31012653_NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 (1)

Share Embed Donate


Short Description

N...

Description

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual Version Revision date BOM

V1.0 October 24, 2012 31012653

Emerson Network Power provides customers with technical support. Users may contact the nearest Emerson local sales office or service center.

Copyright © 2012 by Emerson Network Power Co., Ltd. All rights reserved. The contents in this document are subject to change without notice.

Emerson Network Power Co., Ltd. Address: No.1 Kefa Rd., Science & Industry Park, Nanshan District 518057, Shenzhen China Homepage: www.emersonnetworkpower.com.cn E-mail: [email protected]

Safety Precautions To reduce the chance of accident, please read the safety precautions very carefully before operation. The "Caution, Notice, Warning, Danger" in this book do not represent all the safety points to be observed, and are only supplement to various safety points. Therefore, the installation and operation personnel must be strictly trained and master the correct operations and all the safety points before actual operation. When operating Emerson products, the safety rules in the industry, the general safety points and special safety instructions specified in this book must be strictly observed.

Electrical Safety I. Hazardous voltage

Danger Some components of the power system carry hazardous voltage in operation. Direct contact or indirect contact through moist objects with these components will result in fatal injury. Safety rules in the industry must be observed when installing the power system. The installation personnel must be licensed to operate high voltage and AC power. In operation, the installation personnel are not allowed to wear conductive objects such as watches, bracelets, bangles, rings. When water or moisture is found on the Subrack, turn off the power immediately. In moist environment, precautions must be taken to keep moisture out of the power system. "Prohibit" warning label must be attached to the switches and buttons that are not permitted to operate during installation.

Danger High voltage operation may cause fire and electric shock. The connection and wiring of AC cables must be in compliance with the local rules and regulations. Only those who are licensed to operate high voltage and AC power can perform high voltage operations. II. Tools

Warning In high voltage and AC operation, special tools must be used. No common or self-carried tools should be used. III. Thunderstorm

Danger Never operate on high voltage, AC, iron tower or mast in the thunderstorm. In thunderstorms, a strong electromagnetic field will be generated in the air. Therefore the equipment should be well earthed in time to avoid damage by lightning strikes.

IV. ESD

Notice The static electricity generated by the human body will damage the static sensitive elements on PCBs, such as large-scale ICs. Before touching any plug-in board, PCB or IC chip, ESD wrist strap must be worn to prevent body static from damaging the sensitive components. The other end of the ESD wrist strap must be well earthed. V. Short circuit

Danger During operation, never short the positive and negative poles of the DC distribution unit of the system or the non-grounding pole and the earth. The power system is a constant voltage DC power equipment, short circuit will result in equipment burning and endanger human safety. Check carefully the polarity of the cable and connection terminal when performing DC live operations. As the operation space in the DC distribution unit is very tight, please carefully select the operation space. Never wear a watch, bracelet, bangle, ring, or other conductive objects during operation. Insulated tools must be used. In live operation, keep the arm muscle tense, so that when tool connection is loosened, the free movement of the human body and tool is reduced to a minimum. VI. Dangerous energy

Warning 240VA, hazardous energy, keep off, no bridge connection. This converter contains outputs exceed 240VA, when installing into end system care must be taken that the output and appropriate wire may not be touched.

Battery Danger Before any operation on battery, read carefully the safety precautions for battery transportation and the correct battery connection method. Non-standard operation on the battery will cause danger. In operation, precautions should be taken to prevent battery short circuit and overflow of electrolyte. The overflow of electrolyte will erode the metal objects and PCBs, thus causing equipment damage and short circuit of PCBs. Before any operation on battery, pay attention to the following points: Remove the watch, bracelet, bangle, ring, and other metal objects on the wrist. Use special insulated tools. Use eye protection device, and take preventive measures. Wear rubber gloves and apron to guard against electrolyte overflow. In battery transportation, the electrode of the battery should always be kept facing upward. Never put the battery upside down or slanted.

BLVD The system has battery low voltage disconnection (BLVD) function. BLVD means when the mains fail and batteries supply power, the controller cuts the load off when the battery voltage drops down to below 43.2V to prevent over-discharge. The BLVD voltage is settable. Refer to ACU+ User Manual for setting method. The factory setting is enabling BLVD, which means that if power outage lasts for a long time or the power system fails, there might be BLVD. Users should classify the loads and connect the priority loads to BLVD routes. For vital loads, users can disable BLVD of these loads to insure reliability of the power supply. The method of disabling BLVD is: Set “BLVD Enable” item of the controller to “N”. Refer to ACU+ User Manual for setting method.

Notice The advantage of enabling BLVD is protecting the batteries from over-discharge when the battery voltage is low. The disadvantage of enabling BLVD is that when the battery voltage drops down to a certain value, all the loads (including non-priority loads and priority loads) will be cut off due to battery disconnection. The advantage of software disabling BLVD is prolonging the power supply of priority loads. The disadvantage is that software disabling cannot prevent unwanted power failure due to misoperation or power system failure.

Others I. Sharp object

Warning When moving equipment by hand, protective gloves should be worn to avoid injury by sharp object.

II. Cable connection

Notice Please verify the compliance of the cable and cable label with the actual installation prior to cable connection. III. Binding the signal lines

Notice The signal lines should be bound separately from heavy current and high voltage lines, with binding interval of at least 150mm.

Contents Chapter 1 Overview ............................................................................................................................................................ 1 1.1 Model Information ................................................................................................................................................. 1 1.2 Composition And Configuration ............................................................................................................................ 1 1.3 Features ................................................................................................................................................................ 4 Chapter 2 Installation Instruction ......................................................................................................................................... 5 2.1 Safety Regulations ................................................................................................................................................ 5 2.2 Preparation ........................................................................................................................................................... 5 2.3 Mechanical Installation.......................................................................................................................................... 6 2.4 Electrical Installation ............................................................................................................................................. 9 2.4.1 Power System Cabling Method ................................................................................................................. 9 2.4.2 Connecting AC Input Cables ................................................................................................................... 10 2.4.3 Connecting Load Cables ......................................................................................................................... 11 2.4.4 Connecting Battery Cables ...................................................................................................................... 11 2.4.5 Connecting Signal Cables ....................................................................................................................... 12 Chapter 3 Installation Testing............................................................................................................................................ 16 3.1 Installation Check And Startup ............................................................................................................................ 16 3.2 Basic Settings ..................................................................................................................................................... 16 3.3 Alarm Check And System Operation Status Check ............................................................................................ 17 3.4 Final Steps .......................................................................................................................................................... 18 Chapter 4 Use Of Controller .............................................................................................................................................. 19 4.1 Control Keypad And Indicator ............................................................................................................................. 19 4.1.1 Front Panel .............................................................................................................................................. 19 4.1.2 Indicator Function .................................................................................................................................... 19 4.1.3 Control Keypad Function ......................................................................................................................... 19 4.2 LCD Menu Tree .................................................................................................................................................. 20 4.2.1 Status ...................................................................................................................................................... 20 4.2.2 Settings.................................................................................................................................................... 21 4.2.3 Manual ..................................................................................................................................................... 28 4.2.4 ECO ......................................................................................................................................................... 28 4.2.5 Quick Setting ........................................................................................................................................... 28 4.2.6 Controller Setting ..................................................................................................................................... 29 4.3 WEB Interface Operation .................................................................................................................................... 30 4.3.1 Setting Up The Internet Explorer Web Browser ....................................................................................... 30 4.3.2 Logging Into The Controller ..................................................................................................................... 31 4.3.3 Homepage Introduction ........................................................................................................................... 32

4.4 WEB Bootloader Interface Operation .................................................................................................................. 36 4.5 Serial Bootloader Interface Operation ................................................................................................................. 37 Chapter 5 Alarm Handling ................................................................................................................................................. 41 5.1 Handling Alarms.................................................................................................................................................. 41 5.2 Handling Rectifier Fault....................................................................................................................................... 42 Appendix 1 Technical And Engineering Data .................................................................................................................... 44 Appendix 2 Installation Instruction Of Battery Rack .......................................................................................................... 48 1. Installation Instruction Of Two-Layer And Four-Layer Battery Rack ..................................................................... 48 2. Installation Instruction Of Three-Layer Battery Rack............................................................................................. 50 3. Fixing The Battery Rack........................................................................................................................................ 51 Appendix 3 Wiring Diagram............................................................................................................................................... 52 Appendix 4 Shematic Diagram .......................................................................................................................................... 60 Appendix 5 Glossary ......................................................................................................................................................... 68

Chapter 1

Overview

1

Chapter 1 Overview This chapter introduces model description, composition and configuration, and features. The “power system” in this manual refers to the NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 series 19 inch subrack power system.

1.1 Model Information Take NetSure 501 A41-S1 power system as an example, the model description is given in Figure 1-1.

NetSure 501 A 4 1 S 1 Cabinet configuration Cabinet type: Subrack Version The number of the rectifier in the typical power supply system: 4, If the number ranges between 0 ~ 9, the character is represented by a number, If the number is larger than 9, the character isrepresented by a letter, for example: A represents the number 10, B represents the number 11, and so on Region A : Asia- Pacific region Output power of the rectifier. 501: 1740W ~2000W. 701: 2900W ~5000 W Brand name of the power supply system

Figure 1-1 Model information

1.2 Composition And Configuration System composition The system consists of power distribution parts, rectifiers and controller. The internal structures of the systems are shown in Figure 1-2 to Figure 1-6.

Figure 1-2

NetSure 501 A41- S1/S2 system structure

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

2

Chapter 1

Overview

Positive terminals

Battery MCB

AC input MCB

Load MCB Rectifier Monitoring module Controller Dummy panel

Figure 1-3

Figure 1-4

Figure 1-5

NetSure 501 A91-S1 system structure

NetSure 701 A41 –S2/S4 system structure

NetSure 701 A41-S1/S3/S5 system structure

Figure 1-6

NetSure 701 A41-S5 system structure

System configuration The configurations of the power system are described in Table 1-1.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 1

Overview

3

Table 1-1 Configuration of fixed- configuration system Item Contorller

Rectifier

NetSure 501 A41-S1

NetSure 501 A41-S2

NetSure 501 A91-S1 NetSure 701 A41-S1 NetSure 701 A41-S2 NetSure 701 A41-S3 NetSure 701 A41-S4 NetSure 701 A41-S5

Model:

Model:

Model:

Model:

Model:

Model:

Model:

Model:

M221S/M222S

M820B

M221S/M222S

M221S/M222S

M221S/M222S

M221S/M222S

M820B

M221S/M222S

Model:

Model:

Model:

Model:

Model:

Model:

Model:

Model:

R48-1800A/R48-2000/ R48-2000e Standard configuration:4 pieces

R48-1800A/R48-2000/ R48-2000e Standard configuration:4 pieces

R48-1800A/R48-2000 /R48-2000e Standard configuration:9

R48-2900U/R48-320 0e/R48-3200/R48-35 00e/R48-4000e Standard configuration:3

R48-2900U/ R48-3200e R48- 3200 R48-3500e R48-4000e Standard configuration:4

R48-2900U/ R48-3200e R48- 3200 R48-3500e R48-4000e Standard configuration:4

R48-2900U/ R48-3200e R48- 3200 R48-3500e R48-4000e Standard configuration:4

R48-2900U/ R48-3200e R48- 3200 R48-3500e R48-4000e Standard configuration:5

pieces

pieces

pieces

pieces

pieces

pieces

AC power distribution

DC power distribution

L+N+PE/ 220Vac

L+N+PE/220Vac

3P+N+PE/380Vac

3P+N+PE/380Vac

3P+N+PE/ 220Vac L+N+PE/380Vac

3P+N+PE/ 380Vac L+N+PE/ 220Vac

BLVD load route:

BLVD load route:

BLVD load route:

BLVD load route:

BLVD load route:

BLVD load route:

BLVD load route:

BLVD load route:

1 × 100A/1P; 1 × 16A/1P, MCB LLVD load route:

2 × 10A/1P, 2 × 32A/1PMCB LLVD load route:

5 × 63A/1P, 5 × 32A/1P, 8 × 10A/1P MCB LLVD load route:

1 × 10A/1P MCB LLVD load route:

4 × 63A/1P, 6 × 32A/1P, 2 × 10A/1P MCB LLVD load route:

2 × 32A/1P, 2 × 16A/1P MCB LLVD load route:

2 × 63A/1P 4 × 32A/1P, 4 × 10A/1P MCB LLVD load route:

2 × 32A/1P, 2 × 16A/1P MCB LLVD load route:

1 × 100A/1P, 1 × 63A/1P, 2 × 32A/1P MCB

2 × 63A/1P, 2 × 32A/1P MCB

Not configured

4 × 40A/1P MCB

Not configured

2 × 63A/1P, 4 × 32A/1P, 2 × 16A/1P MCB

AC output MCB 1 × 16A/1P Optional Optional Optional Optional 1 × 16A/1P Battery MCB 2 × 63A/1P 2 × 125A/1P 2 × 125A/1P 2 × 125A/1P 2 × 125A/1P 2 × 125A/1P AC SPD 1 piece Optional Optional Optional Optional 1 piece DC SPD 1 piece Optional Optional Optional Optional 1 piece Top cover Optional Optional Optional Optional Optional Optional Size (mm) 483 × 360 × 222 483 × 360 × 222 483 × 360 × 445 483 × 360 × 267 483 × 360 × 267 483 × 360 × 267 BLVD contorller Contorller power-off Contorller power-on Contorller power-on Contorller power-on Contorller power-on Contorller power-off mode Weight (without the ≤ 25kg ≤ 25kg ≤ 25kg ≤ 25kg ≤ 25kg ≤ 25kg rectifier and controller) Notes: 1. Temperature sensor and connected cables, remote monitoring unit, battery rack. 2. Battery MCB: The default system configuration is two sets of batteries, if not, please readjust the battery MCB configuration according to actual situation. 3. The way of outage for control is cutting off the battery, disconnecting the monitor and storage battery, monitor dropping out and communication broken up

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

2 × 63A/1P, 4 × 32A/1P MCB

2 × 100A/1P 2 × 63A/1P, 2 × 32A/1P MCB Optional 2 × 125A/1P Optional Optional Optional 483 × 360 × 400 Contorller power-on

1 × 16A/1P 2 × 125A/1P 1 piece 1 piece Optional 483 × 360 × 267 Contorller power-off

≤ 25kg

≤ 25kg

4

Chapter 1

Overview

1.3 Features  The rectifier uses the active Power Factor Compensation (PFC) technology, raising the power factor to 0.99.  Wide AC input voltage range: 85V ~ 290V (NetSure 701 A41) or 85Vac ~ 300Vac (NetSure 501 A41 & NetSure 501 A91).  The rectifier uses soft switching technology, raising the system rated efficiency to 91%.  Ultra-low radiation. With advanced EMC design, the rectifier meets international standards such as CE and NEBS. Both the conducted and radiated interference reach Class B.  The rectifier safety design complies with UL, CE and NEBS standards.  High power density.  Rectifiers are hot pluggable. It takes less than 1min to replace a rectifier.  Two over-voltage protection methods are optional: hardware protection and software protection. The latter one also has two optional modes: lock-out at the first over-voltage and lock-out at the second over-voltage.  Perfect battery management: The management functions include the LLVD (optional), BLVD, temperature compensation, auto voltage regulation, stepless current limiting, battery capacity calculation and on-line battery test, etc.  M221S and M222S support historical alarm record up to 200 and historical record up to 1000. And M820B supports historical alarm record up to 3000 and historical record up to 60000  10 sets of battery test data records.  Network design: Providing multiple communication ports (such as RS232, modem and dry contacts), which enables flexible networking and remote monitoring. M820B support the USB communication interface.  Perfect lightning protection at AC side and DC side.  Complete fault protection and fault alarm functions.  NetSure 701 A41-S3, NetSure 701 A41-S5 and NetSure 501 A41-S1 adopt the way of outage for control, This way effectively prevents the storage battery from deeply discharging after system battery protection drops out and hence prevents the unattended outdoors and indoors server rooms from the damage due to the deep discharge.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2

Installation Instruction

5

Chapter 2 Installation Instruction 2.1 Safety Regulations Certain components in this power system have hazardous voltage and current. Always follow the instructions below: 1. Only the adequately trained personnel with satisfactory knowledge of the power system can carry out the installation. The most recent revision of these safety rules and local safety rules in force shall be adhered to during the installation. 2. All external circuits that are below 48V and connected to the power system must comply with the requirements of SELV as defined in IEC 60950. 3. Make sure that the power (mains and battery) to the system is cut off before any operations can be carried out within the system subrack. 4. The power subracks shall be kept locked and placed in a locked room. The key keeper should be the one responsible for the power system. 5. The wiring of the power distribution cables should be arranged carefully so that the cables are kept away from the maintenance personnel.

2.2 Preparation Unpacking inspection The equipment should be unpacked and inspected after it arrives at the installation site. The inspection shall be done by representatives of both the user and Emerson Network Power Co., Ltd.To inspect the equipment, you should open the packing case, take out the packing list and check against the packing list that the equipment is correct and complete. Make sure that the equipment is delivered intact. Cables The cable design should meet relevant industry standards. It is recommended to use the RVVZ cables as AC cables. The cable should reach at least +70°C temperature durability. With cable length shorter than 30 meters, the Cross-Sectional Area (CSA) calculation should be based on 2 the current density of 3.5A/mm . The suggested CSA value is no less than the Table 2-1. Table 2-1 Load cable CSA selection AC MCB rated current 125A 100A 63A

Max. battery current 105A 80A 50A

Min. cable CSA 35mm2 25mm2 16mm2

Max. cable length 50mm2 50mm2 25mm2

The CSA of DC cable depends on the current flowing through the cable and the allowable voltage drop. To select the battery cable CSA, see Table 2-2. Select the DC load cable CSA according to the Table 2-3. Table 2-2 Battery cable CSA selection Battery MCB rated current Max. battery current Min. cable CSA Max. cable length (volt drop: 0.5V, with max. CSA) 125A 105A 35mm2 6m 63A 50A 16 mm2 5m Note: 1. The specs are applicable at ambient temperature of 25°C. If the temperature is higher or lower than this, the CSA of the cable should be increased. 2. The battery cable should reach at least +90°C heat durability. It is recommended to use double-insulated copper-core flame retardant cable as battery cable

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

6

Chapter 2

Installation Instruction Table 2-3 DC load cable selection

Load route rated Max. output Min. cable Max. cable length (volt drop: Max. cable length (volt drop: Max. cable CSA current current CSA 0.5V, with min. CSA) 0.5V, with max. CSA) 100A 80A 25mm2 14m 50mm2 20m 63A 50A 16mm2 9m 25mm2 14m 32A 25A 10mm2 11m 25mm2 29m 16A 12A 6mm2 14m 25mm2 48m 10A 8A 6mm2 23m 25mm2 98m Note: The specs are applicable at ambient temperature of 25°C. If the temperature is higher than this, the CSA of the cable should be increased

To prevent the air switching capacity is too large, the load overload does not work. Recommended the capacity of the air switching is up to 1.5 ~ 2 times of the load peak. The CSA of the system grounding cables should be consistent with the largest power distribution cables. The CSA 2 value is no less than 25mm . AC and DC power distribution interface definition see Table 2-4. Table 2-4 AC and DC power distribution interface definition Connector name

AC power distribution

DC power distribution

Connector specifications

Wiring instructions

AC input MCB

H type terminal, max. cable CSA 35mm2 (Single-phase power input) H type terminal, max. cable CSA 25mm2 (Three -phase power input)

AC power line

Grounding busbar

One M8 bolt, OT type wiring terminal, max. cable CSA 35mm2

Connected to the grounding bar of the equipment room

Battery output MCB

H type terminal, max. cable CSA 25mm2 (63A and below) H type terminal, max. cable CSA 50mm2 (capacity above 63A)

Connected to the battery port

Negative output MCB

H type terminal, max. cable CSA 25mm2 (63A and below) H type terminal, max. cable CSA 50mm2 (capacity above 63A)

Connected to the users load port

Positive busbar

Terminal subrack terminal: cable CSA ≤ 50mm2

Connected to the users load port

2.3 Mechanical Installation 

Note

1. The cabinet or rack the subrack power supply system installed in must provide fireproof and electric protection casing, or install in cement or other difficult to burn, at the same time and other combustible materials to keep enough distance. 2. For the convenience of maintenance, users should maintain a clearance of 800mm at the front of the power supply system. 3. Subrack cannot be installed against the wall, it must leave enough space for heat dissipation. Installed on battery bracket 1. Fix the subrack power system to the battery bracket through the connectors with M6 bolts, as shown in Figure 2-1.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2

Installation Instruction

Subrack power system

M6 screw M6 screw

Connector

Connector

Battery bracket

Figure 2-1

Cabinet and rack installation

Installed in cabient Insert the subrack power system to the matching cabinet, as shown in Figure 2-2.

Subrack power 电源插框 system

Figure 2-2 Installed in the cabinet system

The engineering graphics of the subrack power system as shown in Figure 2-3 to Figure 2-8.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

7

8

Chapter 2

Installation Instruction

Figure 2-3 Installation size of NetSure 501 A41 (unit: mm)

445

Figure 2-4 Installation size of NetSure 501 A91 (unit: mm)

Figure 2-5 Installation size of NetSure 701 A41-S1 (unit: mm)

Figure 2-6 Installation size of NetSure 701 A41-S2/S3 (unit: mm)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2

Installation Instruction

Figure 2-7 Installation size of NetSure 701 A41- S4 (unit: mm)

265.0

438.5 482.6

Figure 2-8 Installation size of NetSure 701 A41-S5 (unit: mm)



Note

1. Tighten the captive screw of the MFU and DU Panel by the cross head screwdriver when there is no operation. 2. Also tighten the handle of the 501 modules by the cross head screwdriver. 3. Please plug in the new modules or installing a new panel after removing the rectifier module.

2.4 Electrical Installation 2.4.1 Power System Cabling Method Cabling from the top of the power system DU unit and MFU unit are available for the system top cover cabling. For DU unit cabling: Cabling from the cable outlet area and then fixed to the cable-bundling plate and the top edge. As shown in Figure 2-9.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

9

10

Chapter 2

Installation Instruction

Cable outlet area

Cable-bundling plate Cable outlet area

Figure 2-9

Cable entry Illustration of the DU unit

The MFU unit cabling is shown in 2-10.

Figure 2-10

Cable entry Illustration of the MFU unit

Cabling from side of the power system Use a cross head screwdriver to remove two screws which fix the cabling panel at side of cabling area, then the cable can be led out from the cabling area, as shown in Figure 2-11. 螺钉

出线板 (出线空间)

Figure 2-11 Side cable cabling Illustration

2.4.2 Connecting AC Input Cables

Danger 1. Switch off all MCBs before the electrical connection. 2. Only the qualified personnel can do the mains cable connection. Take the NetSure 701 A41 power supply system as an example, the position of the terminals are shown in Figure 2-12.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2

Installation Instruction

11

Figure 2-12 Illustration of the connection terminal



Note

If the user selects the subrack with AC input terminal, no overcurrent or short circuit protection function, then configuration of the overcurrent and grounding protection device is required for the subrack upstream. For selection of the detailed protection device specification, please contact the Emerson local technical support center.

2.4.3 Connecting Load Cables Connect the negative cable of the load to the upper terminal of load MCB. Connect the positive cable of the load to the DC positive busbar, as shown in Figure 2-13.

Figure 2-13 Illustration of the load cable connection terminal

2.4.4 Connecting Battery Cables 

Note

1. The batteries may have dangerous current. Before connecting the battery cables, the corresponding battery input MCBs or the battery cell connector must be disconnected to avoid live state of the power system after installation. 2. Be careful not to reverse connect the battery. Otherwise, both the battery and the power system will be damaged! 1. Connect one end of the negative battery cable to the upper terminal of battery MCBs. Connect one end of the positive battery cable to the DC positive bus bar. 2. Connect copper lugs to the other end of the battery cables. Bind the connecting parts with insulating tape, and put them beside the battery. Connect the cables to the battery when the DC distribution unit is to be tested. As shown in Figure 2-14. Positive terminal Battery MCB

Figure 2-14 Illustration of the battery connection terminal

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

12

Chapter 2

Installation Instruction

2.4.5 Connecting Signal Cables There are two user interface board of the power system can optional, respectively the W2453X1 user interface board and IB2 user interface board. The W2453X1 user interface board is used together with the M221S monitoring unit or M222S monitoring unit only; and the IB2 user interface board is used together with the M820B monitoring unit only. W2453X1 user interface board cable connection Take the NetSure 501 A41 power supply system as an example, the position of the user connector board (W2453X1) is shown in Figure 2-15.

Figure 2-15 W2453X1 user interface board Illustration

At most two user connector boards are allowed in the power supply system. Standard cabinet is only configured with one user connector board. With one user connector board configured, the power supply system provides three external digital signal input interfaces: DI2, DI3, DI4 (DI1 is used for DC SPD alarm. If no DC SPD is configured in the power supply system, DI1 is available) and four dry contact alarm output interfaces: DO1, DO2, DO3, DO4. With two user connector boards configured, the power supply system provides additional four dry contact alarm output interfaces: DO5, DO6, DO7, and DO8.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2

Installation Instruction

13

The functions of the interfaces are shown in Table 2-5. Table 2-5 nterface functions Type Dry contact 1 Dry contact 2 Dry contact 3 Dry contact 4 Dry contact 5 Dry contact 6 Dry contact 7 Dry contact 8

Default alarm AC power failure DC overvoltage or DC undervoltage Rectifier alarm Priority LLVD Non-priority LLVD / / /

Description / Four-level DC voltage alarms Except rectifier lost and multi-rectifier alarm / / / / /

With default settings, when the preceding alarms are generated, the contactors of the corresponding dry contacts should change their status, that is, the normally-open contactors close, and the normally-closed contactors open. All the status changes should be verified by a multimeter. After the alarms are removed, the dry contacts should resume. The default settings of the dry contact alarms can be changed through the controller. The interfaces of the user connector board are shown in Figure 2-16.

Figure 2-16 W2453X1 user connector board interface

IB2 user interface board The external input and output signals are all connected to the IB2 user interface board. For the ports on the IB2 user interface board, see Figure 2-17.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

14

Chapter 2

Installation Instruction

Figure 2-17 IB2 user interface board definition



Note

1. J11 and J12 are temperature sensor ports. They are not used here. 2. J2 is I2C interface, and provides the power. See Table 2-6 for the dry contact terminal definition. Table 2-6 Dry contact terminal definition Name of double-layer port

J3

J4

J5

J6

J7

Pin No. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5

Pin name DI1DI1+ DI2DI2+ DI3DI3+ DI4DI4+ DI5DI5+ DI6DI6+ DI7DI7+ DI8DI8+ NA NA DO1_NC DO2_NC DO1_COM DO2_COM DO1_NO

Definition Digital input 1Digital input 1+ Digital input 2Digital input 2+ Digital input 3Digital input 3+ Digital input 4Digital input 4+ Digital input 5Digital input 5+ Digital input 6Digital input 6+ Digital input 7Digital input 7+ Digital input 8Digital input 8+ / / NC contact of relay 1 NC contact of relay 2 Common contact of relay 1 Common contact of relay 2 NO contact of relay 1

6

DO2_NO

NO contact of relay 2

1 2 3

DO3_NC DO4_NC DO3_COM

NC contact of relay 3 NC contact of relay 4 Common contact of relay 3

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 2 Name of double-layer port J7

J8

J9

Pin No. 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Pin name DO4_COM DO3_NO DO4_NO DO5_NC DO6_NC DO5_COM DO6_COM DO5_NO DO6_NO DO7_NC DO8_NC DO7_COM DO8_COM DO7_NO DO8_NO

Installation Instruction

15

Definition Common contact of relay 4 NO contact of relay 3 NO contact of relay 4 NC contact of relay 5 NC contact of relay 6 Common contact of relay 5 Common contact of relay 6 NO contact of relay 5 NO contact of relay 6 NC contact of relay 7 NC contact of relay 8 Common contact of relay 7 Common contact of relay 8 NO contact of relay 7 NO contact of relay 8

The definition of dry contact function can be set through controller or WEB browser. The specifications of the dry contact ports are as follows: Digital inputs: 8-route, opto-isolation, the alarm and high/low level are definable (high level: 20V ~ 60V, low level: less than 1V). Digital output: 8-route, relay isolation, maximum: 30Vdc 1A, 125Vac 0.5A; 60W; minimum: 10uA @ 10Vdc, alarm is definable. Connecting Communication Signal Cable The communication port of the M221S controller is shown in Figure 2-18. The M222S only provides the RS232 communication serial port, whereas the Ethernet port is not provided.

Figure 2-18 M221S controller communication port

The communication port of the M820B controller is shown in Figure 2-19.

Figure 2-19 M820B controller communication port

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

16

Chapter 3

Installation Testing

Chapter 3 Installation Testing This chapter introduces procedures of installation testing. The corresponding safety rules shall be adhered to in the test.

3.1 Installation Check And Startup Before the test, inform the chief manufacturer representative. Only trained electrical engineer can maintain and operate this equipment. In operation, the installation personnel are not allowed to wear conductive objects such as watches, bracelets, bangles and rings. During operation, parts of this equipment carry hazardous voltage. Misoperation can result in severe or fatal injuries and property damage. Before the test, check the equipment to ensure the proper earthing. Installation check must be done before testing. Then the batteries can be charged for the first time. Make sure that the AC input MCBs, battery MCBs and load MCBs are switched off. Make sure that all the devices are properly installed. Installation check Check all the MCBs and cables. Are their models correct? Check the bus bar connections, input and output cable connection, and connection between the power system and the system grounding. Check the if the number and connections of the batteris are correct. Check the polarity of the battery string with a voltmeter. Make sure all the cable connections are firm and reliable.

OK 

Comments

  

Startup preparations Make sure that all the MCB are switched off. Measure the AC input voltage. Make sure the input voltage is within the allowable range. Check that the communication and alarm cables are connected to the signal transfer board. Check that the temperature sensor, if any, has been installed. Check that the battery string circuit is not closed. Connect the disconnected batteries to the battery string circuit Switch off unconnected battery MCBs. Check that the battery signal cables are connected to battery MCBs reliably, not loosened or suspended Measure with a voltmeter across the connection points of each battery and make sure that the polarity is right. For a lead-acid battery with 24 cells, the voltmeter should read 2.0-2.1V/cell or 48-51V/battery. If the voltage of certain cell is lower than 2.0V, that cell must be replaced. Check with an ohmmeter that there is no short circuit between the positive & negative distribution bus bars, or between the positive & negative battery poles (Note: Pull out all modules before the check and restore them after the check)

OK        

Comments Umin=___V

Umin=___V



Startup Switch on the system AC input MCB. The green LED on the rectifier will be on and the fan will start running after a certain delay. The controller will show that the power supply voltage is 53.5V. Check the system voltage and busbar polarity with a voltmeter. The voltage difference between the measured value and displayed value should be less than ± 0.2V. Start and stop each rectifier of the system by unplugging and inserting each rectifier. Check their output voltages.

OK 

Comments

 

3.2 Basic Settings When the system is put into service for the first time, the parameters of controller must be set based on the actual system configuration, such as battery number, capacity, user’s charge current limit and other functional requirements. Only after that can the controller display system operation information and control the output.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 3

Installation Testing OK

Comments

The system model has been set correctly in factory before delivery, check that the setting agrees with the actual system: NetSure 701 A41-S1:48V/SET;Set the battery shunt coefficient for:175A/25mV; NetSure 701 A41-S2~S5:48V/SET;Set the battery shunt coefficient for:300A/25mV;



NetSure 501 A41-S1:48V/SET;Set the battery shunt coefficient for:175A/25mV; NetSure 501 A41-S2:48V/SET;Set the battery shunt coefficient for:300A/25mV; NetSure 501 A91-S1:48V/SET;Set the battery shunt coefficient for:300A/25mV The DC over-voltage alarm point has been set correctly in factory before delivery, check that the setting agrees with the actual system: Set DC over-voltage alarm: 58V Check that the parameter Setting→Alarm Settings→Alarm mode, check that the mode is set to “High” The battery string number set at the controller should be the same as the number actually connected. (By default: 2) Set the battery capacity according to the actual capacity of the battery connected to the system. Default: 300Ah Configure the temperature coefficient according to the battery manufacturer’s requirement. Setting range: 0-500mV/°C. By default: 72mV/°C. (if no temperature sensor is installed, do not set this parameter) Set the charge current limit according to your needs. Setting range: 0.1~0.25C10. (By default: 0.1C10) Set the controller according to the voltage suggested by the battery supplier. Floating Charge (FC) voltage range: 42V ~ Boost Charge (BC) voltage. Default: 53.5V. BC voltage range: FC voltage ~ 58V. By default: 56.4V. For batteries that do not need BC, set the BC voltage to FC voltage plus 0.1V Put through the battery MCBs and connect the batteries

   

 





3.3 Alarm Check And System Operation Status Check Alarm check Check that all functional units can trigger alarms that can be displayed on the controller. Pull out one rectifier. The “Rect N Com Failure” alarm should be triggered. Insert the rectifier in. The alarm should disappear. Repeat the same procedures on other rectifiers. Remove battery MCB 1. The “Batt1 Failure” alarm should be triggered. Put on the MCB. The alarm should be cleared. Repeat the same on battery MCB 2. Switch off a load MCB connected to a load route. The alarm “Load N Failure” should be triggered. Switch on the MCB, and the alarm should be cleared. Repeat the same on the other load MCBs. Remove all the battery input MCBs. Keep only one rectifier in operation. Through the controller, adjust the rectifier FC voltage to make it lower than the alarm point. The alarm “DC Voltage Low” should be triggered. Keep the rectifiers in operation. Set through the controller the battery management parameter to “Manual”. Enter the maintenance menu at the controller. Select “Disconnect” and confirm it. The battery protection contactor should be open, and the “BLVD” alarm should be displayed at the controller. Note: when the preceding alarms are generated, the controller will give alarms after approximately 3s.

OK 

Comments

  



System operation status check There should be no alarms during normal system operation. The system operation status check can be conducted through the controller. Check that the system type agrees with the actual system when the system operates The controller should display the correct AC voltage. The controller should be able to display the DC voltage. The difference between the displayed voltage and that measured at the bus bar should be less than 1%. The controller should display the battery current. The difference between the displayed and measured battery current should be less than 1%. Check the number of the rectifier through the controller. The number should be consistent with the actual number. Check the voltage, current, current limiting point of rectifiers through the controller. They should agree

OK      

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

Comments

17

18

Chapter 3

Installation Testing OK

with the actual parameters. For the system configured with temperature sensor, the controller should be able to display the battery ambient temperature. Hold the probe of the temperature sensor with hand and watch the controller, which should diplay the change of temperature.

Comments



3.4 Final Steps Disconnect all test equipment from the system and make sure that materials irrelevant to the equipment have been all removed. Restore the equipment to its original condition and close the cabinet door. Check and handover the equipment that the user has purchased. Note down all the operations taken, including time of the operation and name of the operator.

OK 

Comments

  

If any defect is found in this equipment, inform the personnel responsible for the contract. If repairing is needed, please fill in the FAILURE REPORT and send the report together with the defective unit to the repairing center for fault analysis.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

19

Chapter 4 Use Of Controller The controller modules of this power system are M221S, M222S and M820B. The M820B control module for details please refer to the ACU+ User Manual. This chapter introduces the front panel and functional keys briefly, and expounds screen contents, access method, system controlling, information querying and parameter setting. After the controller is powered on, the language selection screen will pop up, and the controller is initialized. The default language is Chinese. After the initialization, the first system information page will appear.

4.1 Control Keypad And Indicator 4.1.1 Front Panel There are backlit LCD display, functional keypad, indicators and positioning pin on the front panel of M500D controller, as shown in figure 4-1.

Figure 4-1 Front panel of M500D controller

4.1.2 Indicator Function The function of the indicators is shown in table 4-1. Table 4-1 Functions of Indicators Indicator

Normal State

Fault State

Fault Cause

Status (green)

On

Off

If this LED is on, this means the system is operating normally

Observation Alarm (yellow)

Off

On

The power system has one or more active observation alarms. Alarm conditions are programmable. Refer to Table 3-3 for defaults

Major Alarm (red)*

Off

On

The power system has one or more active major alarms (Major and Critical Alarms). Alarm conditions are programmable. Refer to Table 3-3 for defaults

Note: A Major Alarm initiates an alarm report if alarm report is enabled

4.1.3 Control Keypad Function The function of the control keypad is shown in table 4-2. Table 4-2 Function of Keys on the Panel Key Symbol

Key Name

ENT

Enter



Up



Down

ESC

Escape

Function Confirm or Execute Move Up Cursor or Select the Previous Screen Move Down Cursor or Select the Next Screen Escape or Cancel

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

20

Chapter 4

Use Of Controller

4.2 LCD Menu Tree The overall menu structure is shown in Figure 3-5. 09:20:20 Float 53.4V 404A Manual Normal 08 -11 - 03 Float 53.4V 404A Manual Normal

ENT MAIN MENU Status Settings Manual ECO Quick Settings

ENT

STATUS Active Alarm Rectifiers History Alarm

SETTINGS Alarm Battery AC DC Rectifier Controller Communication

MANUAL Sys Mode: Auto ▼ In Manual

ECO Disable CycPeriod: 168h RectWork: 80% Rect Limit: 1 System Type: 48V / set Capacity: 300Ah LCD Rotation: On

Figure 4-2 Main menu screen

4.2.1 Status In the screen of MAINMENU, when cursor is at ‘Status’, press ‘ENT’ to go to the status screen: Status Active Alarm Rectifiers History Alarm

ALARM: 2/2 ALARM: 1/2 ENT Batt Volt Low ENT Batt Discharge Critical Alarm Observation Alarm Start Time: Start Time: 081104 15:52:55 081104 15:52:53 RECTIFIER 1/3 ID: 02070801232 R48800B00 DC Volt: 53.4V DC Curr : 0.0A Curr Limit: 109% AC Volt: 201V AC Status: On DC Status: On AC Derated : N Temp Derated : N

ALARM 001 ENT SPD Fault 08- 07 -10 11:35:22 08- 07 - 10 12:35:22

ALARM 002 DC Volt Low 08 - 07-10 11:35:25 08 - 07-10 12:35:25

Figure 4-3 Status screen

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

21

In the status screen, you can move the cursor to ‘Active Alarm’, ‘Rectifiers’, and ‘History Alarm’ respectively and press ‘ENT’ to check the information of active alarm, rectifiers, and history alarm. The rectifier screen shows the information of first rectifier, if you want see the information of next rectifier, just press ‘ENT’. In screen of ‘Active Alarm’, ‘Alarm 1/2’, ‘1/2’ means there are 2 active alarms and this screen is displaying the first active alarm. The alarm level and alarm start time are displayed in the screen In the screen of ‘History Alarm’, the ‘ALARM 001’ means this screen is displaying the first history alarm. The alarm start time and end time are displayed in the screen.

4.2.2 Settings In the Main Menu screen, move the cursor to the item of ‘Setting’ and press ‘ENT’ to enter the Setting menus. Before you access the Setting menu, the system will require you to enter the password first. Method of entering password: For example, to enter the password of ‘640275’: Press ‘ENT’, and the bit will be highlighted, now you can press ▲ or ▼ continuously to enter the numbers from 0 to 9, or enter the letters from ‘a’ to ‘z’ or from capital letter ‘A’ to ‘Z’. After entering ‘6’, press ‘ENT’ and the cursor will move to the next bit, and in the same way, press ▲ or ▼ continuously to enter ‘4’, and you can enter the rest bits ‘0275’ in the same way. ALARM Alarm Level Alarm Control DI Setting

AC Over Volt: 280V Under Volt: 180V PH Fail: 80V AC Input: N AC PH: 3-PH

SETTINGS Alarm Battery AC DC Rectifier Controller Communication

RECTIFIER Position: Disabl R -Posi: 1-1 HVSD: 59.0V Default V: 53.5V Walk-in On: N Walk-in T: 8s Interval T: 0s AC OverV On: N ACCurrLim : 30A CONTROLLER Lang: English Tzone: GMT + 08:00 Date: 2009-03 -23 Time: 22:17:18 System Type: 48V/1000A DownloadMode:N Reset PWD: N Reset Para: N Oper1PWD: ****** Oper2PWD: ****** AdminPWD: ******

BATTERY Basic LVD Charge Test Temp Comp DC Over Volt2: 58.2V Over Volt1: 58.5V Under V1: 45.0V Under V2: 45.0V Amb High: 40C Amb Low: - 5C

COMMUNICATION Address: 1 CommMode : RS232 Protocol: YDN23 BaudRate: 9600 IP/Subnet/Gate: 10.163.210.91 255.255.255.0 10.163.210.1 CallbackTime: 3 PhoneNumber: 86010677 86010808

Figure 4-4 Settings screen

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

22

Chapter 4

Use Of Controller

In the Setting menu, there are 7 items that are ‘Alarm’, ‘Rectifier’, ‘LVD’, ‘AC’, ‘DC’, ‘Controller’ and ‘Communication’ respectively. Move the cursor to ‘Rectifier’ and press ENT, you can configure the following rectifier parameters: Position: Enable or disable the shelf setting. R-Posi: rectifier position in shelf. HVSD: high voltage shut down, rectifier will shut down when its output voltage exceeds this HVSD point. Default V: rectifier default output voltage. Walk-in ON: rectifier walk-in function (soft start) is enabled. Walk-in T: rectifier walk-in time (soft start time). Interval T: rectifier sequential startup interval. AC OverV on: rectifier will shutdown when AC input exceeds AC over voltage point. ACCurrLim: rectifier current limiting value during startup process. Move the cursor to ‘AC’ and press ENT, you can configure the following AC parameters: Over Volt: set the over voltage protection point. Under Volt: set the under voltage protection point. PH Fail: set the phase failure voltage point. AC PH: can set the AC input to 3-phase or single phase (‘1-PH’). Move the cursor to ‘DC’ and press ENT, you can configure the following DC parameters: Over Volt2: set the over voltage protection point2. Over Volt1: set the over voltage protection point1. Under V1: set the DC output under voltage point 1. Under V2: set the DC output under voltage point 2. AmbHigh: set the high ambient temperature. AmbLow: set the low ambient temperature. Move the cursor to ‘Controller’ and press ENT, you can configure the following controller parameters: Lang: set the display language of LCD, you can select English or your local language. Tzone: set the time zone. Date: set the current date. Time: set the current time. System Type: set the system type. DownloadMode: enter the download mode through serial port. Reset PWD: Reset the password to default. Reset Para: Reset parameters to default. Oper1PWD: set the password of operator 1. Oper2PWD: set the password of operator 2. AdminPWD: set the password of administrator. There are three levels password. Default passwords: 1 for operator1, 2 for operator2, and 640275 for administrator. Only administrator can transfer to serial and web download mode and reset the password. Operator2 can change the system type and reset the parameters. Move the cursor to ‘Alarm’ and press ENT, you can enter the alarm menus:

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4 Alarm Alarm Level Alarm Control DI Setting

ENT

ALARM LEVEL ENT ALARM LEVEL Alarm Block SPD fault Severity: Severity: Observation Alarm Major Alarm Out Relay: 0 Out Relay: 0

Use Of Controller

23

ENT ALARM LEVEL LFuse Alarm Severity: Critical Alarm Out Relay: 6

ALARM CONTROL Alm Voice: Open Clear: History

DI SETTINGS DI NO.: 1 Digital1 Alarm Active: High

Figure 4-5 Alarm screen

Alarm level setting In the submenu of alarm level setting, move cursor before ‘Alarm Block’, press ‘ENT’, then you can set the alarm levels of other alarms such as ‘SPD fault’, ‘LFuse Alarm’, ‘Digital3 Alarm’, etc. In the submenu of alarm level setting, you can set the alarm level of each alarm to observe alarm, major alarm, or critical alarm. You can also set the output relay number that outputs the alarm signal. The characteristics of 4 alarm categories are given in the following table: Table 4-3 characteristics of 4 alarm categories

Alarm levels

Red alarm indicator of controller and system

Yellow alarm indicator of controller and system

Alarm buzzer

Alarm report

Remark

CA (critical alarm)

On

On

Yes

Alarm report is enabled

MA (major alarm)

On

On

Yes

Alarm report is enabled

On

Off

No

Off

Off

No

OA (observation alarm) No alarm

Off

Note: 1. The alarm levels of temperature sensor disconnected alarm and temperature sensor failure alarm, and the corresponding relay output cannot be set through the LCD. The alarm levels of these two alarms and the corresponding relay are the same with those of the high temperature alarm setting. 2. If the analog alarm has two levels of alarm thresholds, and if these two alarm thresholds are set to the same value, then the second level will be cancelled and the first level of the alarm will be displayed in LCD. For example: If the alarm threshold of ‘high temperature 1’ is set to the same with the threshold of ‘high temperature 2’, and if this threshold is set to 40 deg C, then when the temperature exceeds 40 deg C, the system will only issue ‘high temperature 1 alarm’, and will not issue the ‘high temperature 2 alarm’. In the alarm level setting submenu, you can also set the output relay no. for the corresponding alarm. Alarm control menu For the submenu of ‘AlmVoice’ of alarm control menu, you can set it to ‘Open’(audible alarm is enabled) or ‘Close’ (no audible alarm), and you can also set the time of audible alarm and the time can be ‘3min’, ‘10min’, ‘1h’ and ‘4h’. For the submenu of ‘Block Alarm’, you can set ‘Y’ or ‘N’ to select whether the alarm should be blocked or not. For the submenu of ‘Clear’, you can select ‘History’, ‘ECOFail’, ‘Maintain’, ‘ShortTest’, ‘TestFail’ ,’Rect Lost’ ‘Rect Commb’ and ‘Rect Not respond’ to clear corresponding alarm.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

24

Chapter 4

Use Of Controller

DI SETTINGS All the alarms can be configured with No.1 to No.8 alarm contacts. ‘0’ means no alarm dry contacts. All the alarm dry contacts provide NC (normally closed) or NO (normally opened) output and the default alarm dry contacts are given in the following table. Table 4-4 Default alarm dry contact setting Dry contact No.

Default alarm

Dry contact 1

Mains Failure

Dry contact 2

DC Under Volt or DC Over Volt

Dry contact 3

Rectifier alarm

Dry contact 4

LVD2

Dry contact 5

LVD1

Dry contact 6

None

Dry contact 7

None

Dry contact 8

None

Table 3-5 lists the alarms that you can scroll through in the ALARM SETTINGS/ALARM LEVEL menu, and also shows their factory default ‘Alarm Level’ and ‘Mapped Output Relay’ settings. Table 4-5 Controller Alarms and Factory Default Settings Alarm name Alarm Block Batt Imbalance

Alarm description

Condition

Default alarm level

Alarm Block

Alarms are blocked by the LCU+

Observation

Batt Imbalance

Battery middle voltage out of the range of ( bus voltage /2) ± 0.6

Major

Into and out of save power status for 5 times in one hour

Major

SavePowerF SavePowerFault ault

Default mapped output relay

Save Power

Save Power Function System is in save power status

Observation

AC High

AC Voltage High

Input phase voltage higher than AC High point

Observation

AC Low

AC Voltage Low

Input phase voltage lower than AC Low point

Observation

AC PH Fail

AC Phase Fail

Input phase fails

Observation

Temp High2

Temperature High 2

Ambient/ Battery temperature higher than Temperature High 2

Major

Temp High1

Temperature High1

Ambient/ Battery temperature higher than normal operation range

Major

Temp Low

Temperature Low

Ambient/ Battery temperature lower than normal operation range

Observation

Batt Over Chg

Battery Over Charge

The charging current over the maximum value

Observation

DC Volt High+

DC Voltage High+

System output voltage much higher than float charge voltage

Critical

2

DC Volt High DC Voltage High

System output voltage higher than float charge voltage

Critical

2

DC Volt Low

System output voltage slightly lower than float charge voltage

Critical

2

DC Volt Low- DC Voltage Low-

System output voltage is much lower than float charge voltage

Critical

2

Rect HVSD

Rectifier HVSD

Rectifier HVSD circuit activated

Major

3

Rectifier LoadShare

The difference between rectifier output current and average output current larger than 8A (+/-4A), and the load of the rectifier greater than 10% of its capacity

Observation

3

Rect Derated Rectifier Derated

The output power of at least one rectifier is derated because of AC undervoltage or overtemperature

Observation

3

Rect Fan Fails

Rectifier Fan Fails

Fan of at least one rectifier fails

Major

3

Rect Protect

Rectifier Protect

AC input voltage out of the range of 85Vac to 295Vac results in at least one rectifier protected

Observation

3

Rect LoadShare

DC Voltage Low

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4 Alarm name

Alarm description

Condition

Use Of Controller

Default alarm level

25

Default mapped output relay

Rect Failure

Rectifier Failure

Serious load sharing alarm (the output current of the rectifier is lower than 1A, and the average load is Critical greater than 10% of the total rectifier capacity)

Rect TempHigh

Rectifier Temperature High

High temperature protection activated in at least one Major rectifier

3

Rect AC Fail

Rectifier AC Fail

AC input voltage lower than 80Vac

Major

3

Rect Comm Fail

Rectifier Communication Fail

Rectifier(s) unable to communicate with LCU+

Major

3

MultiRect Alarm

Multi rectifier Alarm

Two or more rectifiers have alarms

Critical

System Maintain

System Maintain

System has not been maintained within preset maintenance time

None

Rect Lost

Rectifier Lost

Rectifier reduction detected

Critical

Rect OverLoad

Rectifier OverLoad

Total load current greater than the High Load value

Observation

Mains Failure

Mains Failure

AC input voltage lower than 80Vac

Major

1

LVD2

LVD2

LVD contactor 2 open due to low battery voltage

Critical

4

LVD1

LVD1

LVD contactor 1 open due to low battery voltage

Critical

5

Batt Test Fail Battery Test Fail

Battery discharge test failure (battery voltage is Observation lower than setting value before test time is reached)

DC Volt Fail

DC Voltage Fail

The difference between bus voltage and the set output voltage larger than the set value

Observation

Curr Imbalance

Current Imbalance

The total output current not equal to the sum of the battery current and the load current

Observation

Batt Discharge

Battery Discharge

Batteries are discharging

Observation

Batt Test

Battery Test

The batteries are testing

None

Boost Charge

Boost Charge

The batteries are in boost charge state

None

Manual Mode

Manual Mode

The system is in manual mode

Observation

SelfDetect Fail

SelfDetect Fail

LCU+ detects error in hardware self test

Observation

LVD2Ctrl Fail LVD2 Control Fail

After battery disconnection/ connection signal is sent out, the feedback signal of the contactor is false

Critical

BattFuse Fail

Battery Fuse Fail

Battery fuse(s) or circuit breaker(s) open

Critical

LoadFuse Fail

Load Fuse Fail

Distribution (load) fuse(s) or circuit breaker(s) open

Critical

Digital4

Digital4

User programmable

Major

Digital3

Digital3

User programmable

Major

Digital2

Digital2

User programmable

Major

Digital1

Digital1

User programmable

Major

SPD

SPD

SPD signal interrupted

Major

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

3

26

Chapter 4

Use Of Controller

Move the cursor to ‘Battery’ to set the battery parameters: Sys Mode: Auto BattFuse : 2 Capacity: 600Ah Bat. Shunt: Y Shunt Coeff -Current: 500A -Volt: 25mV

BATTERY Basic LVD Charge Test Temp Comp

ENT

LVD1: Enbl LVD2: Enbl LVD1 Volt: 44.0V LVD2 Volt: 43.2V

Center Temp: 25C Coeff : 72mV / C Temp1: N Temp2: N Batt T H2: 50C Batt T H1: 50C Batt T L1: 0C

Float: 51.8V Boost: 57.6V Limit: 0.100C Over: 0.300C Auto Boost: - Enable -Current: 0.060C - Capacity: 80.0% Const Boost: - Curr: 0.01C - Time: 180min Cyc Boost: - Enable - Period: 2400h -Time: 720min Boost Limit Time: 1080min

End Test - Volt: 45.2V - Time: 300min - Capacity: 0.70C Cyc Test: Disabl Cyc Test Time: 01 - 01 00:00 04 - 01 00:00 07 - 01 00:00 10 - 01 00:00 Short Test: - Enable: No - Alarm 10A - Period: 1h - Time: 1min ConCurr Test: - Enable: No - Current: 9999A

Figure 4-6 Battery screen

Move cursor to ‘Basic’, you can configure the following parameters: Sys Mode: set the system mode from ‘Auto’ to ‘Manual’ or from ‘Manual’ to ‘Auto’. Method of changing ‘Auto’ to ‘Manual’: As shown in screen of ‘Basic’, in the item of ‘Sys Mode’, press ‘ENT’ to highlight ‘Auto’, and then press ▲ or ▼ to change it into ‘Manual’, and then press ‘ENT’ again to validate the change. BattFuse: set the number of battery fuses. Capacity: Set the battery capacities. Bat. Shunt: set if battery shunt is configured. Shunt Coeff: set current and voltage coefficients. Move cursor to ‘LVD’, you can configure the following parameters: LVD1: Enable or disable LVD1. LVD2: Enable or disable LVD2. LVD1 Volt: set the voltage point at which the LVD1 contactor disconnects. LVD2 Volt: set the voltage point at which the LVD2 contactor disconnects. Move cursor to ‘Charge’, you can configure the following parameters: Float: set the float charging voltage. Boost: set the boost charging voltage.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

27

Limit: set the charging current limit. This is the maximum charging current that should be allowed into the battery at any time, as regards to the nominal capacity of the battery. For example, a value of 0.150C10 means that the charging current is limited to 15% of the battery’s nominal capacity. Over: set the over boost charging current. This is the charging current, as regards to the nominal capacity of the battery, at which an over current alarm will be initiated if this current is reached. For example, a value of 0.300C10 means that when the charging current reaches 30% of the battery’s nominal capacity, an alarm will be extended. AutoBoost: An Automatic Boost is started when one of the following conditions is reached. -Enable: Use this submenu to enable or disable auto boost charging. -Curr: This is the battery discharge current, as regards to the nominal capacity of the battery, above which an Automatic Boost is started, when the Automatic Boost function is enabled. For example, a value of 0.060C10 means that an Automatic Boost is started if the battery current is greater than 6% of the battery’s nominal capacity. -Cap: This is the remaining battery capacity under which (less than) an Automatic Boost is started when the Automatic Boost function is enabled. CycBoost -Enable: Use this submenu to enable or disable cyclic boost charging. -Period: Use this submenu to set cyclic boost charging period. This is the interval, in hours, between the boost cycles. -Time: Use this submenu to set cyclic boost charging time. This is the duration of each cycle for the Cyclic Boost when this function is enabled. Const Boost -Curr: Use this submenu to set constant boost charging current. -Time: Use this submenu to set constant boost charging time. BoostLimitTime: Use this submenu to set boost charging time limit beyond which boost charge will be stopped. Move cursor to ‘Test’, you can configure the following parameters: End Test: A Battery Test is interrupted when one of the following conditions is reached. -Volt: This is the ‘end of test voltage level’ for each battery test. -Time: This is the maximum duration, in minutes, for each battery test. -Cap: This is the remaining battery capacity, as regards to the nominal capacity of the battery, at which a Battery Test will be interrupted. For example, a value of 0.700C10 means that when the charging current reaches 70% of the battery’s nominal capacity, the battery test is interrupted. Cyc Test: Displays whether the time (on specific dates) battery test function is enabled (Y) or not (N). During a Timed Battery Test, the output voltage of the rectifiers is reduced so that the batteries power the load. If the batteries fail, the rectifiers power the load. Short Test: A short test is a short duration battery discharge test used to verify that parallel batteries are discharging equally. If the discharge current difference between the two batteries exceeds a preset level (default is 10 A), a Short Test Fault alarm is generated. -Enable: Displays whether the short (at specific intervals) battery test function is enabled (Y) or not (N). -Alarm: Displays the battery current difference at which an alarm will be extended. -Time: Displays the interval, in hours, between short battery tests. -Duration: Displays the duration, in minutes, of each short battery test. ConCurr Test: A Constant Current test is a battery discharge test done at constant current. The controller will automatically adjust the rectifiers to maintain the battery discharge current at the preset value. -Enable: Displays whether the constant current battery test function is enabled (Y) or not (N). -Current: Displays the stable test current. Move cursor to ‘TEMP COMP’, you can configure the following parameters: Center Temp: Displays the temperature, in °C, at which the system operates at normal voltage levels. Temp 1: Displays whether a temperature probe on MB is installed and enabled (Battery or Ambient) or not (None) in position No. 1, and if there is one, whether it is used for battery or ambient temperature measurements.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

28

Chapter 4

Use Of Controller

Temp 2: Displays whether a temperature probe on MB is installed and enabled (Battery or Ambient) or not (None) in position No. 2, and if there is one, whether it is used for battery or ambient temperature measurements. Coeff: Displays the temperature compensation slope or rate of change per °C above or below the normal operation level selected in the second line. This value is expressed in millivolt per °C per string (mV/°C/str). For example, for a rate of change of 72mV/°C/str in a 24-cell, 48 V nominal, battery string, the rate of change is 3 mV per cell.

4.2.3 Manual In the Main Menu, move the cursor to ‘Manual’ and press ENT to enter Manual control menu: Change to 'Manual' from 'Auto' MANUAL Start: Float LVD1: Reconn LVD2: Reconn RectTrim : 53.5V RectLimit : 121%

MAIN MENU Status Settings Manual ECO Quick Settings

MANUAL ENT Sys Mode: Auto ▼ In Manual

Figure 4-7 Manual screen

In the manual screen, you can perform the following manual control operations: Start: To start float or boost charging or battery test. LVD1: To reconnect or disconnect LVD1 contactor. LVD2: To reconnect or disconnect LVD2 contactor. RectTrim: To adjust the rectifier output voltage. RectLimit: To adjust the rectifier current limiting point.

4.2.4 ECO In the Main Menu, move the cursor to ‘ECO’ and press ENT to enter ECO menu: MAIN MENU Status Settings Manual ECO Quick Settings

ENT

ECO Disable Cyc Period: 168h Rect Work: 80% Rect Limit: 1

Figure 4-8 ECO screen

The following parameters can be configured: ECO: To disable or enable ECO function. Cyc Period: Rectifier redundancy cycle. Rect Work: Optimum operating load point of rectifier. Rect Limit: In ECO mode, the minimum number of rectifiers required.

4.2.5 Quick Setting In the Main Menu, move the cursor to ‘Quick Setting’ and press ENT to enter Quick Setting menu: MAIN MENU Status Settings Manual ECO Quick Settings

Figure 4-9

ENT

System Type: 48V / 1000A Capacity: 300Ah LCD Rotation: On

Quick Settings screen

In the Quick Setting screen, you set the system type and system capacity, as well as the parameters (current, voltage) of load shunts and battery shunts.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

29

4.2.6 Controller Setting Table 4-6 summarizes all the settings of the controller. Table 4-6 Controller Settings

DI alarm mode HVSD point Default voltage Restart time upon over voltage Soft-start time with load Soft-start with load enabled Startup upon AC over voltage System ECO enabled Sequencial start interval Input current limiting Rectifier slot setting enabled Rectifier slot setting Number of fuses Nominal capacity Shunt

Available Settings Low limit High limit High / low 56 59 48 58 0 300 8 128 Enabled/Disabled Enabled/Disabled Enabled/Disabled 0 10 1 50 Enabled/Disabled 1 30 0 5 20 5000 Yes / No

Shunt current

1

Shunt voltage Temperature 1 Temperature 2 Float charging voltage Boost charging voltage Charging current limiting Auto boost charging enabled Constant charging current Constant current charging time To boost charging current To boost charging capacity Scheduled boost charging enabled Boost charging protection time Scheduled boost charging cycle Scheduled boost charging time Battery test end time Battery test end voltage Battery test end capacity Scheduled test enabled Constant current test enabled Constant battery test current Short test enabled Short test alarm point Short test cycle Short test time Temperature compensation central point Battery compensation coefficient Battery over temperature point Battery high temperature point Battery low temperature point Over voltage 1 Under voltage 1 Under voltage 2 High ambient temperature Low ambient temperature

Components Alarm

Rectifier

Basic battery parameters

Battery

Battery charge parameters

Battery charge parameters

Battery test parameters

Battery temp compensation coefficient

DC unit

Name

Default setting High 59 53.5 300 8 Disabled Disabled Disabled 0 30 Disabled 1-1/2-2… 2 600

Unit / V s s / / / s / / Ah

1 500 None/Battery/Ambient None/Battery/Ambient 42 58 42 58 0.1 0.25 Yes / No 0.002 0.02 5 1440 0.04 0.08 10 99 Yes / No 60 2880 2 8760 30 2880 5 1440 43.1 57.9 0 1 Yes Yes / No 1 9999 Yes / No 1 100 24 8760 1 60

According to system type 25 Disabled Disabled 53.5 56.4 0.1 Yes 0.01 180 0.06 80 Yes 1080 2400 720 300 45.2 0.7 No No 9999 No 10 720 5

mV / / V V C10 / C10 Min C10 % / H h Min Min Min C10 / / A / A h min

10

40

25

deg.C

0 10 10 -40 40 40 40 10 -40

500 100 100 10 60 60 60 100 10

72 50 50 0 58.5 45 45 40 -5

mv/deg.C deg.C deg.C deg.C V V V deg.C deg.C

2000

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

A

30

Chapter 4

Use Of Controller

Components

Name Load shunt LVD1 Enabled LVD2 enabled

LVD

LVD1 voltage LVD2 voltage AC unit

Communication parameters

Controller parameters

Available Settings Low limit High limit Yes / No Disabled / Enabled Disabled Disabled /Enabled 40 60 40 60

Default setting No Disabled

Unit / /

/ 43.2 43.2

V V

Over voltage alarm point

0

500(866)

280(485)

V

Under voltage alarm point

0

500(866)

180(304)

V

Phase failure alarm point

0

500(866)

80(255)

%

IP address Subnet code Default gateway Local address Port type Baud rate Protocol Alarm call-back enabled Call back times Call back number 1 Call back number 2 Call back number 3 Language Display time zone System date System time Restore default configurations Set rotating screens

0-255 0-255 0-255 1 RS232/Modem/ETH 1200/2400/4800/9600 YDN23/EEM/RSOC/SOCTPE Yes / No 0 10

192.168.1.2 255.255.255.0 192.168.1.1 255 1 RS232 9600 YDN23 No 3

/ / / / /

English / Chinese

English GMT+08:00

Yes / No Horizontal/Vertical 48V/set, 48V/1000A, 48V/500A, 48V/300A, 48V/100A, 24V/set, 24V/1000A, 24V/500A, 24V/300A and 24V/100A

No Horizontal

System type

/ /

48V/set

4.3 WEB Interface Operation Through the WEB Interface, a remote user can:  View real-time operating information.  Send control commands.  Set programmable parameters.  Set which new alarms are displayed in a pop-up WEB window.  Download and upload configuration files.

4.3.1 Setting Up The Internet Explorer Web Browser Procedure 

Note

This procedure needs to be performed only when the controller is connected to an Internet and the User has set that the access to the Internet needs to be made through proxy. If the controller is connected Internet and the user computer is connected to the Internet, the user cannot disable the proxy, otherwise he will have no access to the controller. 1. Launch Internet Explorer.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4 2. Select Internet Options from the Tools menu. The ‘Internet Options’ window opens. window, select the Connections tab.

Use Of Controller

31

In the ‘Internet Options’

Figure 4-10 Internet options window

3. Click on the LAN Settings... button. box and click OK.

The following window opens. In the LAN Settings window, uncheck the proxy

Figure 4-11

LAN settings window

4.3.2 Logging Into The Controller Procedure In Internet Explorer, enter the IP address programmed into the controller and press ENTER. The following WEB Interface window opens. Enter a valid User Name and Password, and then click OK. By default, there are two ‘User Name’ and ‘Password’ combinations, one is ‘admin’ and ‘640275’, the other is ‘operator’ and ‘1’. The username of ‘admin’ has the highest authority and the username ‘operator’ has no authority for uploading and downloading configuration files.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

32

Chapter 4

Use Of Controller

Figure 4-12 Access to controller

4.3.3 Homepage Introduction After entering a valid User Name and Password, and clicking OK; the homepage window opens. The homepage window is divided into three areas: System Information, Parameter Settings and Control Functions, and Upload/Download Files.

Figure 4-13

Homepage window

System information At the top of homepage, System Information is displayed, such as System Voltage, System Load, MA/CA Number, OA Number, Battery Mode, Site Name, HW Version, and SW Version. Parameter and control function You can set the following parameters and control functions:  Battery Temp Comp: To disable or enable the battery temperature compensation function. NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

33

 Battery Test: To disable or enable the periodical battery test function. This setting has no effect on the short test.  Current Limitation: To disable or enable the battery charging current limitation function.  Boost Charge: To disable or enable the periodical battery boost charging function. This setting has no effect on auto boost charging.  LVD1 Level, LVD2 Level: To set the low voltage disconnection point.  Under Voltage Level 1, Under Voltage Level 2: To set the under voltage point.  System Volt: To set the system voltage.  Boost Volt: To set the battery boost charging voltage.  NMS1 IP, NMS2 IP: To set the IP address of SNMP  Remote1 IP, Remote2 IP: To set the IP address of EEM protocol.  TCP IP address: To set the IP address of TCP IP protocol. Upload/download files 1. Procedure 1) To upload a configuration file, click the Upload button. The following window opens. Click the Save button.

Figure 4-14

Uploading the configuration file

2) The following window opens. Navigate to where you want the file to be saved. Click the Save button.

Figure 4-15 Save as window

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

34

Chapter 4

Use Of Controller

After the upload is completed, the system will pop up a window to prompt the user that the upload is successful:

Figure 4-16

Upload successful

3) Users can also upload up to 80 active alarms or history alarms. 4) To download a file, click the Browse button. Navigate to and select the configuration file to be downloaded:

Figure 4-17 Selecting the configuration file

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

Then click Open:

Figure 4-18 Access to the homepage

Then click Download button, the system will pop up a window requiring you to confirm:

Figure 4-19

Confirmation window

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

35

36

Chapter 4

Use Of Controller

Click OK, the system will prompt you that the download is successful:

Figure 4-20

Download successful

In the above screen, you can click ‘Back to the Homepage’ to return to the Homepage. Administrator can click ‘Go to Firmware Download Mode’ to enter Bootloader download interface.

4.4 WEB Bootloader Interface Operation Below is the web download webpage. In this webpage administrator can update the firmware. Please ensure that the file name of the firmware is M221S.bin.

Figure 4-21 WEB webpage

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

37

4.5 Serial Bootloader Interface Operation Serial COM PORT can be used to download and upload files through the following procedure: 1. Connect Serial line to the computer and LCU+. Connect the DB9 terminal to computer, while connect the RJ45 terminal to the port assigned with ‘IOIO’ on LCU+. 2. Open the software of HyperTerminal on the computer, set the parameters according to the following method, here we use COM1, however, other COM PORT is optional dependent on your computer.

Figure 4-22

Choose the COM port

Figure 4-23 Set the parameters of COM port

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

38

Chapter 4

Use Of Controller

Figure 4-24 Main menu of download/upload

Here we can see there are 4 options, choose ‘1’ to download the application program, choose ‘2’ to download the configuration data, choose ‘3’ to upload the data configuration file, choose ‘4’ to execute the application program. 1. Method of downloading the application program: 1) Press ‘1’ on the keyboard, enter the surface of download; 2) Choose Transfer->Send File…, select the .bin file you want to download;

Figure 4-25

Choose the file

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 4

Use Of Controller

Pay attention that the protocol is Ymodem

Figure 4-26

Choose Ymodem as protocol

3) Press ‘Send’, ‘.bin’ file is transmitted from computer to LCU+;

Figure 4-27 The process of downloading file

4) After the file downloading is completed successfully, the following interface pops up:

Figure 4-28

Downloading file successfully

2. Method of downloading the configuration data: Similar to the download of application program, will not be introduced here; 3. Method of uploading the data configuration file: 1) Press ‘3’ on the keyboard, enter the interface of uploading files:

Figure 4-29

Uploading the file

2) Choose Transfer->Receive File… to select the position in which you save the file

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

39

40

Chapter 4

Use Of Controller

Figure 4-30 Select the position in which you save the file

Pay attention that the protocol is Ymodem.

Figure 4-31

Choose Ymodem as protocol

3) Press Receive, the file is transmitted from LCU+ to computer.

Figure 4-32 The process of uploading file

4) After the file downloading is completed successfully, the following interface pops up.

Figure 4-33

Uploading file successfully

You can also press "4" on the keyboard to execute the application.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 5

Alarm Handling

41

Chapter 5 Alarm Handling This chapter describes the handling of alarms, as well as the preventive maintenance of the system during system daily operation. The maintenance personnel must have adequate knowledge about the power system. 

Note

1. The maintenance must be conducted under the guidance of related safety regulations. 2. Only the trained personnel with adequate knowledge about the power system can maintain the inner part of the subrack.

5.1 Handling Alarms The controller alarms are classified in four types: critical alarm, major alarm, observation and no alarm. Critical alarm, major alarm: these two types of alarms have strong impacts on the system performance. Whenever these alarms are generated, users are supposed to handle them immediately. The alarm indicators will be on and audible indication will be given. Observation: when this type of alarm is raised, the system maintains normal output for a while. If the alarm occurs during watch time, it should be handled immediately. If the alarm occurs during non- watch- time, handle it during watch time. The alarm indicators will be on when observation alarm occurs. No alarm: if alarms are set as ‘no alarm’ by the users, when these alarms occur, no visible or audible indication will be generated and the system works normally. The handling methods of normal alarms are given in Table 5-1. Table 5-1 System setting parameter description No.

Alarm

1

Mains Failure

2

AC Voltage High

3

AC Voltage Low

4

SPD failure

5

DC Volt High

6

DC Volt Low

7

Load Fuse Alarm, Batt Fuse Alarm

Handling method If the failure does not last long, the battery will power the load. If the cause is unknown or the failure lasts too long, a diesel generator is needed. Before using the generator power to supply the power system, it is suggested to run the generator five minutes to minimize the impact on the power system Check if the AC over-voltage value is too low. If yes, change the value. A mild over-voltage does not affect the system operation. However, the rectifier will stop operation when the mains voltage is more than 530V. If the mains voltage is above the AC over-voltage value, the mains grid should be improved Check if the AC Under- voltage point is too high. If yes, change the value. When the mains voltage is lower than 304V, the output power of the rectifiers will be derated. And if lower than 260V, the rectifiers will stop working. If the mains voltage is under the AC under-voltage value, the mains grid should be improved Check the SPD condition. If the SPD is damaged, replace it Check the DC over-vlotage value through the controller. If the set value is inappropriate, correct it. Otherwise, find out the rectifier that has caused the alarm: 1. Ensure that the batteries can operate normally. 2. Switch off the AC input of all rectifiers. 3. Power on the rectifiers one by one. 4. If the over-voltage protection is triggered when a certain rectifier is powered on, that rectifier is the faulty one. Replace it 1. Check if the alarm is caused by mains failure, if yes, disconnect some loads to prolong the operation of the whole system. 2. Check the DC under-voltage value set through the controller. If the set value is inappropriate, correct it. 3. Check if any rectifier is inoperative, or has no output current. If yes, replace it. 4. Check if the total load current exceeds the total rectifier current during float charge. If yes, disconnect some loads or add more rectifiers to make the total rectifier current bigger than 120% of the total load current with one redundant rectifier Check if the corresponding MCB is switched off. If the MCB is open, find out the fault and remove it. Otherwise, the alarm circuit is faulty. Please contact Emerson

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

42

Chapter 6 No.

Alarm Handling Alarm

8

LVD2

9

Rect Failure

10 Rect Protect 11 Rect Fan Fails 12 Rect Not Respond 13 Batt Over Temp

Handling method 1. Check if there is mains failure, and the battery voltage is lower than the value of ‘LVD2’. 2. Check whether the battery is disconnected from the system manually The rectifier with the fault indicator (red) on is faulty. Power off the rectifier, and then power it on after a while. If the alarm persists, replace the rectifier Check if the mains voltage is above 530V or under 260V. If the mains voltage is under the AC under-voltage value or above the AC over-voltage value, the mains grid should be improved Pull out the rectifier to check if the fan is obstructed. If yes, clean it and push the rectifier back. If the fan is not obstructed or if the fault persists after cleaning, replace the fan Check if the communication cable is connected properly between rectifier and controller. If yes, restart the rectifier. If the alarm persists, replace the rectifier 1. Check if the battery compartment temperature is too high. If yes, cool down the battery compartment. 2. Check if there is battery internal fault. If yes, replace the faulty battery

5.2 Handling Rectifier Fault The indicator description, fan and handling methods of all the rectifiers on the system are the same, take R48-1800A and R48-3200 as an example. Handling indicator fault The symptoms of usual rectifier faults include: Run indicator (green) off, Protection indicator (yellow) on, Protection indicator blink, Fault indicator (red) on and Fault indicator blink, as shown in Figure 5-1.

Run indicator Protection indicator Fault indicator

Run indicator Protection indicator R48-3200

R48-1800

Figure 5-1

Fault indicator

Rectifier indicator

The indicators are shown in Table 5-2. Table 5-2 Indicator fault description Symptom

Monitoring module alarms

Run indicator off (green)

No alarm

Run indicator blinks(green)

No alarm Rect Protect

Rect Protect Protection indicator on (yellow)

Causes No input/output voltage Assistant power source of the rectifier fails The monitoing module performs operations upon the rectifier AC input voltage abnormal Fan blocked Ventilation path blocked at the inlet or vent Ambient temperature too high or the inlet too close to a heat source

Load share Alarm

Current sharing imbalance

Rect Protect

Power factor compensation internal under voltage or over voltage

Handling method Make sure there is input/output voltage Replace the recitifier No actions need to be taken Make sure the AC input voltage is normal Remove the object that blocks the fan Remove the object at the inlet or vent Decrease the ambient temperature or remove the heat source Check whether the rectifier communication is normal. If not, check whether the communication cable is in normal connection. If the communication is normal while the protection indicator is on, replace the rectifier Replace the rectifier

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Chapter 5 Symptom Protection indicator blinks(yellow)

Monitoring module alarms

43

Handling method

Rect Not Respond

Rectifier communication interrupted

Check whether the communication cable is in normal connection

Rect HVSD

Rectifier over-voltage

Reset the rectifier. If the protection is triggered again, replace the rectifier

Rect Failure

Two or more recitifiers have the same ID number

Contact Emerson for maintenance

Rect Failure

Check whether the rectifier communication is Serious current sharing imbalance, normal. If not, check whether the 501 series modle: current imbalance > ± 3%; communication cable is in normal connection. 701 series modle: current imbalance > ± 5% If the communication is normal while the protection indicator is on, replace the rectifier

Rect Fan Fails

Fan fault

Fault indictor on (red)

Fault indicator blinks (red)

Causes

Alarm Handling

Replace the fan

Replacing rectifier fan If the rectifier fan is faulty and does not work, it should be replaced. Take the R48-1800 rectifiers as an example, the replacement procedures are as follows: 1. Use a cross screwdriver to remove the 3 screws from the fixing holes and pull out the front panel. 2. Unplug the power cable of the fan and remove the fan. Install a new fan. 3. Plug the fan power cable. Put the front panel back and fasten it with the 3 screws, as shown in Figure 5-2.

Fixing screw of the fan Fan Front panel

Fixing screw of the panel

. Figure 5-2

Disassembling the front panel

Replacing rectifier Except replacing the fan, it is recommended not to repair any other part of the module. When faulty, the module should be replaced, not repaired. See the following procedures to replace the rectifier. 1. Take a new rectifier and check it for any damage from transport. 2. Loosen the fixing screw of the handle of the R48-1800A rectifier with a Phillips screwdriver. Pull out the faulty rectifier from the rack by grabbing its handle. Be careful with the rectifier just pulled out from the system, as it could be very hot due to long-term operation. Do not let it slip away and get damaged. 3. By holding the rectifier handle, push the new rectifier into the slot just vacated and make sure the connection is good. After a brief delay, the rectifier run indicator will turn on and the fan will start running. 4. Check whether the new rectifier works normally. You should make sure that: 1) The controller recognizes the new rectifier. 2) The new rectifier shares current with other rectifiers. 3) When this new rectifier is pulled out, there is a corresponding alarm and the controller displays the alarm. If the new rectifier passes all the above tests, the replacement is a success. 5. Push the handle back into the front panel to fix the rectifier with the positioning pin. Fix the fixing screw of the handle of the R48-1800 rectifier with a Phillips screwdriver.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

44

Appendix 1

Technical And Engineering Data

Appendix 1 Technical And Engineering Data Table 1 Technical data Parameter category

Environmental

Parameter Operating temperature Storage temperature Relative humidity Altitude Polution level Others

Description -5°C ~ +40°C -40°C ~ +70°C 5%RH ~ 95%RH ≤ 2,000m (derating is necessary above 2,000m) Level 2 No conductive dust or erosive gases. No possibility of explosion NetSure 701 A41-S3/S5, NetSure 501 A41-S1/S2:L+N+

AC input system AC input type Input voltage range AC input

Input AC voltage frequency

PE/220Vac. Others: 3P + N + PE/ 380Vac TN-C, TN-S, TN-C-S, TT NetSure 701 A41:85 Vac~290Vac; NetSure 501 A41, NetSure 501 A91:85Vac~300Vac 45Hz ~ 65Hz NetSure 701 A41-S1≤25A; NetSure 701 A41-S2/S4≤45A;

Max input current

NetSure 701 A41-S3≤90A;NetSure 701 A41-S5≤90A; NetSure 501 A91-S1≤37A;NetSure 501 A41-S2≤50A; NetSure 501 A41-S1≤50A

Power factor Over-voltage level Standard output DC voltage Rated output DC voltage Output DC voltage

Maximum output current DC output Voltage set-point accuracy

≥ 0.99 Level II -48Vdc -53.5Vdc -42.3Vdc ~ -57.6Vdc NetSure 701 A41 ≤ 275A, load current ≤ 225A, battery charge current ≤ 50A NetSure 501 A41≤150A, load current≤ 120A, battery charge current ≤ 30A NetSure 501 A91≤275A, load current≤ 225A, battery charge current ≤ 50A ≤ 1% R48-1800A/R48-2000≥89%;

Efficiency

R48-2000e/R48-3200e/R48-3500e≥94.5%;

Noise (peak-peak) Weighted noise AC input over-voltage alarm point AC input over-voltage alarm recovery point AC input under-voltage alarm point AC input under-voltage alarm recovery point

≤ 200mV (0 ~ 20MHz) ≤ 2mV (300 ~ 3400Hz) Default: 280 ± 5Vac, cofigurable through controller Default: 270 ± 5Vac, 10Vac lower than the AC input over-voltage alarm point Default: 180 ± 5Vac, configurable through controller Default: 190 ± 5Vac, 10Vac higher than the AC input under-voltage alarm point NetSure 501 A41, NetSure 501 A91: 305 ± 5Vac by default, cofigurable through controller NetSure 701 A41: 295 ± 5Vac by default, cofigurable through controller NetSure 501 A41, NetSure 501 A91: 295 ± 5Vac by default, 10Vac lower than the AC input over-voltage alarm point NetSure 701 A41: 285 ± 5Vac by default, 10Vac lower than the AC input over-voltage alarm point

R48-2900U≥90%; R48-4000e≥90%

AC input alarm and protection

AC input over-voltage protection point

AC input over-voltage protection recovery point

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Appendix 1 Parameter category AC input alarm and protection

DC output alarm and protection

DC output alarm and protection

Parameter

Technical And Engineering Data

45

Description

AC input under-voltage protection point AC input under-voltage protection recovery point DC output over-voltage alarm point

Default: 80 ± 5Vac, configurable through controller Default: 95 ± 5Vac, 10Vac higher than the AC input under-voltage alarm point Default: -58.0 ± 0.2Vdc, configurable through controller Default: -57.5 ± 0.2Vdc, 0.5Vdc lower than the over-voltage alarm DC output over-voltage recovery point point DC output under-voltage alarm point Default: -45.0 ± 0.2Vdc, configurable through controller Default: -45.5 ± 0.2Vdc, 0.5Vdc higher than the under-voltage alarm DC output under-voltage recovery point point DC output over-voltage proteciton point Default: -59.0 ± 0.2Vdc, configurable through controller LLVD Default: -44.0 ± 0.2Vdc, configurable through controller BLVD Default: -43.2 ± 0.2Vdc, configurable through controller The rectifiers can work in parallel and share the current. The Current sharing unbalanceness is better than ± 5% R48-1800A、R48-2000、R48-2000e: 176Vac input, The rectifier outputs max.power: 100% 85Vac input, The rectifier outputs max. power: 40% 80Vac input, The rectifier low pressure power off R48-3200、R48-2900U、R48-3500e、R48-3200e:

Derate by input (at 45°C)

Output delay Fan speed adjustable

176Vac input, The rectifier outputs 100% power 120Vac input, The rectifier outputs 50% power 85Vac input, The rectifier outputs 18.75% power 80Vac input, The rectifier low pressure power off R48-4000e: 207Vac input, The rectifier outputs 100% power 120Vac input, The rectifier outputs 2200W power 85Vac input, The rectifier outputs 1500W power 80Vac input, The rectifier low pressure power off Output voltage can rise slowly upon rectifier start up. The rise time is configurable Rectifier fan speed can be set to half or full speed

Rectifier

Over-voltage protection

The rectifier provides over-voltage hardware and software protection. The hardware protection point is 59.5V ± 0.5V, and it requires manual resetting to restore operation. The software protection point is between 56V and 59V (0.5V above output voltage, 59V by default), and can be set through the controller There are two software protection modes, which can be selected through the software at the host: 1. Lock out at the first over-voltage Once the output voltage reaches protection point, the rectifier will shut off and hold that state. It requires manual resetting to restore the operation 2. Lock out at the second over-voltage When the output voltage reaches the software protection point, the rectifier will shutdown, and restart automatically after 5 seconds. If the over-voltage happens again within a set time (default: 5min. Configurable through controller), the rectifier will shut off and hold that state. It requires manual resetting to restore the operation Manual resetting: Resetting can be done manually through the controller, or by removing the rectifier from system

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

46

Appendix 1 Parameter category

Technical And Engineering Data Parameter

Description

R48-1800A: Temperature below 45°C, outputs full power Temperature above 45°C, there will be linear derating, that is: At 55°C, output power is 1,600W At 65°C, output power is 1,500W At 75°C, output power is 800W At 80°C, output power is 0 R48-2000、R48-2000e:

Rectifier

Temperature derating

EMC

Conducted emission Radiated emission Voltage fluctuation and flash Immunity to EFT Immunity to ESD Immunity to surges Immunity to radiation Immunity to conduction

Starts at -40°C; Temperature below 45°C, outputs full power Temperature above 45°C, there will be linear derating, that is: At 55°C, output power is 1,750W At 65°C, output power is 1,600W At 70°C, output power is 800W At 75°C, output power is 0 R48-3200e: At the ambient temperature of: Below 45°C, outputs full power: 3,000W Above 45°C, there will be linear derating, that is: At 55°C, output power ≥ 2,400W At 60°C, output power ≥ 1,500W At 65°C, output power: 0 R48-3200: Starts at -40°C; Temperature below 45°C, outputs power is 3200W. Temperature above 45°C, there will be linear derating, that is: At 65°C, output power is 2,320W At 70°C, output power is 1,450W At 75°C, output power is 0 R48-2900U: Starts at -40°C; Temperature below 45°C, outputs power is 2900W. Temperature above 45°C, there will be linear derating, that is: At 55°C, output power is 2,320W At 60°C, output power is 1,450W At 65°C, output power is 0 R48-3500e: Starts at -40°C; Temperature below 45°C, outputs power is 3500W. Temperature above 45°C, there will be linear derating, that is: At 50°C, output power is 3200W; At 55°C, output power is 2900W; At 65°C, output power is 2320W; At 70°C, output power is 1450W. At 75°C, output power is 0 R48-4000e: Starts at -40°C; Temperature below 50°C, outputs power is 4000W. Temperature above 45°C, there will be linear derating, that is: At 55°C, output power is 3500W; At 65°C, output power is 3000W; At 75°C, output power is 2400W

Class A

EN55022

Class A Level 4 Level 3 Level 4 Level 2 Level 2

EN61000-3-11 EN/IEC 61000-4-4 EN/IEC 61000-4-2 EN/IEC 61000-4-5 EN/IEC 61000-4-3 EN/IEC 61000-4-6

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Appendix 1 Parameter category

Lightning protection features

Parameter

Safety regulation

Insulation resistance

Others Insulation strength

MTBF ROHS Maximum dimensions of the subracks

Weight (kg)

Description

≤ 60db (A) (When the ambient temperature is lower than25℃)

Acoustic noise

Mechanical

47

The AC input side can withstand five times of simulated lightning voltage of 5Kv at 10/700µs, for the positive and negative polarities respectively. It can withstand five times of simulated lightning surge current of 20Ka at 8/20µs, for the positive and negative polarities respectively. The test interval is not smaller than 1 minute. It can also withstand one event of simulated lightning surge current of 40Ka at 8/20µs IEC60950-1:2001

At AC side

Dimensions (mm)(W×D×H)

Technical And Engineering Data

At temperature of 15°C ~ 35°C and relative humidity not bigger than 90%RH, apply a test voltage of 500Vdc. The insulation resistances between AC circuit and earth, DC circuit and earth, and AC and DC circuits are all not less than 10MΩ (Remove the SPD, controller and rectifiers from the system before the test.) AC loop to DC loop can withstand 50Hz. DC circuit to earth: 50Hz, 2,500Vac; or 3535Vdc; AC to DC circuits: 50Hz, 1,000Vac; or 1414Vdc; Assistant circuit (not directly connected to the host circuit): 50Hz, 500Vac For all the three tests above, there should be no breakdown or flashover within 1min, with leakage current not bigger than 10Ma; > 200,000hr Compliant with R5 requirement NetSure 501 A41-S1/S2: 483 × 360 × 223 NetSure 501 A91-S1: 483 × 360 × 445 NetSure 701 A41-S1/S2/S3/S5: 483 × 360 × 267 NetSure 701 A41-S4: 483 × 360 × 400.5

Monitoring module M501D/ M500D

85 × 85 × 287

Rectifier

R48-1800A, R48-2000, R48-2000e: 87.9× 85.3× 272 R48-3200e, R48-3200, R48-2900U, R48-3500e: 132.3 × 88× 294 R48-4000e:132.3 × 88 × 294

Subrack (without rectifiers and controller) Monitoring module M501D/M500D Rectifier

≤ 25

< 0.8 R48-1800A, R48-2000, R48-2000e ≤ 2.0 R48-3200, R48-2900U, R48-3200, R48-3500e, R48-4000e ≤ 3.5

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

48

Appendix 2

Installation Instruction Of Battery Rack

Appendix 2 Installation Instruction Of Battery Rack 1. Installation Instruction Of Two-Layer And Four-Layer Battery Rack Packing list

Accessory 1

Accessory 2

Accessory 3

Accessory 4

Accessory 5

Figure 1 Accessory Table 2 Packing list of the battery rack Battery rack

Two-layer battery rack

Accessory

Four-layer battery rack

Accessory 1

2

4

Accessory 2

8

14

Accessory 3

2

4

Accessory 4

2

2

Accessory 5

0

2

Expansion bolt

4 pieces

4 pieces

Fastener

1 set

1 set

Installation procedures 1. Installation procedures of two-layer battery rack 1) Install accessory 1 and accessory 2 according to Figure 2 (a). 2) Install accessory 3 according to Figure 2 (b).

Accessory 1 Accessory 3 Accessory 2

(a)

(b)

Figure 2 Installation procedure of accessory 1 ~ accessory 3

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Appendix 2

Installation Instruction Of Battery Rack

3) Install accessory 2 and accessory 4 according to Figure 3. Accessory 4 Accessory 2

Figure 3 Installation procedure of accessory 2 and accessory 4

2. Installation procedures of four-layer battery rack 1) Install accessory 1, accessory 2 and accessory 3 according to Figure 2 (a) and Figure 2 (b). 2) Install accessory 5 according to Figure 4 (a). 3) Install accessory 2 and accessory 4 according to Figure 4 (b).

Accessory 4 Accessory 2

(a)

(b)

Figure 4 Installation procedure of accessory 2, accessory 4 and accessory 5

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

49

50

Appendix 2

Installation Instruction Of Battery Rack

2. Installation Instruction Of Three-Layer Battery Rack Packing list

Accessory 1

Accessory 2

Accessory 3

Accessory 4

Figure 5 Accessory Table 3 Packing list of the battery rack Accessory Accessory 1 Accessory 2 Accessory 3 Accessory 4 Expansion bolt Fastener

Accessory number 2 6 3 2 4 pieces 1 set

Installation procedures 1. Install accessory 1 and accessory 2 according to Figure 6 (a). 2. Install accessory 3 according to Figure 6 (b).

Accessory 2 Accessory 1

Accessory 3

(a)

(b)

Figure 6 Installation procedure of accessory 1 ~ accessory 3 NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Appendix 2

Installation Instruction Of Battery Rack

3. Install accessory 2 and accessory 4 according to Figure 7. Accessory 2 Accessory 4

Figure 7 Installation procedure of accessory 2 and accessory 4

3. Fixing The Battery Rack 1. Fix the battery rack to the ground according to the installation dimensions shown in Figure 8. The fixing bolts are accessories. 575

480

600

600 Figure 8 Installation dimensions (unit: mm)

2. Fix the subrack power system onto the top of the battery rack. Refer to 2.3

Mechanical Installation.

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

51

Appendix 3 Wiring Diagram

Appendix 3 Wiring Diagram

Rear view

DU power unit

17 DU

0V To MFU positive expansion busbar

W81+W82 1

8-QF17

8-QF18

7-29

2

1 2 Three-phase AC input

PL

1 QFA

B TO MFU unit PL busbar

1

2

3 9-2

1 2

2

7-35/7-47/7-49/7-50 X5-1/X6-1 W80

9-BUS+-1

TO MFU unit PL busbar To the positive busbar of the MFU 24 H4

23 H3

10 RB

N

PE

P

1

8-B-

W80

2

1 2

22 H2

PE

P

W01

L

W02

N

W04

21 H1

W01

L

W02

N

W04

PE

P

W01

L

W02

W02

N

W04

PE

P

X3-1

7-2 W05

7-4

W04

12 J6 J8

2

1

3 4

2

1 5

3

4

5

6

12 J7

2

1

3 4

2

1 5

3

4

6

5

6

6

W80 29 H9

28 H8

1

27 H7

26 H6

25 H5

L

W01

L

W01

L

W01

L

W01

N

W02

N

W02

N

W02

N

W02

PE

2

W04

3 4

1 5

PE

P

2 4

6

W04

3

1 5

PE

P

2

3 4

6

W04

1 5

PE

P

2 4

5

1 2

1

W80

Figure 9 NetSure 501 A91-S1 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

W02

N

PE

P

1

6

W01

L

W04

3

7-22

2

15-J7 2

To the Negative Busbar

QFB2

W80

7-20

7-41 1

7-39

12 KM2

W80

W01

L

W80

7-44

W05

Rear view

P

PL

7-31 PL 7-46 1

W80

8

6 Shelf 1

To the positive Busbar

2

TO DU unit PL bar

W80

W80

1

0V

7-28

QFD1

1 2

5-3 W07

W80+W81+W82 7-29 1 1

QFD2

QFD3

QFD16

2

Module subrack

W2453X1

7-30

2

13

4- 4+ 2- 2+ DO4 DO2 J4 J3

9 BUS+

4

1

8-B--1

Rear top view

5 PE

TO the user protective earth

1

User interface board 1

3- 3+ 1- 1+ DO3 DO1

8 MFU

QFB1

MFU DC power wiring diagram

W80 W80

W80

W80

W80

8-PL-1

W80 W80

8-QFB1-1

10-2 10-1

8-QFB2-1

X3-2

W01 W01W01

W2453X1

13-J8-4 13-J8-6 13-J8-7 13-J7-2 13-J8-8

24-CAN-

24-CAN+

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

23-L/26-L/29-L

11-1

W80 W80

22-L/25-L/28-L

21-L/24-L/27-L

W80

11-2

X5-1

9-BUS+-1W80

8-PL-1

8-NPL-QFD

13-J7-1

13-J8-1

13-J8-2 13-J8-3 13-J8-5

X6-1

2 4 6 8

MFU door connected ground

W80 X7-2

9-BUS+-2 W80

2 4

6

W04

3 5 6

21-N/22-N/23-N/24-N

Front view

7 M221S

W80

8-PL-QFD

Controller motherboard switch

W02

25-N/26-N/27-N/228-N/29-N

L1 L2 L3 N 1 3 5 7

52

Appendix 3 Wiring Diagram

18 M34C3C1

W06

15

13-J3-1-

1 2 3

M2433X2

7-39 7-41

1 2

13-J3-1+

DCSPD

J1

J2

J3 J1 J2 J5 J6

J4

v-

v+

5-2

9-2

PE

W06 W06 Controller motherboard switch

J7 8-PL-2

12-1 12-2 8-PL-1

W06

Front view

7 M221S

9-BUS+-1 W80

11-1

1

8

J8

J6 12

1 3

J7

2 4

W80 8 MFU

TO the user protective earth

1

PE

L

2 4

W03

3-2 Conneted earthing terminal

W80

Module subrack Rear view TO MFU unit PL busbar

6 Shelf 1

W80 7-29

24 H4

W01

W80

QFD2

QFD3

QFD4

2 W80

1 NPL

10 RB

PE

P

W01

L

W02

N

W04

W02

N

W04

PE

P

1 2

1

2

3 4

1 5

2

3 4

6

1 5

2

3 4

6

1 5

2

X3-1 W04

3 4

6

1 2

1 8-B-

2

1 7-20

1

To the Negative Busbar

QFB2

W84 12 KM2 W80

2

PE

P

7-22

PL

W 02

N

W04

21 H1

W01

L

NPL

18-J2-1

15-J7 2

2

PE

P

22 H2

W01

L

W02

N

7-24

W06

2

1

7-26

2

2

1

QFB1

18-J2-3 7-31 7-46 W80 7-35 1

1

9-BUS+-1

PL

W80

7-45

7-43

W80

18-J2-2

2

11 KM1

1

QFD1

L

1

To the positive busbar of the MFU

23 H3

W80

Figure 10 NetSure 501 A41-S1 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

5 6

7-4

W03

2-N

W03

W01

0V

W80 7-27

2

N

2

W06 15-J6 7-47/7-49/7-50 2 3 9-2 5-3 W07 1 12-1 W84 2-PE W03 To the positive Busbar

1

L N 1 3

23-L 22-L 21-L/24-L

9 BUS+

5 PE

15-J5

QFD6

W06

W03 W03

Rear top view

QFD5

MFU DC power wiring diagram

1 QFA

W03 W03 X10-1

LO NO

3-4

12

2 SPD1

7-2 W05

21-N/24-N 22-N 23-N

W80

Single-phase AC input(SPD) 3 QFA2

1-4

W80

W80

W06 15-J4-1 W06 15-J4-2

W2453X1

1-2 2-N

X10-2 W80

9-BUS+-1

8-PL-1

8-QFB4-2

8-QFB3-2

8-QFB2-2

10-2

10-1 8-QFB1-2

13-J8-8

13-J8-7

13-J7-2

13-J8-4

13-J8-6

24-CAN-

24-CAN+

W80 W80

User interface board 1

4- 4+ 2- 2+ DO4 DO2 J4 J3

W2453X1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

X3-2 W80

13

User interface board 1

3- 3+ 1- 1+ DO3 DO1

11-2

9-BUS+-1

13-J7-1

W80 W80 W80 W80

18-J1-2

W80

W80 W80 X7-2

18-J1-1

X5-1

8-PL-1

13-J8-3

X6-1

13-J8-5

13-J8-1

13-J8-2

W80

W02

53

Appendix 3 Wiring Diagram

Door connected ground

X12-2

W80 W80

11-1 11-2

W80

8-PL-QFD

8-QFB1-1

7 M820B

8-NPL-QFD

W80

Controller motherboard switch

12-1 12-2 X5-1

8-PL-1

13 IB2

W80 W80

W80

W80

Rear top view

8 MFU

2

1 2 3

5-3 W07

7-35/7-47/7-49/7-50 X5-1/X6-1 W80

2

2

QFD1

2

QFD2

2

QFD3

QFD4

1

TO MFU unit PL busbar 24 H4

NPL

W01 W02 PE

N P

7-55

7-56 10 RB

P

W02 PE

N

W04

1

2

3 4

1 5

7-44

8-B-

W80

2

2

3 4

P

1 5

1 2

1

2

W80

Figure 11 NetSure 501 A41-S2 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

2

W01

L

W02 PE

N

W04

3 4

6

7-22

2

1

QFB1

QFB2

W80

1 To the Negative Busbar

W02 PE

N

W04

21 H1

W01

L

P

X3-1 W04

W80

7-82 1

22 H2

W01

L

6

W80

To the positive busbar of the MFU

23 H3

L

12 KM2

W02

Rear top view

6 S helf 1

2

NPL

2

Module subrack

W82+W81+W80 7-60 1 1 1

1

1 PL

2 4

W01

7-20

7-31 7-46

W80

7-80

W80 W80

2

W80 7-79

PL

11 KM1

1

7-81

2

QFD5

2

QFD6

QFD7

QFD8

2

1

L N 1 3

J11 J12

W80

To the positive Busbar

1

1

0V

W82+W81+W80 7-59 1

3

W80

9 BUS+

5 PE 至用户保护地 1 2 3 9-2 4

J2 4 2

1 QFA

23-L 22-L 21-L/24-L

MFU DC power wiring diagram

J3 J4 J5

W80 W80

Single-phase AC input

9-BUS+-1

8-B--1 8-PL-1

X3-2

10-2 10-1

13-J2-2

24-CAN-

24-CAN+

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

21-N/24-N 22-N 23-N

13-J2-3

J6 J7 J8 J9

W80

13-J2-1

X6-1

User interface board 1

W80 W80 9-BUS+-1 W80

9-BUS+-2 W80

X9

W80

13-J2-4

8-QFB2-1

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

User Manual

1 5

2

3 4

6

5 6

7-4

7-2 W05

54

Appendix 3 Wiring Diagram

Three-phases AC input 1 QFA

L1 L2 L3 N 1 3 5 7 MFU Door connected ground

2 4 6 8

W80

W01 W01 W01

11-1

12-1 11-2

W80 W80 W80W80

12-2

8-PL-QFD

8-NPL-QFD

X5-1

8-PL-1

X6-1

13-J7-1

13-J8-1

13-J8-2 13-J8-3 13-J8-5

W80

21-L 22-L 23-L

X7-2 W80 9-BUS+-1 W80 9-BUS+-2 W80

8 MFU

1 2 3

5-3 W07

QFD4

1

2

2

1

2 8-B-

7-44

To the Negative Busbar

QFB2

10 RB

1

W80

10

10

2

12 J8

J6 12

PE N

J7

L

W04 W02 W01

7-30

1

1

2

2

-48V 7-2

1 7-22

PL

12 KM2 W80

7-20

W80

10

W80

QFB1

1 2

1

2

NPL

21 H1

1

W80+W81+W82 7-27 1

1

7-39

7-31 7-46

2

22 H2

1

To the positive Busbar

NPL

1

7-41

W80 W80

2

1

To the positive busbar of the MFU

23 H3

W80

7-28

PL

7-45

QFD5

W80+W81+W82 7-29 11 1 KM1 W80 W80 2

TO MFU unit PL busbar

6 Shelf 1

0V

7-35/7-47/7-49/7-50 X5-1/X6-1 W80

QFD1

2

QFD2

1 2 4 3 9-2

8

W2453X1

W80

9 BUS+

5 PE

QFD3

TO the user protective earth

1

Rear top view

7-43

MFU DC power wiring diagram

4- 4+ 2- 2+ DO4 DO2 J4 J3

W80

3- 3+ 1- 1+ DO3 DO1

9-BUS+-1

8-PL-1

W80 W80

W80

W80

W80

8-B--1

8-QFB1-1

8-QFB2-1

10-2 10-1

13-J8-4 13-J8-6 13-J8-7 13-J7-2 13-J8-8

24-CAN-

24-CAN+

X3-2

W80W80

Module subrack

13 W2453X1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

21-N/22-N/23-N

Front view

7 Controller motherboard switch M221S

W80

Figure 12 NetSure 701 A41-S1 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

PE N L

W04 W02 W01

PE N L

0V

W04

W02 W01

X3-1

7-4 W05

W02

55

Appendix 3 Wiring Diagram

MFU Door connected ground

Front view 9-BUS+-1 W80 W80

W80 W80

11-1

Three-phases AC input

1 QFA

TO the user protective earth

2

5-3 W07

2 3

W80+W81+W82 7-29 1 1 2

QFD1

2

1

QFD2

1

1

8

J6 12 J8 J7 W80

0V

2

2 4 3 9-2

7-35/7-47/7-49/7-50 X5-1/X6-1 W80

W80

W01 W01W01

Module subrack 6 Shelf 1

PE N

2 8-B-

7-44

1

To the Negative Busbar

QFB2

10 RB

W80

1 2

7-30 QFB1

7-28 1

21 H1

1

1

1

10

10

10

10

L

W04 W02

PE

W01

L

N

W04 W02 W01

1 2

1

2

7-22

PL

12 KM2 W80

7-20

W80

7-39

1 2

22 H2

1

-48V

7-2

W80

7-31 7-46

To the positive busbar of the MFU

23 H3

To the positive Busbar

PL W80 W80

TO MFU unit PL busbar 24 H4

2

7-41

QFD12

9 BUS+

5 PE

1

1

12

W80

Figure 13 NetSure 701 A41-S2 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

PE N L

W04 W02

PE

W01

L

N

0V

W04 W02 W01

X3-1

7-4 W05

21-N/22-N/23-N/24-N

Rear top view

8 MFU

QFD3

MFU DC power wiring diagram

2 4 6 8 21-L/24/L

W80

L1 L2 L3 N 1 3 5 7

W2453X1

J4 J3

W80 W80

3- 3+ 1- 1+ DO3 DO1

W80

9-BUS+-1

8-B--1

W80 W80

W80

8-PL-1

8-QFB1-1

8-QFB2-1

10-2 10-1

13-J8-4 13-J8-6 13-J8-7 13-J7-2 13-J8-8

24-CAN-

24-CAN+

X3-2 W80

13 W2453X1

22-L 23-L

User interface board 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

4- 4+ 2- 2+ DO4 DO2

W80 X7-2

11-2

X5-1

8-NPL-QFD

13-J7-1

13-J8-1 13-J8-2 13-J8-3 13-J8-5

X6-1

8-PL-1

9-BUS+-2 W80 W80

8-PL-QFD

7 Controller motherboard switch M221 S

W02

56

Appendix 3 Wiring Diagram

18 M34C3C1

7-39 7-41 W84

1 2

W06

DCSPD

15 M2433X2

J1 J5

J3

J6

J2

J4

W06 W06 User interface board 1

J7

v-

v+

9-2

5-2

PE

13-J3-1+

1 2 3

13-J3-1-

8-PL-1

J1

J2

8-PL-2

12-1 W84 12-2

W06

13

3 QFA2

PE

1-2 2-N

9-BUS+-1

8-PL-1

8-QFB2-1

10-2 10-1

8 MFU

W80

L

2 4

W03

5-4

W03W03

3-2

W03

W80

24 H4

1

2 W06 15-J6 2 5-3 W07 4 3 9-2 2-PE W03

1 2 3

7-35/7-47/7-49/7-50 X5-1/X6-1 W80 12-1 W84 1 2

N L

10

10

10

10

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

NPL 7-28

7-30

W80

W84 W84

12 W84 KM2

1

10 RB

2 8-B-

1 2

1 2

1

2 7-20

1

To the Negative Busbar

QFB2

PL

1

7-22

2

PE

1

NPL 1

1

2

1

18-J2-2

W06 15-J7

2

18-J2-1

18-J2-3 W80 7-31 W80 7-46

1 2

21 H1

22 H2

1

-48V

7-2 X3-1

To the positive Busbar

QFB1

PL W84

1 2

QFD1

11 KM1 W80

7-43

W80

QFD3

1 2

QFD8

1 2

7-45

1 2

QFD10

QFD12

QFD11

1 2

23 H3

1

W80

W80 7-27

W80 7-29

QFD2

15-J6

To the positive busbar of the MFU

TO MFU unit PL busbar

6 Shelf 1

0V

W80

Figure 14 NetSure 701 A41-S3 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

N

0V

W04 W02 W01

2-N

W02

Module subrack

9 BUS+

5 PE

W03

W01

Rear top view

TO the user protective earth

W06

X10-2 W80

W80

9-BUS+-3

MFU DC power wiring diagram

8-QFB1-1

2 4 W80 W80

L N 1 3

N

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

QFD9

X3-2 W80

5 6

13-J8-4 13-J8-6 13-J8-7 13-J7-2 13-J8-8

24-CAN-

24-CAN+

3 4

W03 W03 X10-1

LO NO 1 3

W80 1 2

1 QFA

2 SPD1

21-N/24-N 22-N 23-N

J6 12 8 J8 J7

23-L 22-L 21-L/24-L

1

Single-phase AC input

12

1-4 3-4

W80

11-1

18-J1-2 11-2

W84 W84 W80W80

W2453X1

J4 J3

W06 15-J4-1 W06 15-J4-2

9-BUS+-1 W80

3- 3+ 1- 1+ DO3 DO1

W80 X7-2

18-J1-1

X5-1

8-NPL-QFD

13-J7-1

13-J8-2 13-J8-3 13-J8-5

X6-1

8-PL-1

9-BUS+-2 W80 W80

13-J8-1

Door connected ground

Front view

7 M221S

8-PL-QFD

Controller motherboard switch

4- 4+ 2- 2+ DO4 DO2

W2453X1

7-4 W05

57

Appendix 3 Wiring Diagram

DU 配电单元

后视图

17 DU

0V

至 MFU 正极扩展排

W81+W82

PL

12-1 12-1

User interface board 1

13 IB2

W01 W01 W01

1 2 3

J11 J12

8-QF3

Module subrack 6 Shelf 1

1

0V

PE

2

1

QFD1

2

10

10

10

10

N L

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

2

7-82

QFB2

W80

10 RB

2 8-B-

7-44

1 至模块负极排

1

W80

2

1 2

1 2

1 7-22

1

PL

21 H1

1

W80

7-80

2

22 H2

NPL

7-20

12 KM2

W80

To the positive busbar of the MFU

1

W80 7-60 1

NPL 7-31 7-46 1

23 H3

1

7-56 7-55

W80

1

QFB1

至 DU单元 PL 排

至 DU单元 NPL排

11 KM1

W80

QFD2

至模块正极排

7-79

2

PL

TO MFU unit PL busbar 24 H4

W80

7-35/7-47/7-49/7-50 W80 X5-1/X6-1 W80

1

7-81

2

3

2

QFD9

2

QFD10

1

9 BUS+

5-3 W07 W80 7-59

1

J2 4 2

W02

-48V

7-2 X3-1

Rear top view

5 PE 1 2 4 3 9-2

J3 J4 J5

9-BUS+-1

8-B--1 8-PL-1

10-2 10-1

13-J2-2

W80W80

2 4 6 8

23-L 21-N 22-N 23-N 24-N

W80

22-L

X5-1

8-PL-1

13-J2-1

13-J2-3

13-J2-4

X4-2

9-BUS+-1 W80

W80

QFD11

8-QF4

1 QFA

L1 L2 L3 N 1 3 5 7

21-L/24-L

9-BUS+-2 W80

W80W80

8 MFU

QFD18

8-QF5

Three-phases AC input

J6 J7 J8 J9

8-QFB2-1 24-CAN-

24-CAN+

X3-2 W80

W80 W80

2

To the positive busbar of the MFU

TO MFU unit PL busbar

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

2

1

W80 W80

W80

1

1 2

W80 W80

X9

TO the user protective earth

2

NPL

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

MFU DC power wiring diagram

1

MFU Door connected ground

Front view

X12

1 2

11-1 11-2

W80

8-PL-QFD

8-QFB1-1

M820B

8-NPL-QFD

W80

Controller motherboard switch7

1

2

8-QF6

8-QF8

1 2

8-QF7

7-60

W80

Figure 15 NetSure 701 A41-S4 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

N

0V

W04 W02 W01

7-4 W05

58

Appendix 3 Wiring Diagram

18 M34C3C1

15 M2433X2

J3

J1 J5

J6

5-2

PE

J2

13-J3-1+

W06

DCSPD

13-J3-1-

7-39 7-41 W84

1 2

J4

v-

v+

W06 W06 User interface board 1

J7 8-PL-2

8-PL-1

1 2 3

9-2

12-1 W84 12-2

J1

J2

W06

13

1

12

单相交流输入带防雷

J6 12 8 J8 J7

3 QFA2

W80

1-2 2-N

L

PE

5-4

3-2

W03

W03 W03

W80

W07 W01 8 MFU

2-N

W02W07

Rear top view

1 2 3

7-35/7-47/7-49/7-50 X5-1/X6-1 W80 12-1 W84 QFD1

1 2

QFD2

QFD6

1 2

1

1

10

10

10

10

N L

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

N

W04 W02

PE

W01

L

N

W04 W01

7-30

7-28

2

2

1 2

QFB1

W84 10 RB

0V

W02

W80

1 B-

To the Negative Busbar

PE

QFB2

PL

12 KM2

-48V

1

25 H5

W08

1

7-2 X3-1

1

1

W84

W84

21 H1

1

1 2

1 7-22

1 2

22 H2

1

To the positive Busbar

2

NPL

15-J7

To the positive busbar of the MFU

23 H3

NPL

7-20

W06

2

1 2

18-J2-2

18-J2-3 7-31 7-46

W80 W80

9-BUS+-1 18-J2-1

W84

1 11 2 W80 KM1 W80

7-43

PL

TO MFU unit PL busbar

W80

W80 7-27

7-45

1 2

QFD7

1 2

QFD8

QFD9

QFD10

1

6 Shelf 1

0V

24 H4

W80 7-29

2

Module subrack

9 BUS+

5 PE 1 2 W06 15-J6 W06 15-J6 2 5-3 W07 4 3 9-2 2-PEW03

TO the user protective earth

QFD3

MFU DC power wiring diagram

2 4 W03

W03

25-L 23-L 22-L 21-L/24-L

W80

W80

L N 1 3

N

2 4

9-BUS+-1

8-PL-1

W80 W80

8-QFB1-1

8-QFB2-1

10-2 10-1

13-J8-4 13-J8-6 13-J8-7 13-J7-2 13-J8-8

24-CAN-

24-CAN+

X3-2 W80

X10-2 W80

W03 W03 X10-1

LO NO 1 3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

1 QFA

2 SPD1

21-N/24-N 22-N 23-N 25-N

11-1

18-J1-2 11-2

8-PL-QFD

8-NPL-QFD

W80

1-4 3-4

W06 15-J4-1 W06 15-J4-2

W84 W84 W80 W80

W2453X1

J4 J3

W80 X7-2

X5-1

18-J1-1

X6-1

13-J7-1

13-J8-1

13-J8-2 13-J8-3 13-J8-5

W80

9-BUS+-1 W80

3- 3+ 1- 1+ DO3 DO1

门接地

Front view 9-BUS+-2 W80

8-PL-1

Controller motherboard switch

7 M221S

4- 4+ 2- 2+ DO4 DO2

W2453X1

W80

Figure 16 NetSure 701 A41-S5 wiring diagram

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

10

W08 PE N L

W04 W02 W01

7-4

W05

59

Appendix 4

Appendix 4 Shematic Diagram

PD1

User interface board

W2453X1

ST1

User-defined AC Output Class C SPD SPD1

QFA2

MB

Temperature Sensor

No Lo

Controller

QFD1

M221S or M222S

ST2

NPL

Temperature Sensor

Optional

QFD6 KMD1

H1

LLVD Contactor Mains Input

QFD7 H2

QFA1 N L

PL

W34C3C1

QFD10

PD2

H3 PE KMD2

BLVD Contactor

H4 RS1 H5

QFB1 QFB2

Battery 1 Positive Busbar

Battery 2

CAN

DC SPD SPD2 M2433X2

AC Distribution Unit

DC Distribution Unit 1

-48V 0V

Figure 17 Schematic diagram of NetSure 501 A91

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Shematic Diagram

60

Appendix 4

用户交流输出 User-defined AC Output

用户接口板 W2453X1

PD1

ST1 温度传感器 C 级防雷器 Class C SPD SPD1

MB 监控单元 M221S or M222S

Temperature Sensor

No Lo QFA2

Shematic Diagram

选配 Optional

ST2 温度传感器

QFD1

NPL 非重要负载

Temperature Sensor

QFD4 KMD1

H1

负载下电接触器 市电输入 Mains Input

LLVD Contactor QFD5 H2 重要负载 PL

QFA1 N L

W34C3C1

QFD6

H3

PE

KMD2 电池下电接触器 BLVD Contactor

H4

RS1 CAN

QFB1 QFB2

电池组 1 Battery 1 电池组 2 Battery 2

正排 Positive Busbar

直流防雷 DC SPD SPD2 M2433X2

交流配电单元 AC Distribution Unit

直流配电单元 1

-48V 0V

Figure 18 Schematic diagram of NetSure 501 A41(1)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

DC Distribution Unit 1

61

Appendix 4

PD1

Shematic Diagram

User interface board

M A4 C5U3 1

ST1 Temperature Sensor

ST2

MB Contoller M820B

QFD1

Tem perature Sensor

NPL

Op tional

QFD4 KMD1

H1

LLVD Contactor Mains Input

QFD5 H2

QFA1

PL

N L

QFD8 H3

PE BLVD Contactor

KMD2 H4 RS1 CAN

QFB1 QFB2

Battery 1 Battery 2

AC Distribution Unit

Positive Busbar

DC Distribution Unit 1

Figure 19 Schematic diagram of NetSure 501 A41(2)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

62

Appendix 4

Shematic Diagram

User interface board

PD1

W2453X1 ST1 Temperature Sensor

ST2 选配 Optional

MB Controller

QFD1

M221S or M222S

NPL

Temperature Sensor

QFD4 KMD1

H1

LLVD Contactor

Mains Input H2

QFD5

QFA1

PL

N W V U

H3

PE

KMD2

BLVD Contactor

CAN RS1 QFB1 QFB2

Battery 1 Battery 2

AC Distribution Unit

Positive Busbar

DC Distribution Unit 1

Figure 20 Schematic diagram of NetSure 701 A41(1)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

63

Appendix 4

PD1

Shematic Diagram

User interface board

W2453X1 ST1 Temperature Sensor

ST2 Optional

MB Controller

M221S or M222S

Temperature Sensor

H1

Mains Input

QFD1 H2

QFA1 N W V U

PL QFD12 H3

PE

KMD2

BLVD Contactor

H4 RS1 CAN

QFB1 QFB2

Battery 1 Battery 2

AC Distribution Unit

Positive Busbar

DC Distribution Unit 1

Figure 21 Schematic diagram of NetSure 701 A41(2)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

64

Appendix 4

PD1 User-defined AC Output

User interface board

W2453X1 ST1

MB Controller

Temperature Sensor

Class C SPD SPD1

Shematic Diagram

No Lo QFA2

QFD1

M221S or M222S

ST2

NPL

Temperature Sensor

Optional

QFD8 KMD1

H1

LLVD Contactor

Mains Input

QFD9 H2

QFA1 N L

PL

W34C3C1

QFD12

PD2

H3 PE KMD2 H4

BLVD Contactor

RS1 CAN

QFB1 QFB2

Battery 1 Battery 2

Positive Busbar

DC SPD SPD2 M2433X2

AC Distribution Unit

DC Distribution Unit 1

-48V 0V

Figure 22 Schematic diagram of NetSure 701 A41(3)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

65

Appendix 4

PD1

Shematic Diagram

User interface board

MA4C5U31

ST1 Temperature Sensor

ST2 Optional

MB Controller

QFD11

QFD1

M820B

NPL

NPL

Temperature Sensor

QFD14

QFD4 KMD1

H1

LLVD Contactor Mains Input

QFD5

QFD15

H2 QFA1 PL

N W V U

QFD10

PL QFD18

H3

PE

KMD2

BLVD Contactor

H4 RS1 CAN

QFB1 QFB2

AC Distribution Unit

Battery 1 Positive Busbar

Battery 2

DC Distribution Unit 1

Figure 23 Schematic diagram of NetSure 701 A41(4)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

Positive Busbar

DC Distribution Unit 2

66

Appendix 4

PD1

User interface board

W2453X1

ST1

User-defined AC Output Class C SPD SPD1

QFA2

Shematic Diagram

MB

Temperature Sensor

No Lo

Controller

QFD1

M221S or M222S

ST2

NPL

Temperature Sensor

Optional

QFD6 KMD1

H1

LLVD Contactor Mains Input

QFD7 H2

QFA1 N L

PL

W34C3C1

QFD10

PD2

H3 PE

BLVD Contactor

KMD2 H4 RS1 H5

QFB1 QFB2

Battery 1 Battery 2

Positive Busbar

CAN

DC SPD SPD2 M2433X2

AC Distribution Unit

DC Distribution Unit 1

-48V 0V

Figure 24 Schematic diagram of NetSure 701 A41(5)

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system User Manual

67

68

Appendix 5

Glossary

Appendix 5 Glossary Abbreviation Amb.Temp Batt BC BLVD Cap CommMode CurrLimit CycBC Con Alarm Voice Hist Alarm HVSD InitParam InitPWD LLVD LVD MCB Ph-A PWD Rect Shunt coeff SM SPD SW Version Sys Temp Temp Comp Volt

Full word Ambient Temperature Battery Boost Charging Battery Lower Voltage Disconnection Capacity Communication Mode Current Limit Cyclic Boost Charging Control Alarm Voice Historical alarm High Voltage Shutdown Initialize Parameters Initialize Password Load Low Voltage Disconnection Low Voltage Disconnection Miniature Circuit Breaker Phase A Password Rectifier Shunt Coefficient Supervision module (controller) Surge Protection Device Software Version System Temperature Temperature Compensation Voltage

NetSure 701 A41, NetSure 501 A41, NetSure 501 A91 Subrack Power system

User Manual

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF