3

August 25, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download 3...

Description

 

1. Al apli aplica carr 100 voltios  a un circuito en serie  RC , donde la resistencia es de 200 ohm  y la ca capa paci cida dad d de dell co cond nden ensa sado dorr es de 0,0001  fa fara radi dios os.. Hall Hallar ar la ca carg rga a q ( t )  del condensador si q ( t )= condensador )= 0. Hallar también la expresión que da la corriente en función del tiempo. Se tiene del taller anterior

 L dq ( t  ) + Rq ( t )= )= E dt  Donde  L

=

200 ohm,R =

1 0.0001

faradiosy  E =100 voltios . Se sabe que

200

 dq ( t )   1  + q ( t )= )=100 dt  0.0001

Tenemos la ecuación lineal

dq (t )   + 50 q ( t )= )= 1 dt  2 Con

 P ( t ) =50 f  ( ( t )=

1 2

Del ejercicio del 4,5 y 6 del taller anterior se tiene  P ( t ) dt   μ= e∫

∫ 50 dt  50 t   μ= e =e

∫ 1 q ( t )=∫ e 2

 μq ( t )=  μ f  ( ( t ) dt  e e

50 t 

50 t 

50 t 

q ( t )=

 1 100

−50 t    1

q ( t )= e

q ( t )=

100

 1 100

e

e

dt 

50t 

+ C 

+ C e−

50 t 

+ C e−50 t 

50 t 

 

Con el valor inicial inicial se tiene

q ( 0 )=0 0

=

 1

50 (0 )

100

+ C e−

 1 0

= 100 + C  −1 =C  100

 Así la carga carga q ( t ) del condensador es:

q ( t )=

 1 100



 1 100

− 50 t 

e

Para cada una de las ecuaciones diferenciales dadas a en los puntos 3 a 6 realizar lo siguiente. a) Escribir Escribir la ecuac ecuación ión algebra algebraica ica o auxiliar auxiliar asocia asociada da b) Hallar las raíces de de cada una de las ecuaciones ecuaciones algebraica algebraicas s asociadas. asociadas. c) Utilizar las las raíces halladas halladas en la parte b) b) para hallar la solución de la ecuación ecuación diferencial planteada.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF