Installation arrangement and mountings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission flange-mounted on engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1 4-1
5 5.1 5.2 5.3 5.4 5.5 5.6
Guidelines for propshaft installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permissible rotational irregularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permitted resultant deflection angle for each joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The permitted resultant flexure angle for all joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-section propshafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi-section propshafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum permissible propshaft length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1 5-1 5-2 5-3 5-4 5-4 5-5
6 6.1 6.2 6.4 6.5
Engine connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZF Scope of delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine connection inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine connection drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview converter-circuit cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-1 6-4 6-4 6-5 6-7
7 7.1 7.2 7.3 7.4 7.5
Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque converter: Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Converter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Getting the right torque converter for your engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque converter diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque converter basic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7-1 7-1 7-1 7-3 7-5 7-7
4149 765 103 - 2004-12
6
ZF-Ecomat 2 plus
Contents
8 8.1 8.2 8.4 8.5 8.5.1 8.5.2 8.5.3
Retarder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure and function of retarder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retarder action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retarder and engine brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retarder activation variants hand and foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permitted variants “foot request” without “hand request” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permitted variants “foot request” without “hand request” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permissible retarder activation variants "Foot" and "Hand" combined . . . . . . . . . . . . . . . . . . . .
8-1 8-1 8-2 8-3 8-4 8-5 8-6 8-7
9 9.1 9.1.1 9.1.1.1 9.1.1.2 9.1.2 9.1.3 9.1.3.1 9.1.4 9.1.4.1 9.2 9.3 9.4 9.4.1 9.4.2 9.5 9.6 9.7 9.7.1 9.7.2 9.7.3 9.7.4 9.8
9-1 9-1 9-1 9-1 9-2 9-2 9-2 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-5 9-8 9-8 9-8 9-8 9-8 9-8
9.9 9.9.1 9.10 9.10.1 9.10.2 9.10.3 9.10.4 9.10.5
Cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design of cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Release criteria for temperature measurements (max. ambient temperature = 40 °C) . . . . . . . . According to List of Lubricants TE-ML 14 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . According to List of Lubricants TE-ML 14 A / B / C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limit temperature values for oil temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling system with retarder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling system graph of shell type cooler SBK 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling system without retarder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Delivery volume of the primary pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Position of transmission oil cooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooler fitted on transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout with oil cooler separate fromtransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil line connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling water circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specification for transmission heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Required performance of cooling water and antifreeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fresh water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Antifreeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission fill with auxiliary cooling (applicable to all transmissions approved for use with auxiliary cooling) . . . . . . . . . . . . . . . . . Transmission oil sump cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System diagram, transmission oil sump cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature measurements in bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement conditions / Retarder test cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement retarder cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Explanation of water temperature Retarder cycle (worst case) . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature measuring points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9-9 9-10 9-10 9-11 9-11 9-11 9-11 9-12 9-12
10 10.1 10.1.1 10.2 10.2.1 10.2.2
Transmission specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flange-mounted installation position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat exchanger arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coaxial output, heat exchanger at rear, accumulator horizontal on left . . . . . . . . . . . . . . . . . . . Coaxial output, heat exchanger at rear, accumulator rear transverse . . . . . . . . . . . . . . . . . . . . .
10-1 10-3 10-3 10-5 10-5 10-6
4149 765 103 - 2004-12
7
ZF-Ecomat 2 plus 10.2.3
Contents
10.2.5 10.2.6 10.2.7 10.2.7.1 10.3 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5 10.5.1 10.5.2 10.5.3 10.5.4
Coaxial output or 80° angle drive RHD (with axial offset), heat exchanger vertical on left, accumulator horizontal on left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 Angle drive 80° LHD (without axial offset), heat exchanger horizontal on left, accumulator horizontal on left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 Coaxial output, heat exchanger vertical on right, accumulator horizontal on left . . . . . . . . . . . 10-9 Coaxial output, vertical heat exchanger on right, accumulator rear transverse . . . . . . . . . . . . . 10-10 Coaxial output, heat exchanger separate from transmission, accumulator direct mounting . . . 10-11 Cooler connection piece with threaded connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12 Oil pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13 Deep oil pan, 4149 131 002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13 Deep oil pan; left- and right-hand connection prepared, 4149 131 006 . . . . . . . . . . . . . . . . . . . 10-14 Deep oil pan, auxiliary cooling, 4149 131 024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 Flat oil pan, 4149 131 010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16 Flat oil pan; left- and right-hand connection prepared, 4149 131 009 . . . . . . . . . . . . . . . . . . . . 10-17 Oil filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19 Oil filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19 Oil filling , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 Oil filling , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21 Oil filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-23 Coaxial output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-23 80° angle drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 Output flange 80° angle drive LHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25 Ecomat output flange; coaxial and angle drive 80° RHD with axial offset . . . . . . . . . . . . . . . . . 10-27
11 11.1 11.2
Hydraulic circuit diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 Hydraulic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 Hydraulic diagram (with Bus Stop Neutral / NBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
12 12.1 12.2 12.3 12.3.1 12.3.2 12.4 12.4.1 12.4.2 12.4.3 12.5 12.6 12.7 12.7.1 12.8 12.9
Peripheral equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 Speed range selector - push button switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 CAN range selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 Load sensor A 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 Load sensor drawing, Drawing no.: 0501 209 635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 PWM-Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 Calibration of the PWM Signal, Positive Impulse Flank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 Sensing ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10 Signal Spezification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10 Additional temperature sensor A6 for temperature display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 Temperature display A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 Kick down switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 Kick down switch S1 (Holding switch - high holding force), Drawing no.: 6007 603 030 . . . . . 12-13 Pressure switch S7 - NBS (Neutral when Stationary), Drawing no.: 0501 311 584 (a) . . . . . . . . 12-15 Changeover relay, e.g. range selector relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16
13 13.1 13.2
Neutral at standstill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 Connection diagram (electric), Drawing no.: 4139 720 045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
10.2.4
4149 765 103 - 2004-12
8
ZF-Ecomat 2 plus
Contents
13.3 13.3.1 13.3.2
Neutral at Bus Stop - display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 NBS active display via digital signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 NBS Active Display via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
14 14.1 14.2 14.3 14.4 14.5 14.6 14.7
Temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature information via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature information via temperature sensor A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature information from DM1 note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addtional temperature sensor A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature display gauge A5, Drawing no.: 0501 204 074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistance characteristics - Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 15.1 15.2 15.3 15.4 15.5 15.6 15.6.1 15.6.2 15.7 15.7.1
14-1 14-1 14-1 14-1 14-1 14-2 14-3 14-4
Electronic automatic control system EST 146/147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 Function description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 Intended standard functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 Functions available on request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 Installation requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 Technical data of EST 146 / 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 Installation drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5 Installation drawing EST 146, Drawing no.: 6009 690 001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Installation drawing EST 147, Drawing no.: 6009 691 001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6 Current circuit diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 Current circuit diagram EST 146 / EST 147 with CAN and digital range selector, Drawing no.: 6029 729 155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 15.7.2 Current circuit diagram EST 146 / EST 147 with CAN, with CAN range selector, Drawing no.: 6029 729 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8 15.7.3 Current circuit diagram EST 146 / EST 147 without CAN(NEng), with digital range selector, Drawing no.: 6029 729 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9 15.8 Pin pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-10 15.9 Connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-11 15.9.1 Current circuit diagram EST 146 / EST 147 with CAN and digital range selector, Drawing no.: 6029 729 156A / Pages 1 - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-11 15.9.2 Current circuit diagram EST 146 / EST 147 with CAN and CAN range selector, Drawing no.: 6029 729 233 / Pages 1 - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-15 15.9.3 Current circuit diagram EST 146 / 147 without CAN (NEng), with digital selector range, Drawing no.: 6029 729 216 / Pages 1 - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-19 15.10 Function description EST 146 / 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-23 15.11 ZF-Diagnosis systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-30 15.11.1 ZF-Diagnosis protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-30 15.11.2 ZF-Diagnosis tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-30 15.11.2.1 ZF-Testman pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-30 15.11.2.2 Flash code output EST 146/147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-33 15.12 HST 46 auxiliary control unit EST 146 and EST 147 versions without CAN range selector . . . 15-35 15.12.1 Operating manual for HST 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-35 15.12.2 Technical data of HST 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-35 15.12.3 Dimensions of HST 46, Drawing no.: 6009 678 003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-36 15.13 Block diagram EST 146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-37 15.14 Block diagram EST 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-38
4149 765 103 - 2004-12
9
ZF-Ecomat 2 plus
Contents
16 16.1 16.2 16.3 16.4
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complete wiring - Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complete wiring - With junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wiring connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wiring specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16-1 16-1 16-1 16-1 16-2
17 17.1 17.1.1 17.1.2 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.2 17.3.3
ZF documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZF documentation with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification and engine compatibility data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZF documentation without CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification and engine compatibility data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil level check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil level check prior to first commissioning; transmission without oil filling . . . . . . . . . . . . . . Oil level check prior to first commissioning; Transmission oil filing at plant . . . . . . . . . . . . . . Oil level check prior to first commissioning; Transmission with additional cooling system, with or without oil filling at plant . . . . . . . . . . .
17-1 17-1 17-1 17-2 17-3 17-3 17-4 17-5 17-5 17-6 17-7
18 18.1 18.2 18.3 18.3.1 18.3.2 18.3.3 18.3.4 18.3.5 18.3.6 18.3.7 18.3.8 18.3.9 18.4 18.5
Calculations and conversion tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driveline design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collective formulae for retarder and cooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Units of length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Units of area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Units of volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Units of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Masseeinheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Force units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moment of inertia conversion factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of dynamic tire radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18-1 18-1 18-2 18-3 18-3 18-3 18-4 18-4 18-5 18-6 18-7 18-7 18-8 18-8 18-8
19 19.1 19.2 19.3
Oil grades and oil filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Lubricants TE-ML 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purity of medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19-1 19-1 19-1 19-1
4149 765 103 - 2004-12
10
ZF-Ecomat 2 plus
System solution
1
System solution Ecomat 2 plus
1.1
System solution Ecomat 2 plus (with CAN)
Brake Accelerator Engine Displays .... .... CAN-Bus
8 NR 3D 1 2
13
17
16 12
2
20
6
11 7
10 1 21
4
9
14 15
18
5
19
3 023778_en
Key to drawing 1 Transmission electrical unit connector 2 EST 146- / EST 147-connector 3 Retarder connector 4 Accumulator connector 5 Temperature sensor connector 6 Kick down switch 7 ZF diagnosis connection plug 8 Range selector (pushbutton) 9 Dipstick (oil level check, oil status) 10 Footplate brake valve for activating the service brake and continuously variable retarder activation
4149 765 103 - 2004-12
11 12 13 14 15 16 17 18 19 20 21
1-1
Accelerator pedal Retarder OFF - ON switch Main power supply Pushbutton for NBS (Neutral when stationary) Pushbutton for gear release Automatic electronic shift control unit EST 146 / EST 147 Retarder manual lever, electrical Impulse sensor for tachometer Connections for cooling water circuit CAN connector Auxiliary consumer from air supply
ZF-Ecomat 2 plus 1.2
System solution
System solution Ecomat 2 plus (with load sensor, without CAN) 8 NR 3D 1 2
13
17
6
11
16 12
2
20
7
10 21 1 22
4
9
14 15
18
5
19
3 023777
Key to drawing 1 Transmission electrical unit connector 2 EST 146- / EST 147-connector 3 Retarder connector 4 Accumulator connector 5 Temperature sensor connector 6 Kick down switch 7 ZF diagnosis connection plug 8 Range selector (pushbutton) 9 Dipstick (oil level check, oil status) 10 Footplate brake valve for activating the service brake and continuously variable retarder activation
4149 765 003 - 2004-07
11 12 13 14 15 16 17 18 19 20 21 22
1-2
Accelerator pedal Retarder OFF - ON switch Main power supply Pushbutton for NBS (Neutral when stationary) Pushbutton for gear release Automatic electronic shift control unit EST 146 / EST 147 Retarder manual lever, electrical Impulse sensor for tachometer Connections for cooling water circuit Linkage for injection pump Load sensor for engine load detection Auxiliary consumer from air supply
ZF-Ecomat 2 plus 1.3
System solution
System solution Ecomat 2 plus (with PWM signal, without CAN) 8
20
NR 3D 1 2
13
17
6
16 12
2
11 7
10 1 21
4
9
14 15
18
5
19
3 023779
11 12 13 14 15 16
Key to drawing 1 Transmission electrical unit connector 2 EST 146- / EST 147-connector 3 Retarder connector 4 Accumulator connector 5 Temperature sensor connector 6 Kick down switch 7 ZF diagnosis connection plug 8 Range selector (pushbutton) 9 Dipstick (oil level check, oil status) 10 Footplate brake valve for activating the service brake and continuously variable retarder activation
4149 765 003 - 2004-07
17 18 19 20 21
1-3
Accelerator pedal Retarder OFF - ON switch Main power supply Pushbutton for NBS (Neutral when stationary) Pushbutton for gear release Automatic electronic shift control unit EST 146 / EST 147 Retarder manual lever, electrical Impulse sensor for tachometer Connections for cooling water circuit PWM from EDC or E-gas Auxiliary consumer from air supply
ZF-Ecomat 2 plus
System solution • Oil temperature is monitored using temperature sensors. Data from temperature sensors is transmitted via CAN bus system, EST 146 / 147 digital output or direct wiring and displayed by means of display or warning lamp. Retarder torque will be reduced as defined temperature limits are exceeded.
System solution Ecomat 2 plus The Ecomat 2 plus system diagram illustrates one of the possible Ecomat system set-ups using all necessary individual components. All electrical connections required between the Ecomat 2 plus system and automatic electronic control unit are located in the interface to the vehicle electrical system (13) and in case of the CAN bus application at the vehicle CAN bus system.
• Engine load data will be transmitted from the engine electronic system to the EST 146 / 147 (15) via CAN and/or PWM signal or from injection pump via load sensor. Pressures for operating the clutch elements are modulated according to the engine load condition using a proportional solenoid valve in the electrical/hydraulic control unit.
The EST 146 / 147 (15) automatic electronic control unit controls the transmission and monitors all functions. The automatic shift control unit gathers input parameters from vehicle and transmission and processes these to produce signals used for controlling the transmission hydraulic system. The driver may intervene in the Ecomat control system using the following equipment: - Speed range selector (push-button switch) (8) - Kick-down (6) - Accelerator pedal (11) - Brake pedal (10) - Switch for retarder operation (12/16) • The desired speed range can be pre-selected using the speed range selector (8). The button pressed is illuminated (continuously lit). • The kickdown switch (6) enables the shift points to be moved up to higher engine speed settings. This means more time is spent in each gear [during upshifts] and, conversely, that downshifts occur sooner. • For retarder activation, please consult vehicle manual.
4149 765 103 - 2004-12
1-4
ZF-Ecomat 2 plus 2
Description of transmission and technical data
2.1
Transmission brief description
Description of transmission and technical data Basic transmissions from ranges HP 502, HP 592, and HP 602 consist of a hydrodynamic torque converter with a lock-up clutch and rear-mounted multispeed planetary transmission. Torque converter The hydrodynamic torque converter, which uses the Trilok operating principle is a wear-free setting-off system and is equipped with a stator mounted on a freewheel and a lock-up clutch. The converter operates only when the vehicle is starting and is then automatically locked up. A lock-up clutch installed in the torque converter establishes a direct mechanical connection between the engine and planetary transmission after the setting-off phase. The power losses incurred by converter transmissions are therefore eliminated.
ZF Ecomat transmissions from ranges HP 502, HP 592, and HP 602 can be used in multiple applications in commercial and special vehicles. It is possible to select between 5 or 6-speed transmissions to cover all requirements - from fitting in a city bus to use in a long-distance coach. To ensure the broadest possible range of applications, Ecomat transmissions can be fitted with many auxiliaries. They have been designed to comply fully with today's requirement of traffic safety and optimum economy. ZF Ecomat transmissions from ranges HP 502, HP 592, and HP 602 offer the following advantages:
Retarder The hydrodynamic retarder, is integrated in the transmission and no housing extension is necessary. The retarder is located between the torque converter and planetary transmission. This means the full braking effect is available without interruption, even in lower gears. The retarder braking torque can be continuously varied using a manual lever-operated or pedal brake valve. If required, the braking torque can be divided into one or several stages, all limited to a value specified by the customer.
• Smooth starting with no mechanical wear, even on extremely rough terrain. No clutch wear. • The automatic shift program and smooth shift characteristics do a great deal to protect the engine and driveline. • The integrated hydrodynamic retarder contributes to road safety and vehicle performance. Substantial cost savings are also achieved by extending the service life of wheel brake linings.
Planetary transmission The planetary transmission, arranged behind the torque converter, is designed as a 5- or 6-speed unit. The planetary transmission is a combination of individual planetary gear sets (no modular design). The gears in the planetary transmission are selected automatically and without any interruption to traction. The automatic electronic shift control unit EST 146 / 147 provides signals for the gear selections. The EST 146 / 147 shifts the appropriate multi-disc clutches and/or brakes via the electrohydraulic transmission control unit in accordance with various parameters from the vehicle and transmission.
• Increased fuel economy due to close ratio stepping, carefully chosen shift points and restriction of converter operation to the initial driving phase. • Greater ease of operation for the driver, enhancing driver performance and contributing to road safety. • Reduction of vehicle operation and maintenance costs, especially under demanding road and traffic conditions or even with drivers who have no practice with it.
4149 765 103 - 2004-12
2-1
ZF-Ecomat 2 plus
Description of transmission and technical data
Transmission control The electro-hydraulic control system used in these transmissions has given excellent results in practice. It receives shift signals from the EST 146 / 147. This modern automatic electronic control unit has a diagnostics capacity and is designed to suit the number of ratios, type of transmission, engine and vehicle.
ZF automatic transmissions 5 and 6 HP 502, 592, 602
3
4
5
6
2
7
1
013467
8
Key to drawing 1 Input 2 Torque converter lock-up clutch 3 Converter 4 Retarder
4149 765 103 - 2004-12
5 6 7 8
2-2
Clutches (A, B, C) Brakes (D, E, F) Output Oil pump
ZF-Ecomat 2 plus 2.2
Description of transmission and technical data
Transmission structure and auxiliaries
Using the basic transmission, auxiliary units can be used to make the following variants. • Coaxial transmission with fitted oil cooler The basic transmission is fitted with coaxial output and oil cooler at the output end. The heat exchanger module contains the oil cooler connection piece and cooler connection lines. • Coaxial transmission with separate cooler Here, the basic transmission is fitted with a cooler connection piece. A ZF cooler is available for separate attachment or a cooler produced by an external manufacturer can be used following approval from ZF. • Transmission with flange-mounted 80° angle drives A 80º angle drive can be attached to the basic transmission without axial offset or a 80º angle drive can be attached to the right with axial offset. Cooler attachments (see Chap. 10) or a cooler connection piece are available for this as for the coaxial transmission version with separate cooler. • Non-ZF oil cooler If customers provide their own oil cooler: - ZF fits the oil cooler connection for non-ZF oil coolers to the basic transmission - The oil cooler must comply with specifications in Section 9, Cooling system, - The associated piping must be provided by the customer and must comply with Section 9, Cooling system. • Retarder All transmission versions are supplied with a retarder as standard. The retarder is fitted in the basic transmission between converter and planetary transmission. The retarder does not increase transmission length and adds only 11 kg to the transmission weight.
4149 765 103 - 2004-12
2-3
ZF-Ecomat 2 plus
Description of transmission and technical data
2
5
4
3
1
6 7
021765
Key to drawing 1 Basic transmission 2 Retarder 3 Coaxial output 4 80° angle drive left with offset (LHD) 5 80° angle drive right with offset (RHD) 6 Oil cooler, fitted at output end 7 Oil cooler connection piece for non-ZF oil cooler
4149 765 103 - 2004-12
2-4
ZF-Ecomat 2 plus 2.3
Description of transmission and technical data
Transmission ratios and powerflow diagram
Transmission ratio: This table gives the mechanical transmission ratios in individual gears (without torque converter). Ratios No. of gears
1st gear
2nd gear
3rd gear
4th gear
5th gear
6th gear
Rev. gear
Total
5
3.43
2.01
1.42
1.00
0.83
--
4.84
4.14
6
3.43
2.01
1.42
1.00
0.83
0.59
4.84
5.82
Powerflow WK
B C D
WK
E F
Neutral A
1st gear hydraul.
1st gear (mechan.) 4
5
B C D
E F
A
WK
6
E F
A
WK
3
B C D
2nd gear
B C D
E F
A
2 WK
3rd gear
B C D
E F
A
7
1
WK
4th gear
013467
E F
A
WK
8
B C D
5th gear
B C D
E F
A
WK
B C D
E F
6th gear A
1 Input 2 Torque converter lockup-clutch (WK) 3 Torque converter 4 Retarder
5 6 7 8
Clutches (A, B, C) Brakes (D, E, F) Output Oil pump
WK
Reverse gear
B C D
E F
A
016362 4149 765 103 - 2004-12
2-5
ZF-Ecomat 2 plus
Description of transmission and technical data
Power flow diagram: The power flow diagram illustrates which clutches and combinations of clutches are closed when individual gears are engaged, depending on transmission ratio. 5-speed version: i = 3.43 - 0.83 6-speed version: i = 3.43 - 0.59 Power flow WK
B C D
WK
E F
Neutral A
1st gear hydraul.
1st gear (mechan.) 4
5
B C D
E F
A
WK
6
E F
A
WK
3
B C D
2nd gear
B C D
E F
A
2 WK
3rd gear
B C D
E F
A
7
1
WK
4th gear
013467
E F
A
WK
8
B C D
5th gear
B C D
E F
A
WK
B C D
E F
6th gear A
1 Input 2 Torque converter lockup-clutch (WK) 3 Torque converter 4 Retarder
4149 765 103 - 2004-12
5 6 7 8
Clutches (A, B, C) Brakes (D, E, F) Output Oil pump
WK
Reverse gear
B C D
E F
A
016362
2-6
ZF-Ecomat 2 plus 2.4
Description of transmission and technical data
Torque assignment - vehicle weight
Transmissions
No. of gears
HP 502
5
3.43 - 0.83
2800
6 1)
3.43 - 0.59
2800
Ratio
Max. permissible input speed (rpm)
5
3.43 - 0.83
2800
6 1)
3.43 - 0.59
2800
5
3.43 - 0.83
2650
6 1)
3.43 - 0.59
2650
Only in conjuction with engine version CAN TSC1 TE Max. torque in 1st gear: 1050 Nm Max. torque in 1st gear: 1400 Nm Max. torque in 1st gear: 1250 Nm
4149 765 103 - 2004-12
13 t
19 t
up to 28 t
1100 Nm
850 Nm1)
1100 Nm
1100 Nm 2)
1250 Nm
--
1250 Nm
1250 Nm
1600 Nm 3)
--
1600 Nm 4)
1600 Nm 4)
for i = 0.59 nmax = 2000
Max. permissible engine torque ISO 1585 1) 2) 3) 4)
26 t
for i = 0.59 nmax = 2000
Max. permissible engine torque ISO 1585 HP 602
City bus
for i = 0.59 nmax = 2000
Max. permissible engine torque ISO 1585 HP 592
Coach
2-7
ZF-Ecomat 2 plus 2.5
Description of transmission and technical data
Torsional vibration in driveline – inertia torques – vibration substitution model
CAUTION Generally speaking, torsional vibration is due to more than one component. The natural frequencies are determined by the distribution of inertia torques and the torsional rigidity of the entire driveline. The vehicle manufacturer must ensure that the entire driveline does not apply any excessive vibration loadings on the transmission. Limit values for angle acceleration amplitude at the output flange: εmax = ± 2000 rad/sec2
For the purpose of mathematical investigations into vibration, the transmission is divided into three discrete rotating masses connected by (zero mass) torsion springs: • Mass 1:
Torque converter without engine flywheel and connection parts
• Mass 2:
Clutch carrier A, B, C for i = 3.43 - 0.83 (0.59)
• Mass 3:
Manual transmission including output flange
• Rigid body 1: Turbine shaft • Rigid body 2: Input shaft and/or hollow shaft. Half the moment of inertia of the shafts is assigned to the relevant adjoining masses. The following tables give the corresponding data (moments of inertia and torsional rigidity) for individual transmission variants.
4149 765 103 - 2004-12
2-8
ZF-Ecomat 2 plus
Description of transmission and technical data
Inertia torques and vibration substitution model for i = 3.43 - 0.83 (0.59) 5/6 HP 502 / 592 - W 360*TPC... WK
6 HP 602 - W 390*TPC...
B C
D
E F
J1
J2 C1
J3 C2
A
1
2
3
The moment of inertia J1, oil capacity included
016364
J1 [kgm2]
C1
J2
C2
J3
[Nm/rad]
[kgm2]
[Nm/rad]
[kgm2]
1st gear
5/6 HP 502 / 592
1.51
19000
0.78
39760
0.23
i = 3.43
5/6 HP 602
2.07
39000
0.78
100300
0.24
2nd gear
5/6 HP 502 / 592
1.51
19000
0.78
58350
0.10
i = 2.01
5/6 HP 602
2.07
39000
0.78
136700
0.10
3rd gear
5/6 HP 502 / 592
1.51
19000
0.78
70760
0.14
i = 1.42
5/6 HP 602
2.07
39000
0.78
151200
0.15
4th gear
5/6 HP 502 / 592
1.51
19000
0.82
108500
0.50
i = 1.00
5/6 HP 602
2.07
39000
0.82
985000
0.53
5th gear
5/6 HP 502 / 592
1.51
19000
0.79
105700
0.46
i = 0.83
5/6 HP 602
2.07
39000
0.79
814100
0.46
6th gear
6 HP 502 / 592
1.51
19000
0.79
105700
0.46
i = 0.59
6 HP 602
2.07
39000
0.79
814100
0.46
Neutral position (lock-up clutch and clutches A, B, C open)
Remarks:
4149 765 103 - 2004-12
• • • • •
5/6 HP 502 / 592:
J1.1 = 1.32 kgm2 / J1.2 = 0.87 kgm2
5/6 HP 602:
J1.1 = 1.70 kgm2 / J1.2 = 1.07 kgm2
Figures are based on pump or turbine speed of converter. Torque converter lock-up clutch closed. Engine connecting parts must be assigned to first rotating mass. Connecting parts fitted on output side must be assigned to third rotating mass. The moment of inertia for neutral position applies in the following conditions: - On input side, lock-up clutch and clutches A, B, and C opened - Primary mass J1.1 of the converter (circuit cover, pump wheel, lock-up clutch) is hydrodynamically connected to the secondary mass J1.2 (turbine wheel, clutch carriers A, B and C) through the oil in the converter. However, these masses are regarded as separate for vibration purposes.
2-9
ZF-Ecomat 2 plus
Description of transmission and technical data
Inertia torques and vibration substitution model for i = 3.43 - 0.83 (0.59) 5/6 HP 502 / 592 - W 360*TPC... / W 390*TPC... incl. angle drive 80° RHD (i = 0.98) with right offset J1
J2 C
WK
B C
D
E
J3 C
1
2
F Output RHD
A
1
2
3 021766
The moment of inertia J1 oil capacity included 1st gear i = 3.43 2nd gear i = 2.01 3rd gear i = 1.42 4th gear i = 1.00 5th gear i = 0.83 6th gear i = 0.59
5/6 HP 502 / 592
5/6 HP 502 / 592
5/6 HP 502 / 592
5/6 HP 502 / 592
5/6 HP 502 / 592
6 HP 502 / 592
Torque converter
4149 765 103 - 2004-12
• • • • •
C1
J2
C2
J3
[Nm/rad]
[kgm2]
[Nm/rad]
[kgm2]
19000
0.78
39760
0.26
19000
0.78
58350
0.18
19000
0.78
70760
0.29
19000
0.82
108500
0.77
19000
0.79
105700
0.88
19000
0.79
105700
0.88
W 360*TPC...
1.51
W 390*TPC...
2.07
W 360*TPC...
1.51
W 390*TPC...
2.07
W 360*TPC...
1.51
W 390*TPC...
2.07
W 360*TPC...
1.51
W 390*TPC...
2.07
W 360*TPC...
1.51
W 390*TPC...
2.07
W 360*TPC...
1.51
W 390*TPC...
2.07
Neutral position (lock-up clutch and clutches A, B, C open)
Remarks:
J1 [kgm2]
W 360*TPC... :
J1.1 = 1.32 kgm2 / J1.2 = 0.87 kgm2
W 390*TPC... :
J1.1 = 1.70 kgm2 / J1.2 = 1.07 kgm2
Figures are based on pump or turbine speed of converter. Torque converter lock-up clutch closed. Engine connecting parts must be assigned to first rotating mass. Connecting parts fitted on output side must be assigned to third rotating mass. The moment of inertia for neutral position applies in the following conditions: - On input side, lock-up clutch and clutches A, B, and C opened - Primary mass J1.1 of the converter (circuit cover, pump wheel, lock-up clutch) is hydrodynamically connected to the secondary mass J1.2 (turbine wheel, clutch carriers A, B, and C) through the oil in the converter. However, these masses are regarded as separate for vibration purposes.
2-10
ZF-Ecomat 2 plus
Description of transmission and technical data
Inertia torques and vibration substitution model for i = 3.43 - 0.83 (0.59) 5/6 HP 502 / 592 - W 360*TPC... incl. angle drive 80° LHD (i = 0.97) without offset
5/6 HP 602 - W 390*TPC...
J1 WK
B C
D
J2
E F
C
J3 C
1
2
A
Output LHD
1
2
3
The moment of inertia J1 oil capacity included
019213
J1
C1
J2
C2
J3
[kgm2]
[Nm/rad]
[kgm2]
[Nm/rad]
[kgm2]
1st gear
5/6 HP 502 / 592
1.51
19000
0.78
39760
0.25
i = 3.43
5/6 HP 602
2.07
39000
0.78
100300
0.26
2nd gear
5/6 HP 502 / 592
1.51
19000
0.78
58350
0.14
i = 2.01
5/6 HP 602
2.07
39000
0.78
136700
0.14
3rd gear
5/6 HP 502 / 592
1.51
19000
0.78
70760
0.20
i = 1.42
5/6 HP 602
2.07
39000
0.78
151200
0.21
4th gear
5/6 HP 502 / 592
1.51
19000
0.82
108500
0.62
i = 1.00
5/6 HP 602
2.07
39000
0.82
985000
0.65
5th gear
5/6 HP 502 / 592
1.51
19000
0.79
105700
0.65
i = 0.83
5/6 HP 602
2.07
39000
0.79
814100
0.65
6th gear
6 HP 502 / 592
1.51
19000
0.79
105700
0.65
i = 0.59
6 HP 602
2.07
39000
0.79
814100
0.65
Neutral position (lock-up clutch and clutches A, B, C open)
5/6 HP 502 / 592: J1.1 = 1.32 kgm2 / J1.2 = 0.87 kgm2 5/6 HP 602:
Remarks:
4149 765 103 - 2004-12
• • • • •
J1.1 = 1.70 kgm2 / J1.2 = 1.07 kgm2
Figures are based on pump or turbine speed of converter. Torque converter lock-up clutch closed. Engine connecting parts must be assigned to first rotating mass. Connecting parts fitted on output side must be assigned to third rotating mass. The moment of inertia for neutral position applies in the following conditions: - On input side, lock-up clutch and clutches A, B, and C opened - Primary mass J1.1 of the converter (circuit cover, pump wheel, lock-up clutch) is hydrodynamically connected to the secondary mass J1.2 (turbine wheel, clutch carriers A, B, and C) through the oil in the converter. However, these masses are regarded as separate for vibration purposes.
2-11
ZF-Ecomat 2 plus 2.6
Description of transmission and technical data
Weights and inertia torque values
2.6.1 Coaxial output without heat exchanger J08 Transmission type
Total weight
(with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oill
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
280
307
265
- 46
6
9.61
15.45
16.53
5/6 HP 592
285
312
265
- 46
6
9.61
15.45
16.53
5/6 HP 602
300
327
265
- 45
6
9.61
15.45
16.53
J08 (oil cooler separate)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
x
y
021772
z
4149 765 103 - 2004-12
z
2-12
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.2 Coaxial output with heat exchanger J01 Total weight
Transmission type (without retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
305
337
291
- 56
5
10.50
20.43
21.84
5/6 HP 592
310
342
291
- 56
5
10.51
20.44
21.85
5/6 HP 602
325
357
299
- 58
4
10.52
20.43
21.85
J01 (oil cooler, installed at the rear)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
x
y
021773
z
4149 765 103 - 2004-12
z
2-13
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.3 Coaxial output with heat exchanger J05 Total weight
Transmission type (with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
305
337
297
- 43
25
11.69
24.21
23.31
5/6 HP 592
310
342
297
- 43
25
11.70
24.22
23.32
5/6 HP 602
325
357
295
- 42
24
11.71
24.26
23.36
J05 (oil cooler, installed on the left side)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
y
x
021774
z z
4149 765 103 - 2004-12
2-14
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.4 Coaxial output with heat exchanger J10 Total weight
Transmission type (with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
305
337
292
- 42
- 11
11.48
22.06
21.42
5/6 HP 592
310
342
291
- 42
- 11
11.48
22.07
21.43
5/6 HP 602
325
357
290
- 42
- 11
11.48
22.10
21.44
J10 (oil cooler, installed on the right side)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
y
x
021780
z
4149 765 103 - 2004-12
z
2-15
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.5 Angle drive 80° without offset, with heat exchanger J05 Total weight
Transmission type (with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
397
430
374
- 45
44
15.57
39.82
37.59
5/6 HP 592
402
435
373
- 45
44
15.58
39.93
37.69
5/6 HP 602
417
450
368
- 44
43
15.61
40.23
37.97
J10 (oil cooler, installed on the left side)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
y
x
021775
z z
4149 765 103 - 2004-12
2-16
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.6 Angle drive 80° without offset, with heat exchanger J10 Total weight
Transmission type (with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
397
430
347
- 29
8
14.10
34.51
33.38
5/6 HP 592
402
435
345
- 21
8
14.10
34.56
33.43
5/6 HP 602
417
450
342
- 29
8
14.10
34.72
33.59
J10 (oil cooler, installed on the right side)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
y
x
021777
z z
4149 765 103 - 2004-12
2-17
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.7 Angle drive 80° RHD (with right offset), with heat exchanger J05 Total weight
Transmission type (with retarder)
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
420
454
425
- 53
-9
17.11
45.79
43.68
5/6 HP 592
425
459
424
- 53
-9
17.11
45.88
43.77
J10 (oil cooler, installed on the left side)
S [mm] oil included
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
x
y
021778
z
4149 765 103 - 2004-12
z
2-18
ZF-Ecomat 2 plus
Description of transmission and technical data
2.6.8 Angle drive 80° RHD (with right offset), without heat exchanger J08 Transmission type (with retarder)
Total weight
Position of center of gravity
Inertia torque values JS [kgm2] oil included
without oil
with oil
S [mm] oil included
m [kg]
m [kg]
xS
yS
zS
Jx S
JyS
JzS
5/6 HP 502
387
416
394
- 52
- 34
13.56
37.58
38.50
5/6 HP 592
392
421
393
- 52
- 33
13.57
37.68
38.59
J08 (oil cooler separate)
Center of gravity S refers to engine connection surface. Inertia torque JS refers to the position of the center of gravity.
x
y
021779
z
4149 765 103 - 2004-12
z
2-19
ZF-Ecomat 2 plus 2.7
Description of transmission and technical data
Clutch combinations
The tables shown which clutches are activated depending on the gear selected and the ratio. 5th gear i = 3.43 - 0.83 6th gear i = 3.43 - 0.59
A
B
C
D
E
●
Reverse gear
F1
F2
●
●
Neutral Neutral (NBS) 1)
●
1st gear
●
2nd gear
●
3rd gear
●
4th gear
●
●* ● ● ● ●
5th gear
●
6th gear
●
* 1) F1 F2
● ●
Reduced pressure Standard version = external piston area brake F = internal piston area brake F
4149 765 103 - 2004-12
2-20
ZF-Ecomat 2 plus 3
Ecomat installation position in vehicle
Ecomat installation position in vehicle
T-Drive
Transverse installation at rear 80°
The conventional installation position in buses is the mid-axle T-drive with the transmission fitted in the direction of travel.
To further optimize available space, various angle drive versions (WTR) are used to allow transverse installation. 80° angle drive version with right offset
4139 S 2010
015996
Another advantage of the 80° WTR with axial offset is that the output is moved 217.5 mm downwards.
The introduction of drop-center axles for low-floor buses means the driveline is displaced, for example, to the left.
80° angle drive version without left offset
4139 S 2011
4149 765 103 - 2004-12
4139 S 2014
3-1
ZF-Ecomat 2 plus 4
Installation arrangement and mountings If the forces acting on each side are offset longitudinally, please consult our Application Engineering department.
Installation arrangement and mountings
The transmission must not be supported other than at the bolt attachment faces provided for this purpose on the transmission housing and auxiliary unit. Transmission mountings on the chassis must be designed in consultation with ZF in such a way that no additional forces resulting from twisting of the chassis may be transmitted to the transmission housing.
4.1
Transmission flange-mounted on engine
ZF recommended mounting points
The connection dimensions for transmission mountings, the transmission weight, and centre of gravity are indicated in the individual installation drawings. The bolts used to attach the transmission to its mountings must be of quality 8.8. Specified tightening torque for mounting points see C + E + D = 225 Nm. If a flange-mounted angle drive is fitted, mounting point E may be used for stabilization. However, whenever mounting E is in rest position , ensure that no forces are transmitted and that the rigidity of E is less than the rigidity of mounting A + C or A + C/D and/or A + B.
C
Engine A
Ecomat B
D
Mounting points at A + B or A + C or A + C/D
C A
B
D
! DANGER Ecomat with 80°angle drive Mounting points at A + B or A + C or A + C/D
The bending torque exerted by mounting blocks at mounting flange face C and/or D must not exceed the following limit: MC ≤ 3500 Nm / MD ≤ 1500 Nm
E The bending torque can be calculated from the bracing force (F) at the rubber mounting and lateral lever length (L) of bearing block. Take into account any simultaneous vertical acceleration and torque loading from the transmission or powerpack.
L
C A
E
Ecomat with 80°angle drive Mounting points at A + B or A + C or A + C/D Additional mounting point at E possible, either above or below housing.
F
4139 S 0028
4149 765 103 - 2004-12
D 021769
L
F
B
4-1
ZF-Ecomat 2 plus
Relationship between ∆α and ∆ε:
Guidelines for propshaft installation
A propshaft may be the cause of torsional and bending vibrations in the driveline. Compliance should therefore be maintained with the following approximate values. The vehicle manufacturer is responsible for this. Exceptions from the values specified must be approved.
∆εper. ≤ 2000
Rotational angle ∆α
5
Guidelines for propshaft installation
rad ∆α [°] • n2 [1/min2] = 2 s 1306
1.8 1.6
,=
1.4
1 rev.
1.2
Limit curve for measurement εper. ≤ 2000 rad s2
1.0 0.8
5.1
Permissible rotational irregularity
0.6 0.4
The maximum permissible angle-acceleration amplitudes (∆ε) in the driveline are 2000 rad/s2. Smaller values do not result in vibration damage.
0.2
1000
3000
S 0014
Propshaft speed n (rpm)
Rotational acceleration in the driveline can be checked using a calculation or measurement. Alternatively, the rotary angle error (∆α) can also be used for this purpose.
The following sub-chapters indicate limit values for the permissible bending angle. If compliance is maintained with these limits, the vibration amplitudes excited by the propshafts will not exceed the maximum value.
,= 0.2
2000
,=
+0.1
The limit values for the bending angle are used in particular if there are no calculations or measurements of the vibration amplitudes.
0 S 0013
0.1 0.2
4149 765 103 - 2004-12
1 rev.
5-1
ZF-Ecomat 2 plus 5.2
Guidelines for propshaft installation Calculation example:
Permitted resultant deflection angle for each joint
Plan view When using a spatial propshaft layout, the resultant deflection angle βR must first be determined using the following formula: tan βR =
Front view
>V =13°
>H =9° 021846
tan2 βH + tan2 βV tan βR =
where βH - deflection angle when viewed horizontally (plan view)
According to diagram:
where βV - deflection angle when viewed vertically (front view).
β
βR = 15.6°
= 0.28 βR ≈ 15°
The acceptability of βR depends on the type, size, and speed of the propshaft.
Deflection anlgle βR
The deflection angle β is therefore defined as the angle between the axes of rotation in front of and behind the joint in the appropriate view.
0.162 + 0.232
007927
20°
βR
18° 16° 14° 12°
Product range
max. 7° at PTO
10° 8°
Flange Ø 150
6° 4°
Flange Ø 165/180/225
2°
As a rough guide, the angle βR can be determined from the following diagram.
0° 500
1000
1500
2000
2500
3000
3500
4000
Propshaft speed n (rpm) 007098_en
25˚
30˚
20˚
25˚ 15˚
20˚
13˚
15˚
10˚
>R
10˚
>V
5˚
5˚ 0˚
>H
5˚
9˚ 10˚
15˚
20˚
25˚ 021847
Resultant deflection βR with spatial propshaft arrangement.
4149 765 103 - 2004-12
5-2
ZF-Ecomat 2 plus 5.3
Guidelines for propshaft installation
The permitted resultant flexure angle for all joints
The resultant flexure angle βE is calculated from the angles of individual joints using the following formula: βE =
| ± βR12 ± βR22 ± βR32 ± . . . |
The individual angles β should be given the following positive or negative values: 90˚
+ If the journal cross is perpendicular to the driven yoke
Input
90˚
– if the journal cross is perpendicular to the driving yoke
Limit value:
Output
Input
Output 4139 S 0010
βE < 3°
Examples illustrating the effect of deflection angle β 1 and β 2 on resultant flexure angle β E
Z arrangement
W arrangement
Angle error Resultant flexure angle ∆β = β1 - β2
Example 1 (Precise Z or W arrangement) Example 2 (Small deflection angle with angle error)
| - β12 + β22 |
>1 = 12°
>1 = 12°
>2 = 12°
>2 = 12°
0°
0°
1°
3°
1°
5,4°
>1 = 5°
>1 = 5°
>2 = 4°
>2 = 4°
>1 = 15°
Example 3 (Large deflection angle with angle error)
βE =
>1 = 15° >2 = 14°
>2 = 14°
021848
Example 3 shows that, in the case of large deflection angles, angle errors of as little as 1° can cause an impermissibly large resultant flexure angle.
4149 765 103 - 2004-12
5-3
ZF-Ecomat 2 plus 5.4
Guidelines for propshaft installation
Single-section propshafts
5.5
Best efforts must be taken to configure the axle suspension suitably to ensure the propshaft remains in a precise Z pattern (β1 = β2) under all vehicle loading.
>1 Transmission
>2
Multi-section propshafts
In multi-section propshaft configurations, the driveline can be optimized by suitable choice of crosslink orientations and by varying height h of the intermediate bearing (β angle distribution). Unfavorable arrangement
Axle
βE =
| - β12 + β22 - β32 | = (13,6°)
4139 S 0015
β 1 = 9.5˚ h
Leaf springs give a good Z position due to parallel axle movement. β1 = β2 is more-or-less maintained across whole range of suspension travel. β1
β
Axle movement
2
Optimized arrangement (by changing position of crosslink)
βE =
| - β12 - β22 + β32 | = (2,4°)
4139 S 0016
β 1 = 9.5˚
Transmission
loaded
Axle Movement
4149 765 103 - 2004-12
β
2
= 5˚
β
3
Axle = 11˚
4139 S 0017
Swing travel
-0 +
= 11˚
4139 S 0017
Floating axle gives a poor Z position due to the pivoting movement of the axle. β1 = β2 is only maintained at the middle point. Suspension movements upwards or downwards make the angles unequal.
β
Axle
= 5˚
β3
h
β1
2
Transmission
Spring travel loaded unloaded
2
β
Centre position 4139 S 0016
5-4
ZF-Ecomat 2 plus 5.6
Guidelines for propshaft installation
Maximum permissible propshaft length
NOTE The maximum length is limited to 1500 mm to prevent the bending vibrations being activated by the propshaft, if necessary, a multiple arrangement with intermediate bearing will have to be selected.
Further information • Balancing: The propshaft must be dynamically balanced in quality 16 in accordance with VDI guideline 2060. 4139 S 0018
250
150 100 80
Q1 6
Perm. residual imbalance per balancing mass [gmm/kg]
200
60 40 30 300
500
700
900
1500
3000 4000
Propshaft speed n (1/min)
• Permissible concentricity and runout errors of the connection flange: Max.
Concentricity and
Centering
speed
runout deviation
fit
[min-1]
[mm]
500
0.10
h8
1500
0.07
h7
3500
0.06
h7
• Lubrication: The specifications of the propshaft manufacturer should be observed for lubrication. The sliding piece must move easily under load.
4149 765 103 - 2004-12
5-5
ZF-Ecomat 2 plus 6
Engine connection NOTE Before fitting together the engine and Ecomat, always check that the following points are complied with:
Engine connection
Before the Ecomat transmission is connected to the engine, the Application Engineering dept. and engine manufacturer must perform an “engine connection study”. This involves determining all important dimensions and tolerances for the connection and preparing an engine connection drawing. See Section 5.2, “Engine connection study” for an example of this and additional information.
• There must be an assembly access hole (4) in the flywheel housing and flywheel. • The bolts must be of the quality specified in the engine connection drawing. • Observe specified tightening torques when tightening all bolts. • Use only hardened, flat washers (DIN 125-13300 HV or DIN 125-10.5-300 HV), or stop screws according to DIN 961, quality 8.8. Never use toothed lock screws or similar.
There are two methods for connecting the transmission to the engine: • Method 1: The engine flywheel (2) is retained and carries the starter ring gear (5). The flex plates (10) are connected directly to the converter (7).
• Check the following tolerances: - Max. deflection of flex plates = ± 1.2 mm (important for flex plate life) - Flex plate thickness (D) = 4 x 0.5 mm ± 0.04 mm = 2 mm ± 0.16 mm - Runout tolerance (A) of flywheel inner bore and/or centring ring to centring spigot on flywheel housing = max. 0.3 mm - Permitted tolerance for dimension (C) for for Method 1 = ± 0.66 mm for Method 2 = + 0.66 mm – 0.96 mm (Dimension (B) is set by ZF to ± 0.5 mm)
• Method 2: Remove engine flywheel (2). Fit a starter ring gear carrier (8) between the flex plates (10) and converter (7).
• Clean torque converter circuit cover.
4149 765 103 - 2004-12
6-1
ZF-Ecomat 2 plus
Engine connection
Assembly sequence for variant 1 (with flywheel) • Bolt together transmission housing (6) and flywheel housing (3) as shown in engine connection drawing. Tightening torque for bolt quality 8.8: TA = 49 Nm for screws M10 TA = 79 Nm for screws M12.
• Check dimensions (A) and (C) comply with engine connection drawing. If dimensions exceed tolerance, contact our Application Engineering dept. urgently. • Bolt together crankshaft (1), flywheel (2), flex plates (10), and clamping ring (11). Consult engine manufacturer to establish correct tightening torque.
• Using assembly access hole (4) in flywheel housing and flywheel, bolt flex plates (10) onto converter (7). Tightening torque TA = 81 Nm for bolt quality 8.8.
Variant 1
Drawing no.: 4139 530 064
A
A
023809
4149 765 103 - 2004-12
6-2
ZF-Ecomat 2 plus
Engine connection
Assembly sequence for variant 2 (without flywheel) • Bolt together transmission housing (6) and flywheel housing (3) as shown in engine connection drawing. Tightening torque for bolt quality 8.8: TA = 49 Nm for screws M10 TA = 79 Nm for screws M12.
• Check dimensions (A) and (C) comply with engine connection drawing. If dimensions exceed tolerance, contact our Application Engineering dept. urgently. • Bolt together crankshaft (1), centering ring (11), flex plates (10), and clamping ring (9). Consult engine manufacturer to establish correct tightening torque.
• Using assembly access hole (4) in flywheel housing bolt flex plates (10) onto converter (7). Tightening torque TA = 81 Nm for bolt quality 8.8.
• Using two bolts (12), bolt gear ring carrier (8) with integral ring gear (5) onto converter (7).
Variant 2
Drawing no.: 4139 530 065
SECTION A-A A
SECTION A-A A
SECTION B-B ASSEMBLY ACCESS HOLE
023810
4149 765 103 - 2004-12
6-3
ZF-Ecomat 2 plus 6.1
Engine connection 6.3
ZF Scope of delivery
Attempts should be made to undertake all engine connections following variant 1 with a complete flywheel.
The flex plates and bolts for fastening 4 flex plates to the converter are supplied by ZF. NOTE Vehicle manufacturer should establish whether the 4 diaphragms • are ordered form the engine manufacturer and fitted there onto the engine with the connection parts required or • are to be included in the transmission scope of supply for the vehicle manufacturer.
6.2
Engine connection: Further information
Since there is no flywheel in the version following variant 2, the inertia torque of the engine is changed. Under unfavorable circumstances, this may result in resonance vibrations and finally diaphragm failure. CAUTION Variant 2 (segregated design) may only be used once the Application Engineering department has been contacted.
Engine connection inspection The following applies in general:
If no engine connection drawing has been prepared, the following documents are required for the engine connection inspection:
• Engine connection drawings are already available for popular engines. • The engine connection must be designed to ensure that the torque converter is centered on the crankshaft.
• Detailed drawing of flywheel housing • Detailed drawing of flywheel • Detailed drawing of end of crankshaft
• For clamping disc and centering ring version, see detail “W”. For ring gear carrier version, see detail “V“ (see drawing 4139 601 171 overleaf).
• Drawing of engine output assembly showing axial and radial tolerance range for crankshaft and distance between end of crankshaft and flanging face of flywheel housing.
• A vibration damper between the engine and transmission is not required when using the direct engine-transmission construction.
• For Method 2, pay particular attention to the markings for the fuel injection point.
• If the engine and transmission are installed separately, a vibration damper should be fitted between the crankshaft and propshaft. The choice of such a damper should be made with the assistance of the Application Engineering department. Responsibility for the correct damper design lies with the vehicle manufacturer. The vehicle manufacturer must provide the damper.
4149 765 103 - 2004-12
6-4
ZF-Ecomat 2 plus 6.4
Engine connection
Engine connection drawings Drawing no.: 4139 601 171
Detailed drawing of engine connection
ZF-ECOMAT 2 plus
A
DETAIL V 5:1
4 FLEX PLATES 0.5 MM THICK
56 1.9
min. 7 mm max. 8 mm Contact surface oKntaktflä che
50 H7 e8 0.3 A 63.5±0.5 86.0 +0.5 1.0
DETAIL W 5:1
min. 4
4149 765 103 - 2004-12
6-5
021682
ZF-Ecomat 2 plus
Engine connection
Detailed drawing of engine connection Variant with flywheel
ZF-ECOMAT 2 plus
A
W
56±1.9 50 H7 e8
min. 7 mm max. 8 mm oKntaktflä che Contact surface
0.3 A 63.5±0.5 86.0 +-0.5 1.0
R 201
R 201
min. 4
4149 765 103 - 2004-12
6-6
5
5
DETAIL W 5:1
021683
ZF-Ecomat 2 plus 6.5
Engine connection
Overview converter-circuit cover
W360
A [mm]
LKR [mm]
0501 320 294
77.00
380
0501 320 293
81.25
380
0501 320 298
71.25
402
0501 320 295
71.25
380
0501 320 299
68.00
402
0501 320 297
77.00
402
0501 320 296
81.25
402
0501 320 300
86.25
326
W390
A [mm]
LKR [mm]
0501 318 581
81.25
380
0501 318 583
77.00
402
0501 318 582
81.25
402
0501 319 971
71.25
380
0501 320 321
71.25
402
4149 765 103 - 2004-12
6-7
ZF-Ecomat 2 plus 7
Converter
7.1
Torque converter: Description
Converter freewheel when torque multiplication takes place and thus remains stationary. To ensure economical operation, the torque converter lock-up clutch is closed as soon as this is possible. When the lock-up clutch is closed, the level of slip between the impeller and turbine wheel and therefore the loss of hydraulic energy in the converter is "zero".
The torque converter is mounted on the input end of the planetary transmission. The torque converter consists of the impeller, turbine, and reaction member (stator) and the oil needed for torque transmission.
The close ratios and optimum gear step adjustment of the 5th and 6th mechanical gears in the transmission allow the converter to be locked up at a very early stage. This makes use of the advantages of mechanical power transmission early on high efficiency and low power losses.
Torque is transmitted from the engine flywheel to the torque converter by means of a connection comprising flex plates.
7.2
Converter functions
The impeller driven by the engine displaces the oil in a circular pattern. This oil flow strikes the turbine wheel and is deflected back. The stator downstream of the turbine is used to deflect the oil flowing out of the turbine back into the impeller at an appropriate angle. This change in direction generates a torque on the stator, which in turn boosts the turbine torque. The ratio of turbine torque to impeller torque is referred to as torque conversion. The greater the difference in the speeds of the impeller and turbine, the higher the torque multiplication. In other words, maximum multiplication occurs when the turbine is stationary, and falls as the turbine speed rises. The converter adjusts the output speed to achieve the required output torque using a continuous, automatic process. The torque of the stator is always equal to the difference between the turbine and impeller torque. When the turbine speed approaches approx. 80% of the impeller speed, torque multiplication drops to a ratio of 1, i.e. turbine torque equals impeller torque. From this point on, the converter acts purely as a fluid coupling. Under such conditions the stator, which is linked to the housing by a roller freewheel unit ("Trilok" principle) begins to rotate freely in the oil flow, whereas it is held against the housing by the
4149 765 103 - 2004-12
7-1
ZF-Ecomat 2 plus
Converter
Turbine wheel
Impeller
From engine TP
TT
TR
To transmission
Condition at instant of starting off
nT = O Vehicle stationary
Stator
nT < nEng
Intermediate condition
nT = 0.8nEng nT = nEng After lock-up clutch closes
Condition immediately before lock-up clutch closes 4139 S 2015
TP = Torque of impeller TT = Torque of turbine wheel TR = Torque of stator
4149 765 103 - 2004-12
7-2
ZF-Ecomat 2 plus 7.3
Converter Refer to torque converter diagram for details of appropriate engine-converter combinations, see example of torque converter diagram on page 7-5.
Getting the right torque converter for your engine
In cooperation with vehicle manufacturers, the ZF Application Engineering dept. has specified an appropriate torque converter for every engine transmission combination.
To determine the operating points between torque converter and engine under full-throttle conditions, the net engine torque curve needs to be entered in the primary parabolic characteristics field for the torque converter.
The torque converter selection criteria are: • Engine type (naturally-aspirated engine or turbocharged engine). • Torque conversion when starting off. • Speed reduction when starting off. • Fuel economy or power increase. • Heat build-up when driving for long periods with lock-up clutch open.
TP1000
µ0
[Nm]
W360*TPC145*MUE2.22
Torque converter
There are converter models for the 5/6 HP 502 / 592 / 602 C transmissions which vary according to the impeller torque pickup, hydraulic diameter, and torque multiplication when starting off.
[-]
Basic curve Drawing no.
ID no. for ANKE (P22500N)
145
2.215
4166 711 150
01 14500 16300 1000 221 970Z
W360*TPC210*MUE2.43
210
2.430
4166 703 227
01 41210 41210 1400 243 1000Z
W360*TPC262*MUE2.40
262
2.400
4166 703 147
01 26200 26200 1000 240 1000Z
W360*TPC300*MUE2.36
300
2.360
4166 703 149
01 30000 30050 1000 236 1000Z
W360*TPC342*MUE2.27
342
2.270
4166 703 148
01 34200 34200 1000 227 1000Z
W360*TPC390*MUE2.17
390
2.165
4166 703 150
01 39000 39000 1000 216 1000Z
W390*TPC392*MUE2.20
392
2.195
4166 711 145
01 39200 41800 1000 219 1000Z
W390*TPC487*MUE1.98
487
1.982
4166 711 146
01 48700 49000 1000 198 1000Z
W390*TPC615*MUE1.83
615
1.829
4166 711 147
01 61500 63900 1000 183 1000Z
4149 765 103 - 2004-12
7-3
ZF-Ecomat 2 plus 7.4
Converter Calculation formulae • Formula for calculating torque pick-up for any speed ratio. n12 T1 -----= -----n22 T2 • Calculation of “HEAT REJECTION” for a given tractive force: Refer to example.
Torque converter diagram
The following information can be read from the torque converter graph (see drawing on next page): • Stall torque = max. turbine torque TT = impeller torque TP x max. multiplication µo (Mue) at turbine speed = 0. • Stall speed = impeller speed nP at turbine speed nT = 0 rpm. • Engine power Peng gross (kW) • Engine power Peng net (kW) • Torque curve Teng gross (Nm) • Torque curve Teng net (Nm) • T2 (Nm) subtraction for auxiliaries such as auxiliary steering pump, generator etc.; approximate value of T2 = 50 Nm may be assumed. If units with especially high power requirements are planned, e.g. a compressor, torque must be calculated according to impeller speed, • TT turbine torque (Nm) against turbine speed • PV (kW) torque converter power losses against turbine speed nT Example: nT = 800 rpm PV = 55 kW • nP impeller speed against turbine speed nT Example: nT = 1200 rpm nP = 1800 rpm; nT = 0 rpm nP = 1550 rpm (stall speed) • Mue (torque multiplication) µ = TT / TP über Nue (speed ratio) ν = nT / nP Example: ν=0 max. torque multiplication = 2.165 ν = 0.78 torque multiplication = 1.0
Example: Heat build-up for tractive force = 60% vehicle weight Tractive force: F [N] = K • G [kg] • 9.81 [m/s2] K = 0.6 F [N] = 0.6 • G [kg] • 9.81 [m/s2] G = weight [kg]
=
TT [Nm] • iG • iA • ηges ----------------------------------------rdyn [m]
TT [Nm]
=
F [N] • rdyn [m] ------------------------------iG • iA • ηA • ηG
=
K • G [kg] • 9.81 [m/s2] • rdyn [m] ----------------------------------------------------------iG • iA • ηA • ηG
Using value of TT consult torque converter diagram TT --› curve TT --› PV --› axis P --› heat build-up P (kW) Example: TT = 1200 Nm PV = 49 kW TT = Turbine torque F = Tractive force iG = Transmission ratio iA = Rear axle ratio ηG = Transmission efficiency approx. 0.95 ηA = Axle efficiency approx. 0.95 rdyn = Dynamic tire radius
• Torque converter efficiency rating ηW The torque converter efficiency rating is determined by the product of torque conversion m and speed ratio n. ηW = µ • ν The efficiency rating of 80% is achieved at ν = 0.8.
4149 765 103 - 2004-12
F [N]
NOTE When defining engine cooling constant, take account of additional heat build-up during torque converter operation (20% torque converter drag)!
7-5
ZF-Ecomat 2 plus
Converter
Torque converter diagram
014 914
Key to diagram = TengGr [Nm] PengGr [kW] = nP [1/min] = TT [Nm]
=
PV [kW]
=
4149 765 103 - 2004-12
Engine torque curve (gross) Engine power curve (gross) Impeller speed against turbine speed nT Turbine torque against turbine speed nT Torque converter power losses against turbine speed nT
7-6
Mue [-]
=
TP [Nm]
=
A B Engine data
= = =
Converter figures
=
Torque multiplication ration m = TT/TP against speed ratio Nue = nT/nP Parabolae of impeller torque pick-up against impeller speed nP for speed ratio Nue = nT/nP Stall torque Stall speed According to ISO 1585 (average values) According to VDI Guideslines 2153 figures (average values)
ZF-Ecomat 2 plus 7.5
Converter
Torque converter basic curves
W360*TPC145*MUE2.22 Basic curve: 4166 711 150 Impeller constants: nPC = 1000 rpm ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80k 0.85 0.90 0.95 0.97
2.215 2.062 1.892 1.707 1.546 1.396 1.252 1.118 1.004 0.995 0.995 0.995 0.995
0 0.206 0.378 0.512 0.618 0.698 0.751 0.783 0.803 0.846 0.896 0.945 0.965
K [Nm]
[lbft]
145 149 154 161 163 162 158 146 124 102 71 46 29
70.0 69.3 68.7 68.7 69.2 70.0 72.0 75.8 82.8 92.5 109.8 138.7 179.6
81.5 80.7 80.0 80.0 80.5 81.5 83.8 88.3 96.4 107.6 127.8 161.5 209.1
107 110 114 119 120 119 117 108 91 75 52 34 21
ν = nT/nP
Torque converter speed ratio
µ = TT/TP
Converter torque ratio
η = ν ∗ µ Torque converter efficiency TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: acc. to VDI Guidelines 2153 mean values
1500
1000
=0 .40 ν =0
T (Nm)
1100
TPC1000 [Nm] [lbft]
1200
800
1100
ν
T (ft.lb.)
1300
TP =0
.80
k
TP
ν
1000
TP
700 900
µ
600
800
3.0 2.8
500
700
2.6
600
2.4 2.2
µ
400
2.0
ηw(%)
η
100
500
90
1.8 1.6
300
80
400
70
1.4 1.2 1.0
200
50
TPC1000
200
0.8 0.6
60
300
40 30
100
0.4
20
100
10
0.2 0
0
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
nT, nP (1/min)
3000 016 675
1.0
7-7
ZF-Ecomat 2 plus
Converter
W360*TPC210*MUE2.43 Basic curve: Impeller constants:
4166 703 227 nPC = 1400 rpm
ν [−]
µ [−]
η [−]
[Nm]
[lbft]
[Nm]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.78k 0.86 0.94
2.430 2.220 2.010 1.790 1.610 1.420 1.260 1.120 1.000 0.970 0.960
0 0.222 0.402 0.537 0.644 0.710 0.756 0.784 0.780 0.834 0.902
412 412 410 405 394 376 354 322 282 194 98
304 304 302 299 291 277 261 238 208 143 72
69.0 69.0 69.1 69.6 70.5 72.2 74.4 78.0 83.4 100.5 141.4
1800
TPC1400
ν = nT/nP
Torque converter speed ratio
[lbft]
µ = TT/TP
Converter torque ratio
80.3 80.3 80.5 81.0 82.1 84.1 86.6 90.8 97.1 117.0 164.7
η = ν ∗ µ Torque converter efficiency
K
TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values
2400
1700 2200 1600 2000
ν
T (ft.lb.)
1400
=0
T (Nm)
1500
1600
TP
1100 1400 1000 900
µ 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0
1200
800 700
1000
600
TP
µ
800
ν=
8k 0.7
ηw(%)
η
100 90 80 70 60 50 40 30 20 10 0
500 400 300
600
TPC1400 400
200 200 100 0
0
ν
4149 765 103 - 2004-12
1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016 670
7-8
ZF-Ecomat 2 plus
Converter
W360*TPC262*MUE2.40 Basic curve: Impeller constants
4166 703 147 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
[Nm]
[lbft]
[Nm]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.76k 0.80 0.90
2.400 2.150 1.915 1.705 1.520 1.365 1.235 1.097 1.000 0.980 0.979
0 0.215 0.383 0.512 0.608 0.683 0.741 0.768 0.760 0.784 0.881
262 262 260 256 248 235 218 195 175 152 82
193 193 192 189 183 173 160 144 129 112 60
61.8 61.8 62.0 62.5 63.5 65.2 67.8 71.6 75.6 81.1 110.4
1800
TPC1000
ν = nT/nP
Torque converter speed ratio
[lbft]
µ = TT/TP
Converter torque ratio
71.9 71.9 72.2 72.8 74.0 76.0 79.0 83.4 88.0 94.4 128.6
η = ν ∗ µ Torque converter efficiency
K
TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values
2400
1700 2200 1600 2000
ν
T (ft.lb.)
1400
=0
T (Nm)
1500
1600
TP
1100 1400 1000 900
µ 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0
ν=
1200 1000
600
300
k
µ
800
ηw(%)
η
500 400
6
TP
800 700
7 0.
100 90 80 70 60 50 40 30 20 10 0
600 400
TPC1000
200 100 0
200 0
ν
1000 0
0.2
0.4
0.6
0.8
2000
nT, nP (1/min)
3000
1.0 016 671
4149 765 103 - 2004-12
7-9
ZF-Ecomat 2 plus
Converter
W360*TPC300*MUE2.36 Basic curve: Impeller constants
4166 703 149 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
[Nm]
[lbft]
[Nm]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.78k 0.80 0.90 0.95
2.360 2.130 1.920 1.720 1.540 1.380 1.250 1.110 1.000 0.978 0.960 0.950
0 0.213 0.384 0.516 0.616 0.690 0.750 0.777 0.780 0.782 0.864 0.903
300 300 297 290 278 264 245 222 192 180 96 56
221 221 219 214 205 194 181 164 142 133 71 41
57.7 57.7 58.0 58.8 60.0 61.6 63.9 67.1 72.2 74.5 102.1 133.6
1900 1800
TPC1000
ν = nT/nP
Torque converter speed ratio
[lbft]
µ = TT/TP
Converter torque ratio
67.2 67.2 67.5 68.4 69.8 71.7 74.4 78.1 84.0 86.8 118.8 155.6
η = ν ∗ µ Torque converter efficiency
K
TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values
2600 2400
1700 2200 1600 2000
2.6
=
900 800 700
1.6
600
1.4
500
0.6
200
0
µ
ηw(%)
η
100
1000
0.4 0.2
k
1200
400 300
78 TP
1.2 0.8
0. =
1400 1000
2.2 2.0
1.0
TP
1100
2.4
1.8
1600
ν
2.8
ν
µ 3.0
T (ft.lb.)
1400
0
T (Nm)
1500
90
800
80 70 60
600
50
TPC1000
400
40 30
200
20
100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016 672
7-10
ZF-Ecomat 2 plus
Converter
W360*TPC342*MUE2.27 Basic curve: Impeller constants
4166 703 148 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80k 0.85 0.90
2.270 2.072 1.890 1.704 1.540 1.390 1.260 1.133 1.000 0.980 0.978
0 0.207 0.378 0.511 0.616 0.695 0.756 0.793 0.800 0.833 0.880
TPC1000 [Nm] [lbft] 342 340 334 324 312 295 274 249 206 164 119
ν = nT/nP
Torque converter speed ratio Converter torque ratio
K [Nm]
[lbft]
µ = TT/TP
54.1 54.2 54.7 55.6 56.6 58.2 60.4 63.4 69.7 78.1 91.9
63.0 63.1 63.7 64.7 65.9 67.8 70.3 73.8 81.1 90.9 107.0
η = ν ∗ µ Torque converter efficiency
252 251 246 239 230 217 202 184 152 121 87
TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values
2600 1900 1800 1700
2400 2200
1600
2.6
900
2.2 2.0
800
1.6 1.4
700 600
0.8 0.6
400 300
0
µ
0k
ηw(%)
η
100
1000
90 80
800
70 60
600
50
TPC1000
400
40 30
200
0.4 0.2
TP
1200
500
1.2 1.0
0 .8
1400 1000
2.4
1.8
TP
ν
2.8
1600
=
1100
=0
3.0
ν
µ
T (ft.lb.)
1400
2000 T (Nm)
1500
20
200 100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016673
7-11
ZF-Ecomat 2 plus
Converter
W360*TPC390*MUE2.17 Basic curve: Impeller constants:
4166 703 150 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.78k 0.85 0.90
2.165 2.010 1.830 1.645 1.480 1.350 1.230 1.110 1.000 0.980 0.970
0 0.201 0.366 0.494 0.592 0.675 0.738 0.777 0.780 0.833 0.873
TPC1000 [Nm] [lbft] 390 385 376 363 347 326 300 268 234 180 128
288 284 277 268 256 240 221 198 173 133 94
ν = nT/nP
Torque converter speed ratio Converter torque ratio
K [Nm]
[lbft]
µ = TT/TP
50.6 51.0 51.6 52.5 53.7 55.4 57.7 61.1 65.4 74.5 88.4
59.0 59.3 60.0 61.1 62.5 64.5 67.2 71.1 76.1 86.8 102.9
η = ν ∗ µ Torque converter efficiency TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values
2600 1900 1800
2400
1700 2200 1600
µ 2.6
800
0.8 0.6
0
8k 0 .7 =
ν
ηw(%)
µ
100
1000 600
η
90 80
800
70
500 400 300
60
600
50
TPC1000
400
40 30
200
0.4 0.2
1200
700
1.2 1.0
TP
1000 900
1.4
=0
1400
2.2 2.0 1.6
TP
1100
2.4
1.8
1600
ν
T (ft.lb.)
1400
2000 T (Nm)
1500
20
200 100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016 674
7-12
ZF-Ecomat 2 plus
Converter
W390*TPC392*MUE2.20 Basic curve: Impeller constants
4166 711 145 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.78k 0.85 0.90 0.94
2.195 2.062 1.929 1.768 1.602 1.450 1.292 1.125 1.000 0.995 0.995 0.995
0 0.206 0.386 0.530 0.641 0.725 0.775 0.788 0.780 0.846 0.896 0.935
TPC1000 [Nm] [lbft]
[Nm]
392 400 407 414 418 403 376 320 260 186 143 96
50.5 50.0 49.6 49.1 48.9 49.8 51.6 55.9 62.0 73.7 83.6 102.1
ν = nT/nP
Torque converter speed ratio
[lbft]
µ = TT/TP
Converter torque ratio
58.8 58.2 57.7 57.2 57.0 58.0 60.0 65.1 72.2 85.4 97.4 118.8
η = ν ∗ µ Torque converter efficiency
K
289 295 300 305 308 297 277 236 192 137 105 71
TPC K=
Pump torque at constant pump speed nPC nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values.
3000 2200 2100
2800
2000 2600 1900 1800
2400
1700 2200
TP
=0 .78 k
=0 TP
ν
ν
=0 .40
1400
ν
2000
T (ft.lb.)
1500
T (Nm)
1600
TP
1600
1100 1400
µ
1000
2.4
900
2.2 2.0
800
1.8 1.6 1.4
700 600
0.8 0.6
400 300
0
ηw(%)
η
100
1000
90
800
80 70
TPC1000
60
600
50
400
40 30
200
0.4 0.2
µ
500
1.2 1.0
1200
200
20
100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016 676
7-13
ZF-Ecomat 2 plus
Converter
W390*TPC487*MUE1.98 Basic curve: Impeller constants:
4166 711 146 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80k 0.85 0.90 0.95
1.982 1.894 1.804 1.692 1.571 1.440 1.303 1.159 1.000 0.995 0.995 0.995
0 0.189 0.361 0.508 0.628 0.720 0.782 0.811 0.800 0.846 0.896 0.945
487 490 490 486 484 469 439 387 318 271 204 114
ν = nT/nP
Torque converter speed ratio Converter torque ratio
K
359 361 361 358 357 346 324 285 235 200 150 84
[Nm]
[lbft]
µ = TT/TP
45.3 45.2 45.2 45.4 45.5 46.2 47.7 50.8 56.1 60.7 70.0 93.7
52.8 52.6 52.6 52.8 52.9 53.8 55.6 59.2 65.3 70.7 81.5 109.1
η = ν ∗ µ Torque converter efficiency Pump torque at constant pump speed nPC
TPC K=
nPC
Factor at constant pump speed nPC
TPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values.
3000
2200 2100
TPC1000 [Nm] [lbft]
2800
2000 1900 1800
2600 2400
1700 2200
1600
2000
µ
1000
2.4
900
2.2 2.0
800 700
1400
k
=0
.80
TP
=0
TP
ν
1600
1100
ν
=0
.1 0
T (Nm)
T (ft.lb.)
1400
ν
1500
TP
1200
µ
ηw(%)
η
100
1000
1.8
90
1.6
600
1.4
500
1.2 1.0
400
0.8
300
0.6
200
0.4 0.2 0
80
800
70
TPC1000
60
600
50
400
40 30 20
200 100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
nT, nP (1/min)
3000 016 677
1.0
7-14
ZF-Ecomat 2 plus
Converter
W390*TPC615*MUE1.83 Basic curve: Impeller constants:
4166 711 147 nPC = 1000 rpm
ν [−]
µ [−]
η [−]
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80k 0.85 0.90 0.94
1.829 1.736 1.646 1.551 1.447 1.337 1.228 1.116 1.000 0.995 0.995 0.995
0 0.174 0.329 0.465 0.579 0.669 0.737 0.781 0.800 0.846 0.896 0.935
2200 2100
TPC1000 [Nm] [lbft] 615 629 639 634 625 609 560 479 379 316 247 158
454 464 471 468 461 449 413 353 280 233 182 117
ν = nT/nP
Torque converter speed ratio Converter torque ratio
K [Nm]
[lbft]
µ = TT/TP
40.3 39.9 39.6 39.7 40.0 40.5 42.3 45.7 51.4 56.3 63.6 79.6
47.0 46.4 46.1 46.2 46.6 47.2 49.2 53.2 59.8 65.5 74.1 92.6
η = ν ∗ µ Torque converter efficiency Pump torque at constant pump speed nPC
TPC K=
nPC TPC
Factor at constant pump speed nPC
TP
Pump torque at pump speed nP
TT
Turbine torque at turbine speed nT
Torque converter values: Acc. to VDI Guidelines 2153 mean values.
3000 2800
2000 2600
1900 1800
2400
1700 2200
1600
TP
1400
µ
1000
2.4
900
2.2 2.0
800
1.8
700
1.6
600
1.4
500
1.2 1.0
400
0.8
300
0.6
200
0.4 0.2 0
=0 .80 k
0
TP
ν
1600
1100
ν=
0 0.2
ν=
T (ft.lb.)
1400
2000 T (Nm)
1500
TP
1200
ηw(%)
µ
100
1000
TPC1000
90
800
80 70 60
600
η
400
50 40 30
200
20
100 0
10
ν
4149 765 103 - 2004-12
0
0 1000 0
0.2
0.4
0.6
0.8
2000
1.0
nT, nP (1/min)
3000 016 678
7-15
ZF-Ecomat 2 plus
Retarder
8
Retarder
8.1
Structure and function of retarder
Additionally, the ZF retarder has a special feature in that a vane ring is rotatably fixed in the stator. This reduces losses when the retarder is not engaged to less than 25% of the amount of loss without such a division of the stator.
The ZF Retarder integrated in the Ecomat is a singlestaged hydro-dynamic continuous brake fitted between the torque converter and selector transmission.
A proportional solenoid which receives a voltage signal from the transmission electronic unit determines the piston position of the retarder valve. The higher the voltage signal, the greater the oil pressure presented by the control valve in the retarder cycle.
This means that braking force is directly dependent on the gear engaged. Even at low speeds, full braking effect is available (characteristic for the primary retarder). The retarder consists of the following components: A rotor and a stator, both of which are fitted with blades. The rotor (the rotating part of the retarder) is connected to the input shaft of the transmission and therefore also to the vehicle’s drive axle when a gear is selected. The stator on the other hand is rigidly connected to the Ecomat housing.
The retarder torque can be controlled depending on the piston position and the oil pressure determined by this. The maximum retarder torque is programmed in the electronic unit. The basic advantage of the ZF retarder is its infinitely variable control. If required, the braking torque can be divided into one or several stages, all limited to a value specified by the customer.
Grid Stator Rotor
023780
4149 765 103 - 2004-12
8-1
ZF-Ecomat 2 plus 8.2
Retarder
Retarder action
There are various activation options for a braking procedure using the retarder (see diagram, chapter 8.5). Depending on the type of activation, it may be undertaken in stages or a gradual manner during which a voltage value equivalent to the retarder torque is sent from the appropriate activation element to the proportional solenoids. Depending on the strength of this signal, the piston of the retarder control valve is moved into a certain position which sets an appropriate level of oil pressure in the retarder circuit. The oil filling experiences centrifugal acceleration as a result of the rotor’s rotary motion, which is driven by the coasting vehicle via the axle, propshaft, and transmission in overrun mode. The rotor forces the oil into blades in the non-rotating stator. The direction of oil flow is reversed and slowed (braked). Due to the reverse of oil flow direction in the stator, the rotation of the rotor is also slowed, as is the vehicle speed. The friction of the oil flow is converted into heat. This heat is conveyed to the cooling water by the heat exchanger in liquid cooled engines or radiated into the cooling air in air-cooled engines.
4149 765 103 - 2004-12
8-2
ZF-Ecomat 2 plus 8.4
Retarder
Retarder and engine brake
Max. braking torques Transmission
Total of all Max. Torque
type
HP 502 C
HP 592 C
brake torques
Max. TRotor [Nm]
max. [Nm]
at nT = 1900 rpm
650 Nm
900
750
850 Nm *
950 *
850 *
1100 Nm
1300
1050
1250 Nm
1300
1050
1400 Nm
1500
1250
1600 Nm
1500
1250
HP 602 C
* up to max. 13 to
4149 765 103 - 2004-12
8-3
ZF-Ecomat 2 plus 8.5
Retarder
Retarder activation variants hand and foot
Overview of permitted Retarder activation variants
TSC1 primary TSC1 sec
No function
ED
Analog
TSC1 primary
TSC1 sec
TSC1 Bed elem
6
1/2
1/3
1/6
2/1
2/2
2/3
2/6
3/1
3/2
3/3
3/6
4/1
4/2
4/3
4/6
1
5
2
EBC1 brake pedal
4
3
Foot
Analog
3
5
ED
2
6
No function
1
4
Hand
5/4 6/5
TSC1 primary TSC1 sec
= % of nominal rotor torque = % from 1st support point on characteristics field M_output for retarder operation TSC1 operating element = % of M_output during retarder operation
4149 765 103 - 2004-12
8-4
ZF-Ecomat 2 plus
Retarder
8.5.1 Permitted variants “foot request” without “hand request”
Variants 2/1 Activation via footplate in digital manner with max. 3 stages. Any parameters can be set for the retarder request percentage. Standard: 3-stage: 50 %, 75 %, and 100 %. Inputs: Pin 65 (ED 2), Pin 12 (ED 15), and Pin 36 (ED 7) Footplate deactivation via S9.
Variants 3/1 Activation using footplate with analog voltage signal on input EU3 EST 146/147 PIN 39. Voltage spectrum 0 - 5 volts, percentage value of retarder request in ECU 146/147 can be configured. NOTE To compensate for pedal zero setting variances, the automatic footplate adjustment function in ECU 146/147 can be activated. Footplate disengagement using S9 is advisable.
Variants 4/1 Retarder request using brake pedal value output via “CAN signal EBC1 brake pedal position” as percent of brake pedal travel. Retarder request can be configured as % of pedal travel in ECU 146/147. Footplate disengagement using S9 is advisable.
4149 765 103 - 2004-12
8-5
ZF-Ecomat 2 plus
Retarder
8.5.2 Permitted variants “foot request” without “hand request”
Variant 1/2 Digital activation using hand lever with max. 3 stages. Percentage value for retarder request can be configured to desired level. Standard: 3-stage: 50 %, 75 %, and 100 %. Inputs: Pin 65 (ED 2), Pin 12 (ED 15), and Pin 36 (ED 7)
Variant 1/3 Hand lever analog, stepped or continuously variable with analog voltage signal on input EU2. ECU 146/147 PIN 61. For additional protection of hand lever zero setting (retarder OFF), a digital input can be used. Standard EDM2.
Variant 1/6 Retarder request via TSC 1 as a percentage of the setting of a control element via CAN. The retarder request value is specified by the CAN signal. For further calculation of the retarder request, the percentage for a given control element can be scaled progressively from software Step 3.
4149 765 103 - 2004-12
8-6
ZF-Ecomat 2 plus
Retarder
8.5.3 Permissible retarder activation variants "Foot" and "Hand" combined
Variant 2/2
Variant 5/4
If possible, use different digital inputs for the pedal plate and manual lever.
Retarder request via TSC 1 via CAN as direct specification for rotor torque.
Reasoning: Requests made by foot and hand may differ and are used for additional logic in the shift program.
Additional linking of the TSC1 rotor torque specification with other controls should not be applied. Reasoning: The rotor torque specified e.g. by brake management would no longer be clear. As a consequence, this may affect the control process for a brake system.
Recommendation: Foot: ED2, ED15, ED7 Hand: Use three unused EDs. Footplate disengagement using S9 is advisable.
Variant 2/3 for explanation, 2/6 for explanation, 3/2 for explanation, 3/3 for explanation, 3/6 for explanation, 4/2 for explanation, 4/3 for explanation, 4/6 for explanation,
4149 765 103 - 2004-12
combination of refer to 2/1 and refer to 2/1 and refer to 3/1 and refer to 3/1 and refer to 3/1 and refer to 4/1 and refer to 4/1 and refer to 4/1 and
NOTE The TSC1 cannot be assigned to foot or hand. A distinction in the shift program would not then be possible.
1/3 1/6 1/2 1/3 1/6 1/2 1/3 1/6
8-7
4149 765 103 - 2004-12
%
5
%
8-8
EU 2
S9
Trittplatte Foot plate St St St 1 2 3
2
%
CAN
EBC1 ABS not fully operational
Trittplattenabschaltung Foot plate deactivation
EBC1 Break Pedal Pos.
V
1
Retarder activation variants
%
0
1
2
4 n EDM 1
EBC1 ABS aktiv EBC1 ABS active
7
Anforderung [%] Request [%]
Retarderabschaltung Retarder deactivation
V
EU 3
3
TSC1 Anforderung[%] (Retarderreferenzmoment [Nm]) TSC1 Request [%] (Retarder reference torque [Nm])
6
TSC1 Anforderung [%] Bedienelement TSC1 Request Control ellement
max. Max.
%
Handhebel Manual lever St St St 1 2 3
3
8
Berechnung Rotor-Ist-Moment Caleulation Rotor-actual-torque
Rotor-IstMoment [Nm] Rotor-actualtorque [Nm]
ZF-Ecomat 2 plus Retarder
016 707
ZF-Ecomat 2 plus 9
Cooling system
9.1
Design of cooling system
Cooling system Determination of max. permissible water temperature 100
t_ awc_in_ max [°C]
Special attention should be paid to the following points when designing the cooling system: - Heat build-up due to torque converter (see Torque converter diagram PV) - Heat build-up due to retarder
Ecomat 2 plus mit/w ith Ecofluid A plus 95 93°C 90
The values calculated during the design of the cooling system must be checked by ZF applications engineers and monitored using the measurements which must be taken during commissioning (see 9.11 Temperature measurements in bus).
85
80 10
The cooling system should be designed in accordance with the requirements of the vehicle type and site of use to ensure that the following approval criteria are satisfied:
20
30
40
50
delta_ ts_pec [K]
021744
Example: • Measurement values during retarder cycles t_sump t_amb t_wa_cin
Approximate values for engine cooling constant* for service temperatures up to 30 °C = 55 K/60 K above 30 °C = 50 K/55 K
= 75 °C = 10 °C = 50 °C
∆t_spec = 25 K
• Determination of permissible water temperature from diagram
9.1.1 Release criteria for temperature measurements (max. ambient temperature = 40 °C)
• Result
9.1.1.1 According to List of Lubricants TE-ML 14 E - In service applications, water temperature must not exceed 93 °C line and the same applies to coolant temperatures in a feedback control system subject to an ambient temperature of up to 40 °C. - Vehicle cooling capacity is sufficient (GCC < 75 K)
• Thermostat and fan feedback control must be set so that the max. water temperature T_wa_cin at the max. admissible ambient temperature in line service applications corresponds to the diagram. • Transmission cooling constant max. 75 K (otherwise, vehicle cooling capacity insufficient).
* Engine cooling constant = difference between water temperature upstream of radiator and ambient temperature. For example: Ambient temperature 30 °C, water temperature upstream of radiator 85 °C, engine cooling constant = 55 K
4149 765 103 - 2004-12
9-1
ZF-Ecomat 2 plus
Cooling system
9.1.1.2 According to List of Lubricants TE-ML 14 A/B/C
9.1.2 Limit temperature values for oil temperature Oil temperature in transmission oil sump
• Thermostat and fan feedback control must be set so that the max. water temperature T_wa_cin at max. admissible ambient temperature in line service applications corresponds to the diagram. • Transmission cooling constant max. 70 K (otherwise, vehicle cooling capacity insufficient).
The following sump temperature values must not be exceeded: With oil according to List of Lubricants TE-ML 14 E - Operating temperature and/or stabilized temperature max. 105 °C. - In exceptional cases and only for short periods of time (max. 5 min. per 1 hour) 115 °C are permitted.
Determination of max. permissible water temperature
With oil according to List of Lubricants TE-ML 14 A / B / C - Operating temperature and/or stabilized temperature max. 100 °C. - In exceptional cases, 105 °C are permissible for short periods (max. 5 min. per 1 hour).
t_ awc_in_ max [°C]
100
Ecomat 2 Ecomat 2 plus 95
90 87.5°C
9.1.3 Cooling system with retarder
85
The transmission oil cooler is designed for cyclic operation (no instances of long constant travel with full retarder performance). This results in a cooling capacity of 190 kW at 250 dm3/min flow rate at water and oil end under the marginal conditions represented on the Diagram 9.1.4.1. For extreme Retarder applications note design criteria described at item 9.1.
80 10 021 743
20
30
40
50
delta_ ts_pec [K]
Recommended minimum water quantity - Min. water flow rate 250 dm3/min = 15 m3/h - 350 m3/h per vehicle at engine speed nmot = 2000 rpm - Min. water flow rate 50 dm3/min = 3 m3/h at idling speed nmot = 550 ... 600 rpm
4149 765 103 - 2004-12
9-2
ZF-Ecomat 2 plus
Cooling system
9.1.3.1 Cooling system graph of shell type cooler SBK 279
kW . . Vw = f (Voil) = 416.7 dm3/min
300
. . Vw = f (Voil) = 333.3 dm3/min
For an example of calculation for the braking rating of a vehicle fitted with an Ecomat transmission and retarder, see Chapter 18.
250 . . Vw = f (Voil) = 250.0 dm3/min 200 . . Vw = f (Voil) = 166.7 dm3/min
Oil input temperature: Water input temperature:
135 °C 85 °C
150 Pw
Poil
bar
bar
. . Vw = f (Voil) = 83.3 dm3/min
100
Poil Pw
50
0.20
4
0.15
3
0.10
2
0.05
1
0
0 0
83.3
166.7
250
333.3
. . Vw, Voil dm3/min
416.7
500
014985
9.1.4 Cooling system without retarder As a guide value for light-duty operation, cooling power of at least 30 kW should be available.
The design of the heat exchanger must be based on the Pv torque converter diagram and the flow rate of the primary pump. On versions without a retarder, the oil quantity requiring to be cooled is determined by the flow rate of the primary pump.
Delivery volume of the primary pump
9.1.4.1 Delivery volume of the primary pump
Input speed 4139 S 2107 4149 765 103 - 2004-12
9-3
ZF-Ecomat 2 plus 9.2
Cooling system
Position of transmission oil cooler
9.4.2 Installation instructions
Depending on vehicle spatial requirements, the oil cooler can be installed - Transverse behind the transmission or laterally or - separately fitted from the transmission (installation by vehicle manufacturer).
• The oil cooler should not be installed above the transmission to avoid erroneous oil level readings caused by return oil with engine at standstill. (See installation guidelines, section 8.3.3: Checking oil level on version with separate heat exchanger installed higher than the center line of the transmission). • The oil cooler must be installed close to the transmission to reduce as much as possible the length of hoses used and thus keep pressure losses at oil side as low as possible. • Preferably fit the oil cooler on transmission engine block. Avoid unnecessary stress on hoses by means of relative motion. Hoses must be secured by brackets so that they cannot be damaged in case of vibrations.
CAUTION Connect waterline in contra-flow! 50 mm nominal width must be ensured on the entire length.
9.3
Cooler fitted on transmission
Specification heat exchanger group Chapter 10 “Transmission specification” can be used to specify the heat exchanger group.
9.4
The following should be noted in case of separate external coolers: • The lines between transmission and oil cooler must be routed carefully. • Lines must be routed so to avoid contact or chafing (relative motion must be considered). • Lines must be suitably fixed. (Avoid vibrations). • The distance between the transmission and exhaust should be at least 100 mm. If the distance is not large enough, a screening plate must be fitted.
Layout with oil cooler separate from transmission
9.4.1 Oil line connections Transmission with retarder: Internal diameter of connection lines at least 32 mm, hose lines heat resistant to at least 160 °C, pressure resistant to 20 bar (test pressure 50 bar) and not subject to corrosion by oils in the TE-ML 14 List of Lubricants. Transmission without retarder: Internal diameter of connection lines at least 19 mm,hose lines heat resistant to at least 140 °C, pressure resistant to 20 bar (test pressure 50 bar) and not subjectto corrosion by oils in the TE-ML 14 List of Lubricants.
4149 765 103 - 2004-12
9-4
ZF-Ecomat 2 plus 9.5
Cooling system
Cooling water circuit
Full-flow transmission oil cooler on cold water pressure side. This configuration is preferred. Top view
Side view
Transmission oil connection
Cooling water expansion tank Heater
Transmission oil cooler
Ecomat transmission
Radiator
Thermostat
Engine
Transmission oil cooler
Cooling water pump
015 618
Full-flow transmission oil cooler on cold water suction side. Transmission oil connection
Top view
Side view
Cooling water expansion tank
Heater
Transmission oil cooler
Ecomat transmission
Engine
Cooling water pump
Transmission oil cooler 4149 765 103 - 2004-12
Radiator
Thermostat
9-5
015 619
ZF-Ecomat 2 plus
Cooling system
Full-flow transmission oil cooler on hot water pressure side. Top view
Side view
Transmission oil connection
Cooling water expansion tank
Heater
Transmission oil cooler
Thermostat
Radiator
Vent pipe
Ecomat transmission
Engine
Transmission oil cooler
Cooling water pump
015 615
Transmission oil cooling water circuit for V-engines
NOTE When thermostat is closed, ensure the cooling water still flows through the transmission oil cooler. (50 ltr/min at idling speed 250 ltr/min at rated engine speed)
If possible, the water required for cooling the transmission oil should be fed through the transmission oil cooler from both banks of cylinders (full cooling water flow). After installation of the transmission oil cooler, the distribution of the water flow between the two banks of cylinders must be checked, and corrected if necessary. NOTE If for some specific reason cooling water for the transmission oil cooler can only be taken from one bank of cylinders, consultation between the engine and transmission manufacturers is essential.
4149 765 103 - 2004-12
9-6
ZF-Ecomat 2 plus
Cooling system
Full-flow transmission oil cooler on hot water suction side.
Cooling water expansion tank Thermostat
2nd cylinder bank V-engine Radiator
Ecomat transmission
1st cylinder bank Transmission oil cooler Cooling water pump Heater
015 617
By-pass transmission oil cooler on hot water suction side.
Cooling water expansion tank Thermostat
2nd cylinder bank V-engine Radiator
Ecomat transmission
1st cylinder bank
Transmission oil cooler Heater
Cooling water pump
015 616
4149 765 103 - 2004-12
9-7
ZF-Ecomat 2 plus 9.6
Cooling system If no water capable of meeting these requirements is available, different grades of water can be mixed together in order to achieve the specified water quality (e.g. a mixture of hard and fully desalinated water).
Specification for transmission heat exchanger
Requirement specification 4139 761 004 is binding.
9.7
9.7.3 Antifreeze
Required performance of cooling water and antifreeze
Ethylene glycol base with corrosion inhibitors. Antifreeze must not contain the following: Amines, chlorides, phosphates, sulphates, carbonates, and chromates.
Requirement specification for heat exchanger (LR94011) is binding.
Specific gravity (20°C): 1.11 - 1.14 (g/ml) DIN 51757 Flashpoint: > 110°C DIN 51758 Boiling point: 160 °C ASTM-D-1120
9.7.1 General Antifreeze consists of ethylene glycol and anticorrosion additives. Mix water and antifreeze to make the cooling water. Ethylene glycol raises the boiling point and lowers the freezing point, thus extending the operating range. Anti-corrosion additives must protect the cooling system from corrosion. Antifreeze must be prepared in such a way that it retains its properties over a storage period of at least two years.
9.7.4 Cooling fluid Cooling fluid is a mixture of fresh water and antifreeze and must have the following properties • Minimum proportion of antifreeze: 35 vol.% test using antifreeze tester (areometer or hydrometer) • pH value: 7.5 to 9.0 test using pH meter or indicator paper • Residual alkalinity: ∅ 10 ml 0.1n HCL ASTM-D-1121 • Flocculation point of 50%-solution: < -35°C ASTM-D-1177 • Foam volume after 5 min.: ≤ 150 ml ASTM-D-1881 • Foam killer time after 5 min.: 5 sec. ASTM-D-1881
9.7.2 Fresh water Only use clean water to produce cooler fluid. It must comply with the following quality and analysis values: Color: Transparent, clear Smell: Neutral Particles in suspension (sediment): None pH value (at 20 °C): 6.5 - 8.0 Total hardness: 3 - 10° dH Ammonia content: Not traceable Aggressive carbon dioxide: Not traceable Iron and manganese content: Max. 0.2 mg/l Chloride content: Max. 75 mg/l Sulphate content: Max. 50 mg/l Nitrate content: Max. 50 mg/l Nitrite content: Not traceable Solid residue after evaporation: Max. 500 mg/l Potassium permanganate consumption: Max. 10 mg/l Balance index: 0, if possible
4149 765 103 - 2004-12
• Reactivity against metal materials: Removal rate: < 2 g/m2 on test sheets made of LPbSn30, CuZn37, GG25, G-AlSi10Mgwa, A1Mn1 tested according to ASTM-D-1384 and guidelines in "Test of suitability of cooling water additives for combustion engine cooling water" by the Verbrennungskraftmaschinen e. V. Research Institute, Frankfurt, Booklet R 315 (1977) or later edition where valid.
9-8
ZF-Ecomat 2 plus
Cooling system 5. Place selector lever in position “N”, start up the engine and then, after a brief period at idle speed, run for about 4 minutes in the speed range of 1000 - 1500 rpm. Then run the engine until the oil sump temperature reaches approx. 85 °C (Section 4.4 of the Operating Manual). The auxiliary cooling system is then filled and drained automatically. 6. Check and adjust the oil level in accordance with the hot marks on the dipstick (refer to Operating Manual, Section 4.3.1 “Inspection at Operating Temperature”, with vehicle on level ground, selector lever in “N” and engine at idling speed of 500 - 700 rpm).
• Reactivity against elastomers (NBR, EPDM): - 50 vol.% antifreeze - 100 hour aging at boiling point - Shore A hardness modification = -10 to +10 SHA - Volume change V = -10 to +10% - Residual pressure deformation < 30% • Cooling water storage limit: 1 - 2 years, after this time, replace. If sediment forms or concentration drops considerably, also replace cooling water.
9.8
Transmission fill with auxiliary cooling (applicable to all transmissions approved for use with auxiliary cooling)
This filling specification applies in addition to the Operating Manual. CAUTION
Getriebe mit Zusatzkuehlung. Getriebe hat nicht die erforderliche Oelmenge.
Transmission iwth auxiliary cooling. il volume insufficient for the transmission. O
A) Vor Erstinbetriebnahme die eGsamtlaenge aller oKmponenten der Zusatzkuehlung ausserhalb des G etriebes ermitteln. Aus der G esamtlaenge und eL itungs DN(Innendurchmesser) die Zusatzoelmenge ermitteln. m m m 6 =24 =22m 0mm DN DN DN=2 5 8mm DN=1 4 m DN=16m 3
A) Determine total lenght of all auxiliary cooling components outside of the transmission prior to initial startup. Determine additional oil volume on the basis of total lenght and line - DN(inner diameter). m =24m DN
il volume [Litre] O
6 5
=22m DN
m
4 3
0mm DN=2 8mm DN=1 m DN=16m
2
2
1
1
0
0 2
4
6
8
10
2
12 14 16 eGsamtlaenge [m]
4
6
8
10
12
eOlfuellvolumen des O elkuehlers ermitteln. Die erforderliche uZsatzoelmenge einfuellen.
Determine oil-fill volume of the oil cooler. Fill in extra amount of oil reguired.
B) Vor Erstinbetriebnahme eOlstandskontrolle durchfuehren. Motor starten,nach 30 Sekunden bei Leerlauf-Drehzahl eOlstand am Messstab pruefen,ewnn noetig O el nachfuellen, bis Marke "CD LO"bzw .3" 0°Ce" rreicht iwrd. Die massgebende O elstandskontrolle ist die Pruefung bei Betriebstemperatur 80 - 90°C.
B) Prior to running transmission for the first time,carry out oil level check. Start engine,after 30 secs. check oil level at dipstick iwth engine idling. If necessary, add oil to "CO LD/30°C"mark. The oil level check carried out at 80Ô C to 90°C operating temperature gives the conclusive reading.
Standbereich (n Mot=0) aWrmbereich 80-90°C
Bei Motorleerlauf-Drehzahl und eGtriebe Neutral muss O elstand im aWrmbereich "85°C" bzw .H " TOl"iegen.
Kaltbereich 30°C
STO P HO T
O il level must be in awrm range 8" 5°CH / TO" ith engine idling and w transmission in neutral.
CO D L
14 16 Total lenght[m]
engine stop zone hot zone 80-90°C
cold zone 30°C
STO P HO T
CO D L
021684
Oil quantity [litre]
Filling: 1. With the engine stationary, top up with ATF until you reach the STOP mark on the dipstick 2. Establish the correct line length for auxiliary cooling (all components outside the transmission: hoses, pipes, cooler). 3. From the line length and internal diameter of the hoses (DN), determine the approximate volume of additional oil required (refer to adjacent diagram). 4. Fill the required additional volume of oil to above the STOP mark on the dipstick, but do not add more than 5 liters. If the additional volume of oil exceeds 5 liters, do not top up beyond this level until the engine has been run for a while and you have checked the oil level once again (refer to Operating Manual, Section 4.3). Failure to do this could result in ATF overflowing from the transmission.
4149 765 103 - 2004-12
ACHTUNG
elvolumen [Liter] O
When an ECOMAT transmission is being operated with auxiliary cooling, always ensure that the correct oil level is maintained at all times. Transmissions cannot be supplied with the total oil fill quantity required for this purpose. Once the transmission and auxiliary cooling system have been installed in the vehicle, the oil level must be set with the transmission at operating temperature (85 °C).
6 5
D
2 N=
4m
4 3
m
m mm 22m DN=20 = m DN 18m DN= 6mm DN=1
2 1 0
2
4
6
8
10
12
14
16
Line entire length [m] 021770
7. If service work is required: Before working on the auxiliary cooling system, first drain off the transmission oil! DN = internal diameter (tube or hose) See also Chapter 17, ZF Specification
9-9
ZF-Ecomat 2 plus 9.9
Cooling system
Transmission oil sump cooling
For applications which fail to comply with ZF temperature acceptance criteria, and for specific application profiles, e.g. extended braking phases on downhill gradients, it is advisable to have the capability for cooling the transmission oil sump. In all cases, first consult a ZF applications engineer.
9.9.1 System diagram, transmission oil sump cooling The range of individual components included in the scope of supply is defined jointly with the OEM.
Cooler connecting part
ECOMAT
Vehicle cooling system (not modified)
Engine Oil sump cooler
SBK Suction pump Oil pan
ATF Cooling agent
Additional breather in case of additional cooling system
From additional cooler
019616; 021741
4149 765 103 - 2004-12
Towards additional cooler
9-10
ZF-Ecomat 2 plus 9.10
Cooling system
Temperature measurements in bus
9.10.3 Calculation
9.10.1 Measurement conditions / Retarder test cycles • Load vehicle to maximum permissible weight. • Level test track. • Dry road surface, no rain and if possible no wind or gentle wind at the most. • Vehicle heating switched off. • Undertake retarder braking with 100% retarder torque without assistance from the wheel brakes. • Cooling system under open-loop control (Lock thermostats open, fan running continuously). • Ambient temperature > 0 °C.
• Difference between oil sump temperature and water inlet temperature on transmission oil cooler: ∆_t_spec = t_sump - t_wa_cin • Difference between oil sump temperature and ambient temperature: GCC = t_sump - t_amb • If the temperatures (oil and water) change in a cyclical manner, you should calculate the average temperature from the values derived from the last five cycles: t1u
t2u
t3u
t4u
t5u
taverage t1d
t2d
t3d
t4d
t5d 021742
v [km/h]
- 50 km/h for city bus - 80 km/h for interurban buses and coaches taverage =
Zeit Time
10 s
021745
9.10.2 Measurement retarder cycles • Measurement points - Water temperature at transmission cooler inlet: - Transmission sump oil temperature: - Ambient temperature:
t_wa_cin t_sump t_amb
• Following conditions must be met: - Length of all test cycles until such time as all temperatures have stabilized.
4149 765 103 - 2004-12
9-11
(
t1u + t2u + t3u + t4u + t5u 5
t1d + t2d + t3d + t4d + t5d +
5
) :2
ZF-Ecomat 2 plus
Cooling system
9.10.4 Explanation of water temperature Retarder cycle (worst case)
9.10.5 Temperature measuring points
With oil acc. to List of Lubricants TE-ML 14 E • GCC max. 75 °C + 40 °C ambient temperature yields under test conditions (retarder cycle) 115 °C max. permitted transmission oil sump temperature • ∆t_spec characterizes the oil/water heat exchange process • GCC characterizes the cooling capacity of the vehicle cooling system NOTE - During normal service operation, the max. permitted oil sump temperature of 105 °C must not be exceeded on a long-term basis. - Isolated, brief periods of peak sump temperatures (max. 5 minutes within a 1 hour period) are permissible up to max. 115 °C.
With oil acc. to List of Lubricants TE-ML 14 A / B / C • Under test conditions (retarder cycle), GCC max. 70 °C + 40 °C ambient temperature yields, max. transmission oil sump temperature of 110° C • ∆t_spec characterizes the oil/water heat exchange process • GCC characterizes the cooling capacity of the vehicle cooling system NOTE - During normal service operation, the max. permitted oil sump temperature of 100 °C must not be exceeded over extended periods. - Isolated, brief periods of peak sump temperatures (max. 5 minutes within 1 hour period) are permissible up to max. 105° C.
4149 765 103 - 2004-12
9-12
1) 2) 3)
Ambient Temperature Oil temperature transmission oil sump Water temperature at inlet end of transmission cooler
ZF-Ecomat 2 plus
Cooling system
Position of temperature measuring points Oil in transmission sump (measurement probe) 2
Cooling water output Cooling water input
Oil in transmission sump (measurement probe)
2
021648 023783
Top view
Side view
Transmission oil connection
Transmission oil cooler
Cooling water expansion tank
Heater
3
Ecomat transmission
Radiator
Thermostat
Water input at transmission and heat exchanger Engine
Transmission oil cooler
Cooling water pump 015 619
NOTE M14x1.5 threaded connections must be fitted in the measuring vehicle for the measurement point no. 5.
4149 765 103 - 2004-12
9-13
ZF-Ecomat 2 plus 10
Transmission specification
4149 765 103 - 2004-12
Transmission specification From drawing no.: 4149 602 059
10-1
ZF-Ecomat 2 plus 10.1
Transmission specification
Installation position
256
187.5
68.6
68.6
187.5
30
89
136
256 M16x1.5 24 tief
0
16
Ø4
Ø511.2h7
Ø553
6.5
02
35
63.5
Anzugsmomment 225 Nm
256
187.5
187.5
68.6
68.6
03
68.6
68.6
187.5
256
12
68.6
68.6
187.5
04
10.1.1 Flange-mounted installation position
015 008
4149 765 103 - 2004-12
10-3
ZF-Ecomat 2 plus
Transmission specification
10.2 Heat exchanger arrangement
O3
O4
019216
Temperature sensor TEMPERATURGEBER Bajonet plug DIN 72585-A1-2.1 BAJONETTSTECKER DIN 72585-A1-2.1
10.2.1 Coaxial output, heat exchanger at rear, accumulator horizontal on left
4149 765 103 - 2004-12
10-5
ZF-Ecomat 2 plus
Transmission specification
O3
O4
Temperature sensor TEMPERATURGEBER Bajonet plug BAJONETTSTECKER DIN DIN72585-A1-2.1 72585-A1-2.1
019217
10.2.2 Coaxial output, heat exchanger at rear, accumulator rear transverse
4149 765 103 - 2004-12
10-6
ZF-Ecomat 2 plus
Transmission specification
O3
O4
023800
Temperature sensor TEMPERATURGEBER BAJONETTSTECKER DIN 72585-A1-2.1 Bajonet plug DIN 72585-A1-2.1
10.2.3 Coaxial output or 80° angle drive RHD (with axial offset), heat exchanger vertical on left, accumulator horizontal on left
4149 765 103 - 2004-12
10-7
ZF-Ecomat 2 plus
Transmission specification
O3
O4
023801
Temperature sensor TEMPERATURGEBER BAJONETTSTECKER DIN 72585-A1-2.1 Bajonet plug DIN 72585-A1-2.1
10.2.4 Angle drive 80° LHD (without axial offset), heat exchanger horizontal on left, accumulator horizontal on left
4149 765 103 - 2004-12
10-8
ZF-Ecomat 2 plus
Transmission specification
O3
O4
023802
Temperature sensor TEMPERATURGEBER Bajonet plug DIN 72585-A1-2.1 BAJONETTSTECKER DIN 72585-A1-2.1
10.2.5 Coaxial output, heat exchanger vertical on right, accumulator horizontal on left
4149 765 103 - 2004-12
10-9
ZF-Ecomat 2 plus
Transmission specification
O3
O4
Temperature sensor TEMPERATURGEBER Bajonet plug BAJONETTSTECKER DIN DIN72585-A1-2.1 72585-A1-2.1
023803
10.2.6 Coaxial output, vertical heat exchanger on right, accumulator rear transverse
4149 765 103 - 2004-12
10-10
ZF-Ecomat 2 plus
Transmission specification
O3
O4
Temperature sensor TEMPERATURGEBER Bajonet plug DIN 72585-A1-2.1 BAJONETTSTECKER DIN 72585-A1-2.1
023813
10.2.7 Coaxial output, heat exchanger separate from transmission, accumulator direct mounting
4149 765 103 - 2004-12
10-11
ZF-Ecomat 2 plus
Transmission specification
10.2.7.1 Cooler connection piece with threaded connection
M 14x1.5
Part no.
I
II
III
4139 347 367
M42x2
M14x1.5
M14x1.5
4139 347 403
1-5/8-12 UN 28
1/8’’ -27 NPTF
M14x1.5
4139 347 404
1-5/8-12 UN 28
M16x1.5
M16x1.5
4139 347 405
1-5/8-12 UN 28
3/8’’ -18 NPTF
-
I
III
I
II
M 10x1 015 613
4149 765 103 - 2004-12
10-12
ZF-Ecomat 2 plus 10.3
Transmission specification
Oil pan
10.3.1 Deep oil pan, 4149 131 002
015089
4149 765 103 - 2004-12
10-13
ZF-Ecomat 2 plus
Transmission specification
10.3.2 Deep oil pan; left- and right-hand connection prepared, 4149 131 006
015090
4149 765 103 - 2004-12
10-14
ZF-Ecomat 2 plus
Transmission specification
¯0.3
15-0.5
21-0.5
40±0.5
10.3.3 Deep oil pan, auxiliary cooling, 4149 131 024 Caution: Flat version with auxiliary cooling not possible!
285±0.5
02
M26x1.5 01
508-0.5
M27x2
01
M26x1.5 ¯0.3
285±0.5
45±0.5
02
019931
4149 765 103 - 2004-12
10-15
ZF-Ecomat 2 plus
Transmission specification
10.3.4 Flat oil pan, 4149 131 010
015092
4149 765 103 - 2004-12
10-16
ZF-Ecomat 2 plus
Transmission specification
10.3.5 Flat oil pan; left- and right-hand connection prepared, 4149 131 009
015091
4149 765 103 - 2004-12
10-17
ZF-Ecomat 2 plus 10.4
Transmission specification
Oil filling
10.4.1 Oil filling
192
479
023784
4149 765 103 - 2004-12
10-19
ZF-Ecomat 2 plus
Transmission specification
Ca. A AUSBAUHOEHE
10.4.2 Oil filling , ,
479
A
B
K 02
380
132
K 04
843
584
K 05
597
330
4149 765 103 - 2004-12
023786
10-20
ZF-Ecomat 2 plus
Transmission specification
10.4.3 Oil filling ,
Ausbauhöhe ca. A
B bezogen auf Linie O4
023805
A
B
C
β
α
K 03
445
198
35
15°
0° / 90° / 135° / 150° / 180° / 225° / 270°
K 06
517
339
134
30°
0° / 90° / 135° / 180° / 250° / 270° / 315°
4149 765 103 - 2004-12
10-21
ZF-Ecomat 2 plus
Transmission specification
477
10.4.4 Oil filling
49
131
023811
4149 765 103 - 2004-12
10-22
ZF-Ecomat 2 plus 10.5
Transmission specification
Output
10.5.1 Coaxial output
46 °
Possible installation positions of the impulse sensor (tighten torque: 35 Nm)
280°
°
M18x1
.5
70±0.2
Ø 30 1
K1
.6
MA
X
110
16
81.8-0.2 016 862
Overview of VDO impulse sensor variant Sensor generation
“Inductive“ impulse sensor
“Hall” impulse sensor
“Hall” impulse sensor
KITAS I “Hall”
KITAS I “Inductive”
Plug connection
Renk
Renk
Bajonet DIN 72585
Bajonet DIN 72585
Bajonet DIN 72585
Collective drawing
0501 208 790
0501 209 398
0501 210 854
0501 213 667
0501 213 674
Sensor length: 35 mm
0501 208 793
0501 209 401
0501 210 857
0501 213 672
0501 213 676
External part number
2159.50.103.01
2159.20.103.00
2159.04.103.00
2170.01.203.03
2170.01.503.01
NOTE The transmission is supplied without an impulse sensor as standard. Sensor wheel: 6 impulses per revolution.
4149 765 103 - 2004-12
10-23
ZF-Ecomat 2 plus
Transmission specification
10.5.2 80° angle drives Various angle drives (WTR) are available for the transverse installation of the engine and transmission unit: WTR
Ratios
80° LHD without axial offset 80° RHD with axial offset
Max. engine torque (Nm)
Weight (approx. kg)
0.97
1 600*
97
0.98
1 250
125
To the right
(α = 3°; 6°; 9°)
(α = 5°)
Max. angle drives (WTR) input speed 3400 rpm ^ = in 6th gear 2000 rpm * Following agreement with ZF
80° angle drive LHD without axial offset
80 ° angle drive RHD with axial offset
α
α
1
2
2
019924
° 80
80°
1
Output ( various flange versions available)
2
Ecomat transmission
4149 765 103 - 2004-12
1
10-24
left
ZF-Ecomat 2 plus
Transmission specification
10.5.3 Output flange 80° angle drive LHD
Abbildung Figure I I
Abbildung Figure IV IV 47-0.3
C
178 Ø13
M12
C-C
131.9
85
Ø 90+0.5
161 JS8
α
C 178
21.5+1
° 80
Abbildung Figure II II
Abbildung Figure III III
(Intersection point of flange centre and spline pitch circle
023806
x = screws must be pre-fitted
ZF no.
Included in the drawing
ØA
ØB
Ø Ch6
ØD
E
F
ØG
L°
M
Fig.
(1269 339 040)
150
130
90
12.2
2.3
10
110
45°
8x45°
I/II
x
4139 303 087
x
4139 303 181
150
130
-
13.0
-
-
110
-
-
I/III
4139 303 172
180
150
-
14.5
-
-
127.5
-
-
I/III
4139 303 215
4149 765 103 - 2004-12
Yoke
10-25
I/IV
ZF-Ecomat 2 plus
Transmission specification
10.5.4 Ecomat output flange; coaxial and angle drive 80° RHD with axial offset Fig. I
Fig. VI
Fig. IV AUSSEN FLANKEN KERN
Fig. V
Fig. VII
Fig. II NOTE Clean output flangebefore propshaft installation.
x = Screws must be pre-fitted
Fig. III
Included in the drawing
ØD
E
F
ØG
L°
M
L
Fig.
Coaxial
11 %. In difficult terrain, a larger S value should be selected.
•
The following is valid in practice for extreme applications: Starting capacity, e.g. starting off is still possible up to max = 0.8 • Smax.. (Smax. = gradability at stall-point.)
Use the following vehicle performance formulae to select driveline design. They enable you to select the best components to suit your special requirements (e.g. required top speed, gradability etc. as a function of axle ratios, transmission ratios, tire radii etc.). The formulae can either be solved using the parameters required or by iteration.
Calculation formulae: Driving speed vF [km/h] vF =
0.377 • rdyn [m] • nT [min-1] ________________________ iG • iH
vF =
0.0714 • rdyn [ft] • nT [min-1] ________________________ iG • iH
Max. gradability Smax [%] (Resistance WL ≈ 0) TT [Nm]• iG • iH • ηtot Smax = 100 • tan [arc sin( ____________________ – fR)] m [kg] • 9.81 • rdyn [m]
TT [lbft]• iG • iH • ηtot Smax = 100 • tan [arc sin( ____________________ – fR)] G [lbft] • rdyn [ft]
Gradability S at higher speeds vF For inclines S ≤ 10% is sin α ≈ tan α; Error ≤ 0.5 % 1 TT [Nm] • iG • iH • ηtot S = 100 [ ___________ • ( ___________________ – 0.0473 • CW • A • VF2 [(km/h)2]) – fR] m [kg] • 9.81 rdyn [m] TT [lbft] • iG • iH • ηtot 0.002529 • CW • A [ft2] • VF2 [(mph)2] S = 100 [ __________________ _ ________________________________ – fR] G [lbft] • rdyn [ft] G [lbft] rdyn[m], [ft] m [kg] G [lbft]
}
Rolling radius Vehicle weight
9.81 [m/s2]
Acceleration due to gravity
nT [1/min]
Turbine speed
TT [Nm], [lbft]
Turbine wheel torque
iG [–]
Transmission ratio
iH [–]
Axle ratio
ηtot [–]
Overall efficiency = ηG • ηH = 0.95 • 0.95 ≈ 0.9
fR [–]
Rolling resistance Asphalt, concrete, fR = 0.010 – 0.012 Beaten earth, fR = 0.020 – 0.040
CW [–]
Coefficient of air resistance Bus CW ≈ 0.6 Truck CW ≈ 0.8
A [m2], [ft2]
Front section area
VF [km/h], [mph]
Driving speed
Bus A ≈ 6m2 Lkw A ≈ 8m2
Once the key data has been established, a computer program can be used, if required, to perform the vehicle performance calculation. 4149 765 103 - 2004-12
18-1
ZF-Ecomat 2 plus
Calculations and conversion tables
18.2 Collective formulae for retarder and cooler 1. Braking rating PB G [kg] • 9.81 [m/s2] • v [km/h] s [%] PB [kW] = __________________________ [sin (arc tan _____) + fR] 3600 100
2. Engine speed nMot = nRet (only applies when lock-up clutch closed) v [km/h] • iG • iH nT [1/min] = nMot [1/min] = ______________ 0.377 • rdyn [m]
3. Retarder rating PRet for nRet TRet [Nm] • nRet [1/min] PRet [kW] = _____________________ 9550
Calculation example Braking rating of a city bus with 5 HP 502 C and Retarder Data: G = 18 000 kg; fR = 0.01; v = 30 km/h; s = 7%
Brake rating
18 000 • 9.81 • 30 –7 PB = ________________ [sin (arc tan _____ ) + 0.01] 3600 100
Brake rating PB = – 88 kW = 120 PS (Dauerbetrieb) Calculation of engine and/or retarder speed at v = 30 km/h in 2nd gear (only applies when lock-up clutch closed nMot = nRet) 30 • 2.01 • 5.92 nT [1/min] = nEng [1/min] = ______________ = 0.377 • 0.466
2032
•
1/min
Braking ability S on downhill inclines with braking torque T = 1300 Nm at nRet = 2200/min in 2nd gear and v = 30 km/h
TBr [Nm] • iG • iH S = 100 tan [arc sin ( ______________________________ – fR)] m [kg] • 9.81 [m/s2] • rdyn [m] • ηH –1300 • 2.01 • 5.92 S = 100 tan [arc sin ( _________________________ – 0.01)] = – 21.25% 18 000 • 9.81 • 0.466 • 0.95 S = – 21.25% incline can be driven with continual braking.
4149 765 103 - 2004-12
18-2
TBr
= –1300 Nm
at nT
= 2032 rpm
ZF-Ecomat 2 plus 18.3
Calculations and conversion tables
Conversion tables
18.3.1 Units of length
Unit 1 1 1 1 1
in ft yd mile n mile1)
1 mm 1 m 1 km
= = = = =
in
ft
yd
mile
n mile
mm
m
km
1 12 36 63360 72913
0.08333 1 3 5280 6076.1
0.02778 0.33333 1 1760 2025.4
– – – 1 1.1508
– – – 0.86898 1
25.4 304.8 914.4 – –
0.0254 0.3048 0.9144 1609.34 1852
– – – 1.609 1.852
– – 0.53996
1 1000 106
0.001 1 1000
10-6 0.001 1
3.281 • 10-3 1.094 • 10-3 – 3.2808 1.0936 – 3280.8 1093.6 0.62137
= 0.03937 = 39.3701 = 39370
in = inch, ft = foot, yd = yard, mile = statute mile, n mile = nautical mile 1) 1 n mile = 1 sm = 1 international nautical mile = 1/60th of a degree of latitude 1 In UK 1 n mile (UK) = 6080 ft ≈ 1853 m. 1 Knot = 1 n mile/h = 1852 km/h
18.3.2 Units of area
Unit
in2
ft2
yd2
mile2
cm2
dm2
m2
a
ha
km2
1 1 1 1
in2 ft2 yd2 mile2
= = = =
1 144 1296 –
– 1 9 –
– 0.1111 1 –
– – – 1
6.452 929 8361 –
0.06452 9.29 83.61 –
– 0.0929 0.8361 –
– – – –
– – – 259
– – – 2.59
1 1 1 1 1 1
cm2 dm2 m2 a ha km2
= = = = = =
0.155 15.5 1550 – – –
– 0.1076 10.76 1076 – –
– 0.01196 1.196 119.6 – –
– – – – – 0.3861
1 100 10000 – – –
0.01 1 100 10000 – –
– 0.01 1 100 10000 –
– – 0.01 1 100 10000
– – – 0.01 1 100
– – – – 0.01 1
in2 ft2 yd2 mile2
= = = =
square inch (sq in), square foot (sq ft), square yard (sq yd), square mile (sq mile).
4149 765 103 - 2004-12
18-3
ZF-Ecomat 2 plus
Calculations and conversion tables
18.3.3 Units of volume
Unit 1 1 1 1 1
in3 ft3 yd3 gal (UK) gal (US)
= = = = =
in3
ft3
yd3
gal (UK)
gal (US)
cm3
dm3 1)
m3
1 1728 46656 277.42 231
– 1 27 0.16054 0.13368
– 0.03704 1 – –
– 6.229 168.18 1 0.83267
– 7.481 201.97 1.20095 1
16.3871 – – 4546.09 3785.41
0.01639 28.3168 764.555 4.54609 3.78541
– 0.02832 0.76456 – –
– 0.03531 35.315
– 0.00131 1.30795
– 0.21997 219.969
– 0.26417 264.172
1 1000 106
0.001 1 1000
– 0.001 1
1 cm3 1 dm3 1) 1 m3
= 0.06102 = 61.0236 = 61023.6
in3 = ft3 = 3 yd = gal = 1) dm3 =
cubic inch (cu in), cubic foot (cu ft), cubic yard (cu yd), gallon, 1 (Liter).
18.3.4 Units of energy
Unit
J
kw h
kp m
PS h
kcal
ft lbf
Btu
Statutory units 1 J 1 kWh
277.8 • 10-9 0.10197 1 367098
377.7 • 10-9 238.8 • 10-6 0.73756 947.8 • 10-6 1.3596 859.84 2.6553 • 106 3412.14
= 9.80665 2.724 • 10-6 1 = 2.6476 • 106 0.73550 269980 = 4186.8 1.163 • 10-3 426.93
3.704 • 10-6 2.342 • 10-3 7.2330 9.295 • 10-3 1 632.369 1.9528 • 106 2509.4 -3 1.581 • 10 1 3088 3.9683
= 1 = 3.6 • 10-6
Units to be converted 1 kp m 1 PS h 1 kcal 1)
Anglo American units 1 ft lbf 1 Btu 2)
= 1.3558 = 1055.06
376.6 • 10-9 0.13826 293.1 • 10-6 107.59
512.1 • 10-9 323.8 • 10-6 1 398.6 • 10-6 0.252 778.17
1) 1 kcal = Amount of heat required to raise temperature of 1 kg water at 15°C by 1°C. 2) 1 Btu = Amount of heat required to raise temperature of 1 lb water by 1°F. 1 therm = 105 Btu
4149 765 103 - 2004-12
18-4
1.285 • 10-3 1
4149 765 103 - 2004-12
= = = =
long cwt1) sh cwt1) long tn1) sh tn1
1 1 1 1
18-5
0.5644 – –
– – – –
0.03657 1 16 256
dram
0.03527 35.274 –
– – – –
0.00229 0.0625 1 16
oz
– 0.01968 19.684
– 2.2046 2204.6
– – 0.9842
0.05 0.04464 1 0.8929
– – – –
long tn
– – 1.1023
– 0.05 1.12 1
– – 0.0005
sh tn
1 1000 106
– – – –
0.064799 1.77184 28.3495 453.592
g
1)
0.001 1 1000
50.8023 45.3592 1016.05 907.185
– – – 0.45359
kg
– 0.001 1
– – 1.01605 0.90718
– – – –
t
If cwt and tn are used with prefix ”long” or ”sh”, this indicates that the reference is to the UK long cwt and long tn, or to the US short (”sh”) cwt and short tn respectively.
1 slug = 14.5939 kg = Mass, accelerated by a force of 1 lbf at the rate of 1 ft/s2. 1 st (stone) = 14 lb = 6.35 kg (only UK) 1 qr (quarter) = 28 lb = 12.7006 kg (only UK, rare application). 1 quintal = 100 lb = 1 sh cwt = 45.3592 kg 1 tdw (ton dead weight) = 1.016 t. In tdw, the load-bearing ability of freight dampers (load + ballast + fuel + lubrication) is indicated.
– 0.02205 22.046
1.12 1 22.4 20
– – – 0.01
– – – 0.00893 1 0.8929 20 17.857
sh cwt
long cwt
112 100 2240 2000
1/7000 0.00391 0.0625 1
lb
gr = grain, oz = ounze, lb = pound long cwt = long hundredweight, sh cwt = short hundredweight, long tn long ton, sh tn = short ton.
US = United States of America
= 15.432 = – = –
UK = Great Britain,
1 g 1 kg 1 t
1 27.344 437.5 7000
= = = =
gr dram oz lb
1 1 1 1
– – – –
gr
Unit
Avoirdupois System (standard trading weights in UK and US)
Units of mass
ZF-Ecomat 2 plus Calculations and conversion tables
18.3.5 Units of mass
4149 765 103 - 2004-12
N/m2 = 1 Pa µbar mbar bar N/mm2
= = = = =
18-6
kp/mm2 at = 1 kp/cm2 kp/m2 = 1mmWS Torr = 1mmHg atm
= = = = =
– – 98.0665 1333.22 –
10 1 1000 106 107
= 6894.76 68948 = 47.8803 478.8 = – –
– 98066.5 9.80665 133.322 101325
1 0.1 100 105 106
N/m2
68.948 0.4788 –
98066.5 980.665 0.0981 1.33322 1013.25
0.01 0.001 1 1000 10000
mbar
9.80665 0.0981 – – –
10-6 10-7 0.0001 0.1 1
N/mm2
1 0.01 10-6 – –
– – – 0.0102 0.10197
kp/mm2
100 1 10-4 0.00136 1.03323
– – – 1.0197 10.197
at
106 10000 1 13.5951 10332.3
0.10197 0.0102 10.197 10197 101972
kp/m2
0.0689 0.00689 – 0.07031 703.07 – – – – 4.8824 154.443 15.4443 1.57488 157.488 –
98.0665 0.98066 – – 1.01325
10-5 10-6 0.001 1 10
bar
96.784 0.96784 – 0.00132 1
– – – 0.9869 9.8692
atm
1422.33 14.2233 – 0.01934 14.695
– – 0.0145 14.5037 145.037
lbf/in2
51.715 0.06805 1 0.35913 – – – 152.42 2240
73556 735.56 – 1 760
0.0075 – 0.7501 750.06 7501
Torr
1 N = 0.101972 kp ≈ 0.1 kp 1 N = 0.224809 lbf 1 N = 7.233011 pdl
* french units
Normen: DIN 66 034 Kilopond – Newton, Newton – Kilopond, Conversion tables DIN 66 037 Kilopond/cm2 – Bar, Bar – Kilopond/cm2, Conversion tables, DIN 66 038 Torr – Millibar, Millibar – Torr, Conversion tables
lbf/in2 = pound-force per square inch (psi), lbf/ft2 = pound-force per square foot (psf), tonf/in2 = (long) ton-force per square inch 1 pdl/ft2 (pound per square foot) = 1.48816 N/m2 1 barye* = 1 µbar; 1 pz (pièce)* = 1 sn/m2 (sthène/m2)* = 103; 1 dyn/cm = 1 µbar.
1 lbf/in2 1 lbf/ft2 1 tonf/in2
Anglo American units
1 1 1 1 1
Units to be converted
1 1 1 1 1
Statutory units
Unit
µbar
kp = 9.80665 N ≈ 10N lbf (pound-force) = 4.44822 N pdl (poundal) = 0.138255 N = Kraft. die eine Masse von 1 lb um 1 ft/s2 beschleunigt sh (sthène)* = 103 N
Pressure and voltage units
1 1 1 1
Force units
144 1 –
– 2048.16 0.2048 2.7845 2116.1
– – 2.0886 2088.6 20886
lbf/ft2
– – 1
0.63497 – – – –
– – – – 0.06475
tonf/in2
ZF-Ecomat 2 plus Calculations and conversion tables
18.3.6 Force units
ZF-Ecomat 2 plus
Calculations and conversion tables
18.3.7 Power units
Unit
W
kW
kpm/s
PS
kcal/s
kcal/h
hp
Btu/s
0.001 1
0.10197 101.97
1.360 • 10-3 238.8 • 10-6 0.86 1.3596 238.8 • 10-3 860
1.341 • 10-3 947.8 • 10-6 1.3410 947.8 • 10-3
9.807 • 10-3 1 0.7355 75 4.1868 426.935
13.33 • 10-3 2.342 • 10-3 8.434 1 0.17567 632.53 5.6925 1 3600
13.15 • 10-3 9.295 •10-3 0.98632 0.69712 5.6146 3.9683
0.7457 1.05506
1.0139 1.4345
Statutory units 1 W 1 kW
= 1 = 1000
Units to be converted 1 kpm/s 1 PS 1) 1 kcal/s
= 9.80665 = 735.499 = 4186.8
Anglo American units 1 hp1) 1 Btu/s
= 745.70 = 1055.06
76.0402 107.586
0.17811 0.2520
641.302 1 907.35 1.4149
0.70678 1
hp = horsepower 1) bhp = brake horsepower (brake power), dhp = drawbar horsepower (Power on drawbar hook). 1 ft lbf/s = 1.35582 W 1 ch (cheval vapeur) (French) = 1 PS = 0.7355 W 1 poncelet (French) = 100 kpm/s = 0.981 kW Standards: DIN 66035 DIN 66036 DIN 66039 1)
calorie - joule, joule - calorie, conversion tables horsepower-kilowatt, kilowatt-horsepower conversion tables kilocalorie-Watthour, Watthour-kilocalorie conversion tables
Note different test conditions by SAE and DIN for hp and/or PS units or power for vehicle engines.
18.3.8 Temperature conversions Conversion to
Unit
°F
Degrees Celsius
°C
Degrees Fahrenheit
°F
°C = (°F – 32) ·
Degrees Rankine
°R
°C = (°R – 491.7) ·
Kelvin
K
°C = K – 273
4149 765 103 - 2004-12
1
°F = 5 9 5 9
°R 9 °C + 32 5
°R =
K 9 °C + 491.7 5
K = 273 + °C
1
°R = °F + 459.7
K = (°F – 32)
°F = °R – 459.7
1
K =
°F =
9 (K – 273) + 32 5
18-7
°R =
9 K 5
1
5 °R 9
5 + 273 9
ZF-Ecomat 2 plus
Calculations and conversion tables
18.3.9 Moment of inertia conversion factors 1 kg m2 = (3.2808)2 kg sq.ft 1 kg m2 = (39.3701)2 kg sq.inch 1 kg m2 = (1.0936)2 kg sq.yard
= (3.2808)2 • (2.2046 lb) sq.ft = 23.73 lb sq.ft = (39.3701)2 • (2.2046 lb) sq.inch = 3417 lb sq.inch = (1.0936)2 • (2.2046 lb) sq.yard = 2.636 lb sq.yard
18.4 Torque 1 Nm = 0.738 lbft T [Nm] • n [min-1] P [kW] = ________________ 9552
T [lbft] • n [min-1] P [kW] = ________________ 7045
18.5 List of dynamic tire radii Tire dimensions
S
D
Ø
S D Ø
Tire width Outer diameter Rim diameter
024254
Conversion of tire dimensions 5280 rdyn [rev/mile] = ___________ 2 • π • rdyn [ft]
4149 765 103 - 2004-12
18-8
ZF-Ecomat 2 plus
Calculations and conversion tables
Standard tires
Tapered bead seat, Nominal Ø 22.5 (tubeless)
ETRTO-Normmaße
ETRTO Standard dimensions
Width max. (mm)
Outer diameter max. (mm)
Tire-tread circumference (mm)
6.00 R 9
166
553
1647
7.00 R 12
200
687
2050
205/80 R 15
213
723
7.50 R 15
220
8.25 R 15 10.00 R 15
Tire dimension
Tube Type / Tubeless
Tube Type / Tubeless
Width max. (mm)
Outer diameter max. (mm)
Tire-tread circumference (mm)
8 R 22.5
TL
216
950
2855
9 R 22.5
TL
239
986
2959
2162
10 R 22.5
TL
264
1038
3111
787
2355
11 R 22.5*
TL
290
1070
3203
243
855
2550
11 R 22.5**
TL
287
1064
3203
286
939
2800
12 R 22.5
TL
312
1104
3306
Tire dimension
7.00 R 16
TL
214
792
2361
13 R 22.5
TL
326
1146
3428
225/75 R 16C
TL
232
758
2269
255/70 R 22.5
TL
265
944
2837
225/75 R 16
TL
232
758
2269
275/70 R 22.5
TL
287
974
2922
7.50 R 16
TL
218
818
2446
275/80 R 22.5
TL
287
1030
3087
8.25 R 16
239
878
2623
295/60 R 22.5
TL
304
940
2806
9.00 R 16
256
932
2782
295/80 R 22.5
TL
310
1062
3184
7.50 R 20
218
944
2830
305/70 R 22.5
TL
317
1018
3050
8.25 R 20
TL
239
980
2934
315/60 R 22.5
TL
326
966
2879
9.00 R 20
268
1038
3105
315/70 R 22.5
TL
318
1032
3093
10.00 R 20
286
1074
3209
315/80 R 22.5
TL
318
1096
3282
11.00 R 20
TL
297
1104
3300
385/55 R 22.5
TL
401
1012
3018
12.00 R 20
TL
319
1146
3422
385/65 R 22.5
TL
405
1092
3248
14.00 R 20
TL
377
1268
3776
425/65 R 22.5
TL
447
1146
3406
445/65 R 22.5
TL
472
1174
3485
455/45 R 22.5
TL
471
1008
2975
495/45 R 22.5
TL
519
1046
3085
* Operational code: 148/145L; 148/145J; 148/145K ** Operational code: 142/142J
4149 765 103 - 2004-12
18-9
ZF-Ecomat 2 plus 19
Oil grades and oil filters
Oil grades and oil filters
19.1 List of Lubricants TE-ML 14 • Current list of lubricants can be obtained on the Internet “ZF-WORLD“ under: > N divisions > Friedrichshafen location > Materials > ZF List of Lubricants • Current list of lubricants can be obtained on the Internet under: www.zf.com > products for > Techn. Informationen
19.2 Purity of medium NOTE The oil must not contain any visible solid impurities.
19.3 Oil filter Only ZF oil filters with a mesh width of 60 µm may be used.
4149 765 103 - 2004-12
19-1
View more...
Comments