30715997 Gerdau AZA Manual Saferock 2008

April 18, 2017 | Author: Diego Torres Ortiz | Category: N/A
Share Embed Donate


Short Description

Download 30715997 Gerdau AZA Manual Saferock 2008...

Description

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK ®

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK® Autor: Dr. Ing. Alfonso Carvajal Rojas

Colaboradores: Eugenio Santander A. José Castillo M.

Editor: Carlos Rondon S.M. Diseño y Producción Gráfica: Casenave y Asociados Dirección de Arte: Soledad Casenave P. Diagramación: Ernesto Amaya G.

Ilustraciones: Ingrid Aguilera A. Fotografía: Francisco Aguayo Jorge Brantmayer Matías del Campo Impresión: M y M Servicios Gráficos S.A. Derechos Reservados (C) por Gerdau AZA S.A. La Unión 3070, Renca. Santiago de Chile. Copyright (C) MMVII, por Gerdau AZA S.A. SAFEROCK® Marca Registrada Nº742199 Patente de Invención 125-2005 Inscripción en Propiedad Intelectual N° 164.756. 1ª Edición: 2.000 ejemplares, junio de 2008 Impreso en Chile - Printed in Chile No está permitida la reproducción total o parcial de este documento, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, fotocopia, registro u otros medios, sin la aprobación y por escrito de Gerdau AZA S.A.

Otros documentos técnicos de Gerdau AZA S.A. disponibles para los usuarios interesados, son: • Manual de Cálculo de Hormigón Armado • Manual de Armaduras de Refuerzo para Hormigón • Manual de Diseño para Angulos Estructurales L-AZA • Catálogo Técnico de Barras y Perfiles Laminados Para consultas sobre nuestros productos y servicios, visite nuestra página web: www.gerdauaza.cl

Vista aérea de la Planta Renca de Gerdau AZA, instalación donde son laminados los pernos SAFEROCK®.

4

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK®

Gerdau AZA, empresa per teneciente al Grupo Gerdau,

y análisis del perno SAFEROCK®, su instalación y una

tiene el agrado de presentar a la comunidad de

serie de herramientas prácticas para el diseño.

profesionales y estudiantes de los sectores de la geotecnia, geomecánica, ingeniería de excavaciones,

Agradecemos, muy sinceramente, el valioso apor te

ingeniería civil estructural y construcción, la primera

técnico del autor y de su equipo interdisciplinario de

edición de su Manual Sistema de Refuerzo de Rocas

colaboradores de la Facultad de Ingeniería de la

con Pernos SAFEROCK ®, mediante el uso de barras

Universidad de La Serena, a la empresa DSI

de acero producidas por Gerdau AZA.

SOPROFINT por su inapreciable colaboración en el desarrollo del sistema de refuerzo SAFEROCK ® y a

El presente Manual, de 226 páginas, que consta de

cada uno de los integrantes de la Superintendencia

once capítulos y un anexo, tiene su contenido orientado,

de Geomecánica de CODELCO División El Teniente,

fundamentalmente, hacia todos los profesionales

cuyos apor tes y pruebas realizadas en terreno fueron

vinculados con el diseño, cálculo y ejecución de

decisivas para lograr las mejoras del producto

excavaciones y la estabilización de estratos rocosos de

SAFEROCK ® , al permitirnos contribuir a través de

taludes en minas de tajo abierto y en caminos de alta

este medio, con la ingeniería y la construcción de

montaña, como también con la docencia de esta

excavaciones en super ficie y subterránea en Chile.

especialidad. Esperamos que sea un aporte valioso y necesario para todas las personas que lo utilicen como

A todos ellos, un sincero reconocimiento por el

texto guía o como un documento de consulta permanente.

respaldo y la confianza que han depositado en nuestra empresa y de manera muy especial, a todas las

Entre los temas abordados por el autor de este texto

personas que directa o indirectamente, día a día,

podemos destacar, la propuesta para la ingeniería de

especifican y utilizan nuestros productos, como

excavaciones, el método de análisis de riesgo, los

también a aquellas que nos entreguen cualquier

procedimientos de diseño para túneles de roca, la

apor te, obser vación o comentario que sir va para

descripción y características del sistema de refuerzo

enriquecer estas páginas en futuras ediciones.

de rocas, con su respuesta y evaluación, el estudio

5

El presente Manual es el producto de tres proyectos de

Del mismo modo, se entregan en forma gráfica conceptos

investigación encargados y financiados por Gerdau AZA.

extractados de la literatura especializada, que forma la

Uno de ellos consistió en analizar la literatura relacionada

mayor parte de este trabajo, y proporciona algunas reglas

con los sistemas de refuerzo en roca, utilizando pernos

empíricas de uso práctico y el procedimiento de instalación

de acero, extractando los principios y fundamentos, que

correspondiente. Lo anterior nos hace pensar que el

en la consideración del autor son los más importantes,

texto puede ser usado tanto por estudiantes como por

y otros que son incluidos por su temario, teoría y

profesionales relacionados con construcciones o

principios sobre cómo se debe operar en la ingeniería

excavaciones, ya sean estas de superficie o subterráneas,

de excavaciones. Los otros dos proyectos corresponden

como una herramienta para el diseño e instalación del

a investigaciones aplicadas, cuya finalidad fue lograr

perno de refuerzo SAFEROCK® y su sistema.

un producto que tenga mejores propiedades y compor tamiento bajo solicitaciones de carga. De esta

El perno y la tuerca SAFEROCK®, productos registrados

manera, se estudió el diseño del perno SAFEROCK® y

por Gerdau AZA de acuerdo con la Patente de Invención

el sistema propuesto por Gerdau AZA, cuyos resultados

Nº 125-2005, han sido aplicados crecientemente y en

más impor tantes aparecen en este trabajo.

forma satisfactoria en Chile, en la fortificación de túneles y otras operaciones mineras de la empresa Codelco

Este manual no pretende constituir una obra de análisis

División El Teniente y en túneles y estabilizaciones de

profundo de los complejos fenómenos que se presentan

suelos en construcciones del Metro de Santiago, entre

en la naturaleza de las masas de roca, cuando son

otras importantes obras de infraestructura.

inter venidas por el hombre, sino más bien el esfuerzo está orientado a entregar una visión de conjunto de la

La aceptación y el éxito que han tenido los pernos

problemática, dando pautas y formas de integración de

SAFEROCK® y su sistema entre los usuarios, se debe

los distintos actores que inter vienen en la ingeniería

a sus características y a las mejores técnicas

de excavaciones, tales como el diseño de; la excavación

introducidas en el diseño y fabricación del conjunto,

propiamente tal, la per foración y voladura y el sistema

lo que ha permitido ir desplazando paulatinamente a

de refuerzo y/o sopor te.

los pernos tradicionales existentes en el mercado.

6

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK®

Alfonso Carvajal Rojas, Ingeniero de Minas, Master of

En Chile ha participado en proyectos FONDEF y DIULS,

Science (1994) y Doctorado (Sc.) (2003) con especialidad

consultorías, conferencias técnicas y cursos de

en geomecánica minera de la Universidad de Ciencia y

perfeccionamiento en empresas e instituciones como:

Tecnología de Polonia es, además, Ingeniero de Ejecución

Codelco Chuquicamata, El Salvador, Andina y El Teniente,

de la ex Universidad Técnica del Estado, Sede La Serena.

Minera Las Cenizas, Los Pelambres, Candelaria y el Instituto de Ingenieros de Minas.

Se desempeñó en minería masiva durante diez años en Codelco Chile División El Teniente y minería selectiva en

El doctor Car vajal ha sido profesor tutor de varias

la Compañía Minera El Indio durante dos años.

memorias de título para ingenieros de ejecución y civil de minas, profesor tutor en el programa de postgrado

Ha publicado 18 ar tículos tanto en Chile como en el

"Magíster en Ingeniería de Recursos Minerales" para

extranjero, ha par ticipado en las redes temáticas

ingenieros del Perú, y actualmente es director del

iberoamericanas de Ciencia y Tecnología para el

Departamento de Ingeniería de Minas y de un proyecto

Desarrollo (CYTED), e invitado a par ticipar tanto en

de postítulo virtual, miembro del consejo académico de

proyectos, dictar conferencias técnicas, cursos de

la Universidad de La Serena, profesor de los cursos de

postgrado y visitas técnico-científicas en Perú, Argentina,

per foración y tronadura, métodos de explotación y

Venezuela, Cuba, Ecuador, Brasil, Polonia, España,

construcciones subterráneas y miembro permanente del

Inglaterra y la República Checa.

comité científico del International Mining Forum de Polonia.

7

Productos y procesos de calidad reconocida y certificada

8

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK®

Capítulo 1

INFORMACION GENERAL

1.1

Proceso de Fabricación y Control de Calidad

1.2

Identificación, Dimensiones, Grados del acero y Características de los Elementos del Sistema SAFEROCK®

Capítulo 2

15

18

GENERALIDADES

2.1

El Refuerzo de Roca y la Calidad Total

25

2.2

Seguridad en Excavaciones

28

2.3

Control de Daño como Consecuencia de la Caída de la Roca

30

2.4

Accidentabilidad

30

2.5

Relación Marco-Perno

32

2.6

Historia de su Aplicación en Minería

33

Capítulo 3

LA INGENIERIA DE EXCAVACIONES

3.1

Ingeniería de Rocas

39

3.2

Propuesta para la Ingeniería de Excavaciones

45

3.3

Método de Análisis de Riesgo

50

Capítulo 4

PROCEDIMIENTO DE DISEÑO PARA TUNELES EN ROCA

4.1

Revisión al procedimiento de Diseño para Túneles en Roca

57

4.2

Procedimiento de Diseño de Túneles en Roca

59

4.3

Control del Debilitamiento de las Excavaciones Subterráneas

61

4.4

Tamaño de la Excavación y Número de Discontinuidades

62

4.5

Nivel de Esfuerzos

62

4.6

Diseño de Soporte para Rocas Sobrestresadas

67

4.7

Definición del Criterio de Falla

68

4.8

Concepto Arco de Roca

71

9

Capítulo 5 5.1

Aspectos Generales

75

5.2

Guía para el Modelamiento Numérico

77

5.3

Cálculo en dos o tres Dimensiones

80

5.4

Resumen

81

Capítulo 6

SISTEMA DE REFUERZO DE ROCAS

6.1

Conceptualidades del Refuerzo

85

6.2

Tipos de Refuerzo

86

6.3

Acción del Refuerzo

87

6.4

Componentes del Sistema de Refuerzo SAFEROCK®

89

6.5

Clasificación del Sistema de Refuerzo SAFEROCK®

90

6.6

Comportamiento del Sistema de Refuerzo Perno Tuerca SAFEROCK®

92

6.7

Elemento Externo - Planchuela (4)

96

6.8

Lechada como Elemento de Adherencia en Sistema de Refuerzo

97

Capítulo 7 7.1

RESPUESTAS DEL SISTEMA REFUERZO - ROCA Conceptos Fundamentales

105

7.2

Interacción en la Interfase Roca-Lechada

106

7.3

Interacción en la Interfase Lechada-Perno SAFEROCK®

109

7.4

Interfase de Tranferencia de Carga Roca-Refuerzo

110

7.5

Modos de Falla Bajo Carga Axial del Sistema SAFEROCK®

112

Capítulo 8

10

COMPUTACION APLICADA AL DISEÑO DE EXCAVACIONES

EVALUACION DEL SISTEMA DE REFUERZO

8.1

Refuerzo de Roca Intacta

115

8.2

Refuerzo en Roca Fracturada

115

8.3

Diseño de Refuerzo

117

8.4

Comportamiento del Refuerzo en Roca Fracturada

118

8.5

Procedimiento para Refuerzo en Roca Fracturada

119

8.6

Evaluación de Estabilidad de Bloques no Reforzados

120

8.7

Diseño de Refuerzo de Bloques

122

8.8

Valorización de Estabilidad de Bloques Reforzados

124

8.9

Teorías de Refuerzos

126

Manual Sistema de Refuerzo de Rocas con Pernos SAFEROCK®

Capítulo 9

ESTUDIO DEL PERNO SAFEROCK®

9.1

Modelamiento Numérico de Pruebas de “Pull Out” (Software Flac)

135

9.2

Ensayo de Pull Out, Perno SAFEROCK®

145

Capítulo 10

HERRAMIENTAS PRACTICAS DE DISEÑO

10.1

Introducción

153

10.2

Reglas Empíricas para Esfuerzos y Control de Terreno

153

10.3

Mecanismos Teóricos de Refuerzo

156

10.4

Clasificación de Refuerzos de Rocas para Túneles

159

10.5

Indice de Calidad de Túneles “Q”

160

10.6

Geological Strength Index “GSI”

171

10.7

Indice de Masa Rocosa “RMI”

182

10.8

Ejemplos

192

Capítulo 11

PROCEDIMIENTOS DE INSTALACION SAFEROCK®

11.1

Procedimiento de Instalación

197

11.2

Perforación

197

11.3

Inyección

201

11.4

Riesgos y Medidas de Control

203

A.1

Términos y Definiciones

211

A.2

Normas de Referencia y Alcance del Reglamento de SERNAGEOMIN

213

Conversión de Unidades

222

Bibliografía

224

Anexos

A.3

11

Capítulo 1

Información General 1.1

Proceso de Fabricación y Control de Calidad

1.2

Identificación, Dimensiones, Grados del Acero y Características de los Elementos del Sistema Saferock®

Capítulo 1: Información General

1.1

PROCESO DE FABRICACION Y CONTROL DE CALIDAD

1.1.1

Proceso de Fabricación del Acero Gerdau AZA

En Gerdau AZA, el proceso de fabricación del acero se inicia con la selección, procesamiento y corte de trozos de acero en desuso, la chatarra, que es la materia prima básica. Otros elementos que también son empleados en la fabricación, son las ferroaleaciones, oxígeno, cal y fundentes, entre otros. En primer lugar, la materia prima se carga en cestas, en proporciones adecuadas para satisfacer las especificaciones del proceso de fabricación del acero, las que son trasladadas a la Acería para alimentar el horno de arco eléctrico. Toda la carga es fundida en el horno de 60 toneladas de capacidad, mediante la aplicación de un arco

Figura 1.1: Operación de Carga de Horno Eléctrico, Planta Colina, Gerdau AZA.

eléctrico que desarrolla una potencia de 45.000 kVA. mayor afinidad química de estos elementos, para formar Una vez terminado el proceso de fusión, en donde toda

entre otros, óxidos y sulfuros que pasan en mayor cantidad

la carga pasa del estado sólido al estado líquido, momento

a la escoria.

en el cual alcanza una temperatura de alrededor de 1.630ºC, el acero es trasladado a un Horno de Cuchara,

Cuando el acero líquido cumple con las especificaciones

donde se realizará la etapa de afino y se procederá a

requeridas, tanto de composición química como de

tomar muestras de acero para realizar el análisis de

temperatura, éste es trasladado en la cuchara hasta la

espectrometría, con el propósito de conocer su composición

máquina de colada continua, donde se realizará el colado

química. Durante toda la etapa de fusión, se inyectan al

del acero.

horno importantes cantidades de oxigeno para extraer y remover las impurezas y cumplir así con los estándares de calidad preestablecidos.

1.1.2

Luego de conocido el informe sobre la composición química,

Obtenido el acero en su estado líquido, éste debe

se realizan las correcciones necesarias mediante el proceso

solidificarse en la forma conveniente para su empleo

de afino, lo que permite obtener la composición y purezas

posterior en los trenes de laminación. Esto se hace

deseadas. De esta forma, los diferentes grados del acero

mediante un equipo de colada continua, en el que se

Gerdau AZA se obtienen, de un cuidadoso control de la

aplica un proceso que transforma el acero líquido en

composición y mediante la adición de ferroaleaciones,

un producto semiterminado, llamado palanquilla, que

como el ferromanganeso y ferrosilicio, aprovechando la

son barras macizas de 130 x 130 mm de sección.

Colado del Acero

15

Figura 1.2: Líneas de colada continua de acería, Planta Colina, Gerdau AZA.

El acero líquido que se encuentra en la cuchara de

Luego de esto, las palanquillas son inspeccionadas

colada, es transferido a una ar tesa o distribuidor,

visualmente para detectar eventuales defectos

desde donde pasa a las vías de colada.

super ficiales o de forma. Después de aprobadas, las palanquillas son separadas por coladas, identificadas y

Desde el distribuidor, el acero cae dentro de tres

almacenadas para la operación siguiente: la laminación

lingoteras de cobre sin fondo, de doble pared y

en caliente.

refrigeradas por agua, donde se inicia la solidificación del acero, con la formación de una delgada cáscara super ficial endurecida, que contiene aún su núcleo de

1.1.3

Laminación en Caliente de las Barras

metal en estado líquido. La laminación en caliente, es un proceso de transformación Para ayudar a acelerar la formación y engrosamiento

termomecánico, en donde se da la forma final a los

de dicha cáscara, las lingoteras tienen un movimiento

productos siderúrgicos. En el caso de los pernos

de oscilación ver tical que, además, impide su

SAFEROCK®, el proceso es el siguiente: en la planta de

adherencia a las paredes del molde y permite su

laminación, las palanquillas son seleccionadas según el

transpor te hacia el mecanismo extractor.

grado del acero del producto final y son cargadas a un horno de recalentamiento horizontal, donde alcanzan una

Después de dejar las lingoteras, tres metros debajo

temperatura uniforme de 1.200°C, lo que permitirá su

de éstas, el acero super ficialmente sólido, es tomado

deformación plástica durante el proceso de laminación

por juegos de rodillos refrigerados con chorros de agua

en caliente.

a alta presión, solidificándose completamente, y ya conver tido en palanquilla, cor tado automáticamente

En este proceso, la palanquilla es tratada mecánicamente,

mediante cizallas, a la longitud deseada.

haciéndola pasar sucesivamente por trenes de

16

Capítulo 1: Información General

laminación, las cuales van reduciendo su sección

1.1.4

Control de Calidad y Cer tificación

original y consecuentemente, aumentando la longitud inicial. De esta forma, se lleva la sección transversal

Todo el proceso de fabricación de los per nos

de la palanquilla cada vez más próxima a la forma y

SAFEROCK ®, está cer tificado bajo las normas ISO

diámetro final del perno SAFEROCK®, con su geometría

9001, ISO 14001 y OHSAS 18001; de esta forma,

y dimensiones características y con la marca que

a lo largo de todas las etapas de fabricación del

identifica el origen o fabricante.

producto existen monitoreos, mediciones y ensayos de los procesos.

En su planta ubicada en la comuna de Renca, Gerdau AZA posee un laminador de 100.000 toneladas

Desde la selección de la chatarra y otros insumos,

anuales de capacidad, que permite controlar el

pasando por la fabricación del acero líquido, su

enfriamiento de las barras, con lo cual las propiedades

composición química, hasta el control de las

mecánicas finales de los pernos SAFEROCK ®, son

dimensiones finales obtenidas en la laminación en

determinadas con gran precisión. Cada uno de los

caliente, conforman un complejo sistema que permite

pernos son conducidos hasta el final del tren de

asegurar la obtención de productos de calidad, de

laminación, a una parrilla o lecho de enfriamiento

acuerdo a los actuales estándares.

donde terminan de enfriarse, para luego proceder al cor te a la medida deseada y posteriormente ser

La cer tificación de calidad del acero de todas las

empaquetados y almacenados. Al final del proceso de

par tidas de pernos SAFEROCK ® en Gerdau AZA, da

cor te se extraen las muestras para su aprobación y

cumplimiento a la norma chilena NCh 204.Of2006.

cer tificación de acuerdo a las normas vigentes. Esta exigencia establece la extracción, identificación y retiro de muestras por inspectores acreditados, normalmente de algún organismo de ensaye de materiales autorizado por el Estado. En el caso de Gerdau AZA, el cer tificado es entregado por el Instituto de Investigaciones y Ensaye de Materiales de la Universidad de Chile, IDIEM. Las muestras son preparadas para ser sometidas a ensayos normalizados de tracción, midiéndose las propiedades mecánicas más relevantes, como la tensión de fluencia, la carga máxima y el alargamiento de rotura. Los resultados de los ensayes, se presentan en cer tificados de calidad, en los que se identifica el material ensayado y se entrega el veredicto de Figura 1.3: Sala de Control de Laminación, Planta Renca, Gerdau AZA.

cumplimiento con la nor ma, constituyéndose en 17

una garantía del producto para el usuario. Periódicamente y como una medida adicional de control, se efectúa un análisis estadístico de las propiedades mecánicas sobre toda la producción de barras y a cada una de las coladas producidas.

1.2

IDENTIFICACION, DIMENSIONES, GRADOS DEL ACERO Y CARACTERISTICAS DE LOS ELEMENTOS DEL SISTEMA SAFEROCK® Figura 1.4: Laboratorio de Ensayes Mecánicos de IDIEM, en Gerdau AZA.

1.2.1

Identificación y Dimensiones de los Elementos La identificación exclusiva que utiliza nuestra empresa

Gerdau AZA, en sus instalaciones ubicadas en Santiago, SAFEROCK®,

en este producto, consiste en caracteres bajo relieve,

en barras

los cuales incluyen la marca de origen Gerdau AZA

rectas destinados al reforzamiento de estratos rocosos

SAFEROCK®. Otra identificación visible de los pernos

y suelos.

es el color amarillo en el extremo de la barra que recibe

produce y comercializa pernos

la tuerca.

Tabla 1.2.1 Identificación y Dimensiones de los Elementos del Sistema de Refuerzo de Rocas Elemento

Dimensiones mm

Masa Unitaria

Forma de entrega

Perno SAFEROCK®

Diametro 22 (*)

2,85 kg/m

Barra Recta

Planchuela Estándar

200 x 200 x 5

1,6 kg/unid

Unidad

Tuerca SAFEROCK®

45 x 45

0,215 kg/unid

Unidad

(*) Otros diámetros y largos, distintos a 6 m, estarán sujetos a previa consulta a Gerdau AZA

18

Esquema de los Elementos

Capítulo 1: Información General

Además de lo anterior, Gerdau AZA, identifica el contenido de todos los paquetes de los pernos SAFEROCK®, mediante una etiqueta plástica, con todos los datos concernientes a la fabricación de las par tidas del producto.

Descripción del producto

Peso del paquete

Número de colada

Fecha y hora de fabricación

Sello indica que los sistemas de gestión están certificados de acuerdo a Normas ISO 9001, ISO 14001 y OHSAS 18001

Sello indica que los productos están limpios y libres de contaminación

Figura 1.5: Barra para Pernos SAFEROCK®.

19

1.2.2

Grado del Acero de los Elementos del Sistema

Tabla 1.2.2 Propiedades Mecánicas de los Elementos del Sistema de Refuerzo de Rocas SAFEROCK® Elemento Perno SAFEROCK® Planchuela

Grado del Acero

Resistencia a la Tracción

Tensión de Fluencia

(Fu)

(Fy)

Alargamiento %

MPa

kgf/mm2

MPa

kgf/mm2

A440-280

440

44,9

280

28,6

16%

A270ES

410 a 510

41,8 a 52,0

270

27,5

20%

457

46,6

320

32,6

-------

Fundición Tuerca SAFEROCK®

1.2.3

Nodular Dúctil ASTM A536

ensayes de tracción, en barras para pernos SAFEROCK®

Relaciones Tensión-Deformación

para el grado A440-280, con una cur va en barras de El ensaye de tracción se realiza sobre muestras de pernos SAFEROCK®

22 mm de diámetro.

en su sección completa, de la forma como

salen de la laminación, dando así cumplimiento a la norma

Esta curva presenta claramente una zona de fluencia,

oficial chilena NCh200.

en donde una vez alcanzado el límite elástico o tensión de fluencia, la probeta empieza a deformarse

En el gráfico siguiente se muestran los resultados de

plásticamente bajo tensión constante.

Gráfico 1.2.3 Curva Tensión-Deformación Barras para Pernos SAFEROCK®, grado A440-280, 22 mm 800 700

s, MPa

600 500 400 300 200 100 0

0,050

Fuente: Laboratorio de Ensayos IDIEM

20

0,100

0,150

´

0,200

0,250

0,300

Capítulo 1: Información General

1.2.4

Cer tificado de Calidad

las etiquetas de los atados o paquetes de barras recibidos.

A requerimiento del ingeniero responsable del proyecto, el propietario, la empresa minera o constructora, el

A continuación, se adjunta un facsímil de cer tificado

contratista instalador o del inspector técnico de la

de calidad, emitido por el IDIEM, el que describe

obra, Gerdau AZA, está en condiciones de entregar,

los controles necesarios a que son sometidas los

sin costo adicional, un Certificado de Calidad para los

pernos SAFEROCK ® , y los resultados obtenidos en

pernos SAFEROCK ®, emitido por un organismo de

los ensayes

ensaye de materiales autorizado por el Estado, que permite certificar y autorizar el uso de las par tidas de acero

en

obras

de

refor zamiento de rocas y suelos de acuerdo a las especificaciones

del

proyecto. Se recomienda a quién recibe las barras en la obra, que exija a sus proveedores las par tidas identificadas con

sus

respectivas

etiquetas. De esta forma, ante

cualquier

duda

posterior, se facilitará chequear la cer tificación entregada, con el material respectivo. Impor tante: En el caso de barras

de

origen

o

procedencia desconocida, se deberá tomar la precaución de

verificar

que

la

información del cer tificado de calidad sea coincidente con los datos contenidos en Figura 1.6: Facsímil del Certificado de Calidad IDIEM barras SAFEROCK®.

21

Capítulo 2

Generalidades 2.1

El Refuerzo de Roca y la Calidad Total

2.2

Seguridad en Excavaciones

2.3

Control del Daño como Consecuencia de la Caída de la Roca

2.4

Accidentabilidad

2.5

Relación Marco-Perno

2.6

Historia de su Aplicación en Minería

Capítulo 2: Generalidades

2.1

EL REFUERZO DE ROCA Y LA CALIDAD TOTAL

excavación sometida a esfuerzos, de manera que actúe como un todo, es decir, fijando cualquier tipo de roca

Las empresas creadoras de bienes y/o ser vicios,

suelta o estrato, anclándola profundamente a la roca

enfrentan actualmente una fuer te competencia por

madre o mejorando la fricción entre las discontinuidades.

efecto de la globalización de los mercados y de la utilización de las modernas tecnologías de la

El mejoramiento continuo para estos sistemas se obtiene

comunicación, que han permitido el acceso a la

cuando todos los involucrados, es decir, clientes, empresa

información y contacto con cualquier empresa

productora y trabajadores, están orientados hacia el

productora en el mercado.

mismo propósito de calidad; este propósito no es otro que entender las necesidades del cliente, satisfacerlas

La situación anterior ha llevado a las empresas

y de ser posible excederlas.

productoras de bienes a cambiar la forma de relacionarse con el cliente, interactuando con ellos,

Por otro lado, el cliente debe utilizar estos sistemas

con la finalidad de buscar la manera de mejorar los

apropiadamente; lo mismo ocurre con su instalación, la

productos, no sólo para el proceso de venta, sino

que debe ser controlada eficientemente para cumplir con

también para ofrecer un ser vicio de postventa que le

los procedimientos de manera correcta. Lo anterior

permita mantener el liderazgo en el mercado, revisando

permitirá obtener el máximo de rendimiento del sistema.

y mejorando constantemente los procesos involucrados. En el mercado globalizado actual se debe competir en Lo anterior exige a los productores realizar un

igualdad de condiciones con empresas tanto nacionales

mejoramiento continuo en el proceso, siendo proactivos

como internacionales, en términos del diseño del

para evitar situaciones de crisis que les puedan provocar

producto, costo y calidad. Esto último involucra la

los productos o servicios de postventa en los mercados

facilidad, tanto en el transporte como en la operación

en los que actúan, como asimismo anticiparse a

misma; por lo tanto, el fabricante de pernos debe tener

problemas derivados de la competencia, las materias

presente las necesidades reales del cliente para

primas, pérdidas por desechos, pérdidas de tiempo

entregar productos de alta calidad y competitivos en

en la fabricación de productos, etc.

materia de costos.

En este caso par ticular, la fabricación de pernos para

Por otra par te, la relación de confianza que se va

reforzamiento de rocas no puede abstraerse al concepto

generando entre productor y cliente en un mercado

de calidad total y mejoramiento continuo, considerando

globalizado es frágil, por las infinitas opciones de

el ser vicio que presta para mantener la seguridad en

compra y ser vicio integral que posee el cliente. De

faenas mineras subterráneas, túneles rodoviarios y

esta manera, la empresa fabricante de pernos, el

ferroviarios, estabilización de taludes, etc., es decir,

distribuidor y el cliente, si no son capaces de detectar

evitar accidentes en aquellos lugares de alto tránsito

(Control de Calidad), prevenir (Garantía de Calidad) y

que, de no mediar algún tipo de for tificación, serían

mejorar continuamente (Calidad Total) las fallas en los

zonas de alto riesgo.

productos, por muy mínimas que éstas sean, puede hacer naufragar la sociedad empresa- proveedor-cliente.

Estos pernos permiten mantener la integridad de la

(Ver figuras 2.1, 2.2 y 2.3). 25

Mejora de la calidad

Calidad total

Garantía de calidad

Control de calidad

1980

Mejora continua

Prevenir defectos

Detectar defectos

1990

2000

Tiempo

Figura 2.1: Evolución de la calidad en el tiempo.

Figura 2.3: Ruptura de la tuerca.

a una mayor cantidad de pares, si la comparamos con un cliente satisfecho. Por otro lado, el cliente puede perder la opor tunidad de utilizar, tal vez, un producto de alta calidad y rendimiento por el solo hecho de no manejar la información adecuada, los principios esenciales y los fundamentos que rigen el compor tamiento de estos sistemas. La calidad total nos lleva a detectar los puntos débiles y a corregirlos no sólo en normas y medidas, sino también con cambios en la mentalidad de trabajo Figura 2.2: Deformación de planchuelas debido a cargas.

y con un mayor cuidado en la forma en que se debe enfrentar el trabajo ante la necesidad del cliente.

La gravedad que puede tener un perno que se fatigue sin mediar una causa que lo explique, que podría ser

En el caso de las excavaciones, quienes las

producto de una mezcla deficiente en las materias

construyen pasan a formar par te de un ser vicio de

primas de la producción del acero, o una mezcla de

construcción minera, cuya clientela estará constituida

cemento - agua no apropiada por par te del operador,

por los diversos usuarios que existen en las obras

puede amenazar fuer temente la permanencia de la

civiles (generación de electricidad, tráfico de

empresa productora en el mercado, ya que un cliente

vehículos, galerías mineras etc.). Por lo anterior, en

insatisfecho transmitirá la información de esta situación

este texto se presentan los elementos principales

26

Capítulo 2: Generalidades

de ingeniería para el análisis de reforzamiento de excavaciones. Gunnar Nord (2005), en “Controllable Rock Reinforcement” cita el ejemplo de un túnel de 80 m2 de sección el que está siendo desarrollado en caliza fracturada con estratos arcillosos, a través de un par de fallas mayores, con 350 m de sobrecarga y un significativo flujo de agua; la fase de per foración ha decrecido desde 40%, del tiempo total de per foración hace 20 años, a sólo el 20% en la actualidad. La figura 2.4 muestra el desarrollo de la per foración y operaciones auxiliares en 25 años. Nótese que las diferentes fases del ciclo han tenido el mismo desarrollo. El shotcreting muestra una positiva tendencia a reducir el tiempo, mientras que el carguío de limpieza presenta un notable menor avance. Si se consideran pernos con lechada a columna completa e instalados con un Jumbo o con un equipo automático para aper nado, el incremento en productividad no guarda relación con la fase de per foración. En el caso tratado se registra un 10% solamente. Lo anterior verifica que esta fase es un cuello de botella para el ciclo de excavación, donde queda aún mucho por hacer.

Figura 2.4: Cambios en los tiempos de cada componente del ciclo de excavación en los últimos 25 años. Gunnar Nord 2005.

27

2.2

SEGURIDAD EN EXCAVACIONES

La mayor o menor gravedad de las consecuencias de este planchoneo depende únicamente de la previsión

2.2.1

Reduciendo la Exposición por Caída de Roca

o medidas de control adoptadas.

La caída de roca es uno de los mayores riesgos para

Controlar los riesgos de accidentes a personas, equipos

los trabajadores de la industria minera subterránea. El

y pérdidas de materiales producto de la inestabilidad

desarrollo y la implementación de un efectivo Programa

que presenta una labor durante su apertura, constituye

de Gestión para reducir los accidentes por caída de

una preocupación primordial que debe ser considerada

roca, o un sistema de gestión que incorpore un equipo

en la planificación de las labores mineras.

de trabajo conformado por la gerencia, staf f de ingenieros, operarios, y asesores, puede ayudar a reducir los riesgos asociados a la caída de roca, y en cier tos

2.2.2

Factores que Inciden en la Caída de Roca

casos eliminarlos. A continuación se indican algunos factores relacionados La base de datos que se ha generado a par tir de los

con aquellos aspectos operativos y otros agentes

resultados de las investigaciones realizadas, tanto por

mecánicos que han sido identificados como elementos

los organismos fiscalizadores estatales, como por las

recurrentes en los resultados de las investigaciones

investigaciones internas que llevan acabo los

realizadas, no todos son causantes del fenómeno de

profesionales responsables de la gestión de Prevención

caída de roca, pero han contribuido en cierto grado como

de Riesgo y Seguridad al interior de las empresas,

parte del o los mecanismos que originó la caída de roca.

permiten indicar que existe una serie de elementos agentes comunes, que contribuyen o son factores

Factores geológicos: Se relacionan directamente a las

relevantes en las causas que generan los eventos de

características del macizo rocoso; tipo de roca,

caída de roca.

alteraciones, fallas, discontinuidades o diaclasas, lo que origina el debilitamiento y luego el desprendimiento

¿Por qué ocurre la caída de roca?

de rocas.

La caída de roca o planchones se produce cuando por razones diversas, el macizo rocoso colapsa o falla, lo

Factores ambientales: Los cambios bruscos de

que genera una inestabilidad y por acción de la gravedad

temperatura, la humedad y la presencia de agua

esta masa se desliza en forma repentina, por ello el

subterránea, son factores que contribuyen a debilitar

objetivo principal del diseño de los sistemas de refuerzo

la roca.

para las excavaciones subterráneas, es ayudar al macizo rocoso a sopor tarse, es decir, básicamente están

Campo de esfuerzo: Cuando las excavaciones llegan a

orientados a controlar la "caída de rocas" que es el

grandes profundidades se originan grandes esfuerzos en

tipo de inestabilidad que se manifiesta de varias

la masa rocosa, lo que origina fracturas y luego la caída

maneras, siendo las más impor tantes las fracturas

de rocas.

debidas a situaciones del tipo: • Gravitatorio (desprendimiento y/o desplazamiento)

Método de explotación: Un método de explotación

• Violentas o Explosivas (Rock Burst)

inapropiado al tipo y calidad de roca, influye en la

28

Capítulo 2: Generalidades

inestabilidad de la excavación y del entorno del macizo

y operador) en la identificación de cuñas y otras

rocoso.

estructuras geológicas riesgosas. • Personal no competente para el análisis, evaluación

Efectos por tronadura: El uso excesivo de explosivos

e inspección visual de condiciones de riesgo del macizo

en una tronadura debilita las paredes y el techo de la

rocoso.

excavación, lo que provoca la generación de

• Colapso y caída de roca dañada por la efecto del

microfracturas y apertura de diaclasa, las que pueden

proceso tronadura y un mal proceso de saneamiento

provocar caída de roca.

al iniciar el proceso de apernado. • Aplicación del perno de anclaje por fricción para el

Per foración deficiente: No conser var el paralelismo de las per foraciones contribuye a formar zonas de sobreexcavación y cuñas que pueden desprenderse.

control de grandes bloques. • Uso solo de perno de anclaje como refuerzo para la estabilización, en zonas donde se requiere una combinación de refuerzo + sopor te, mediante la

Corrosión del elemento estructural

aplicación de shotcrete y malla u otro elemento a ser

• Uso de acero negro, sin encapsulado en ambientes

colocado en la superficie para prevenir el colapso de

agresivos.

la roca.

• Fracturas del grout en ter renos sujetos a

• Instalación insuficiente del número de anclajes para

permanentes cambios de tensiones y por no

obtener un factor de seguridad adecuado a las

considerar un pre-tensado del elemento.

condiciones del área a estabilizar.

• Pérdida de grout por un encapsulado incompleto del elemento, lo que permite que la infiltración de agua

• Instalación y orientación inadecuada con respecto a la superficie a estabilizar.

erosione el grout . • Cambio del pH, volumen y propiedades químicas, de las aguas de infiltración subterránea.

Cambio del mecanismo de carga en el anclaje: Alteración del mecanismo de carga sobre el anclaje, debido al movimiento de una estructura geológica o a cambios en

Incorrecta instalación del sistema de estabilización

el campo de esfuerzo. Esto genera una alta probabilidad

• Pernos instalados con equipo mecanizado tipo Jumbo

de falla del sistema de refuerzo, porque este fenómeno

en excavaciones pequeñas con ángulos menores a

no es evaluado objetivamente y oportunamente por parte

la nor mal de la super ficie (subhorizontal).

de la operación minera.

• Longitud de encapsulado menor que la especificada. • Dosificación incorrecta del grout o lechada de cemento.

Exper ticia del recurso humano de operación: Bajo

• Longitud de anclaje insuficiente en roca sana.

conocimiento especifico sobre los objetivo de las labores

• Diámetro de per foración inadecuado para el tipo de

de control y calidad, en las operaciones orientadas a

sostenimiento a emplear (anclaje por fricción, perno

mantener la estabilidad de las excavaciones subterráneas,

resina).

a nivel de todo el recurso humano involucrado en las actividades de estabilización, sean super visores y

Diseño incorrecto y/o aplicación inapropiada del sistema

operadores.

de estabilización • Escasa capacitación del personal (incluidos ingenieros 29

Alineamiento de los objetivos de la for tificación:

número de eventos en los frentes de operación donde

Existencia de un desalineamiento entre los objetivos

normalmente se producía el mayor número de colapsos,

que persigue el diseñador de los sistemas y los

ahora se producen en otras áreas de las operaciones

instaladores u operadores, lo que lleva a tener malos

mineras y a consecuencia de otros fenómenos,

resultados en la gestión global de la estabilidad de

básicamente relacionados con eventos de origen cinético

las excavaciones.

y deslizamientos de grandes cuñas.

Interacción de factores críticos: La coexistencia de alguno o varios de los factores enumerados anteriormente, que

2.4

ACCIDENTABILIDAD

pueden contribuir en diferente grado de importancia a generar condiciones de inestabilidad sobre el macizo

La falla del techo es la inestabilidad más común que

rocoso en el tiempo, por ejemplo; la falta de monitoreo

aparece en la mayoría de las excavaciones de obras

y retroalimentación de la existencia de eventos de riesgo

civiles y minas subterráneas, ya sean éstas de pequeña

por parte de la operación ya sea de eventos individuales

o gran escala y para distintas especies explotadas. Del

o colectivos a consecuencia de factores tales como:

mismo modo, podemos afirmar, y así lo muestran las

presencia de agua, lajamiento y eventos sísmicos por

estadísticas, que una gran par te de los accidentes

incremento del campo de esfuerzo, y daños en los sistemas

fatales son asociados a falla del techo.

a consecuencia de las operaciones productivas, todos estos factores críticos sumados, evidentemente generan

La estadística de seguridad minera del año 2004

condiciones de riesgo y de colapsos de las excavaciones

proporcionada por el Ser vicio Nacional de Geología y

subterráneas y de superficie.

Minería, SERNAGEOMIN, muestra que la accidentabilidad no ha variado mayormente en comparación con los años anteriores, esto es, la accidentalidad se mantiene

2.3

CONTROL DEL DAÑO COMO CONSECUENCIA

en valores controlados; sin embargo, igual pueden

DE LA CAIDA DE ROCA

ocurrir hechos no esperados. Así lo demuestra el gráfico 2.1, donde la tendencia en general muestra un descenso

Mecanización de la operación de fortificación

en los índices.

Los eventos de colapso de la roca si bien es cier to normalmente se producen en frentes en desarrollo y en

En 1975 la frecuencia de los accidentes incapacitantes

cámaras de explotación, también pueden presentarse en

fue de 37, mientras que en el año 2004 fue de 7,5. Es

áreas previamente estabilizadas. Es por ello que la mayoría

muy significativo que durante siete años consecutivos

de las operaciones mineras están tendiendo a convertir

se registren valores de un solo dígito. Una especie de

la operación manual de estabilización en una operación

Montaña Rusa se visualiza en el gráfico. Se muestran

totalmente mecanizada, de manera de conseguir una

allí distintos períodos anuales en los que, cada cierto

mayor productividad y, lo más importante, evitar exponer

tiempo de descenso aparece una brusca subida. Esto

al trabajador a una área que aún no está estabilizada.

nos hace reflexionar que aún se manifiestan accidentes significativos, los que deben ser controlados para llegar

En operaciones mineras donde se ha llevado a mecanizar las operaciones de estabilización, se ha reducido el 30

a la tasa ideal de "cero".

Capítulo 2: Generalidades

Del gráfico 2.2, se desprende que las empresas

y que desde el año 2000 prácticamente las horas hombres

contratistas han mantenido una tasa con poca variación

de contratistas han superado a las horas hombres de

en los últimos 7 años; sin embargo, en el año 2004 las

las empresas mandantes.

empresas mandantes subieron a una tasa cercana a dos dígitos. De todas formas, una consideración importante

En cuanto a la tasa de fatalidad, ésta se ha mantenido

es el hecho que, mientras más pequeñas son las

en valores bajo 0,2 muertes por millón de horas hombres

empresas, ya sean éstas mandantes o contratistas, la

trabajadas en los últimos 4 años. Dicha tasa es atingente

tasa sube. Lo anterior lleva a meditar sobre la necesidad

principalmente a la pequeña minería y a la minería

de capacitar y controlar aquellas empresas más pequeñas

artesanal.

que se han incorporado a la industria, especialmente en los años 2005 y 2006, cuando se alcanzaron valores

En general, los accidentes por desprendimiento de

históricos en el precio de los metales (sobre los 3,4

rocas, si bien han disminuido, comparado con décadas

dólares la libra de Cu). Así se han puesto en marcha

pasadas, sigue constituyendo una de las cuatro o cinco

yacimientos de escalas menores y las empresas

categorías de las principales causales de los accidentes

mandantes, por lo general, son contratistas y

ocurridos en la minería. Cabe destacar que esta

subcontratistas con menos de 12 personas.

disminución, por supuesto, se ha debido a la capacitación de los operarios y, en forma muy impor tante, a la

Por otro lado, en general, estas empresas han aumentado

implementación de elementos de soporte y reforzamiento

el registro de accidentabilidad en un 35% en dos años,

de las masas rocosas. De allí la impor tancia de los

con una alta tasa de frecuencia. La tendencia es

sistemas de refor zamiento en situaciones

claramente conocida en el sentido que en el último tiempo

estructuralmente controlados y presencia de altos niveles

las empresas contratistas han crecido exponencialmente

de esfuerzos.

Gráfico 2.1 Tasa de Frecuencia de accidentes incapacitantes (Años 1975 - 2004)

Tasa Frecuencia

40

30

20

10

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 Años Fuente: SERNAGEOMIN

31

Gráfico 2.2

12

9,1 8,6

7,5

2002

2003

2004

6,2

2000

8,0 7,5 7,7

1999

7,9

8,6 8,6 8,6

8,0 6,5

7,3

8,0 6,6

8

7,8

Tasa Frecuencia

10

9,3

9,5

11,5

Mandantes Contratistas Total

9,5

Tasa de Frecuencia de accidentes incapacitantes. Empresas mandantes v/s Contratistas (Años 1998 - 2004)

6 4 2

1998

2001 Años

Fuente: SERNAGEOMIN

2.5

RELACIÓN MARCO - PERNO

Estos sistemas requieren un gran volumen y peso de material que es necesario muchas veces transpor tar

Con certeza se puede decir que se han hecho grandes

a grandes distancias, subiendo los costos involucrados

esfuerzos para desarrollar mejores sistemas de soporte y

y, además, necesitan una constante manutención;

lograr mejor estabilidad. Uno de estos aportes lo constituye

dependiendo de la condición geomecánica del terreno,

el trabajo que se presenta y que tiene relación con un

5 ó 6 per nos SAFEROCK ® pueden reemplazar

mejoramiento general del sistema de refuerzo usando, tuerca

eficientemente un marco de acero o madera que,

y perno

SAFEROCK®,

sistema diseñado y fabricado por

según se desprende desde la práctica e informaciones

Gerdau AZA, y su planchuela. Por largo tiempo los sistemas

obtenidas de terreno, estos últimos no son muy

de soporte fueron pasivos de piso a techo, tal como son los

efectivos en el control de la estabilidad (Ver figuras

marcos en madera y acero. (Ver figuras 2.5 y 2.6).

2.7a y 2.7b).

Figura 2.5: Marco de Madera (Thomas Imgrund 2002)

32

Figura 2.6: Marco de Acero

Capítulo 2: Generalidades

Figura 2.7a: Pernos SAFEROCK®

2.6

HISTORIA DE SU APLICACIÓN EN MINERÍA

Figura 2.7b: Equivalencia Pernos y Marco

propuso los conceptos básicos de apernado como un método sistemático de soporte de techos débiles. De

Históricamente, antes de 1900, los típicos sistemas

esta manera nacen las primeras aproximaciones

de soporte de techo en minas fueron postes de madera

teóricas de refuerzo interno de masas rocosas. Algunas

y vigas. Entonces, tempranamente hacia 1905, pernos

de estas ideas, tal como se dijo anteriormente acerca

al techo fueron reportados en minas de carbón en los

del apernado del techo, son aún los fundamentos de

Estados Unidos.

modernas teorías y manuales de apernado de rocas.

Más tarde, en 1920, sistemas de reforzamiento más

Las varillas de madera se idearon para no dañar la

completos fueron aplicados, dando origen al principio

maquinaria de cor te de carbón y las cintas

de "sopor te por suspensión de techo" y al principio

traspor tadoras; también se usaron en tiempos de

de sustento de "viga", ambos dieron la base a los

escasez de acero durante la guerra. Estas varillas sin

principales fundamentos modernos de reforzamiento

tensar sólo sir vieron para refuerzo muy ligero.

de rocas. Se colocaban varillas secas a los techos en Esas fueron las primeras informaciones sobre el uso

per foraciones ajustadas, de tal manera que ésta se

de reforzamiento interno en la masa rocosa y fue

expandía debido a la humedad de la roca. Este aumento

aplicado en una geología estratiforme; de esta manera

de volumen producía fuerzas radiales traducidas

el sopor te pasó a ser activo. En aquel entonces, la

finalmente a fricción, impidiendo que la roca resbalara

idea tal vez vino del simple hecho de que un perno

sobre la madera. En Australia se utilizaron para reducir

pudo atar la roca, tal como un perno y tuerca unen

la dilución y disminuir el daño a las cintas

dos piezas aisladas. Este hecho fue considerado como

transpor tadoras.

una tecnología revolucionaria en el control de terrenos o super ficies expuestas en una excavación.

En Chile fueron usadas como refuerzo temporal en los niveles de hundimiento, donde las galerías tienen corta

En 1943, Weigel, en el Engineering and Mining Journal,

vida útil, esto es, hasta iniciado el hundimiento mediante

33

voladura de la base del bloque, desde donde se realizan

En 1979, J.J. Scout, introdujo el sistema Splitset, y en

las per foraciones radiales. Se emplean muy poco en la

1980 Atlas Copco hizo lo propio con el sistema Swellex.

actualidad.

Estos dos productos utilizan el anclaje mediante la fricción del elemento con el macizo rocoso alrededor de las

En 1945, el anclaje de expansión apareció en Inglaterra,

excavaciones.

Holanda y USA, y en 1949 se hace popular el reemplazo de marcos en forma muy rápida.

Durante la década de los 80 el Conebolt para estallido de rocas, fue introducido en las minas sudafricanas y su

Con la intención de reducir el número de accidentes

aplicación en otros continentes está aún en desarrollo.

causados por falla del techo, el USBM (U.S. Bureau of Mines) fue par tidario del uso de la tecnología de

En 1984, el USBM estimó que se habían utilizado cerca

apernado del techo en 1947. Debido a su efectividad,

de 120 millones de pernos y que más del 90% de la

en más de 200 minas en USA se empleó este nuevo

producción de carbón había sido realizada bajo techos

método de sopor te de techo en menos de dos años.

apernados (Bieniawski, 1987).

En 1952 el consumo anual había alcanzado 25 millones de pernos.

Atlas Copco, en 1997, introdujo el perno cedente EXL Swellex. En el 2003 Atlas Copco junto a MAI presentan

En Canadá el uso de pernos se inició en 1950. Entre

el Swellex Pm Line y el sistema de instalación mecanizada

1952 y 1962 se comienzan a usar barras con resaltes

SDA.

colocadas en barrenos con lechada de cemento. En 1960 aparecen las resinas como elemento de unión entre el

Sin embargo, se dice que un gran número de estos

perno y la roca.

sistemas de refuerzo puede no estar logrando las expectativas de diseño esperada, debido principalmente

En 1968, 55 millones de pernos fueron usados anualmente

a los conceptos erróneos que se manejan, producto de

en USA por 912 minas de carbón y el 60% de la producción

la desinformación y, por otro lado, a los problemas

de carbón fue realizada en condiciones de soporte utilizando

asociados con las operaciones de instalación, agudizado

techos apernados. En 1970, esta tecnología alcanzó un

todo esto por el poco control.

alto nivel de desarrollo. El apernado de techo (Ver figura 2.8) ganó rápidamente Estos antecedentes fueron siendo conocidos por la mayor

mucha popularidad debido, no solo al patrocinio del

parte de las compañías mineras, lo que permitió que los

USBM, sino también, principalmente, a su control efectivo

techos y paredes de las vías principales en las minas

del terreno y a la reducción de costos. Veamos algunas

fueran reforzadas con estos sistemas para proteger

ventajas del apernado sobre otros sistemas tradicionales.

personas y equipos ante fallas de estas super ficies

• Reducción de los requerimientos de almacenaje y

expuestas. Posteriormente, el apernado de techo fue aceptado y ampliamente usado en la industria minera del carbón, lo que se manifestó en una reducción considerable en los accidentes y al mismo tiempo en un gran incremento de la productividad. 34

transporte. • Reducción de las aberturas que es necesario lograr para un claro dado. • Prevención de deformaciones del techo mediante una instalación rápida después de la excavación.

Capítulo 2: Generalidades

• Mejoramiento de la ventilación y pérdida de la resistencia en la vía del aire por eliminación de obstrucciones, tales como marcos, postes y vigas. • Entregar mas libertad para vehículos sin riesgo de dañar el soporte. • Entregar soporte natural para colgar cañerías, tubos y cables eléctricos. Hoy, el apernado de rocas no solo es ampliamente usado en minas subterráneas de carbón, sino también, se encuentran aplicaciones en minería de superficie, minería en roca dura, túneles, ingeniería civil, y en la mayor parte

Figura 2.8: Galería sólo con pernos

donde se requiere estabilidad del terreno. Durante los primeros años de la explotación de una En Chile su uso es bastante difundido, donde se han

mina, las cámaras suelen ser pequeñas y aisladas, por

realizado esfuerzos por mejorar estos sistemas y a la

lo que es posible mantener la seguridad y minimizar la

vez, proporcionar apoyo técnico en terreno y además

dilución con un modesto sistema de estabilización. Es

mediante difusión escrita.

muy impor tante por otro lado, el análisis de cambios en el campo de esfuerzos, siendo ideal instalar los

En minería los laboreos permanentes tales como

sistemas de estabilización previo a que aparezcan las

chimeneas, subestaciones de carguío, transporte, rampas,

inestabilidades de la roca durante la etapa más avanzada

subestación de chancado, subestaciones de manutención

del minado.

de equipos, subestaciones eléctricas, requieren de un sistema de estabilización segura durante la vida útil de

Un ejemplo claro de esto es la pre-instalación de sistemas

la mina. Lo mismo ocurre en excavaciones de obras

de estabilización en puntos de extracción, donde estos

civiles que utiliza una alta densidad de sistema de

son desarrollados o preparados, antes que la cámara

estabilización. La diferencia entre ambos es que las

localizada sobre ellos, sea explotada. (Ver figura 2.9).

aberturas mineras tienden a tener grandes deformaciones como resultado de los esfuerzos inducidos debido al

Los puntos de extracción están por lo general en masas

progreso del minado.

de roca estable, donde no se requiere sistema de estabilización.

Por lo general, estos diseños tienden a ser bastante conservadores con la finalidad de disminuir al mínimo la

Sin embargo, cuando las cámaras o bloques son

manutención y rehabilitación, la que puede ser muy

explotados y los puntos de extracción están en la

dificultosa y de altos costos. Los sistemas de monitoreo

operación, el cambio de esfuerzos, debido a la creación

en estos casos pasan a ser una herramienta muy útil,

de una nueva excavación y las fuerzas dinámicas producto

con la finalidad de controlar el comportamiento de los

del movimiento de mena fragmentada, puede resultar en

sistemas que permitan realizar los cambios en el momento

un alto nivel de sobre-tensionado de la roca alrededor

oportuno.

de estos puntos de extracción.

35

Cuando estos cambios son advertidos con anticipación y la roca ha sido reforzada suficientemente, la estabilidad de los puntos de extracción puede mantenerse durante la vida útil de la cámara o bloque. Cuando la mina subterránea alcanza un nivel alto de explotación y la cantidad de material removido ha sido desplazado hacia los puntos de extracción y además se han recuperado pilares en las áreas mas avanzadas, los problemas en los sistemas de estabilización alcanzan niveles muy severos y complejos. Entonces aquí el ingeniero debe recurrir a su experiencia ganada en las primeras etapas de explotación para lograr que se continúe dando seguridad en los accesos y manteniendo los niveles de dilución en valores económicamente aceptables.

Figura 2.9: Punto de extracción

magnitud de la falla del macizo rocoso y el rendimiento de los sistemas de estabilización.

Dependiendo de la naturaleza y escala de los problemas, éstos pueden mantenerse en el mismo nivel que en las

Las diversas maneras de mejoramiento de la masa

etapas iniciales de explotación o, en otros casos, se

rocosa, tales como inyecciones químicas o de cemento,

aplican diseños innovativos. En esta etapa se puede

congelamiento del terreno, y otras, tienen por finalidad

justificar técnica y económicamente el uso de sistemas

incrementar la resistencia o disminuir las características

más sofisticados. Del mismo modo, en esta etapa de

de deformación de una masa de roca.

minado, el departamento de ingeniería debe contar con una base de datos geotécnicos. Éstos pueden incluir los

En el caso particular de refuerzo de rocas el objetivo es

resultados de las obser vaciones y medidas de las

mejorar la resistencia a la tensión y al corte de las masas

deformaciones que han ocurrido en la excavación, la

rocosas adyacentes a la superficie de las excavaciones.

36

Capítulo 3

La Ingeniería de Excavaciones 3.1

Ingeniería de Rocas

3.2

Propuesta para la Ingeniería de Excavaciones

3.3

Método de Análisis de Riesgo

Capítulo 3: La Ingeniería de Excavaciones

3.1

INGENIERIA DE ROCAS

civil, mecánica y minera, que se combinan entre sí para crear el proceso del diagrama 3.1.

La Mecánica de Rocas o Geomecánica es un término a menudo usado para incluir todas las etapas que llevan

Este proceso global puede ser muy detallado o igualmente

a definir y controlar el comportamiento de la roca alrededor

básico, dependiendo de la magnitud de la operación

de una excavación. Desde las definiciones geológicas y

minera y de los recursos disponibles. En lo fundamental

mecánicas, a través de la caracterización de macizos

debe incluir: definición estructural del macizo rocoso

rocosos, al diseño de reforzamiento y cálculo de factores

incluyendo aspectos tales como, discontinuidades, fallas,

de seguridad, la mecánica de rocas entrega las bases

zonas de cizalla, evaluación de los parámetros

para la valoración de la estabilidad de una excavación

fisicomecánicos de la roca intacta y estructuras;

(cuantificación de las necesidades de reforzamiento).

identificación y cuantificación de los modos de fallas basado en análisis estructural y de esfuerzos; el modo

En el contexto de definiciones, es mejor hablar de ingeniería

de influencia de la excavación y el diseño del reforzamiento

de rocas como los componentes de ingeniería geológica,

de rocas.

Caracterización de las Masas rocosas Estabilidad controlada por: Geología Estructural

Esfuerzos

Meteorización

Flujos de Agua

Tipos de inestabilidad Formación de bloque y/o cuñas

Análisis de resistencia al corte de las discontinuidades

Prevenir fallas por gravedad o deslizamiento de bloques o cuñas

Ambiente de altos Meteorización provoca esfuerzos in-situ e expansiones y inducidos que contracciones de la superan la resistencia roca de la roca Estudios y acciones recomendadas

Excesiva presión y flujos de agua en poros y discontinuidades

Análisis de esfuerzos Realizar ensayos de en zonas fracturadas durabilidad y Comparar esfuerzos expansión a testigos medidos con el criterio de roca de fractura Objetivo del diseño Secuencia de Prevenir fallas por excavación para gravedad y reforzar retardar al mínimo el zonas de potencial tiempo entre falla excavación y protección

Instalar piezómetros para determinar presión de agua y su distribución

Drenar y/o inyectar mezclas para controlar presiones y flujos de aguas

Influencias de eventos dinámicos Diseño de reforzamiento Diagrama 3.1: Procedimiento analítico del diseño de reforzamiento.

39

Se puede decir que los dos factores más importantes que

La utilización de la mecánica de rocas ayuda a entender

afectan la estabilidad de cualquier excavación, son los

de mejor manera el comportamiento de macizos rocosos,

esfuerzos y las estructuras de la roca. La combinación de

siendo esperable una más efectiva y segura operación.

varios regímenes de esfuerzos y fragmentación podrá

Los análisis de esfuerzos son realizados en el sitio y los

dictar el comportamiento de la excavación, como se verá

resultados son más fáciles de evaluar gracias a poderosas

en el procedimiento de diseño. La intensidad de los

herramientas computacionales. Es muy importante repetir

esfuerzos puede variar de muy baja, a muy alta y la

el proceso de diseño en etapas posteriores de minado.

intensidad de fragmentación desde la roca masiva a

Por ejemplo, cuando una roca masiva dura falla, produce

estructuras como cubos de azúcar o intensamente

pequeños fragmentos y, a menudo, es señal de que la

diaclasado. La roca masiva presenta alta resistencia, pero

roca está sobreestresada y se está rompiendo de una

también acumula carga y puede fallar violentamente. La

manera frágil incontrolable. Esto podría ser precursor de

roca muy fracturada tiende a deformarse bajo esfuerzos

un evento sísmico y falla dinámica que la mayoría de los

y de forma muy compleja.

refuerzos de rocas son incapaces de controlar.

Obviamente, la forma y tamaño de la excavación también

De la información que se maneja, debido a la gran variedad

afectan la respuesta de la excavación.

de elementos de soporte existente en el mercado, parece ser improbable que los materiales del sistema de refuerzo

Lo anteriormente expuesto será analizado con más detalle

fallen debido a la calidad, sino más bien, la falla se

en el procedimiento de diseño.

produce por mala aplicación o instalación. Hoek (1996) presenta un resumen de distintos tipos de

3.1.1 Excavación Optimizada

problemas de inestabilidad, los parámetros críticos que los gobiernan, métodos de análisis y criterio de

La Mecánica de Rocas es una ciencia relativamente nueva,

aceptabilidad tanto para túneles de obras civiles como

es inseparable al comportamiento mecánico del material

excavaciones mineras, taludes y fundaciones. Las tablas

de roca y se usa en la actualidad para optimizar el

3.1a y 3.1b presenta los dos primeros, que son de interés

rendimiento de las excavaciones mineras en roca.

para este texto.

40

Capítulo 3: La Ingeniería de Excavaciones

Tabla 3.1a Problemas típicos y parámetros críticos en excavaciones de Ingeniería Civil (Hoek 1996, modificado) Estructura Túneles en rocas blandas

Problemas Típicos

Parámetros Críticos

Falla de roca cuando la resistencia es

Resistencia del macizo y de las

excedida por los esfuerzos inducidos.

características estructurales individuales. Potencial expansión, particularmente rocas sedimentarias. Secuencia y métodos de excavación Capacidad y secuencia de instalación de sistemas de soporte.

Túneles superficiales en rocas fracturadas

La gravedad provoca falla en caída libre Orientación, inclinación y resistencia al o deslizamiento de cuñas o bloques

corte de las discontinuidades en el

definidos por la intersección de

macizo rocoso.

discontinuidades. Derrumbe de material Forma y orientación de la excavación. soportado inadecuadamente.

Calidad de perforación y voladura durante la excavación. Capacidad y secuencia de instalación del sistema de soporte.

Grandes cavernas en roca

La gravedad provoca falla o deslizamiento Forma y orientación de la caverna en

fracturada

de cuñas o fallas de corte o tensión en relación a la orientación, inclinación y el macizo rocoso, dependiendo del

resistencia al corte de las estructuras

espaciamiento y característica estructural en el macizo rocoso. y magnitud de los esfuerzos in-situ.

Esfuerzos in-situ en el macizo rocoso. Excavación y secuencia de soporte y calidad de la perforación y voladura.

41

Tabla 3.1a (conclusión) Problemas típicos y parámetros críticos en excavaciones de Ingeniería Civil (Hoek 1996, modificado) Estructura Cámaras en corte y relleno

Problemas Típicos

Parámetros Críticos

Fallas de cuñas y bloques estructurales Orientación, inclinación y resistencia al desde el techo y pared pendiente.

corte de estructuras en la masa rocosa.

Fallas por esfuerzos inducidos y estallido Esfuerzos in-situ en la masa rocosa. de rocas en ambientes de altos esfuerzos. Forma y orientación de la cámara. Calidad, ubicación y drenaje del relleno.

Accesos de cámaras

Dilución del mineral debido a fallas del

Calidad y resistencia de la roca.

techo y paredes. Estallido de rocas o falla Esfuerzo in-situ e inducidos en la roca progresiva inducida por altos esfuerzos alrededor de la excavación. de los pilares entre cámaras.

Calidad de perforación y voladura en la excavación.

Puntos de extracción y piques Fallas locales del macizo rocoso debido Calidad y resistencia de la roca. de traspaso

42

a la abrasión y desgaste de los sistemas Esfuerzos in-situ e inducidos por la débiles de soporte en piques y puntos

construcción de la excavación y cambios

de extracción. En casos extremos esto

de esfuerzos debido a la explotación.

puede llevar a perder las cámaras o

Selección y secuencia de instalación del

piques.

soporte.

Capítulo 3: La Ingeniería de Excavaciones

Tabla 3.1b Métodos de análisis y criterios de aceptabilidad para excavaciones de Ingeniería Civil. (Hoek 1996, modificado) Estructura

Métodos de Análisis

Túneles en rocas blandas

Análisis de esfuerzos usando métodos

Criterios de Aceptación La capacidad de soporte instalado,

numéricos para determinar la extensión debería ser suficiente para estabilizar el de la zona de falla y posibles

macizo rocoso y limitar la deformación

desplazamientos en la masa rocosa.

en un nivel aceptable. Máquinas de

Análisis de interacción usando métodos tunelería y estructuras internas deben numéricos para determinar la capacidad ser diseñados para una deformación del y secuencia de instalación del soporte

túnel debido a expansión o deformación

y estimar desplazamiento en el macizo

dependiente del tiempo. Monitoreo de

rocoso.

deformación es un aspecto importante de control de la construcción.

Túneles superficiales en rocas Técnicas de proyección estereográfica o Factor de seguridad incluyendo los efectos fracturada

métodos analíticos son usadas para la

del reforzamiento, debe exceder 1.5 para

determinación y visualización de todas

deslizamientos y 2.0 para caída de cuñas

las cuñas potenciales en el macizo rocoso y bloques. alrededor del túnel.

Secuencia de instalación de soporte es

Análisis de equilibrio límite de cuñas

crítico.

críticas son usadas para estudios

Cuñas y bloques deben ser identificados

paramétricos sobre el modo de falla,

y soportados antes que ellos sean

factor de seguridad y requerimientos de expuestos totalmente por la excavación. soporte.

Grandes cavernas en roca fracturada

Técnicas de proyección esférica o

Un diseño aceptable es logrado cuando

métodos analíticos son usados para la

el modelo numérico indica que la

determinación y visualización de todas

extensión de la falla ha sido controlada

las cuñas potenciales en el macizo

por el soporte instalado, que el soporte

rocoso.

no es sobre-estresado y que los

Esfuerzos y desplazamientos inducidos desplazamientos en la masa rocosa se por cada etapa de la excavación de la

han estabilizado.

caverna son determinados por análisis

El monitoreo de desplazamientos es

numérico y son usados para estimar los esencial para confirmar la predicción del requerimientos de soporte para las

diseño.

paredes y techo de la caverna.

43

Cámaras en corte y relleno

Análisis numérico de esfuerzos y

La inestabilidad local debe ser controlada

desplazamientos para cada etapa de la

por la instalación de pernos o cables

excavación dará una indicación de los

cementados para proporcionar seguridad

problemas potenciales.

y minimizar dilución.

Modelos numéricos mas sofisticados

La inestabilidad es controlada por la

permitirá incluir el soporte suministrado

geometría y secuencia de excavación de

por el relleno o el reforzamiento de roca

las cámaras, la calidad y secuencia de

por medio de cables o pernos

relleno.

cementados.

Condiciones aceptables de minado son alcanzadas cuando la mena es recuperada en forma segura.

Accesos de cámaras

Algunas reglas empíricas, basadas en

Un diseño de este tipo puede ser

la clasificación de masas rocosas, son

considerado aceptable cuando la seguridad

disponibles para estimar las

y los bajos costos de recuperación de una

dimensiones de la cámara.

gran parte o porcentaje del yacimiento ha

Análisis numérico del trazado de la

sido alcanzado.

cámara y secuencia de minado, usando

Fallas en piques y galerías de transporte

análisis tridimensional para yacimientos

con factor de seguridad inaceptable

de formas complejas, entregará

requieren de patrones de soporte. En

indicaciones de problemas potenciales

condiciones de alto esfuerzos,

y estimación de los requerimientos de

destrezamiento locales pueden ser usados

soporte.

para reducir los estallidos de rocas.

Puntos de extracción y piques Equilibrio límites ó análisis numérico no de traspaso

La forma de las aberturas deben ser

son particularmente útiles si los

mantenidas durante su vida útil. Pérdidas

procesos de desgaste y abrasión no son

de control pueden resultar en una dilución

incluidos en estos modelos.

seria del mineral y abandono de la

Diseños empíricos basados en

excavación. Sistemas resistentes tal

experiencias anteriores o métodos de

como pernos o cables cementados,

prueba y error pueden ser usados.

pueden ser instalados durante la excavación de la cámara. En estos casos, un sistema de control de inestabilidad puede ser muy útil.

44

Capítulo 3: La Ingeniería de Excavaciones

3.2

PROPUESTA PARA LA INGENIERIA DE

y, algunas veces, sin consideración de efectos sobre los

EXCAVACIONES

otros. Sin embargo, una simple metodología de diseño puede ser desarrollada para integrar los procesos de

3.2.1 Conceptualización

diseño y sus interacciones, de manera tal que pueda ser posible realizar pequeños ajustes en el diseño para el

En la minería, donde las circunstancias laborales lo

rendimiento de la voladura, reducir la inestabilidad de la

impiden, las excavaciones son desarrolladas con

excavación y, consecuentemente, decrecer los

herramientas diferentes para cada etapa del proceso.

requerimientos de refuerzo. Una metodología para

Un interesante trabajo se ha realizado en el Australian

enfrentar este problema requiere de una descripción

Mineral Industries Research Association (AMIRA) y que

uniforme, cálculo y presentación de herramientas para

se recomienda desarrollar basado en parámetros propios.

el uso de las diferentes disciplinas que intervienen en

En los siguientes párrafos, se presenta un resumen de

el diseño.

esta filosofía, que está basada en el paper "Excavation Engineering - The Integration of Excavation Design" (C.R.

En concordancia con los autores de la publicación, el

Windsor, A.G. Thompson and G.P Chitombo).

problema de ingeniería en excavaciones mineras puede ser dividido en tres procesos de diseño principales:

La ingeniería de excavación envuelve tres procesos de

1. Diseño de Excavación

diseño: diseño de excavación, diseño de voladura y diseño

2. Diseño de Voladura

de reforzamiento. La ingeniería de excavación pretende

3. Diseño de Refuerzo

la integración y simulación de estos tres procesos de diseño.

En la industria minera estas tareas a menudo son atendidas por personal diferente con un exper ticia

Los autores de la publicación consideran que el diseño

específica, quienes conducen su trabajo usando datos

de minas, canteras o excavaciones civiles requieren la

de entrada particular y cálculos de ingeniería, presentando

interacción de los diferentes diseños. Los elementos

sus resultados también en forma particular.

dominantes para la minería son la geometría del yacimiento, las leyes y esquemas de extracción. El trazado

En forma muy clara, ellos asocian este problema de

geométrico, la seguridad y el propósito, son los elementos

ingeniería de excavaciones a los términos de teoría

dominantes para las excavaciones de ingeniería civil. Es

de conjunto. La ingeniería de excavación puede ser

sabido que los efectos del diseño de excavación están

aproximadamente descrita como la "unión" de los

asociados a las estrategias de voladuras y requerimientos

diseños de excavación, de voladura y de refuerzo.

de soporte y refuerzo artificial. Un óptimo diseño pretende

Similarmente, el volumen de interacción y

maximizar la extracción y la eficiencia en voladura y

colaboración entre estos procesos puede ser

minimizar la dilución, sobrequiebre y requerimientos de

proporcionado por la "intersección" de los tres

refuerzo o soporte.

conjuntos. Para los tres procesos de diseño, su unión (U = DE < DR) y su intersección (I = DE > DV > DR)

En realidad, los procesos de diseño son complicados,

se muestran esquemáticamente en el diagrama de

por lo que son llevados generalmente en forma separada

Venn. (Ver figura 3.1).

45

3.2.2

Sistema Universal de Clasificación de Rocas de Masas Rocosas

DE

La literatura de mecánica de rocas muestra numerosos sistemas de clasificación que han sido propuestos en I

DV

ingeniería de rocas. Algunos de los más conocidos son: RQD

Rock Quality Designation (Deere, 1964)

Q

Rock Mass Quality (Bar ton, Lien and Lunde,

DR

= Unión ( 0,6 a 2 m

1

>2m

0

Espaciado y rugosidad diaclasas (ER) Espaciado > 5 mm, continua relleno arcilla

3

Espaciado < 5 mm, superficie potencial deslizamiento

2

Espaciado < 1 mm, superficie alterada

1

Cerrada, sin alteración rugosidad

0

Humedad de fisuras (HF) Corriente de agua

3

Goteo de agua

2

Húmeda

1

Seca

0

Dirección estructural respecto al frente (DIR) < 5°

3

Desde 5° hasta menos de 15°

2

Desde 15° hasta menos de 30°

1

≥ 30°

0

Inclinación de fisuras respecto al frente (PEN) desde -15° a menos de -5°

3

desde -5° a menos de 5°

2

desde 5° a 15°

1

> 15°

0

Indice de Sensibilidad (S = 4PF + 2ER + HF + DIR + 2PEN) Muy favorable

Rating de "S" S < 25

Favorable

25 ≤ S < 50

Desfavorable

50 ≤ S < 75

Muy desfavorable

52

S ≥ 75

Capítulo 3: La Ingeniería de Excavaciones

Tabla 3.3b Probabilidad de riesgo según la clase de actividad y sustentabilidad Clases de actividad (Tabla 3.2)

Indice de Sensibilidad (Tabla 3.3a)

Actividad

Muy Favorable

Favorable

Desfavorable

Muy Desfavorable

Dormida

Insignificante

Baja

Baja

Intermedia

Inactiva

Baja

Baja

Intermedia

Intermedia

Fresca

Intermedia

Intermedia

Alta

Alta

Activa

Alta

Alta

Alta

Alta

Tabla 3.4 Ejemplo de razonamiento de riesgo. (Intensidad y probabilidad como input y riesgo como output) Intensidad del fenómeno

Probabilidad de ocurrencia

Falla de la roca

Insignificante

Bajo

Bajo

Intermedio

Falla de bloques

Bajo

Bajo

Intermedio

Intermedio

Colapso

Bajo

Intermedio

Intermedio

Alto

Intermedio

Intermedio

Alto

Alto

Colapso mayor Intensidad del fenómeno

(m3)

Falla de la roca

< 10-3

Falla de bloques

desde 10-3 a 1

Colapso

>1

Colapso mayor

> 10

En un típico diseño de un sistema geotécnico, el ingeniero debe obtener una estimación de los parámetros que se utilizarán en el sitio, seleccionar los métodos más apropiados, e interpretar los resultados del análisis.

53

Capítulo 4

Procedimiento de Diseño para Túneles en Roca 4.1

Revisión al Procedimiento de Diseño para Túneles en Roca

4.2

Procedimiento de Diseño de Túneles en Roca

4.3

Control del Debilitamiento de las Excavaciones Subterráneas

4.4

Tamaño de la Excavación y Número de Discontinuidades

4.5

Nivel de Esfuerzo

4.6

Diseño de Soporte para Rocas Sobrestresadas

4.7

Definición del Criterio de Falla

4.8

Concepto Arco de Roca

Capítulo 4: Procedimiento de Diseño para Túneles en Roca

4.1

REVISION AL PROCEDIMIENTO DE

aproximación muy confiable del compor tamiento bajo

DISEÑO PARA TUNELES EN ROCA

las condiciones en que se encuentra la masa rocosa de la construcción subterránea. La instrumentación

4.1.1

Introducción

es otra componente impor tante de verificación.

En las últimas décadas, la construcción subterránea

Tal como el caso de las fundaciones de los puentes,

ha experimentado a nivel mundial un impor tante

los métodos de análisis consideran el comportamiento

incremento, tanto en el número de obras como en

del conjunto del sistema; en otras palabras, el acero

su tecnología. Los propósitos pueden ser también

del perno, la lechada de cemento y la roca.

muy diversos, entre los que se cuentan: túneles carreteros y de ferrocarriles, proyectos

La naturaleza de las discontinuidades permite tener

hidroeléctricos, grandes cavernas como recintos

presente distintos modos de falla y que aparentemente

depor tivos y aparcamiento de vehículos, accesos a

puede ser una situación compleja, situación que en la

la explotación de yacimientos mineros, etc. Del

actualidad se ha superado con el uso de modernas

mismo modo, los motivos para generar estos

técnicas de análisis. Del mismo modo, es posible

espacios subterráneos pueden ser muy diversos,

pensar que las excavaciones en roca siempre están

entre los que se incluyen los problemas de espacio

bajo condiciones de esfuer zo-deformación, que

en las grandes ciudades y las r estricciones

generalmente están en equilibrio antes de que la

medioambientales, tanto en obras civiles como en

excavación sea efectuada. Distinto es el caso en

explotaciones mineras.

unidades geológicas cuyas rocas tienen muy alta resistencia a la compresión que pueden acumular un

Las metodologías de diseño permanecieron por

alto nivel de energía, la que después de un cier to

mucho tiempo invariables hasta que las condiciones

límite esta energía es liberada abruptamente, generando

de las masas rocosas fueron más adversas y fue

estallidos de roca (rockburst). (Ver Figura 4.1).

necesario introducir nuevas tecnologías, tanto de diseño como de sistemas de sopor te. Así ha ocurrido en la minería subterránea en Chile, donde en las más impor tantes minas (El Teniente, Andina y El Salvador), los niveles de esfuerzos y profundidades

Las investigaciones en el campo de la ingeniería geotécnica ha ido incorporando nuevas y potentes herramientas que han contribuido al desarrollo de la disciplina, especialmente en lo referido a modelación numérica, utilizando para ello diversos softwar es que emplean elementos finitos o diferencias finitas (FLAC, PHASE), logrando una

Gentileza de David Regalado, 2005

son cada vez mayores.

Figura 4.1: Estallido de Roca Uchucchacua, Perú.

57

En el diseño del refuerzo se debe dar primeramente

proyecto dado. En este punto del diseño es muy útil

énfasis al control de los más probables modos de

la infor mación acumulada de otros proyectos

falla que pueden conducir a un colapso. La información

similares. Seguramente desde la etapa de exploración

necesaria para el diseño no se encuentra normalmente

y programas de sondajes, aún no se disponga de la

en las etapas previas, pero se debe tratar de obtener

información detallada y necesaria para el análisis

durante el tiempo de investigación geológica para la

de detalle y diseño; por esto, el ingeniero diseñador

exploración, diseño y etapa de constr ucción del

debe conocer técnicas de estabilización que se han

proyecto. El diseñador de sistemas de refuerzo debe,

empleado y han sido exitosas. Este conocimiento

por lo tanto, dar más énfasis a los modos de

debe incluir conocimiento de mecánica de rocas y

defor mación que a los cálculos de esfuer zos,

estabilización que pueden ser proporcionados por

deformaciones y car gas. Los procedimientos de

libros, publicaciones técnicas, etc. Debe incluir, del

construcción y el suministro de especificaciones

mismo

deben ser también considerados como par te del

especificaciones técnicas y experiencia en trabajos

proceso de diseño para asegurar sus requerimientos.

similares al considerado en el proyecto. Las

Lo anterior es de vital impor tancia cuando existen de

alternativas de refuerzo y esquemas de excavación

por medio situaciones contractuales de trabajo con

son, en general, considerados en el diseño final.

modo,

una

revisión

de

planos,

terceros, que puede tener un significativo efecto económico para ambas par tes en el proyecto. 4.1.3 Etapa de Diseño Final El procedimiento de diseño de un refuerzo de roca no debe restringirse sólo a los elementos del sistema,

Una vez que se dispone de la información de geología

sino que también debe ser considerado como un

e ingeniería de rocas y ha finalizado el plan del proyecto,

elemento integrado a las estructuras de roca.

recién puede ser entregado un diseño detallado. Este debería contener un set de planos y especificaciones

En las siguientes secciones se entregarán

que haya indicado el contratista o el departamento de

primeramente las diferentes etapas del diseño; luego,

construcción y el refuerzo que el diseñador considerará

las características básicas del diseño; en tercer lugar,

necesario para estabilizar la estructura de roca. El

los procedimientos o guías empíricas basadas en

diseño no debe incluir sólo el número, el largo, el tamaño

experiencias de otros proyectos; y por último, las

y la orientación de los elementos de refuerzo, sino que

técnicas analíticas que pueden ser usadas para asistir

también la secuencia de excavación-refuerzo y los

al diseñador.

requerimientos detallados de la instalación. Esta última condicionante juega un papel impor tante en el desempeño del sistema, puesto que la operación de

4.1.2 Etapa Preliminar de Diseño

instalación debe ser realizada de acuerdo con procedimientos y normas de calidad de los elementos

Los esfuerzos primeramente deben estar orientados

que envuelve el sistema. (Ver capítulo Procedimiento

a la determinación en forma aproximada del tipo y

de Instalación). Los análisis de los posibles modos de

volumen de refuerzo que puede ser requerido en un

deformación son realizados en esta etapa, con el fin

58

Capítulo 4: Procedimiento de Diseño para Túneles en Roca

de tener un conocimiento detallado acerca de la roca.

La segunda etapa considera un estudio de factibilidad

El estudio detallado debe ser realizado a recientes

donde se efectúa la clasificación de la masa rocosa de

proyectos, para asegurar que mejores métodos no hallan

la región. En esta etapa se pueden usar diferentes

sido revisados. Una serie de test en laboratorio e in-

metodologías de clasificación, con el objetivo de tener

situ debería ser considerado para verificar que los

una aproximación de los sistemas de soporte que se

elementos y procedimientos sean aceptables desde el

emplearán. En esta etapa también se realiza un examen

punto de vista práctico. Las especificaciones deben

crítico de los problemas del túnel, se confeccionan

considerar cierta flexibilidad en los requerimientos del

secciones transversales y se definen los métodos

sistema de refuerzo de roca de manera tal que sea

alternativos de construcción.

económicamente factible. La tercera etapa considera la caracterización de detalle Las especificaciones del sistema de refuerzo servirán

del sitio bajo un plan de trabajo que involucra mapeo

no solamente como guía para el operador o instalador

de detalle geológico, perforación de exploración y, si es

del sistema y requerimientos de control de calidad, sino

necesario, construcción de algunas galerías auxiliares.

que también proveerá un medio de información para el

Los test pueden ser geofísicos, de laboratorio e in-situ.

contratista y el inspector con los requerimientos del

La determinación de los esfuerzos actuantes y la

sistema para cada parte del proyecto. Algunos estudios

condición de aguas subterráneas aportan antecedentes

de proyectos precisan los requerimientos de refuerzo

para el estudio de estabilidad de la excavación.

adicional a los patrones básicos de instalación. La cuarta etapa considera el análisis de estabilidad. Con este análisis se logra la clasificación de masa rocosa, 4.2

PROCEDIMIENTO DE DISEÑO DE TUNELES

la cual nos entrega información sobre los mecanismos

EN ROCA

de control de la excavación. Estos mecanismos de control pueden ser: estructurales, esfuer zos, tiempo y

El procedimiento de diseño de túneles en roca incorpora

meteorización provocada especialmente por el excesivo

cinco etapas que involucran los estudios previos y la

flujo y presión de las aguas subterráneas.

construcción final. La primera etapa considera la adquisición de datos preliminares, en la que el propósito

La quinta etapa envuelve el diseño final y la construcción,

del túnel definirá su forma y tamaño. Por otro lado, la

consistente en la preparación de dicho diseño final y

información de geología y topografía son elementos

en la explicitación de los métodos alternativos de

impor tantes que deben estar a disposición de los

construcción.

diseñadores desde el principio. Posteriormente se debe realizar una caracterización geotécnica preliminar con

Luego, se podría incluir una sexta etapa, que considera

un plan de investigación involucrando mapeo de

el diseño de un programa de monitoreo para validar el

super ficie, exploración geofísica y valorización de

modelo o solucionar algunos requerimientos técnicos.

parámetros geotécnicos a partir de muestras tomada

Finalmente se preparan los contratos y estiman los

en terreno.

costos involucrados.

59

4.2.1 Fundamentos y Principios

comúnmente se denomina "Infraestructura de la Mina". Dependiendo del sistema de explotación,

La filosofía del diseño de refuer zo envuelve dos

será necesaria la construcción de galerías, piques,

aspectos que se consideran en el fallamiento de las

chimeneas, cámaras de explotación dinámica, etc.

excavaciones subterráneas. Por un lado, la estabilidad

Esta infraestructura se puede ver afectada en su

depende de la situación geométrica en el ámbito

estabilidad en cualquiera de sus casos, como se

general de la mina. Es decir, el fallamiento depende

verá más adelante.

de la distribución espacial de todas las excavaciones y de la secuencia con que se desarrollan y, por otro

En general, este diseño minero puede usar tanto

lado, la estabilidad depende de las condiciones

metodologías manuales como computacionales.

específicas locales, tales como el nivel de esfuerzos y la calidad del macizo rocoso circundante a la

A continuación, se presentan los principales aspectos

excavación.

considerados (Hoek, Kaiser y Bawden 1995).

La zonificación del macizo rocoso desde el punto de vista geomecánico es de vital impor tancia en la etapa

4.2.2 Riesgo de Diseño

del diseño. El riesgo aceptable muchas veces es de dificultosa Esta zonificación se puede realizar sobre la base de

definición para la pequeña y mediana minería y obras

una característica específica de resistencia del macizo

civiles de pequeña envergadura, especialmente por

rocoso (Resistencia a la Compresión Simple, "RQD"

su relación directa a los costos.

Rock Quality Designation, etc.), o utilizando sistemas de clasificación de macizos rocosos más completos,

La figura 4.2 muestra los dos extremos de esta

como los señalados en el capítulo 3 Ingeniería de

situación. Por un lado, el refuerzo del túnel del lado

Excavaciones.

derecho es económicamente inaceptable y en el lado izquierdo hay una clara violación a los estándares

Esta categorización ser virá para estandarizar el uso

de seguridad.

de sistemas de refuerzo para cada unidad geotécnica definida. Sin embargo, en la minería vetiforme la estandarización es más difícil debido al cambio

4.2.3

Factor de Seguridad

continuo de las calidades de roca a cor ta distancia. Hoy día se recomienda la utilización del análisis Fuzzy

Una aproximación clásica usada, para determinar el

para definir los valores de los parámetros.

factor de seguridad es la relación entre la capacidad "C" de sopor te (fuerzas resistentes) y la demanda

La explotación de cuerpos mineralizados necesita

"D" (fuerzas que favorecen el fallamiento).

para la extracción de la especie útil, la preparación

En donde:

y desar rollo de una serie de excavaciones subter ráneas. Lo anterior constituye lo que

60

F=

C (Factor de Seguridad) D

Capítulo 4: Procedimiento de Diseño para Túneles en Roca

Figura 4.2: Variantes de riesgo.

Un factor F = 1,3 puede ser utilizado para labores

bloques, etc.), que al inter ceptar la sección

temporales y un factor de 1,5 a 2,0 para labores

desarrollada de una excavación, provoca su caída o

permanentes.

deslizamiento al interior de la misma. Lo anterior se debe a que la roca estresada ha sido removida permitiendo que la roca remanente se mueva debido

4.2.4

Estudio de Sensibilidad

a la descarga.

Este estudio envuelve una serie de cálculos en los que

B. Los Esfuer zos: Los macizos rocosos están

cada parámetro significativo es variado sistemáticamente

sometidos a esfuerzos, producto de la sobrecarga

hasta un rango máximo creíble, en orden a determinar su

y del origen tectónico. Cuando se realiza una

influencia sobre el factor de seguridad.

excavación se produce una redistribución de estos esfuerzos, que se denominan esfuerzos inducidos. Generalmente, esto considera una mayor perturbación

4.3

CONTROL DEL DEBILITAMIENTO DE LAS

del campo de esfuerzos preexistentes tanto en su

EXCAVACIONES SUBTERRANEAS

magnitud, como en su orientación. Si estas fuerzas superan la resistencia del macizo rocoso, el

Tal como se expresara en la sección 3.1, Ingeniería

fallamiento es posible.

de Rocas, para entender los desplazamientos que ocurren en una masa rocosa es de vital impor tancia

C. El Tiempo y Meteorización: La capacidad de

identificar los tres más impor tantes debilitamientos,

deformación del macizo al estar sometido a un

que pueden estar controlados por:

cier to nivel de esfuerzo durante un tiempo "t" y la

A. Las Estructuras: La intersección en

meteorización provocada especialmente por el agua,

discontinuidades de cualquiera de sus tipos, puede

son elementos que deben ser considerados en la

configurar diversas for mas geométricas (cuñas,

estabilidad de la excavación. En los alrededores de

61

una excavación abier ta a la atmósfera, cualquier presión de fluido existente en la masa de roca será reducida a cero (o más estrictamente, a la presión atmosférica). Esto hace que la excavación actué como un sumidero, y cualquier fluido dentro de la masa de roca tenderá a infiltrar hacia la excavación (Ver figura 4.3).

4.4

TAMAÑO DE LA EXCAVACION Y NUMERO DE DISCONTINUIDADES

De hecho, todos los macizos rocosos están fracturados Figura 4.3: Filtración de agua en túneles.

y es muy raro el caso donde el espaciamiento entre discontinuidades es apreciablemente más grande que las dimensiones de un proyecto de excavación.

A

En general, la estabilidad de una excavación cumple con las siguientes relaciones: Estabilidad =1/Nº de discontinuidades

B

Estabilidad =1/tamaño de la excavación La figura 4.4 muestra que, en la medida que aumenta de

C

tamaño la excavación, en un mismo macizo rocoso, aumenta el número de bloques y/o cuñas potenciales a fallar. En la mayoría de los casos las discontinuidades se

Figura 4.4: Efecto del tamaño de la excavación y el número de discontinuidades.

presentan en forma bi-dimensional, por lo que es necesario apoyarse en técnicas como la "Línea de Detalle", "Mapeo de Celdas" ú otros aparatos más sofisticados como es

más allá de 200 m de profundidad, por lo que los niveles

la "Bore Hole Camera", para realizar proyecciones

de esfuerzos son relativamente bajos (no mayor a 10

espaciales de estas discontinuidades (Ver figura 4.5).

MPa). Así, en rocas masivas las excavaciones no sufren daños por este concepto y por lo tanto no requieren refuerzo, excepto localmente o para satisfacer reglamentos

4.5

NIVEL DE ESFUERZOS

de seguridad internos de la empresa.

La mayoría de los cuerpos vetiformes que se explotan en

En rocas fisuradas asociada a bajos esfuer zos,

el ámbito de la pequeña minería, están localizados no

normalmente se presentan desprendimientos y/ó

62

Capítulo 4: Procedimiento de Diseño para Túneles en Roca

Figura 4.5: Cámara Introscópica.

deslizamientos de bloques menor es debido principalmente a efectos gravitatorios. El apernado debe ser diseñado para sopor tar el peso muer to de las cuñas y/o bloques. En r ocas altamente fisuradas, se pr oducen desprendimientos y/ó deslizamientos de pequeñas cuñas y/ó bloques formados por la intersección de las discontinuidades. Este fenómeno puede continuar propagándose hasta formar grandes cavidades si no se adopta oportunamente un sistema de refuerzo. En este caso, el shotcrete con malla y apernado proporcionan un adecuado sopor te. Diferentes modos de falla se muestran en la figura 4.6.

63

Figura 4.6: Tipos de fallas que ocurren en diferentes niveles de esfuerzos y calidades de masas rocosas (modificada desde Martín et al., 1999).

64

Capítulo 4: Procedimiento de Diseño para Túneles en Roca

Figura 4.6 (Continuación): Tipos de fallas que ocurren en diferentes niveles de esfuerzos y calidades de masas rocosas (modificada desde Martín et al., 1999).

65

Figura 4.6 (Conclusión): Tipos de fallas que ocurren en diferentes niveles de esfuerzos y calidades de masas rocosas (modificada desde Martín et al., 1999).

66

( (

) )

Capítulo 5: Computación Aplicada al Diseño de Excavaciones

5.1.

ASPECTOS GENERALES

Entre los cálculos más comunes del diseño de excavaciones se encuentran los que siguen: análisis de caída o

Un gran avance se percibe en los últimos años en relación

desplazamiento de elemento de rocas y dimensionado de

a las herramientas computacionales, tanto en los hardware

los elementos artificiales de retención, generación de las

como en los software, de tal manera que los equipos

curvas de comportamiento para cualquier tipo de terreno

actuales han aumentado sus prestaciones de servicios

y para cualquier tamaño de excavación, verificación del

y accesibilidad. Así como en casi todas las disciplinas

sistema de refuerzo o soporte para cada una de las etapas

se han elaborado nuevos programas o herramientas

que envuelve la construcción, análisis de la inestabilidad

informáticas, también lo ha sido el cálculo y el diseño

en los taludes de los portales, tanto para fallas planas

de excavaciones, tanto en superficie como subterránea.

asociadas a rocas mas competentes relacionadas a rocas

Lo anterior es desarrollado en conjunto con modelos

muy fracturas o suelos, etc. Los ejemplos antes

físicos y matemáticos, que el trabajo multidisciplinario

mencionados corresponden a cálculos sencillos que la

ha incorporado como una herramienta de amplio dominio

informática puede solucionar en forma rápida y acertada.

en el análisis y en el propio diseño.

Para otros problemas que envuelve el proceso de excavación, tales como voladura y los relacionada con

Del mismo modo, el avance de la tecnología en las

hidrogeología, también existen programas muy

distintas disciplinas, ha tenido un impacto en las técnicas

competentes.

de excavaciones subterráneas. En relación con algunos aspectos vinculados con parámetros Considerando lo anterior y los avances en la informática,

de resistencia y de deformación, ocurre que en una primera

ha sido posible abordar construcciones por necesidades

etapa sólo se conocen éstos en forma parcial o incompleta,

de carácter ambiental, espacial y económico entre otros.

por lo que las técnicas computacionales avanzadas no cuenten con el input necesario. Lo anterior significa que

El uso de la informática en el diseño de obras subterráneas

en ocasiones es necesario aproximar o simplificar

tiene la ventaja significativa de realizar diferentes cálculos

informaciones, obteniendo de esta manera resultados

basados también en diferentes teorías, con la utilización

aproximados. La aplicación de los resultados obtenidos,

de parámetros geotécnicos de la masa rocosa, en la cual

en definitiva dependerán, por una parte, de la calidad

la construcción se llevará a efecto. Con ello se han ido

intrínseca del programa utilizado en un problema específico

obteniendo resultados en las diferentes etapas de los

y, por otro lado, de los valores reales de los parámetros

procesos de cálculo, con una rapidez y precisión que

del medio rocoso en que se está realizando la construcción.

hasta hace un tiempo atrás eran insospechados.

En otras palabras, de la calidad y pertinencia de los estudios geológicos-geotécnicos realizados.

Lo anterior permite acceder a una detallada información del proceso de diseño y conseguir una mayor seguridad,

La implicancia de lo anteriormente expuesto tiene como

debido a la gran variedad de cálculos y maneras de

resultado que los programas computacionales empleados

resolverlos. De esta forma, se obtiene un notable ahorro

deben ser considerados como herramientas de apoyo con

en horas hombres de ingenieros, que se utilizarían para

alto rendimiento en tiempo, calidad y cantidad de información.

realizar la misma actividad en forma manual y que muchas

Utilizados en el diseño de excavaciones desde el punto de

veces por motivos de costo y tiempo se hacen inviables.

vista geotécnico, mediante el análisis profundo de los 75

resultados obtenidos se puede deducir la representatividad

ITASCA ha desarrollado programas aún más completos

de los parámetros geotécnicos. Del mismo modo, son de

de aplicación, como FLAC (Fast Lagrangian Analysis of

importancia las hipótesis utilizadas, lo que sugiere un

Continua), que es un poderoso programa de modelación

cuestionamiento que debe ser constantemente verificado.

en dos dimensiones continuo para suelos, rocas y

Es perjudicial para la ingeniería de roca considerar cualquier

comportamiento estructural. Usado interactivamente, es

resultado obtenido por esta vía como diseño definitivo y

una herramienta de diseño y análisis general para ingenieros

admitiendo sus resultados como conclusión final.

geotécnicos, civiles y de minas y puede ser aplicada a una amplia variedad de problemas en estudios de ingeniería.

El uso de las herramientas computacionales, para analizar los diversos problemas geotécnicos y aquellos referidos a

Entre los métodos empíricos se encuentran las

excavaciones subterráneas, se ha extendido y generalizado

clasificaciones geomecánicas (ver "Propuesta para la

cada día más, tanto en empresas de servicio como en

Ingeniería de Excavaciones", sección 3.2, capítulo 3) y

universidades e instituciones de investigación.

otros que suelen utilizarse con la finalidad de obtener datos preliminares tanto del terreno como del sistema

Especial mención se debe hacer a lo realizado por Hoek,

de refuerzo a utilizar.

tanto en su libro "Support of Underground Excavation in Hard Rock", donde describe y utiliza herramientas

Los métodos analíticos son más completos que los

computacionales tales como DIPS UNDWEDGE, PHASES,

anteriores y se basan principalmente en teorías tales

WEDGE, EXAMINE, SLIDE y otros, cuyas herramientas fueron

como "la elasticidad", lo que proporciona cálculos más

desarrolladas y sancionadas en aplicaciones reales.

precisos. Sin embargo, a pesar de la aplicación de estas teorías y de los cálculos involucrados, sus resultados

Se recomienda ver los demos en www.rockscience.com; en

aún carecen de confiabilidad.

ellos son incorporados los principales principios de mecánica de roca y criterios de fractura, tales como Mohr-Coulomb

Como se ha dicho, por último existen los métodos

y Hoek-Brown, que a partir de los valores GSI (Geological

numéricos basados en la representación del

Strength Index) y cálculos de la interacción de los sistemas

comportamiento del terreno y del sostenimiento como

de refuerzo y sostenimiento con el terreno, mediante la

elementos o zonas. Estos últimos métodos son los que

metodología de curvas características. Para el diseño de

arrojan resultados más precisos y se aproximan más a

refuerzo de un túnel, los métodos empíricos, analíticos y

la realidad. Sin embargo, se recomienda el monitoreo

numéricos constituyen las herramientas mas usadas, y así

del comportamiento del terreno y de los sistemas de

los resultados obtenidos son discutidos en cada uno de

estabilización para la verificación de los modelos aplicados.

los casos para llegar a una aproximación y solución acertada. Esa solución posteriormente se puede ajustar durante la ejecución de la obra, en la medida que sostenga nuevos

5.1.2 Modelación Numérica

datos de la masa rocosa, de tal manera que se pueda generar una nueva base de datos con el consecuente nuevo

Se beneficiará la planificación de largo plazo si los

cálculo. Tanto como los métodos empíricos y numéricos,

ingenieros de diseño proponen un análisis numérico

se han generado diversas planillas de cálculo y programas

detallado. Los regímenes de esfuerzo pueden ser

más completos.

pronosticados, de tal manera que la secuencia de minado

76

Capítulo 5: Computación Aplicada al Diseño de Excavaciones

también se puede planificar con el fin de enfrentar un

La aplicación de métodos continuos es más adecuada

nivel de esfuerzo aceptable o controlable. Lo anterior

en los análisis de roca masiva intacta, de rocas débiles

puede bajar la intensidad de los estallidos de rocas y

y de macizos rocosos altamente fracturados o

crear mayor estabilidad desde el punto estructural. La

meteorizados. En el caso de masas rocosas con presencia

modelación numérica es una útil herramienta y cada

de múltiples sets de fracturas, lo cual puede ser el

día los ingenieros están utilizando más esta tecnología;

controlador del mecanismo de falla, el modelamiento de

sin embargo, los modelos obtenidos deben validarse

un discontinuo puede ser el más apropiado.

con apoyo de las obser vaciones de ter reno y principalmente desde el monitoreo de los sistemas

El estado tensional de un macizo rocoso se puede calcular

diseñados.

por métodos numéricos, donde el compor tamiento mecánico de estos materiales es representado por

La mayor par te de estos sistemas de refuerzo tiene

ecuaciones que requieren una solución, no sin antes

buena respuesta bajo condiciones estáticas, pero

haber definido algunas hipótesis que simplifican el

cuando no están bien diseñados llegan a ser peligrosos

problema y que son necesarias principalmente para

bajo condiciones dinámicas, puesto que se deben

resolver el compor tamiento complejo de algunos

enfrentar eventos sísmicos o altos esfuer zos y

materiales.

deformaciones. Por lo anterior, es importante destacar que predecir las futuras condiciones de menado

Una primera clasificación de los métodos numéricos

facilitará el manejo y control del compor tamiento de

involucra la utilización de elementos de dominio y, por

los sistemas de refuerzo, aún en condiciones variables

otro lado, elementos de contorno. Los métodos que

de esfuerzos tal como ocurre en la minería.

utilizan elementos de dominio tratan el terreno como un medio continúo dividiéndolo en elementos o zonas. Lo anterior permite analizar comportamientos complejos y

5.2

GUÍA PARA EL MODELAMIENTO NUMÉRICO

entre ellos se encuentran los métodos de diferencias finitas, elementos finitos y elementos discretos. La

El análisis numérico, presenta la alternativa de representar

construcción de la malla del modelo requiere de esfuerzos

el compor tamiento de los macizos rocosos como un

considerables; el objetivo es evitar la interacción entre

continuo o un discontinuo. En el primero, el

ellos, de tal manera que sus contornos deben estar lo

compor tamiento se asocia a una aproximación de

suficientemente lejos de las excavaciones. Estos métodos

conectividad y continuidad de los desplazamientos y

son más versátiles y potentes.

esfuerzos entre los elementos. Por otro lado, en el método discontinuo la masa de roca es representada como un

Por otro lado, la metodología de elementos de contornos

ensamble de distintos bloques o cuerpos interactuando

divide en elementos los contornos del problema, por lo

entre ellos, los que a su vez son subdivididos en una

que las necesidades tanto en potencia como en equipos

malla de diferencias finitas, lo que permite ser

de informática son menores. Esto permite que el usuario

representado bajo las leyes de esfuerzo - deformación

tenga una experiencia y habilidad de menor grado, por

lineal o no lineal.

lo que los resultados y precisión son mucho menores.

77

5.2.1 Método de Diferencias Finitas

la operación o trabajo, más que con las ventajas comparativas de los mismos.

Esta técnica es una de las más antiguas para resolver ecuaciones diferenciales a partir de condiciones iniciales

El método de diferencias finitas explícito utilizado por

y/o de contornos. Principalmente, consiste en el reemplazo

FLAC (www.itasca.cl), lo hace idealmente apropiado para

de las derivadas de cada conjunto de ecuaciones por una

modelar problemas geomecánicos que consisten en

expresión algebraica, traducida a variables de terreno tal

varias etapas, tales como excavaciones secuenciales,

como son las tensiones o desplazamiento y deformaciones,

cor te y rellenos (Cut and Fill) y cargas de diversas

en puntos discretos del espacio donde las variables son

naturaleza. El método puede aceptar grandes

indefinidas, dentro de los elementos localizados entre los

desplazamientos, deformaciones y comportamiento no

puntos discretizados.

lineal del material, aún cuando el fallamiento abarque una gran área. (Ver figura 5.1).

Por el contrario, la metodología de elementos finitos usa funciones especificadas para los valores de campo, los que varían a lo largo de todo el elemento y de una forma predeterminada. La secuencia de cálculo utilizada en programas de diferencias finitas primeramente incluye las ecuaciones de equilibrio (ecuaciones de movimiento), a partir de las cuales se obtienen velocidades y desplazamiento en cada intersección de la malla o nodo, consecuentemente la utilización de ecuaciones constitutivas, es decir, (relación - tensión - deformación), genera nuevas tensiones a partir de las deformaciones, cerrando de esta manera el ciclo. Operacionalmente los cálculos se repiten hasta que el equilibrio sea alcanzado. Los métodos de diferencias finitas y elementos finitos poseen algunos aspectos principales comunes. Uno de ellos es la generación de ecuaciones algebraicas por resolver. Si bien el origen de estas ecuaciones para

Figura 5.1: Programa FLAC.

ambos métodos es distinto, las ecuaciones de resultados son idénticas. De allí que las bondades de uno u otro

El programa trae incorporado el lenguaje de programación

método no tienen mayor significancia debido a que las

Fish, que permite agregar capacidades de análisis y

ecuaciones finales son las mismas; entonces, la

procesamiento de los modelos acorde con los

utilización de cualquiera de ellos está relacionada con

requerimientos específicos de los diversos usuarios.

78

Capítulo 5: Computación Aplicada al Diseño de Excavaciones

5.2.2 Método de Elementos Finitos (FEM)

para resolver las ecuaciones algebraicas. En el caso de los elementos finitos, comúnmente las soluciones son

El método de elementos finitos modela el terreno en

implícitas de matrices orientadas.

forma de malla, donde los elementos son dicretizados en forma variable interactuando entre puntos llamados

El programa PHASES, es un software para diseño de

nodos. Cada elemento tiene propiedades individuales,

excavación y soporte que utiliza elementos finitos en un

restringidas a su vez por las condiciones iniciales de

modelo elastoplástico 2D para el análisis de diseño de

contorno. Una vez definida la malla se aplica la teoría de

excavaciones, tanto en superficie como subterráneas y

elasticidad, con el fin de obtener la matriz que definirá

para su necesidad de soporte. Este programa puede

los movimientos de cada nodo, incluidas las tensiones.

tener aplicaciones en rocas o suelos y además incluye

En términos generales, esta metodología es muy parecida

el análisis de situaciones conectadas a aguas

al de las diferencias finitas. Sin embargo, el programa

subterráneas. También los modelos Cam-Clay y Cam-Clay

de elementos finitos combina las matrices elementales

Modificado pueden ser usados en aplicaciones de suelo.

en una matriz de rigidez global, situación que no ocurre

El criterio de fractura generalizado de Hoek-Bronw puede

en el método de diferencias finitas. El método de

ser usado para el análisis de resistencia de macizos

diferencias finitas utiliza formas de implícitos o explícitos,

rocosos. Diferentes sistemas de refuerzo son incluidos

Figura 5.2: Programa PHASES

79

en el programa, del mismo modo elementos de soporte

los métodos de contorno, se basa en la formulación

como shotcrete o sistemas de multicapa incluidos los

de una aber tura en un medio elástico y continuo y

geotextiles (Ver figura 5.2.).

se utiliza para la modelación de juntas.

5.2.3 Método de Elementos Discretos (DEM)

5.2.5 Métodos Híbridos

Considera el terreno como un medio discontinuo

Aquí se combinan distintos métodos para adoptar las

representándolo en una malla, donde cada elemento

ventajas de cada uno, utilizándolos respectivamente en

representa un bloque rígido libre y que se conecta

la zona del material donde puede ser mejor simulado.

con otros mediante los puntos de contacto, pudiendo

Está idea está basada en el hecho de que al perturbar

girar o deslizarse donde la deformación puede ocurrir

un material, mediante por ejemplo una excavación

en un mayor grado que la de los propios bloques, lo

subterránea, éste presenta una zona o campo cercano

que no se logra por otro método. Los cálculos son

a la excavación en la que el material puede presentar

efectuados por técnicas de soluciones explícitas.

comportamientos complejos, mientras que existe otra zona alejada de la excavación en la que el comportamiento es elástico y puede ser simulado por

5.2.4 Método de los Elementos de Contorno

métodos numéricos más sencillos.

Como se ha indicado anteriormente, estos métodos

Así, existen programas híbridos que utilizan elementos

sólo dividen en elementos los contor nos del

finitos o discretos en las proximidades de las

problema, es decir las excavaciones, la super ficie

excavaciones, al tiempo que utilizan los elementos de

topográfica en el caso de excavaciones someras,

contorno para discretizar y modelar las zonas alejadas

los contactos entre distintos materiales y las juntas

de la misma.

(las cuales son definidas explícitamente, considerando el material interior como un medio continuo e infinito).

5.3 CALCULOS EN DOS O TRES DIMENSIONES

Existen tres tipos de métodos de elementos de

Como es conocido, el comportamiento de una excavación

contorno: los indirectos, los directos y los métodos

subterránea es básicamente tridimensional en secciones

de desplazamiento-discontinuidad. Los dos primeros

próximas al frente, debido al efecto cúpula que se produce

son los más impor tantes, caracterizándose los

en esa zona, efecto que desaparece a medida que la

indir ectos en que primeramente buscan unas

sección queda más alejada del frente, convirtiéndose

tensiones ficticias que satisfagan las condiciones

entonces el problema en bidimensional con un efecto

de contorno. Estas tensiones se utilizan para el

arco o bóveda.

cálculo de las tensiones y desplazamiento finales. El método directo se basa en que los

Los cálculos tridimensionales son más precisos, pero

desplazamientos son calculados directamente a

requieren un mayor esfuerzo en la preparación del modelo,

par tir de las condiciones de contorno. El tercero de

mayor tiempo de cálculo, mayores prestaciones de los

80

Capítulo 5: Computación Aplicada al Diseño de Excavaciones

equipos informáticos y un análisis de resultados más

problema, para posteriormente proceder a los cálculos

minucioso, con los que en resumen se añade dificultad

definitivos con programas más complejos de diferencias

al ya de por sí complejo cálculo.

finitas o elementos finitos en medios continuos y elementos discretos en medios discontinuos. Los cálculos

Al realizar cualquier modelo se deben analizar todas las

en 3D se dejan en la mayoría de los casos para

condicionantes para elegir un tipo u otro de cálculo, pero

comprobaciones o para análisis de zonas, como por

conviene decir que los cálculos bidimensionales son

ejemplo intersecciones.

suficientemente representativos para la mayoría de los problemas a analizar, descartando intersecciones o cruce de túneles, entre otros. Las secciones próximas al frente

5.4 RESUMEN

se pueden analizar mediante cálculos bidimensionales teniendo en cuenta el efecto cúpula indicado

• Las clasificaciones de macizos rocosos son valiosas

anteriormente, lo cual se puede hacer bien suponiendo

herramientas para definir los sistemas de soporte en

una relajación de las tensiones iniciales, de manera que

forma preliminar y que finalmente se transforman en

en cada fase del proceso constructivo se disipan un

la base para la toma de decisiones de los sistemas

porcentaje de dichas tensiones iniciales, o bien suponiendo

de soporte permanente.

una disminución de la rigidez del sostenimiento para que

• Las etapas consideradas en el proceso de diseño de

la carga que soporte sea menor. Además de este efecto,

excavaciones son secuenciales y además muy

para que el cálculo bidimensional tenga en cuenta todos

importantes al evaluar finalmente el comportamiento

los requisitos 3D, se debe obtener el sostenimiento

del sistema roca-soporte de la excavación, aunque en

equivalente de pernos y cerchas, dividiendo las

muchos casos el monitoreo no siempre es

propiedades no geométricas de los mismos por su

implementado.

espaciado en el plano perpendicular al de trabajo.

• La óptima definición de los mecanismos de control de la inestabilidad de las excavaciones resultará en una

En definitiva, se debe analizar en cada caso cuál es el

buena elección de los parámetros a considerar en los

método numérico más apropiado a aplicar, además de

métodos de análisis y los criterios de aceptabilidad.

decidir si el cálculo se realiza en dos o tres dimensiones,

• Los métodos numéricos se han transformado en una

lo cual en principio no es tarea fácil. En consecuencia,

herramienta recurrente en los estudios de mecánica

se puede pensar en que para los cálculos previos y en

de roca aplicando a situaciones complejas, donde el

terrenos competentes éstos se pueden realizar con algún

campo de esfuerzos in-situ es el controlador de la

programa de métodos híbridos con el fin de acotar el

estabilidad de las excavaciones.

81

Capítulo 6: Sistema de Refuerzo de Rocas

6.1

CONCEPTUALIDADES DEL REFUERZO

6.1.1

Sopor te y Refuerzo

A. Túneles

Los términos Sopor te y Refuerzo son empleados, en general, en forma similar. Sin embargo, existe una diferencia sustantiva en como ellos estabilizan la masa de r oca alrededor de una excavación. Básicamente, el sopor te aplica cargas reactivas en la super ficie de la excavación utilizando sistemas tales como marcos, enmaderados, shotcrete, etc. Por otro lado, el refuer zo pretende mejorar las propiedades del macizo rocoso mediante la interacción de los elementos internos y externos del sistema. B. Taludes 6.1.2

Pre-refuerzo y Post-refuerzo

El pre-refuerzo es la colocación de un sistema con la debida antelación a la creación de la excavación. Por el contrario, el post-refuerzo es aplicado después de la creación de la excavación, metodología usual en la mayoría de los casos de excavación aplicada. El pre-refuerzo mejora sustancialmente los factores de seguridad y productividad. Por otro lado, en muchos casos se utilizan ambos métodos en el proceso de desarrollo de una excavación. Pre-refuerzo 6.1.3

Pre-tensionado y Post-tensionado

El pre-tensionado es la aplicación de una cierta tensión al sistema durante su instalación. El pos-tensionado

Post-refuerzo

Figura 6.1: Pre y Post Refuerzo en Túneles y Taludes.

es la tensión aplicada al sistema después de su instalación. El pre-tensionado tiene por finalidad evitar movimientos iniciales de la masa de roca, tratando de 85

mantenerlos al mínimo. En condiciones de sobre-

la estabilidad total; en cambio, otros sistemas sólo

estresamiento este método puede conducir a la falla

pretenden mantener las estabilidades de algunos

del sistema. Del mismo modo, en ambientes de estallido

bloques, y en algunos casos solo cumplen la función

de rocas es deseable disminuir la transferencia de

de retención de desmoronamientos menores.

carga al elemento de refuerzo. 6.2 6.1.4

TIPOS DE REFUERZO

Refuerzo: Temporal y Permanente La mayoría de las excavaciones subterráneas son

En general, la razón que justifica la excavación y su

realizadas para cumplir un rol impor tante tanto, en

vida útil definen la calidad del refuerzo. Para este tema

Obras Civiles como en proyectos de Minería. Las

es importante señalar que las excavaciones en minería

técnicas empleadas, en general, incluyen sofisticados

y obras civiles requieren sistemas de refuer zo

sistemas mayores de anclajes de suelos o rocas

diferentes. Por ejemplo, los laboreos que están

(Ground Anchors), sistemas de cable (Cable Bolts) y

destinados a conducir la extracción de un cierto mineral

pernos (Rock Bolts). Básicamente, se logra la

son hechos en el cuerpo mineralizado. Lo anterior

estabilidad de la excavación construida en suelo o

significa que éstas deben permanecer estables el

r oca mediante la instalación de elementos

tiempo necesario para cumplir el requerimiento de

estructurales en el interior de su masa.

extracción. Este periodo puede ser de meses en algunos casos como de años, en otros, dependiendo de si la

Las diferencias entre estas técnicas están asociadas

excavación cumple una función de ser vicio o de

al tamaño y a los estándares del propio diseño e

producción. En cambio, para excavaciones de obras

instalación. Las técnicas de anclaje mayores de

civiles se requiere un tiempo mucho mas largo de

suelo o rocas, tienden a tener mayor longitud y una

estabilidad.

mayor capacidad de refuerzo; el sistema de pernos es el de menor longitud y de menor capacidad entre

Es muy impor tante definir los sistemas con la debida

los tres sistemas considerados; y el sistema de

antelación, para que éstos se encuentren en la cantidad

cable está localizado para controlar problemas bajo

y calidad en el momento apropiado y su instalación se

condiciones intermedias entre los dos sistemas

realice de acuerdo con normas y procedimientos. Cabe

anteriores. El sistema mayor de anclaje de terreno,

destacar que muchos de estos sistemas fallan debido

es empleado más bien para solucionar problemas

a su precaria condición de instalación y a la falta de

de estabilidad en proyectos de ingeniería civil y en

control.

longitudes mayores a 10 m. Sin embargo, también son usados en excavaciones especiales de minería

Algunos ingenieros les conceden un orden de prioridad

subterránea, tales como subestaciones (chancado,

a los sistemas, dependiendo del momento en que

eléctricas, de drenaje, plantas metalúrgicas, etc.),

éstos son instalados. Por otro lado, les conceden una

mientras que la técnica de cables es usada en la

orden de prioridad en función de los roles que

industria minera para longitudes de 3 hasta 12 m,

desempeña cada uno de los sistemas instalados. Así,

y en casos especiales, para más de 20 m. En tanto,

puede haber un sistema cuyo objetivo sea mantener

el sistema de per nos es utilizado en ambas

86

Capítulo 6: Sistema de Refuerzo de Rocas

ingenierías, pero para solucionar, en general, problemas cuyas longitudes sean iguales o menores a 3 m. Las diferencias entre estos tres sistemas varia ANCLAJES MAYORES

mercado de una gran cantidad de opciones, tanto en sus componentes básicos, como en las metodologías de instalación, que pueden satisfacer de la misma manera una gran cantidad de problemas de estabilidad, a pesar de las cada vez más difíciles condiciones geotécnicas donde se están construyendo estas

Capacidad de Refuerzo

considerablemente, debido a la existencia en el

CABLES

PERNOS

excavaciones hoy día. Longitud de Refuerzo

La utilización de una extensión libre y otra par te anclada en suelo o roca en el sistema de anclaje mayor, comenzó en Europa (Alemania y Francia) en la

Figura 6.2: Relación entre capacidad y longitud de refuerzo de los tres sistemas.

década del 50. Las cargas de trabajo en estos sistemas pueden llegar a alcanzar entre 600 y 800

procedimientos serios, tomando en cuenta tanto la

kN (dependiendo de la técnica usada, ya sea de

geometría de las discontinuidades y las fuerzas como

inyección o de compactación).

los desplazamientos que pueden ocurrir.

En Australia se han alcanzado hasta 1.200 kN, con

Así han aparecido reglas, car tas, procedimientos y

longitudes sobre los 120 m.

esquemas de clasificación de masas de roca (Bar ton et al., 1974, Bieniawski, 1976). En general, son

Los sistemas de pernos y cables se usan para

procedimientos simples, rápidos, muy populares y de

solucionar problemas de estabilidad local, alrededor

alguna forma se puede decir que han sido exitosos.

de una excavación construida en macizo rocoso fracturado o en el que se espera un cier to grado de fractura, producto de los esfuerzos inducidos por la

6.3

ACCION DEL REFUERZO

propia construcción. Estos sistemas actúan para dar respuesta al principal fenómeno de falla que se presenta

En la mayoría de los ar tículos, los comentarios

en los desplazamientos y rotaciones de los bloques

principalmente se refieren a que los elementos de

pre-formados, producto de las discontinuidades en

refuerzo tratan de entregar fuerzas adicionales y

cualquiera de sus tipos que aparecen en el macizo

controlar los desplazamientos en materiales de suelos

rocoso. La relación entre capacidad y longitud de los

o rocas; sin embargo, bajo un esfuerzo excesivo

tres sistemas, es diferenciada y se muestra en la

comienza a manifestarse la pr opagación de

figura 6.2.

dislocaciones o discontinuidades a escala macro o micro. Para evitar esto, el sistema de refuerzo debe

El diseño de refuer zo de rocas es un problema

transferir car ga desde un lado a otro de una

complejo que debe realizarse bajo nor mas y

discontinuidad. El nivel de reacción y deformación 87

que experimenta el sistema depende de sus

puede decir que la defor mación de rocas es

características esfuerzo-deformación y de la rigidez

generalmente controlada por las discontinuidades,

del enlace entre cualquiera de los lados de la

las que pueden ser: zonas de cizalla, fallas geológicas,

discontinuidad. De lo anterior se puede inferir que

planos de estratos, diaclasas, entre otras.

los requisitos necesarios para un sistema son: 1. Capacidad de fuerza suficiente para satisfacer la demanda de inestabilidad. 2. Capacidad de desplazamiento para satisfacer la demanda de inestabilidad. 3. Una respuesta del conjunto para lograr el equilibrio.

La relajación y la deformación progresiva pueden originar un colapso de una porción de la estructura de roca en los casos en que esfuerzos de corte, a lo largo de las discontinuidades, constituyen tan sólo una fracción de la resistencia al cor te del macizo rocoso in-situ. En macizos rocosos fracturados, numerosos factores

El desarrollo de los sistemas de pernos y cables

determinan la naturaleza y extensión de la deformación

tienden a dar énfasis a la rigidez para enfrentar

de la masa de roca, a saber:

diferentes ambientes geomecánicos.

1. La resistencia, grado de deformación, orientación y frecuencia de las discontinuidades.

Existen diferentes conceptos de refuerzo de roca, los cuales dependen de las teorías que han sido aplicadas

2. El tamaño, forma y orientación de la excavación con respecto a las discontinuidades.

para calcular el refuerzo requerido. El concepto central,

3. El método de excavación.

encontrado en la mayoría de todas estas teorías, es

4. El estado de esfuer zos en el macizo rocoso

el fortalecimiento del macizo rocoso. En otras palabras,

circundante de la excavación.

el refuerzo se usa para mejorar la habilidad de la

5. La resistencia de la roca intacta.

roca para ser autosopor tada. Uno de los principales propósitos del refuerzo es prevenir que se produzcan

El refuer zo previene o limita la defor mación y

fallas progresivas a lo largo de las discontinuidades

dilatación de la roca que puede colapsar. La

que poseen menor resistencia que la matriz de roca,

resistencia de la roca se mantiene o se mejora al

de tal manera que la roca se autosopor te debido al

aplicar un sistema de refuerzo. Una mayor explicación

mejoramiento de esta resistencia.

dice que el refuerzo entrega una mayor resistencia a la tensión, cor te y fricción a lo lar go de las

La roca in-situ puede ser definida como una compleja

discontinuidades. Al respecto, esto es similar al

estructura de bloques discretos o fragmentos unidos

refuer zo diagonal de estr ucturas de concreto

o débilmente unidos por un elemento cementante.

reforzado. La primera razón es que el refuerzo entrega

En la mayoría de las aplicaciones de ingeniería civil

una inmediata r estricción, la que r educe la

o de proyectos mineros, la resistencia del material

deformación, logrando una estabilización opor tuna

de la roca intacta entre discontinuidades es

o temprana de la excavación. La resistencia al cor te

relativamente alta en comparación al esfuer zo

de las discontinuidades, en general, es menor

esperado, exceptuando condiciones de altos esfuerzos

después de que se produzca un deslizamiento entre

como ocurre en túneles construidos a muy alta

discontinuidades o separación entre las paredes.

profundidad y, en otros casos, en regiones de alta

Por esta razón, el refuerzo debe ser instalado tan

actividad tectónica, como es el territorio chileno. Se

pronto cuando la excavación haya sido construida.

88

Capítulo 6: Sistema de Refuerzo de Rocas

Como ocur re en el diseño de estr ucturas, los

componente de estos sistemas, debe ser considerada

parámetros usuales son determinados no sólo por

por ser la par te principal hacia donde convergen

los procedimientos de diseño que se encuentren

e s t a s car gas. La figura 6.3 muestra estos

disponibles, sino también por los antecedentes de

componentes y la interacción entre ellos.

experiencias y reglas empíricas apropiadas. Los elementos de refuerzo deben estar dotados de resistencia a la corrosión cuando son utilizados en ambientes húmedos y con elementos químicos corrosivos. El elemento base de estos sistemas puede ser adherido permanentemente a la masa de roca mediante lechadas de cemento o resinas. El refuerzo de rocas juega un rol impor tante en el mantenimiento y aseguramiento de la estabilidad en la mayoría de las excavaciones de ingeniería civil y de minería. El amplio rango de formas y dimensiones de estas excavaciones se realiza, del mismo modo, en un variado rango geomecánico. Todo este ambiente produce como resultado una amplia gama de

Figura 6.3: Representación conceptual del sistema de refuerzo SAFEROCK®

mecanismos de deformación de la roca. Afor tunadamente, existe una gran variedad de

Componentes

sistemas de refuerzo en el mercado. Los países que

0 La roca

Interacciones 0-2

SAFEROCK®

tienen una avanzada tecnología en estos sistemas

1 El perno

han desarrollado una gran cantidad de excelentes

2 Elemento de adherencia

1-2

documentos, pero, por otro lado, estos resultados no

(lechada de cemento ó resina)

1-3

pueden ser aplicados a todos los sistemas de

3 Tuerca

SAFEROCK®-planchuela

3-0

refuerzos, ni menos aún en todas las excavaciones,

4 Planchuela

4-0

debido principalmente a que las condiciones varían de sitio en sitio.

El compor tamiento del sistema está definido por la interacción de esos cinco componentes. a) La roca interactúa con los elementos internos y

6.4

COMPONENTES DEL SISTEMA DE REFUERZO SAFEROCK®

externos del sistema. b) E l p e r n o S A F E R O C K ® i n t e r a c t ú a c o n l o s componentes internos y externos del sistema.

Un sistema de refuerzo comprende al menos cuatro componentes principales y, por supuesto, coexistirán diversos modos de transferencia de carga entre estos elementos. Aunque la masa de roca no es un

c) Los componentes internos interactúan con la roca y el elemento principal. d) Los componentes externos interactúan con la roca y el elemento principal. 89

6.5

CLASIFICACION DEL SISTEMA DE REFUERZO

6.5.1 El sistema CMC

SAFEROCK® El sistema de refuer zo con pernos SAFEROCK ® , La reacción del sistema de refuerzo está determinada

depende potencialmente del componente interno que

por la sumatoria de los compor tamientos de cada uno

ocupa el área anular entre el elemento y la pared del

de los componentes principales y su múltiple

barreno. Se utiliza generalmente lechada de cemento,

interacción. El modelo de este sistema mecánico debe

lo cual requiere un cier to tiempo antes de que el

mostrar la "per formance", y desde allí predecir cual

elemento pueda entrar en servicio. Este periodo puede

de los componentes debe ser optimizado. El sistema

variar desde unos pocos segundos hasta algunos

de refuerzo con pernos SAFEROCK ® grauteados, se

días, dependiendo del tipo de lechada y de sus

clasifica como un sistema CMC ó "Continuously

componentes. Otro elemento usado son las resinas.

Mechanically Coupled" (Sistema de Acoplamiento Mecánico Continuo). Para claridad y diferenciación, en

La función de la lechada o resina es proporcionar

el gráfico 6.1 se muestra, además, el compor tamiento

un mecanismo de transferencia de carga entre la

de los sistemas DMFC, "Discretely Mechanically or

roca y el elemento de refuerzo. El perno SAFEROCK®

Frictionally Coupled" (Acoplamiento Mecánico o

posee una geometría tal, cuya variación proporciona

Friccional Discreto) y el CFC "Continuously Frictionally

una inter ferencia geométrica entre el elemento y la

Coupled (Sistema de Acoplamiento Friccional Continuo).

lechada. Cuando esta inter ferencia geométrica se extiende a lo largo del elemento, lo denominamos

Las figuras 6.4a y 6.4b representan los sistemas

acoplamiento mecánico continuo.

CMC y CFC, respectivamente. La interacción entre el macizo rocoso y los sistemas de refuer zo es muy compleja. Esto debido a las Gráfico 6.1: Compor tamiento de los tres tipos de refuerzo (CMC, DMFC y CFC).

variables naturales y a los complicados mecanismos de falla de la masa rocosa y a la mecánica de transferencia de carga, entre el sistema de refuerzo y la masa de roca.

Fuerza (F)

CMC

DMFC

CFC

90

Capítulo 6: Sistema de Refuerzo de Rocas

Figura 6.4a: Sistema CMC SAFEROCK®

6.5.2

Figura 6.4b: Sistema CFC

Elemento Externo Perno- Tuerca SAFEROCK® (1-3)

Existen tres opciones básicas del elemento externo de fijación y que son comunes a toda clase de sistema de refuerzo: acoplamiento integral, mecánico y friccional. El acoplamiento externo mecánico para los pernos SAFEROCK® diseñados y fabricados por Gerdau AZA en 22 mm de diámetro, lo constituye una rosca o tuerca para desplazarse sobre los hilos del perno. En la sección 6.6.3, se presentan los resultados resumidos del cálculo analítico del compor tamiento perno-tuerca SAFEROCK® (Ver figura 6.5).

Figura 6.5: Perno SAFEROCK® de 22 mm.

91

6.6

COMPORTAMIENTO DEL SISTEMA DE REFUERZO

La figura 6.7 muestra los desplazamientos en sentido

PERNO-TUERCA SAFEROCK®

longitudinal, que indican un máximo de 71 µm.

Para conocer el comportamiento del sistema de refuerzo con pernos y tuercas SAFEROCK®, se han realizado estudios analíticos, empleando herramientas de elementos finitos, para obser var los niveles de esfuerzos que es capaz de resistir y las deformaciones que se producen al aplicar 12 toneladas a la barra SAFEROCK® (117.600 Newton) para minería. En el análisis, se consideraron cargas en el ensamblaje del perno con la rosca de la tuerca y perno empotrado en su base, simulando la acción de carga que la tuerca ejerce sobre él. Figura 6.6: Esfuerzos de Von Mises.

6.6.1

Comportamiento del Perno SAFEROCK®

Tipo de Análisis: Análisis de tensiones estáticas, para las propiedades mecánicas del material que se muestran en la tabla 6.1. Como se puede apreciar en la figura 6.6 de la barra, los resultados de los esfuerzos de Von Mises tienen un valor máximo de 781 MPa y un valor máximo en la rosca de 400 MPa. Las propiedades del acero Gerdau AZA A440-280 utilizado en la fabricación del perno SAFEROCK® son: resistencia a la tracción igual a 440 MPa, y tensión de fluencia de 280 MPa. Para este material, los valores promedios obtenidos en la simulación bordean el límite de fluencia.

92

Figura 6.7: Desplazamientos.

Capítulo 6: Sistema de Refuerzo de Rocas

La geometría de la rosca del perno SAFEROCK ® , tiene mayor super ficie de apoyo debido a su diseño, y la menor holgura que tiene respecto al perno tradicional, que impide que la unión perno-tuerca se suelte, cuando es aplicada la carga, aún cuando se produce un angostamiento de la barra. Sin embargo, se debe tomar en consideración la deformación por aplastamiento en la super ficie de la rosca. Otra característica del compor tamiento del sistema perno-tuerca SAFEROCK ® que al estar bajo cargas de trabajo, es que en el extremo libre de la unión

Figura 6.9: Ensamblaje Perno-Tuerca SAFEROCK®.

perno-tuerca, se produce cur vatura de la barra. Este estudio utilizó simulaciones mediante elementos finitos de los esfuer zos y deformaciones que se ejercen al aplicar 12 toneladas a la tuerca usada como elemento de unión. El modelo analizado corresponde a su compor tamiento estático. La tuerca SAFEROCK® en estudio es de fundición nodular dúctil ASTM A536, que funciona como elemento de unión con el perno SAFEROCK ® de 22 mm de diámetro (Ver figuras 6.8 y 6.9). En el modelo se supone la aplicación de carga en el ensamblaje perno-tuerca. En este modelo, la tuerca se considera con movimiento restringido en su par te externa (super ficie externa) y la carga se distribuye en todas las roscas en contacto.

6.6.2

Compor tamiento de la Tuerca SAFEROCK ®

Tipo de Análisis: Análisis de tensiones estáticas, para las propiedades mecánicas del material que se muestran en la tabla 6.2.

Figura 6.8: Tuerca SAFEROCK® de fundición nodular.

93

Como se puede apreciar en la figura 6.10, los resultados de los esfuerzos de Von Mises para el comportamiento de la tuerca SAFEROCK® tienen un valor máximo de 350 MPa, y en la rosca un valor máximo de 280 MPa. Las propiedades de la fundición nodular (dúctil) ASTM A536 utilizada en la fabricación de la tuerca SAFEROCK® son: resistencia última a la tracción igual a 457 MPa y tensión de fluencia de 320 MPa. Uno de los valores obtenidos mediante ensayo (tensión de fluencia) es mayor que los parámetros que tenemos según el tipo de material, pero debemos

Figura 6.11: Desplazamiento de la Tuerca SAFEROCK®.

considerar que los máximos se producirán solo en zonas puntuales, por lo que este valor no representa el compor tamiento completo de la tuerca. Por esto,

en este caso, nuestro valor medio es de 245 MPa,

concluimos que un valor medio será más apropiado

siendo menor que el límite de fluencia del material.

para medir el compor tamiento general de la tuerca; Los desplazamientos en sentido longitudinal indican un máximo de 7,4 µm, dada la geometría de la rosca de la tuerca que tiene mayor superficie de apoyo y la disminución de la holgura, lo que impide que la unión perno-tuerca se suelte a pesar de que se produce un angostamiento de la tuerca. (Ver figura 6.11). Sin embargo, se debe tomar en consideración la deformación por aplastamiento en la super ficie de la rosca.

Figura 6.10: Esfuerzos de Von Mises - Tuerca SAFEROCK®.

94

Capítulo 6: Sistema de Refuerzo de Rocas

Figura 6.12: Ensamblaje Tuerca Rosca.

95

Gráfico 6.2 Comportamiento de la deformación de la planchuela 180

150

Carga (kN)

120

90

60

30

0

0

5

10 15 20 Deformación (mm)

25

Figura 6.13a: Planchuela deformada.

Figura 6.13b: Planchuela lisa.

96

30

35

Capítulo 6: Sistema de Refuerzo de Rocas

6.8

LECHADA COMO ELEMENTO DE ADHERENCIA

En las siguientes secciones se presenta la información

EN SISTEMA DE REFUERZO

básica, junto con algunas consideraciones teóricas asociadas a propiedades físicas y mecánicas de la

Las lechadas de cemento son usadas en conjunto con

lechada de cemento. La mayor parte de la información

varios sistemas de refuerzo. Estos sistemas de refuerzo

se deriva de experiencias en el concreto (Taylor 1997)

requieren un rango de propiedades físicas y mecánicas,

y la industria de inyección de rocas (Houlsby, 1990), pero

tanto para la pasta de cemento fresca para ser ubicada

puede ser usada para explicar algunos de los

eficientemente, como para la pasta de cemento

comportamientos observados de la lechada de cemento

endurecida, para obtener un rendimiento efectivo del

asociada a aplicaciones de refuerzo. Esta información

refuerzo.

puede también ser usada en el diseño de la mezcla para un sistema de refuerzo dado, equipos comunes y

Se ha establecido que el refuerzo para estabilizar rocas

procedimiento de instalación.

alrededor de las excavaciones, puede ser considerado como un sistema de componentes individuales (Windsor, 1997). El rendimiento global del sistema de refuerzo

6.8.1

Lechada de Cemento

es controlado por el comportamiento de los componentes individuales y la interacción entre ellos.

Las lechadas de cemento son usadas para fijar los elementos internos en la mayor parte de los sistemas

También se puede considerar que la instalación del

de refuerzo; por ejemplo, un barreno puede ser rellenado

refuerzo es un sistema de procesos individuales que

con lechada antes de introducir una barra SAFEROCK®.

tienen interacciones entre ellos. Estos procesos de

Alternativamente, permite que la barra pueda ser

instalación, individuales y colectivos, controlan la calidad

ubicada primeramente en el barreno antes de que la

global del sistema de refuerzo y su rendimiento

lechada sea bombeada. En estos dos casos, las

subsiguiente.

propiedades físicas de la lechada de cemento deben ser diferentes para permitir una ubicación efectiva del

La discusión de los procedimientos que se aplican

refuerzo dentro del barreno. Las propiedades de la

generalmente a todos los sistemas de refuerzo, es

lechada pueden definir el equipo de mezclado y bombeo

particularmente relevante para los sistemas de refuerzo,

que se requiere. Desafor tunadamente, en muchos

los cuales dependen total o parcialmente de las lechadas

casos la mezcla de cemento está basada en los equipos

de cemento para proveer transferencia de carga entre el

disponibles y no en los requerimientos de diseño del

elemento de refuerzo y la roca y para dar protección extra

sistema de refuerzo.

a los efectos de la corrosión. La lechada de cemento en ambos estados, pulpa y endurecido, es un material

Las lechadas de cemento más simples se forman por

complejo con un amplio rango de propiedades, los cuales

la mezcla de polvo de cemento con agua para formar

dependen de los constituyentes y de la proporción relativa

una pasta (pulpa). Las propiedades físicas y mecánicas

usada durante la mezcla. Estas propiedades impactan

de la pasta dependen de las propiedades del polvo de

directamente en la elección del equipo usado para el

cemento, del volumen de agua agregado y de las

mezclado y colocación dentro del barreno y en el

condiciones bajo las cuales la pasta de cemento es

rendimiento resultante del sistema de refuerzo.

colocada y endurecida. 97

Capítulo 6: Sistema de Refuerzo de Rocas

Figura 6.14a: Comportamiento Hidráulico Newtoniano.

Capítulo 6: Sistema de Refuerzo de Rocas

Figura 6.14b: Comportamiento Hidráulico Pseudoplástico.

Figura 6.14c: Comportamiento Hidráulico Plástico.

Capítulo 7: Respuesta del Sistema Refuerzo - Roca

7.1

CONCEPTOS FUNDAMENTALES

macizo rocoso estable. (Ver figuras 7.1a y b). Aspectos a considerar:

7.1.1

Principios Importantes

a) Elemento de refuerzo. b) El largo, debe ser lo preciso para terminar en una

Los aspectos fundamentales para la comprensión del

región estable.

comportamiento del sistema de refuerzo, de la acción

c) La transferencia de carga entre los elementos y la

de las diferentes piezas que lo forman y su efecto en la

roca debe cumplir este requisito: que la capacidad de

estabilidad de la excavación, son el concepto de

los elementos sea al menos igual a la demanda dada

transferencia de carga y los componentes principales del

por el volumen inestable.

sistema de reforzamiento. (Ver figura 6.3, capítulo 6 Sistema de Refuerzo de Rocas).

El refuerzo ha sido ampliamente usado tanto en roca

• Movimiento de roca que transfiere carga desde roca

masiva en expansión continua como en roca fracturada;

inestable al elemento de refuerzo.

en esta última, el sistema trabaja con el fin de entregar

• Transferencia de carga a través del elemento de

tensión y resistencia al cor te adicional a las

refuerzo desde una región inestable (externa) a una

discontinuidades. La figura 7.2 muestra la deformación

región estable (interna).

típica de un sistema de refuerzo con pernos SAFEROCK®,

• Transferencia de carga del elemento de refuerzo a un

Figura 7.1a: Transferencia de carga en sistema de refuerzo con pernos SAFEROCK®.

tanto en roca masiva como en roca fracturada.

Figura 7.1b: Transferencia de carga en refuerzo tipo anclaje.

105

además, por el confinamiento o deformación del barreno como reacción a la dilatación de la lechada y puede ser igualmente afectado por los cambios en el estado de esfuerzos de la masa rocosa alrededor del barreno y como consecuencia del proceso de curado de la lechada.

7.2.1

Efecto del Cambio de Esfuerzo en la Adherencia de la Lechada

Varios estudios han concluido que el cambio de esfuerzos en los alrededores de una excavación, es decir en la masa de roca, puede afectar en forma importante la adherencia del elemento de refuerzo en las interfases del sistema. De lo anterior se desprende que el incremento de los esfuerzos provoca un incremento en la resistencia de la adherencia, hasta un límite en que estos esfuerzos

Ecml

no superen la resistencia a la compresión de la lechada

Figura 7.2: Deformación típica de un sistema de refuerzo con pernos SAFEROCK®.

ya endurecida. Por otro lado un decrecimiento en el nivel de esfuerzo puede reducir la resistencia. Para casos de rocas de mala calidad este decrecimiento de esfuerzo

7.2

INTERACCION (0-2) EN LA INTERFASE

puede llevar la resistencia a niveles críticos o nulos.

ROCA/LECHADA (GROUTING) Si se analiza el proceso de instalación de un sistema de Esta interfase comprende la pared del barreno y la lechada

reforzamiento, se parte de la base que el barreno es

y depende de un aspecto importante, como es la adherencia

perforado en una roca estresada, por lo que las paredes

alcanzada entre la roca y la lechada, la que es dependiente

de barreno se deforman hacia su interior, inmediatamente

de la compatibilidad química y de agentes contaminantes.

como avanza la perforación.

El entrelazado mecánico de esta componente está determinado por la rugosidad tanto longitudinal como

Después de realizar la per foración las paredes son

perimetral de la pared del barreno; y, además, la resistencia

radialmente destresadas. Bajo estas condiciones el

y deformación tanto de la roca como de la lechada y los

elemento del sistema de refuerzo es instalado. Este

esfuerzos radiales de la inter fase. (Ver figura 6.3 del

sistema puede estar por un periodo largo bajo estas

capítulo 6).

condiciones, pero así como avanza el minado, o se crean nuevas excavaciones cercanas al punto de instalación,

La componente de fricción es determinada por el coeficiente

se genera un cambio de esfuerzo.

de fricción entre el material y el esfuerzo radial a través de la interfase. El estado de esfuerzo radial afecta indistintamente

En un incremento de esfuerzo se produce una contracción

a las componentes mecánicas y de fricción. Es influenciado

del barreno, y durante una reducción de los esfuerzos

106

Capítulo 7: Respuesta del Sistema Refuerzo - Roca

ocurrirá una expansión del barreno, en general ocurren

endurecida puede llegar a separarse del elemento de

desplazamientos radiales.

soporte o de las paredes del barreno. La relajación o decrecimiento de la presión en las interfases genera por

Como la lechada endurecida forma parte del sistema de

lo tanto una reducción en la resistencia de adherencia.

refuerzo, la inter faz elemento de refuerzo - lechada también es alterada.

Un ejemplo se visualiza en la figura 7.3, donde la sección de la galería inicial es ampliada, provocando un

Como se ha dicho, un incremento de los esfuerzos genera

destresamiento en el techo. Otro ejemplo común es la

una contracción del barreno y por lo tanto una compresión

pared de la pendiente después de iniciada la explotación

en la lechada endurecida, aumentando la presión en la

de una cámara, esto ocurre principalmente en su parte

interfase elemento - lechada, traduciéndose finalmente

baja. En los puntos de extracción de sistemas de

en un incremento de la resistencia última de adherencia.

explotación, que generan grandes cámaras vacías o hundimiento de las mismas, la visera formada queda en

Un decrecimiento de los esfuerzos en la masa rocosa

condición propensa a que el sistema de refuerzo falle,

resulta en una expansión del barreno, es decir, la roca

este puede ser una combinación de cables y pernos. (Ver

se relaja. Como resultado de este fenómeno, la lechada

figuras 7.4a y b, y 7.5a y b).

107

Zona Relajada

Zona Relajada

108

Capítulo 7: Respuesta del Sistema Refuerzo - Roca

109

110

Capítulo 7: Respuesta del Sistema Refuerzo - Roca

por lo que se podría considerar mecánicamente acoplada.

La interfase envuelta en la transferencia de carga a través de una superficie relativamente rugosa y suave para un

En términos de la macro-mecánica, las superficies podrían

elemento de refuerzo friccionalmente acoplado es una sola.

ser consideradas relativamente suaves y puramente

En ambos casos la fuerza axial en el refuerzo puede ser

friccionales. Consecuentemente, el comportamiento de

transferida a un número de interfases a la roca o viceversa.

transferencia de las interfases es controlado por la rugosidad

En el caso de SAFEROCK®, hay dos interfases mayores y el

y entonces dependen de su correspondiente escala.

nivel de fuerza transferida depende de: 1. La resistencia del refuerzo

Las interfases que intervienen en la transferencia de cargas

2. La resistencia al corte de la interfase refuerzo-lechada

a través de una superficie relativamente rugosa y suave

3. La resistencia al corte de la lechada

para un elemento de refuerzo con pernos

SAFEROCK®

acoplado se muestran en la figuras 7.7a y 7.7b siguientes.

4. La resistencia al corte de la interfase lechada-roca 5. La resistencia de la roca En el caso friccionalmente acoplado, existe solamente una inter fase y el nivel de transferencia de fuerzas depende de: 1. La resistencia del refuerzo 2. La resistencia al corte de la interfase refuerzo-roca 3. La resistencia de la roca En cada uno de los casos de resistencia al corte de las inter fases, probablemente la mayoría controlará la capacidad de transferencia de carga. Todas las interfases son caracterizadas por "zonas de interfases" que tienen la potencia de suavizar la transferencia de carga. Las zonas de interfases se han coloreado en cada una de las figuras; básicamente se representan zonas de degradación del material o contaminación, lo cual puede permitir un relativo deslizamiento en ó entre las zonas. La posible opción de ingeniería de mejorar en forma prematura este desplazamiento incluye: 1. Incrementar el área de la superficie de la interfase 2. Incrementar el entrelazado mecánico a través de la interfase 3. Reducir la contaminación de la interfase 4. Incrementar la resistencia de cada material en la interfase

111

7.5

MODOS DE FALLA BAJO CARGA AXIAL DEL

El primer caso (A) de ruptura ocurre si la carga actuante

SISTEMA SAFEROCK®

al corte, sobre la superficie del perno empotrado excede la capacidad máxima del perno. El segundo caso (B)

La carga es transferida entre dos zonas separadas de

ocurre cuando hay inadecuada resistencia al corte o

masa rocosa a través de la tensión aplicada al perno.

resistencia de adherencia en la interfase perno-lechada; tal es el caso cuando el perno que es usado es del tipo

Las interfases perno-lechada-roca deben también soportar

liso. El tercer caso (C) ocurre cuando existen fallas de

esta transferencia de carga. De este modo pueden ocurrir

dosificación o mala operación de la inyección de la lechada,

al menos cinco modos de falla:

dejando zonas no cubiertas; por lo tanto, constituyen

A) ruptura del perno SAFEROCK®.

planos de debilidades o de ruptura. Los dos últimos casos

B) falla en la interfase perno-lechada.

(D y E), normalmente ocurren cuando las rocas son débiles

C) falla en la columna de lechada.

o de mala calidad, mejorando este problema por medio

D) falla en la interfase lechada-roca.

del cambio de diseño del perno (destrenzado). Todas las

E) falla en los alrededores de la perforación.

fallas anteriores pueden producirse en condiciones de estallido de rocas. (Ver figura 7.8).

A

B

C

D

Figura 7.8: Diversos modos de fallas en pernos SAFEROCK® bajo carga axial.

112

E

Capítulo 8: Evaluación del Sistema de Refuerzo

8.1

REFUERZO DE ROCA INTACTA

Se puede pensar que el uso de refuerzo es solo en macizos rocosos discontinuos con el fin de prevenir desplazamientos discretos de bloques. Sin embargo, el uso de refuerzo es beneficioso, especialmente con respecto a un proceso de falla frágil, debido al confinamiento adicional, controlando de esta manera en forma efectiva los desplazamientos y reduciendo el fenómeno de expansión o dilatación del macizo rocoso.

8.2

REFUERZO EN ROCA FRACTURADA Figura 8.1: Refuerzo en roca altamente fracturada.

El modo de acción del refuerzo en un medio discontinuo es diferente, porque no sólo pretende un mejoramiento

Considerando ahora el largo y el diámetro del perno,

en las propiedades estructurales de la roca, sino

éstos deben proporcionar una resistencia de adherencia

también evitar grandes desplazamientos de bloques

en las interfases lechada - perno y roca - lechadas tales

completos.

que sean capaces de sostener la tensión necesaria en el perno, el cual dependerá del grado de fractura del

Dos de los más impor tantes factores son: la

macizo rocoso. Además, el diámetro del perno también

factibilidad cinética (el hecho de que los bloques

se puede determinar sobre la base de la resistencia a

están libres al movimiento, dada la situación

la tensión del material del perno.

geométrica de las áreas expuestas en el macizo rocoso de la excavación) y el carácter del refuerzo (cantidad, longitud y orientación).

Ejemplo 1: Un túnel circular está siendo excavado en un macizo rocoso bloqueado (fracturado) utilizando

Un caso simple de refuerzo de un material discontinuo

per foración y voladura (ver figura 8.2). Existe una zona

es el de un bloque reforzado mediante un anclaje de

de excavación per turbada (Excavation Disturbed Zone

tensión sobre una super ficie de roca. El anclaje debe

EDZ), alrededor del túnel excavado (definida sobre la

estar instalado de tal manera que el bloque y la roca

base de una zona de disturbio por voladura donde

ubicada abajo actúen como un continuo, de modo que

existen bloques sueltos, los que pueden fallar

el movimiento del bloque se inhiba. Sin el perno, el

deslizándose o cayendo por efecto de la gravedad). La

mecanismo básico indica que el bloque se deslizará

EDZ se extiende aproximadamente 0,75 m hacia el

siempre que el ángulo exceda el ángulo de fricción de

interior del macizo rocoso desde la super ficie de

la superficie de roca (para una superficie sin cohesión).

excavación. ¿Qué presión de refuerzo se requiere en

Este es el primer criterio para indicar la potencialidad

la corona para estabilizar los bloques sueltos de la

de falla.

EDZ, dado un fr (peso unitario de la roca) de 25 kN/m3?

115

Entonces, el área de techo por cada perno es de 8 m2. Con respecto a la orientación del perno y la tensión, no siempre el ángulo del perno puede ser orientado con óptimo efecto. Si recordamos, la orientación óptima es aquella donde el perno tiene la mínima tensión; entonces el ángulo entre el perno y la superficie inclinada es igual al ángulo de fricción entre el bloque y esa super ficie inclinada. El diseño de refuerzo de excavaciones, usualmente requiere asumir ciertas simplificaciones que serán de mucha importancia en la entrega de una solución a este tipo de problemas. Tal como se ha expresado en las secciones anteriores, la "teoría de bloque" se ha transformado es una herramienta muy útil. Esta se basa

116

Capítulo 8: Evaluación del Sistema de Refuerzo

en una aproximación racional, que complementada con

respuesta de la excavación, tales como deformaciones

el diseño de refuerzo para bloques potencialmente

debido a los esfuerzos inducidos y/o fallas de bloques

inestables, forman un principio teórico sólido.

por gravedad o deslizamientos. En general, la estructura de la masa de roca es la que controla el tipo de

8.3

DISEÑO DE REFUERZO

comportamiento o los mecanismos de falla que pueden ocurrir. Cuando la condición estructural es importante,

El diagrama 8.1 muestra un esquema de diseño apropiado

es decir, cuando la masa de roca se encuentra altamente

para la incorporación de los procesos y condiciones bajo

fracturada, puede ocurrir una respuesta del tipo discontinuo

las cuales se encuentra una excavación dada. Esta propuesta

y los bloques de roca pueden moverse hacia la excavación,

indica que una excavación sin refuerzo es inestable bajo

generando de esta manera una condición potencial de

las condiciones con que está construida, necesita un

riesgo, pudiendo inclusive ocurrir el desmoronamiento

rediseño para lograr una estabilidad adecuada al propósito

parcial o total de la excavación. (Ver figura 8.4).

para la cual fue hecha, por lo cual se debe considerar si se trata de una excavación de corta o larga vida útil. Si las

Las tecnologías más apropiadas para enfrentar este tipo

necesidades de su construcción no permiten su rediseño,

de inestabilidades, están asociadas al uso de elementos

se debe proponer un esquema de refuerzo, el que debe ser

estructurales insertos y adheridos a la masa de roca,

evaluado para su aceptación o bien, proceder a sus

tales como los pernos SAFEROCK® y en algunos casos

modificaciones con el fin de optimizar el diseño.

donde la excavación ha generado un área de inestabilidad mayor, pueden ser usados cables cementados. La etapa

La forma adecuada de interpretación es predecir la

más crítica en un diseño de refuerzo es la evaluación

Figura 8.4: Respuesta de un macizo rocoso discontinuo.

del esquema propuesto. Esta dificultad se debe a la

la propuesta de un esquema de refuerzo debe ser analizada

compleja interacción que se desarrolla entre el sistema

y evaluada en forma anticipada a la excavación y, del

de refuerzo y los bloques de roca. Como se ha expresado

mismo modo, los antecedentes que han sido tomados

anteriormente, el sistema de refuerzo tiene varios

en consideración deben ser incorporados a un sistema

componentes o elementos que interactúan en la

tal que, después de lo cual, el diseño constantemente

transferencia de carga.

pueda ser revisado, ordenado y puesto al día, o sea, que permita ser corregido progresivamente en la medida en

Es casi imposible lograr un tratamiento de ingeniería

que se avanza en las diferentes etapas del proceso

ajustado a principios y fundamentos teóricos precisos,

constructivo.

debido a que los diferentes parámetros que intervienen en el problema muchas veces no pueden ser cuantificados. Se sugiere que las aproximaciones que puedan ser consideradas en el diseño debieran tomar en consideración

8.4

COMPORTAMIENTO DEL REFUERZO EN ROCA FRACTURADA

una respuesta global de la masa de roca, más que respuestas específicas de detalle, las que pueden diluir

El compor tamiento en este caso de masa rocosa se

el problema y que en muchos casos puede quedar sin

caracteriza por la naturaleza y disposición de las

respuesta apropiada. Existen tres métodos que facilitan

discontinuidades. De acuerdo con los varios temas

estas aproximaciones y ellas son; las reglas de diseño

analizados anteriormente, las discontinuidades cercanas

propuestas por (Lang, 1961); la clasificación de masas

a la excavación definen el ensamblaje de los bloques

de roca ("Q" de Barton, RMR de Bieniawski, GSI de Hoek,

periféricos y su influencia en la estabilidad. Cuando se

RMi de Palmström y otros), y el análisis probabilístico. Sin

instala un arreglo o esquema de refuerzo a través de los

embargo, las propuestas de diseño obtenidas mediante

bloques super ficiales, el sistema los intercepta y los

estas metodologías no pueden ser evaluadas hasta que

refuerza. El movimiento de bloques está definido por tres

el proyecto esté en marcha. En una aproximación ideal,

desplazamientos transnacionales y tres rotacionales hacia

118

Capítulo 8: Evaluación del Sistema de Refuerzo

la excavación. Estos desplazamientos se relacionan con

han mostrado que los cables son más efectivos en

una combinación compleja de tensión y cor te y

tensión y toleran respuestas de cor te; por otro lado;

componentes de flexión, torsión y compresión.

los estabilizadores de fricción requieren una carga significativa de cor te para alcanzar su eficiencia. Un

Las experiencias en relación al tema han demostrado

elemento pretensionado no puede tolerar compresión

que el refuerzo es más efectivo cuando los niveles de

porque esto reduce la tensión y puede ocasionar una

esfuerzo generadores de inestabilidad son bajos. Algunos

pérdida total del collar de retención.

comportamientos de esquemas de refuerzo son mostrados en la figura 8.5 siguiente. 8.5 Estos esquemas muestran la difer encia del

PROCEDIMIENTO PARA REFUERZO EN ROCA FRACTURADA

compor tamiento que depende de cómo el refuerzo intercepta una discontinuidad y qué vector de

Un análisis riguroso debiera incluir el detalle de los

desplazamiento asociado a la discontinuidad es

antecedentes sobre la geometría de la excavación, mapeo

obtenido. Por supuesto, diferentes componentes del

estructural del sitio, parámetros de la roca intacta y

sistema operan con diferentes eficiencias en los

ambiente geológico. De esta manera se puede definir

distintos casos mostrados. Por ejemplo, experiencias

con más claridad la respuesta de una excavación bajo estas condiciones. Los datos requeridos pueden ser más reales cuando se toman en cuenta consideraciones simplificadas tales como que: a) Las discontinuidades sean planas y continuas b) La discontinuidad divida el macizo rocoso en un ensamble de bloques c) Este ensamble de bloques super ficiales esté destrezado

T

T

d) La evaluación se restrinja al análisis de bloques superficiales e) Los bloques superficiales inestables actúen como un

T+S S+C

T T+S

cuerpo rígido Estas consideraciones están tomadas en cuenta

S

S+T

en la teoría de bloques y asociadas a la orientación y dimensiones de la excavación, a la orientación, al espaciado, posición y resistencia al cor te de las discontinuidades, sin olvidar la densidad de la roca. Si la posición y orientación de cada discontinuidad y de

T: Tensión; S: Cizalla; C: Compresión

Figura 8.5: Tensión, compresión, corte bajo carga axial.

la excavación son conocidas, se puede formular un modelo del ensamblaje.

119

En el caso que la fábrica de la estructura de roca sea

8.6

conocida (orientación media y los sets de discontinuidades),

EVALUACION DE ESTABILIDAD DE BLOQUES NO REFORZADOS

se establece que para propósitos de diseño se asume que las discontinuidades llegan a construir bloques de

El procedimiento para evaluar la estabilidad de un

distintas formas. Por lo anterior, el procedimiento de

ensamble no reforzado se muestra en el diagrama

diseño consta de las siguientes etapas:

8.2, pudiéndose allí distinguir tres par tes principales:

1. Evaluación de la estabilidad de bloques no reforzados.

a) Análisis de la forma del bloque: Considera la

2. Diseño del refuerzo de bloques.

definición de todas las formas posibles de bloques,

3. Evaluación de estabilidad de bloques reforzados.

sus modos de compor tamiento y su vector de desplazamiento.

Este procedimiento es aplicado a cada forma de bloque

b) Análisis de tamaño de bloques: Considera la

en el ensamblaje construido. Lo recomendable es que en

definición del rango de tamaños de cada forma de

los casos complicados hay que actuar con “espíritu

bloque.

conservador” e ingeniería con “apropiada discreción”.

c) Evaluación de estabilidad del bloque: Considera el análisis de cada forma de bloque en un rango de tamaños.

Datos de forma Orientación de discontinuidad y orientación de frente de la excavación

Datos dimensionales Longitud de traza, valores de espacio, tamaño de la excavación

Datos propiedades del material Densidad de roca, fricción de discontinuidad, cohesión de discontinuidad

Análisis Forma de bloque

Análisis de tamaño de bloque

Evaluación de estabilidad de bloques sin refuerzo

Diagrama 8.2: Procedimiento de identificación de tamaños y formas de bloques que requieren refuerzo.

120

Capítulo 8: Evaluación del Sistema de Refuerzo

Las formas de bloques definen su orden y movilidad.

longitud de traza para el set de discontinuidades

El orden de la forma del bloque define el número de

asociado. Se formará parcialmente un bloque más

caras que constituyen su super ficie. El rango puede

grande que la longitud de traza de tamaño de bloque.

variar desde un tetraedro a un poliedro. La movilidad de un bloque es la habilidad de remover el bloque

El valor de espaciado de tamaño de bloque limitado

desde una masa de roca, sin provocar cambios o

define el tamaño de bloque más grande individual

disturbios de los bloques adyacentes. En las figuras

para una forma de bloque dada. En general, un valor

8.6a y 8.6b se muestra un análisis de la condición

de espaciado medio es asociado con cada set. Uno

de bloques a par tir del software Blockeval de G.S.

de los sets tendrá un valor de espaciado el cual

Esterhuizen.

limita el tamaño máximo de un bloque individual. Un volumen grande de bloque se puede formar, pero

Para identificar y valorar la movilidad de todas las

esto comprimirá un número de componentes más

formas de bloques que bordean la excavación se

pequeños.

requiere un análisis de for ma. La experiencia demuestra que los bloques de alto orden son menos

Es común el uso de tamaño de bloque limitado al

propensos a la movilidad. De esta manera, se le debe

claro de la excavación. Sin embargo, en muchas

dar más énfasis a bloques de menor orden.

circunstancias el tamaño máximo de bloque es dado por el largo de traza del tamaño de bloque limitado.

La predicción de tamaños representativos para todos

Además, la valorización del espaciado del tamaño de

los bloques individuales, es un problema complicado

bloque podría ser más pequeño que la longitud de

que debe ser superado definiendo un límite de tamaño

traza del tamaño del bloque limitado. Esto lleva a la

de bloques. Tres alternativas han sido propuestas

noción de que los esquemas de refuerzo necesitan

por Windsor (1992):

ser diseñados a ubicarse un rango de tamaños de

a) El espacio de la excavación delimitado por el tamaño

bloque.

de bloque. b) La longitud de la traza limitada por el tamaño de bloque.

Esto es, puede ser necesario integrar retenedores de super ficie con elementos cor tos o largos de refuerzo.

c) El valor del espaciado limitado por el tamaño de bloque.

Teniendo definida la lista de formas de bloques móviles y su límite de tamaño asociado, la estabilidad de

El espacio de la excavación limitado por el tamaño

cada bloque debe ser evaluada en un análisis de

es el bloque más grande que puede moverse hacia

equilibrio límite. Para este análisis las propiedades

la excavación y se encuentra generalmente limitado

de material necesitan ser definidas. Estas

por uno de los espacios de la excavación.

propiedades, junto con los datos de bloques, se usan para identificar cuáles de los bloques móviles son

La longitud de la traza limitado por el tamaño de

inestables. El grado de movilidad, el listado de bloques

bloque es el bloque más largo que puede formarse

inestables con los datos de forma asociados, el modo

completamente, el cual no contiene una línea de una

de inestabilidad, el tamaño y el balance de fuerzas

cara de bloque que es más grande que la máxima

se utilizan para proponer un esquema de refuerzo. 121

Single block analysis

Single block analysis Data file:

pyramid.jce

Data file:

Block data Dip

Dip dir

pyramid.es

Block data

Side Length

Above ?

Dip

Dip dir

Joint 1

65

270

3

Joint 1

65

270

3

Joint 2

62

180

2

Joint 2

62

180

2

Joint 3

75

88

Joint 3

75

88

Joint 4

70

5

Depth

Joint 4

70

5

Depth

Top surface

10

0

1.8

Top surface

10

0

0.9

Excavation

20

50

Excavation

20

50

Density (kg/ cu m)

View block

2700

Support

Density (kg/ cu m)

Above ?

View block

2700

Support

Spacing

1.2

x

1.5

m Capacity

100

[KN]

Spacing

Results

1.2

x

1.5

m Capacity

100

[KN]

Results Calculate

Block is removable Block weight 185.90 KN

Calculate Block is removable

Save

Block weight 51,40 KN

Save

Stablished by support

Print

Stablished by support

Print

Factor of safety = 1.84

Quit

Factor of safety = 7,01

Quit

Pyramid

8.7

Side Length

DISEÑO DE REFUERZO DE BLOQUES

Block planes

caras de los bloques puede ser usada para evaluar la efectividad del refuerzo instalado en diferentes

El diseño de refuerzo requiere la especificación del

orientaciones. La efectividad de r efuer zo es

tipo de refuer zo, orientación, longitud, número y

determinada empíricamente como se muestra en las

capacidad. El diagrama 8.3 muestra las etapas

figuras 8.7 y 8.8. Un factor de efectividad puede

requeridas utilizando los datos desde la valorización

usar para optimizar la tensión en el refuer zo o

de bloques no reforzados en propuesta a un esquema

simplemente estimar la eficiencia para una

de refuerzo.

orientación par ticular, la que puede ser restringida por otros factores, tales como acceso o limitación

El vector de desplazamiento y la orientación de las

122

de equipamiento.

Capítulo 8: Evaluación del Sistema de Refuerzo

Vector de desplazamiento del bloque

Orientación de caras del bloque

Efectividad de la orientación del refuerzo

Resultado del balance de fuerzas

Estimación del refuerzo total requerido

Diseño del tamaño de bloque

Longitud mínima de refuerzo

Area de caída libre

Selección de tipos de refuerzo con largo mínimo requerido

Estado de posible esquema de refuerzo: tipo, orientación, longitud, número y capacidad

Diagrama 8.3: Marco de integración del diseño de refuerzo.

t

Figura 8.7: Desplazamiento de bloque sobre discontinuidad.

s

Figura 8.8: Variados desplazamientos.

123

mínimo de anclaje variará con el tipo de refuerzo. El mínimo

inestables a través de la valorización de la estabilidad de

de longitud total de refuerzo necesitará ser incrementado si

bloques no reforzados.

el refuerzo se orienta en ángulos desfavorables. Se recomienda realizar un listado de distintos tipos de refuerzo y su longitud requerida para disponer de estos

8.8

VALORIZACION DE ESTABILIDAD DE BLOQUES REFORZADOS

antecedentes en cada caso. En esta etapa es necesario considerar cada bloque inestable, La capacidad efectiva de un elemento de refuerzo puede ser

la posibilidad de rotación del bloque y las consecuencias

reducida de acuerdo con la capacidad obtenida desde la

de tener diferentes ubicaciones del patrón de refuerzo.

orientación del refuerzo. La capacidad efectiva requerida de

Previamente, por lo general se asume que en excavaciones

un esquema de refuerzo puede exceder el balance de fuerzas

de superficie esos bloques pueden sólo trasladarse, pero

para un tamaño de bloque elegido. El número mínimo de

no es generalmente aplicable en excavaciones subterráneas.

elementos de refuerzo puede ser calculado para cada uno

Lo mismo se puede decir que la disposición del refuerzo,

de los sistemas desde el listado de las longitudes por tipo

es menos importante para deslizamiento de bloques en

de refuerzo. En general, el número de elementos de refuerzo

superficie de excavaciones, comparados con fallas en caída

por bloque junto con las áreas de caras de bloques controlará

libre y rotación de bloques en el techo o pared pendiente

el espaciado para cada tipo particular de refuerzo. Es

de excavaciones subterráneas. En el último caso, el refuerzo

importante señalar que más de una forma de bloque se hará

será generalmente cargado en forma no uniforme y una

presente por las discontinuidades de la masa de roca.

simple aproximación de equilibrio de fuerza no es válida. Los elementos de refuerzo son cargados igualmente sólo

Entonces es una tarea importante seleccionar un esquema

cuando el refuerzo es eventualmente distribuido en el centro

de refuerzo para todos los bloques identificados como

de masa del bloque. Esto resulta en una rotación

Longitud mínima de Anclado

Longitud del refuerzo

Zona estable

Distancia Zona estable

Figura 8.9: Diseño del largo del refuerzo en relación al tamaño de bloque.

124

Figura 8.10: Consecuencias de la posición específica en un arreglo de reforzamiento.

Capítulo 8: Evaluación del Sistema de Refuerzo

Longitud de anclado Punto efectivo de acción del refuerzo Elemento de refuerzo

Longitud de bloque

Collar Figura 8.11: Efectividad del refuerzo.

125

8.9

TEORIAS DE REFUERZOS

8.9.1

Teoría de Suspensión

La teoría de Jun Lu Luo (1999) se refiere a la formación de vigas inmediatamente después de realizada una

Posible plano de falla

excavación. Este fenómeno se advierte principalmente en el estrato inmediato sobre el techo. Lo anterior significa que si el sistema de estabilización no es instalado en forma adecuada y en el tiempo oportuno, las estratificaciones ubicadas sobre el techo podrían separarse desde el techo principal y fallar. En este caso, los más apropiados son pernos al techo y anclados en roca sana y tensionados de tal manera que el techo se sostenga por sí solo. Así, en muchos casos el techo inmediato se suspende del techo principal mediante pernos, separados entre si a la distancia S, como se muestra en la figura 8.12, o de otra forma, los estratos débiles se suspenden desde estratos estables, como en la figura 8.13. Los pernos mantienen el peso muerto de los estratos entre la cabeza del perno y el anclaje. Para este caso, el peso envuelto en este problema y para cada perno puede ser calculado por Peng, (1984).

P=

wtBL (n1 + 1) (n2 + 1)

S

Figura 8.12: Efecto de suspensión de techo apernado.

126

Figura 8.13: Efecto de suspensión parcial en un talud.

Capítulo 8: Evaluación del Sistema de Refuerzo

Pc

Figura 8.14: Refuerzo trabajando por suspensión.

127

Considerando una viga compuesta por "n" capas idénticas sin pernos, como se muestra en la figura 8.16 (caso 1), la resistencia a cur varse, B 1, puede ser calculada a par tir de la ecuación: bh2

B1 = n

6

Donde n : número de capas b : largo de la viga h : espesor de la capa

Figura 8.15: Efecto de viga de reforzamiento.

La rigidez del curvado, T1, puede ser expresado como: T1 = n

Ebh3 12

Donde: E : Módulo de Young de la roca Para una viga compuesta consistente en "n" capas idénticas con pernos atándolas firmemente, como se muestra en la figura 8.16 (caso 2), la resistencia a la cur vatura, B2, puede ser calculada por la ecuación. B2 =

b(nh)2 6

La rigidez, T2, puede ser calculada desde T2 =

Eb(nh)3 12

La resistencia a la cur vatura de la viga apernada es incrementada "n" veces comparada con la viga no apernada, mientras que la rigidez se incrementa n 2 veces. El mejoramiento de la resistencia a la curvatura es siempre bueno para la estabilidad del techo; sin embargo, bajo cier tas condiciones el incremento de la rigidez puede causar carga extra desde el estrato superior actuando sobre la viga.

128

Capítulo 8: Evaluación del Sistema de Refuerzo

Caso 1: Sin reforzamiento

Caso 2: Con reforzamiento Figura 8.16: Efecto viga.

Puede ser que la tensión de la viga no falle debido

diferentes orientaciones a la línea de techo, el apernado

al incremento de la resistencia al curvado, pero podría

al techo entrega fuerzas de fricción a lo largo de las

ocurrir por corte en los dos extremos una vez que las

fracturas, grietas o planos débiles.

fuerzas de corte acumuladas excedan la resistencia al corte de la viga compuesta, como se muestra en la figura

Se previenen y reducen los deslizamientos y la

8.17. Se puede observar que este tipo de falla tiene las

separación a lo largo de la inter fase, como muestra

siguientes características:

la figura 8.18. Si los pernos son instalados inclinados

• La viga apernada falla separándose

a la línea de techo y perpendiculares al plano de

• Los planos de falla en los dos extremos de la viga

fractura, como lo muestra la figura 8.19a, el mínimo

son cercanamente ver ticales. • El plano de falla superior está exactamente en el

esfuerzo axial que puede entregar un perno para la estabilidad es:

horizonte apernado donde la pre-tensión de los pernos crea un área de esfuerzo tensional alrededor del anclaje de cada perno, y • Algunas veces usando pernos más largos incrementa la altura de la falla del techo.

8.9.3 Entrelazado Cuando los estratos del techo se encentran altamente fracturados formando bloques, o el techo inmediato contiene uno a varios sets de discontinuidades con

129

Figura 8.17: Falla de la viga por corte.

Figura 8.18: Efecto de ensamblaje del reforzamiento.

Figura 8.19a: Refuerzo inclinado a la línea de techo.

130

Capítulo 8: Evaluación del Sistema de Refuerzo

Discontinuidad

Figura 8.19b: Refuerzo perpendicular a la línea de techo.

Zona Compresiva

Figura 8.20: Zona de compresión continua.

131

Capítulo 9

Estudio del Perno SAFEROCK ® 9.1

Modelamiento Numérico de Pruebas de “Pull Out” (Software Flac)

9.2

Ensayo de Pull Out, Perno SAFEROCK®

Capítulo 9: Estudio de Perno SAFEROCK®

Elemento de Refuerzo (Perno)

Pieza Anular de la Lechada

EXCAVACIÓN

m

Tensión Axial del acero m

Nodo de Refuerzo

m

Deslizador (Fuerza Cohesiva de Lechada = sbond) Dureza del esquileo de la lechada = kbond

Figura 9.1: Vista esquemática con ensayo pull out test.

Figura 9.2: Representación conceptual de un perno de refuerzo grouteado a columna completa (después de Itasca manual Flac 2.0 v4.0 (2004)).

Donde: fs

: fuerza al cor te que se desarrolla en el grouting

k bond : rigidez al cor te del grouting uc

: desplazamiento axial del perno

um

: desplazamiento axial del medio circundante (suelo o roca)

l

: longitud del perno

Capítulo 9: Estudio de Perno SAFEROCK®

tg =

G Dm d (2+t)



ln ( 1 +

2t d

)

relación de naturaleza cohesiva y friccional (capaz de representarse por el criterio de fractura de Mohr-Coulomb). El grouting se compor ta como un material elástico, perfectamente plástico con dependencia de la presión de confinamiento de su entorno y que no es capaz de perder resistencia después que falla. La probeta se diseña con dimensiones tales que permite un anclaje grouteado de 1,0 m de profundidad al interior de la masa rocosa. (Ver gráficos 9.2 y 9.3).

Gráfico 9.2 Prototipo con probeta a ser modelada. Extremo de perno traccionado a una velocidad V

A esta superficie se le impide movimiento en dirección Y

Longitud del perno grouteado

Gráfico 9.3 Representación numérica en Flac 2d de la probeta.

Capítulo 9: Estudio de Perno SAFEROCK®

la longitud mínima de anclaje definida dentro del modelamiento (1,0 m). Por otro lado, la posición del borde del modelo se encuentra a una distancia tal del eje del perno que no debería incidir en la estimación de la carga - deformación desarrollada durante el ensayo pull out. Tamaño de zona Se considera un tamaño regular de zona a lo largo de todo el modelo de 4 cm de ancho en dirección horizontal (x) y de 10 cm de alto en dirección vertical (y). Condiciones de borde del modelo Para representar el ensayo pull out test se establecen las siguientes condiciones de borde en el modelo: Pared x: en ambos lados (libre de desplazamiento en ambos sentidos). Pared y: en base inferior (libre de desplazamiento en ambos sentidos) en base superior donde se aplica la carga (restringido de desplazamiento en sentido vertical (y)).

9.1.7

Modelo Constitutivos de los Materiales

Se considera que los materiales utilizados dentro de la modelación responden de manera elástica - perfectamente plástica. Esto, tanto para el modelo constitutivo de la probeta como de los pernos de reforzamiento y grouting.

9.1.8

Propiedades Elásticas de la Probeta

La probeta que vendría a representar al macizo rocoso considera las siguientes propiedades representativas dentro del modelo: Módulo volumétrico= 5 GPa

Se tiene que los valores de kbond y sbond estimados de manera empírica e indirecta, son los siguientes: kbond = 2,22

• 109

N/m/m

sbond = 7,70

• 105

N/m

elástica como cuando se produjo la falla del grouting en la zona plástica. De manera complementaria, cada 100 pasos se plotearon puntos que relacionan la máxima carga aplicada al

Finalmente, para efectos de incorporación del patrón de

extremo del perno, versus la deformación equivalente

apernado en las propiedades elásticas del grouting se

acumulada.

considera la división de su valor por el espaciamiento promedio en su instalación que en este caso corresponde

De manera alternativa y con el objeto de esquematizar

a 1,0 m (patrón de 1,0 m x 1,0 m).

de mejor forma el desarrollo de la carga a lo largo del eje del perno SAFEROCK®, tanto en la zona elástica antes que el grouting falle, como posteriormente cuando se

9.1.11 Criterio de Evaluación de la Principal Condición Modelada

rompe la adherencia del grouting, fueron graficadas las siguientes variables que son capaces de entregarse dentro del modelamiento. (Ver gráficos 9.4 a 9.9b

La simulación del ensayo pull out se realiza aplicando una

inclusive).

carga en el extremo superior del perno SAFEROCK® de

• Carga axial;

manera indirecta con una velocidad de 1 • 10-6 m/s.

• Desplazamiento al corte; • Fuerza al corte; • Razón de crecimiento de carga axial;

9.1.12 Monitoreo de Parámetros de Interés

• Deformación axial; • Desplazamiento en el eje x;

Las variables de interés dentro del modelo corresponden

• Velocidad en el eje x;

a la carga desarrollada a lo largo del eje del perno y a la

• Desplazamiento en el eje y;

correspondiente deformación acumulada. Para ello, se

• Velocidad en el eje y.

implementó una función fish que permite incorporarlas dentro del modelo.

Finalmente, la programación numérica utilizada en Flac 2d con la correspondiente función fish se visualiza al

Estas mismas variables con denominación "ff y dd" son

final de esta nota técnica.

monitoreadas a lo largo del eje del perno de manera interactiva cada 100 pasos mecánicos propios de la modelación.

9.1.14 Interpretación de Resultados • La fuerza máxima al corte desarrollado a lo largo del

9.1.13 Representación Gráfica de los Resultados

eje del perno SAFEROCK ® es alcanzada con un desplazamiento acumulado de cerca de 14 mm.

Se estimó la fuerza axial desarrollada a lo largo del eje

Después de este punto, el elemento es simplemente

de perno cada cierto intervalo de pasos tanto en la zona

"sacado" de donde se encuentra adherido

Capítulo 9: Estudio de Perno SAFEROCK®

artificialmente a través del grouting. • Antes de llegar a los 14 mm de deformación acumulada el grouting no ha fallado. No obstante en el entorno de los 10 mm, se inicia el fallamiento del grouting tendiendo a propagarse rápidamente a lo largo de la longitud del perno. • Si la longitud grouteada fuera lo suficientemente grande, la fuerza axial del perno debería eventualmente alcanzar valores cercanos a su resistencia máxima. A partir de esto, el perno debería romperse cuando la deformación de extensión sea tal que iguale la deformación máxima de fractura del elemento (generalmente, cerca de un 3% del material con el cual se encuentra fabricado el perno). No obstante, Flac 2d no contabiliza la deformación límite del perno. Conclusiones: El uso de modelos numéricos bidimensionales representa una adecuada herramienta para simular el comportamiento del elemento de refuerzo cuando es sometido a ensayos del tipo Pull Out Test. Esto, considerando la flexibilidad que incorporan en el caso de requerir análisis de sensibilidad de los resultados obtenidos a partir de la modificación de la cantidad y/o magnitud de las variables moderadas. Los resultados obtenidos al simular un elemento de refuerzo con las características entregadas en este análisis son representativas solamente al considerar las propiedades elásticas descritas en el mismo. La realización de ensayos Pull Out Test preliminares, permitirá estimar de mejor forma aquellos valores de sbond, sfriccion y kbond- lo cual derivará a su vez en la extrapolación de mejores simulaciones numéricas tanto en cantidad como en representatividad.

1.200

1.000

0.800

0.600

0.400

0.200

0.000

-0.200 -0.600

-0.300

0.000

0.300

0.600

0.900

1.200

1.000

0.800

0.600

0.400

0.200

0.000

-0.200 -0.600

142

-0.300

0.000

0.300

0.600

0.900

Capítulo 9: Estudio de Perno SAFEROCK®

(*10**+05)

8.000 7.000 6.000 5.000 4.000 3.000 2.000 1.000

5

10

15

20

25

30

35

40

45

(*10**-04)

Gráfico 9.7a Carga axial desarrollada a lo largo del eje del perno SAFEROCK® pre - yield point.

Gráfico 9.7b Carga axial desarrollada a lo largo del eje del perno SAFEROCK® post - yield point.

12

1

11

1

10

1

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2 1

1

0

0 -

0

1

2

3

4

-1

0

1

2

3

4

143

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 -1

1

2

3

4

-1

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 -1

144

0

0

1

2

3

4

-1

0

0

1

1

2

2

3

3

4

4

Capítulo 9: Estudio de Perno SAFEROCK®

9.2

ENSAYO DE PULL OUT, PERNO SAFEROCK®

diseñados y fabricados en acero grado A440-280 por Gerdau AZA. Para centrarlos se emplearon cuñas de

Las pruebas de Pull Out se realizaron en una roca de 12

madera.

ton aproximadamente. La masa de roca presentó dos tipos de litologías bastante claras, metandesita mineralizada

El principal objetivo del ensayo de Pull Out consistió

y esquisto. Las perforaciones se realizaron en un diámetro

en determinar la resistencia que se alcanza en la

de 35 mm, con equipo roto-percutivo modelo Jackleg, con

inter fase perno-lechada (grouting) en dos tipos de

profundidades desde 20 hasta 67 cm y en distintas

hilo, perno tradicional y perno SAFEROCK®. Las barras

direcciones, considerando los planos de fractura y foliación.

fueron sometidas a extracción utilizando un sistema hidráulico, midiendo simultáneamente el

Para lo anterior la roca se dividió en tres caras; "A", "B"

desplazamiento y la carga axial.

y "C". La cara "A" y "B" estaban formadas principalmente por un esquisto dinámico y la cara "C" compuesta por

La carga axial se aplicó en inter valos de 2,2 ton,

andesita. (Ver gráfico 9.10). La roca presentó dos sistemas

hasta alcanzar la fluencia del acero o el arranque de

preferenciales de discontinuidades que pasan a lo ancho

aquellos con menores longitudes de anclaje. Según

de la misma, no obstante existen grietas tardías producto

el análisis visual hecho a las barras arrancadas, el

de las tensiones dinámicas producto de la gran cantidad

desprendimiento se produce a lo largo de la inter fase

de perforaciones hechas durante prácticas mineras. Sin

perno - lechada quedando restos de la misma entre

embargo, su solidez permitió realizar las pruebas en muy

los hilos y prácticamente sin presencia de lechada

buenas condiciones tal como lo muestra la figura 9.3.

en la par te lisa del perno. (Ver figura 9.4).

La lechada empleada es semejante a la utilizada en la

En todas las pruebas no se detectó gran diferencia en

minería, esto es, una relación agua - cemento igual a 0,4

el comportamiento al corte en la interfase perno-lechada

que puede alcanzar resistencias a la compresión uniaxial

de los dos tipo de hilo (tradicional y SAFEROCK®), no

entre 250 y 280 kg/cm2.

obstante se detectaron problemas en la parte externa del sistema, esto es, la unión tuerca perno. En dos

Primeramente se llenaron los barrenos con lechada luego se colocaron pernos

SAFEROCK®

de 22 mm de diámetro,

pernos helicoidales de hilo tradicional se detectó aplastamiento en las roscas del perno.

145

Figura 9.3: Tipos de rocas y discontinuidades.

146

Capítulo 9: Estudio de Perno SAFEROCK®

carga se produce un aplastamiento por compresión, lo que provoca el salto de la tuerca. Por otro lado la rugosidad de este perno ayuda a resistir la carga de corte en la inter fase lechada - perno, pero se puede mejorar aumentando la componente friccional.

9.2.1.2 Aspectos Constructivos del Sistema Los hilos del perno SAFEROCK® son construidos de tal manera que, la barra tiene un hilo dividido en dos partes por dos secciones lisas, situación que apunta a evitar el giro del perno. La barra es laminada con un tipo de hilo bastante grueso y de paso amplio, se instala en la

9.2.1

Figura 9.4: Perno SAFEROCK® arrancado.

masa rocosa utilizando lechada de cemento o resinas.

Planteamiento y Análisis del Problema

Externamente la tuerca se mantiene constantemente a compresión sobre una planchuela deformada, con la

El problema que fue abordado en el presente trabajo de

finalidad de mantener la elasticidad del sistema.

investigación aplicada, corresponde al origen, consecuencia y solución que se ha propuesto para mejorar el comportamiento en la parte externa (perno - tuerca) y la

9.2.2

Interpretación y Conclusiones

par te interna (perno - lechada - roca) del sistema de refuerzo de masas rocosas, a partir de pernos SAFEROCK®

Proporcionalmente y desde los gráficos 9.11 y 9.12, se

diseñados y fabricados por Gerdau AZA. En el perno

desprende una mejor adherencia de la lechada en el

helicoidal tradicional se produce la falla en la parte externa

perno SAFEROCK® debido al aumento de superficie de

por cabalgamiento de la tuerca sobre los hilos del perno.

contacto en la interfase perno - lechada. No hay evidencia significativa de aplastamiento de la rosca.

Por otro lado, este trabajo es complementario a la investigación realizada en el proyecto "Mecanismos de

El perno helicoidal tradicional muestra clara evidencia

Falla en Pernos Helicoidales como Sistema de Refuerzo

de aplastamiento lo que permite el salto de la rosca.

de Masas Rocosas", encargado por la misma empresa. La experiencia realizada de Pull out, permite verificar que el perno helicoidal tradicional se salta cuando el 9.2.1.1 Posibles Causas de la Falla

sistema está cercano a la fluencia 12 ton. Esto significa que solo se trabaja en el rango elástico, quitándole la

En los estudios realizados en la investigación anterior se

posibilidad que el sistema trabaje en el rango plástico

identificaron algunas posibles causas de esta falla. El hilo

que permita una mayor deformación después de la

del perno helicoidal tradicional al ser de aplicada una

fluencia. 147

Las mejoras introducidas en el nuevo diseño del perno

transferencia de carga en que, la rugosidad es mayor.

SAFEROCK®, han sido validadas por las pruebas realizadas

Se debe destacar que la máxima carga aplicada fue de

donde, los pernos SAFEROCK® tuvieron un comportamiento

16 ton, verificándose una pequeña marca en los hilos

elásto - plástico, acercándose en gran medida al

del perno y no un aplastamiento total como sucedió en

comportamiento ideal. Del mismo modo, se verifica en

los pernos helicoidales tradicionales.

la par te interna del sistema un mejoramiento en la

148

Capítulo 9: Estudio de Perno SAFEROCK®

Figura 9.5: Aplastamiento de rosca.

149

10.1 Introducción 10.2 Reglas Empíricas para Esfuerzos y Control de Terreno 10.3 Mecanismos Teóricos de Refuerzo 10.4 Clasificación de Refuerzos de Rocas para Túneles 10.5 Indice de Calidad de Túneles “Q” 10.6 Geological Strength Index “GSI” 10.7 Indice de Masa Rocosa “RMI” 10.8 Ejemplos

Capítulo 10: Herramientas Prácticas de Diseño

10.1

INTRODUCCION

rocosas, mencionadas especialmente en los capítulos 3 y 4.

El siguiente capítulo tiene como objeto entregar algunas

Estas especificaciones pueden ser utilizadas inicialmente,

herramientas de diseño, desde la más simple, como son las

sin embargo una buena ingeniería de rocas necesita

reglas empíricas de aplicación en las clasificaciones de masas

modelación numérica y validación en terreno.

10.2

REGLAS EMPIRICAS PARA ESFUERZOS Y CONTROL DE TERRENO

1. El esfuerzo ver tical "sv "puede ser calculado sobre la base de sobrecarga con una exactitud de 20%. Esto es suficiente para propósitos de ingeniería. Fuente: Z.T. Bieniawski

2. El ancho de la zona de esfuerzos relajados "EDZ" alrededor de un pique circular que es construido por el método de per foración y voladura, es aproximadamente igual a un tercio del radio "R" de la excavación del pique. Fuente: J.F. Abel

3. La longitud de un perno "L" debe ser entre 1/2 a 1/3 del ancho de la galería "A". Fuente: Mont Blanc Túnel Rule (c. 1965)

153

4. En minería metálica, la razón largo/espaciado (L/E) del perno es normalmente 1,5:1. En roca fracturada, debería ser a lo menos 2:1. (En túneles civiles y minas de carbón, típicamente es 2:1). Fuente: Lang and Bischoff (1982).

5. En minería, la razón longitud/espaciado (L/E) del perno, es aceptable entre 1,2: 1 y 1,5:1. Fuente: Z.T. Bieniawski (1992).

6. En terrenos de buena calidad, la longitud "L" de un perno al techo puede ser 1/3 del claro "A". La longitud de un perno de pared o caja puede ser 1/5 de la altura de pared "L1". El patrón de espaciado puede ser obtenido dividiendo la longitud del perno por 1 a 1/2. Fuente: Mike Gray (1999).

7. La tensión desarrollada en un perno mecánico es incrementada por aproximadamente 40 lbs, por cada pie-lb de incremento aplicado en el torque. Fuente: Lewis and Clarke.

154

Capítulo 10: Herramientas Prácticas de Diseño

8. Un perno de roca mecánico instalado a 30º de la perpendicular puede dar solo un 25% de la tensión producida por un perno con igual torque que es perpendicular al frente de roca, a menos que se utilice una planchuela esférica.

9. Por cada pie de perno de fricción (split set) instalado, hay una tonelada de anclaje. Fuente: MAPAO.

10. La resistencia al cor te de un perno puede ser asumida igual a la mitad de la resistencia a la tracción (Fu). Fuente: P.M. Dight.

11. El espesor de la viga (zona de compresión uniforme) "t" en el techo de una galería reforzada es aproximadamente igual a la longitud del perno, menos el espaciado entre ellos. Fuente: T.A. Lang

155

12. Barrenos para uso de resinas deben ser per forados 1/4" más grandes en diámetro que el del perno. Si es incrementado a 3/8" la carga de pull out no es afectada, pero la rigidez de la inter fase perno/resina baja a más de un 80%, Fuente: Dr. Pierre Choquette.

13. Barrenos per forados para pernos cementados: Debería ser 1/2" a 1" mayor que el diámetro del perno. Area anular "A a " más grande es deseable en terrenos más blandos para incrementar el área de adherencia. Fuente: Dr. Pierre Choquette.

10.3

MECANISMOS TEORICOS DE REFUERZOS (Modificado de T. H. Douglas & L. J. Ar thur)

Suspensión de bloques individuales: Los bloques pueden fallar. El reforzamiento previene la falla.

Incremento de resistencia al deslizamiento de bloques individuales:

156

Capítulo 10: Herramientas Prácticas de Diseño

Construcción de viga: Generalmente en roca estratiforme.

Prevención de fallas por vuelco de columnas de bloques: También puede ocurrir una deformación de las columnas de roca debido al alto esfuerzo ver tical.

Constr ucción de arco de roca fracturada: Incrementando el tamaño efectivo de los bloques de roca controlando la deformación radial e incrementando la resistencia al corte de las potenciales superficies de falla.

157

Prevención de derrumbes (progresiva liberación de bloques sueltos): Bloques 1 fallan o se deslizan desde la pared o el techo, permitiendo moverse a los bloques 2, 3 y 4, el 5 se desliza hacia fuera de la pared. Dependiendo de la estructura de roca, esto puede resultar en un per fil estable con un considerable sobre-quiebre o puede continuar progresivamente y dejar un colapso total en la excavación.

Proporcionar presión radial de soporte para limitar la extensión de falla en la zona plástica. Sin reforzamiento, la zona plástica fallada se forma en rocas frágiles altamente estresadas y puede avanzar a sectores más profundos en la masa de roca.

Fluencia controlada: Esta condición usualmente se alcanza en rocas con bajo módulo de deformación y/o en aquellas que tienen tendencia excesiva a movilizarse. El reforzamiento a veces es requerido en forma inversa para controlar el piso. El reforzamiento puede controlar la masa de roca en fluencia o movimiento alrededor de la excavación.

158

Capítulo 10: Herramientas Prácticas de Diseño

10.4

CLASIFICACION DE REFUERZO DE ROCAS PARA TUNELES

Tabla 10.1 Clasificación para Túneles sobre 8 metros de Claro (modificado de T.H. Douglas y L.J. Arthur) Clase 1

Clase 2

Roca extremadamente

Roca extremadamente

Roca extremadamente

Roca extremadamente

fuerte a fuerte, fresca a

fuerte a fuerte, fresca a

fuerte a fuerte, fresca a

fuerte a fuerte, fresca a

suavemente meteorizada.

moderadamente

suavemente meteorizada.

suavemente meteorizada.

meteorizada. Ancho a

Ancho a moderadamente

Ancho a moderadamente

moderadamente ancho

ancho espaciado del

ancho espaciado de

espaciado del

fracturamiento.

fracturas. Impermeable a

fracturamiento.

Impermeable a

moderadamente

moderadamente

impermeable.

Variedades Descripción de roca

Clase 4

Clase 3

impermeable. Perfil del túnel

Perfil perforado obtenido a

Moderado a fuerte sobre-

Moderado a fuerte sobre-

Perfil con fracturado con

un moderado sobre-quiebre

quiebre en juntas parte

quiebre en fracturas de

severo sobre-quiebre.

por juntas en el techo y la

superior de las paredes.

techo. Moderado sobre-

Tamaño medio de los

parte superior de las

Moderado sobre-quiebre en quiebre en juntas de parte bloques definidos por el

paredes.

juntas del techo.

espaciado de juntas a

alta de la pared.

400mm o menos. Carácter de la masa de

Escaso a aislado desatado

Desatado de rocas en parte Desatado de roca

Generalmente desatado en

roca

de masa rocosa por

baja de la caja requiere

(Planchones) en el techo

voladura con facilidad por

voladura.

retención.

requiere retención.

desmoronamiento continuado después de que el material suelto es removido.

Claro del túnel

Sobre 8 m

10cm 0

10

20

30

40

TIERRA CUATRO

B L O Q U E S

MEDIA

50

TRES

60

70

80

90

100

UNO

DOS

110

NINGUNO

Jn NUMERO DE FAMILIAS DE DIACLASAS 30

15

12

9

RELLENO GRUESO

6

4

3

RELLENO DELGADO

2

1

REUBRIMIENTO

0.5

SIN RELLENO

SELLADOS

T A N (Ør) Y

INDICE DE RUGOSIDAD - MINIMO FAVORABLE 30 30

30 30 30 30

HUMEDO

30

30 30 30

30

30

30

30

30

PRESIÓN ALTA

FLUJOS MUY ALTOS

30

SECO

T A N (Øp)

Ja INDICE DE ALTERACION - MINIMO FAVORABLE

0.66

1

0.5

1.5

1.5

PRESIÓN ALTA

FLUJOS MUY ALTOS

E S T A D O T E N S I O N A L

Jn

2

3

HUMEDO

4

SECO

Jw INDICE DE RUGOSIDAD - MINIMO FAVORABLE

0.05

FLUENCIA

0.1

0.2

EXPANSIVOS

0.33

0.5

FRACTURACION

0.66

1

TENSION / RESISTENCIA

SRF FACTOR DE REDUCCION DE TENSIONES

20 15 10 5

20 15 10 5

10 7.5 5 2.5

100 50 20 10 5

2 0.5 1 2.5

167

MACIZO ROCOSO

SOSTENIMIENTO

B

DISCONTINUIDAD ESPESOR >50 CM

PERNOS DE EXPANSION

PERNOS CON BANDAS INTERMEDIAS

ZONA TRITURADA SIN ARCILLA

ZONA TRITURADA CON ARCILLAS

B

METEORIZADA

PERNOS INYECTADOS

HORMIGON PROYECTADO 80

DIRECCION / BUZAMIENTO

HORMIGON PROYECTADO CON MALLAZO Y PERNOS INYECTADOS

DIQUES Y CAPAS

REVESTIMIENTO DE HORMIGON ARMADO

ROCA GNEIS

816-838

MAPA DEL TUNEL Y SOSTENIMIENTO ASOCIADO LOCALIDAD: HYLEN, ULLA-FORRE

ROCA FECHA PROYECTO Nº HOJA Nº

FIRMA

SUSCEPTIBLES DE HUNDIMIENTOS

FRACTURACION INTENSA PARCIALMENTE TRITURADO CON PEQUEÑA PRESENCIA DE ARCILLAS, ORIGINALMENTE, PRESENTABA GRANDES FILTRACIONES DE AGUA. ZONA TRITURADA CON ARCILLAS

MINERALES DE RELLENO

SOSTENIMIENTO RECOMENDADO

ENTRE ORSC

NOTAS: 816-838

SOSTENIMIENTO TEMPORAL

ESPACIO

DESCRIPCION DEL MACIZO ROCOSO

HORMIGON ARMADO

TRAMOS

SUSCEPTIBLES DE HUNDIMIENTOS

MINERALES DE RELLENO

ENTRE ORSC

ESPACIO

TRAMOS

MUESTRA DE ARCILLA

DESCRIPCION DEL MACIZO ROCOSO

SOSTENIMIENTO TEMPORAL

SOSTENIMIENTO RECOMENDADO

NOTAS: 75,0 - 76,0 TRITURADO CON PEQUEÑA PRESENCIA DE 76,5 - 77,4 ARCILLAS, ORIGINALMENTE, PRESENTABA GRANDES FILTRACIONES DE AGUA. 816-838 ZONA TRITURADA CON ARCILLAS

PIZARRAS NEGRAS

MAPA DEL TUNEL Y SOSTENIMIENTO ASOCIADO LOCALIDAD: TUNEL, SUBMARINO DE BJERKAS

FECHA

FIRMA

PROYECTO Nº HOJA Nº

Figura 10.2: Ejemplo del registro de estructuras, índice de "Q" y recomendaciones para el refuerzo y sopor te (Modificado de Bar ton 2000).

168

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.2 Relaciones RQD/Jn, SRF y refuerzo. (Modificado de Barton 2000). 120.00

100.00

B c/c 1.1-1.2 m B c/c 0.8-1.2 m + MALLA METALICA Ó B c/c 1.2-1.8 m + S(fr) 5-20 cm

Lm

ROD

80.00

60.00

40.00

20.00

OS CAS

SIN

P

LE ROB

MAS

TE

ON NSI

ALE

SA

CI PRE

ABL

ES

0.00 0

100

200

300

400

500

SRF

LEYENDA MACIZOS ROCOSOS NORMALMENTE FRACTURADOS SOMETIDOS A BAJAS TENSIONES ROCAS DURAS SOMETIDAS A TENSIONES ELEVADAS

169

Capítulo 10: Herramientas Prácticas de Diseño

10.6

GEOLOGICAL STRENGTH INDEX "GSI"

orientación es desfavorable respecto a una de las caras expuestas por la excavación, esta condición dominará el

El GSI (Geological Strength Index), ha sido desarrollado

comportamiento de la masa de roca. Los gráficos 10.5

después de muchas discusiones y durante varios

al 10.11 inclusive, muestran los rangos típicos de GSI

años, por ingenieros y geólogos con quienes E. Hoek

para distintas litologías.

ha trabajado en distintas par tes del mundo. Este trabajo propone en una tabla muy práctica, que se ha

Los gráficos 10.12 y 10.13 muestran como se puede

elaborado en for ma muy cuidadosa, que las

adaptar el GSI en la determinación del sistema de refuerzo

combinaciones que allí aparecen sean condiciones

o soporte para cada caso en particular.

que realmente aparezcan en la naturaleza. Como se puede apreciar en el gráfico 10.4, dos aspectos son

Este índice tiene otras aplicaciones, mas relacionadas

considerados desde la litología que se está estudiando:

con el criterio de fractura de Hoek y Brown y su relación

la estructura y la condición de la super ficie de la

con el de Mohr- Coulomb, tema que no será analizado

discontinuidad. Es impor tante que se considere que,

en este texto y que puede ser encontrado en la literatura

cuando planos estructurales estén presentes y su

de mecánica de rocas.

171

Gráfico 10.4

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Ta b l a n o s e a p l i c a a a n o m a l í a s estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el c o m p o r ta m i e n t o d e m a s a d e r o c a . La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para macizos rocosos fracturados (Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

172

70

COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

60 50

40

30

20

10 N/A

N/A

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.5

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para areniscas (Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70

COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

1 60 50

40

30

2

20

10 N/A

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. 1. MACIZO o COMPACTADO (sin presencia de cemento arcilloso) 2. FRAGMENTADO (sin presencia de cemento arcilloso)

173

Gráfico 10.6

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

Superficies muy ásperas y frescas sin efectos climáticos.

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

MUY BUENA

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

CONDICIONES DE LA SUPERFICIE

Rangos típicos de GSI para areniscas (Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70 COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

60 50

40

1 30

20

N/A

N/A

2

10

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. 1. COMPACTADO, EN CAPAS, FRACTURADO 2. FRAGMENTADO. ESTRIADO Las rocas blandas son clasificadas por el GSI asociadas a su proceso tectonico. De otra forma GSI no es recomendado. Lo mismo es valido para los las rocas sedimentarias.

174

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.7

ESTRUCTURA

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para calisas típicas (Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados.

LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70

COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

160 50

40

2 3

30

20

10 N/A

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. 1. MACIZO 2. COMPACTADO 3. FRAGMENTADO

175

Gráfico 10.8

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para granito (Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70

COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

60 50

40

30

20

10 N/A

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. * El gràfico solo muestra masas rocosas frescas. El granito sometido a condiciones climatologicas puede ser representado en forma irregular en el gráfico GDI, debido a que se le pueden asignar mayores valores variables de GSI o incluso comportarse como un suelo de ingeniería.

176

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.9

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para rocas ultra básicas, ofiolitas (marinos de Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70 COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

1 60 50

40

30

20

2 10

N/A

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. 1. FRESCO 2. SERPENTINO con FRAGMENTOS y ESTRIAS

177

Gráfico 10.10

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para neis (modificado de Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70

COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

60 50

40

30

20

10 N/A

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. *Gneis. Las Areas sombreadas no cubren las masas rocosas a la interperie

178

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.11

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos de arcilla.

MUY POBRE

Superficies con filtraciones y efectos climáticos severos, con capas o rellenos compactos o fragmentos angulares.

POBRE

Superficies alteradas y suaves, con efectos climáticos moderados.

INTERMEDIA

Superficies asperas, ligeramente afectada por el clima, con presencia de hierro.

BUENA

MUY BUENA

De la Iltologia, las condiciones de estructura y superficie de las discontinuidades, estime el valor medio del GSI. No trate de ser demasiado preciso. En un rango de 33 a 37, es más apropiado considerar un GSI=35. Note que la Tabla no se aplica a anomalías estructuralmente controladas. En donde los planos estructurales débiles estén presentes en una orientación desfavorable con respecto al frente de excavación, esto dominará el comportamiento de masa de roca. La fuerza de esquileo de las superficies en las rocas que son propensas al deterioro como resultado de cambios en contenido de humedad, será reducida si el agua está presente. Al trabajar con rocas normales a muy pobres, un cambio a la derecha puede ser hecho para condiciones humedas. La presión de agua es tratada con un análisis de tensión eficaz.

CONDICIONES DE LA SUPERFICIE

INDICE DE FUERZA GEOLÓGICO PARA LAS MASAS DE PIEDRAS ARTICULADAS (Hoek y Marinos, 2000)

Superficies muy ásperas y frescas sin efectos climáticos.

Rangos típicos de GSI para equisto (modificado de Marinos & Hoek 2000).

CALIDAD DECRECIENTE DE LA SUPERFICIE

ESTRUCTURA INTACTOS o MACIZOS Especímenes de roca intactos o roca masiva insitu con pocas discontinuidades.

90

N/A

N/A

80

MUY FRAGMENTADO - masa parcialmente fragmentada con bloques angulares multi-labrados formados por 4 o más juegos de uniones. FRAGMENTADO/DISCONTINUO/ AGRIETADO - capas con bloques angulares formados por muchos juegos discontinuos intersectándose. Persistencia de capas o schistosity. DESINTEGRADO - pobremente entrelazado, masa de la piedra muy rota con mezcla de pedazos de piedra angulares y redondeados. LAMINADO - falta de bloques debido a capas o schistosity poco espaciadas o débiles.

70 COHESION DECRECIENTE DE LA ROCA

FRAGMENTADO - masa de roca entrelazada y continua que consiste en bloques cúbicos formados por tres juegos discontinuos que se intersectan.

60 50

1

40

30

2 20

3 N/A

10

N/A

Advertencia: Las areas sombreadas son indicativas y pueden no ser apropiadas para las condiciones especificas de diseño. Los valores especificos que aparecen no son recomendados para su uso especifico, el uso de rangos es recomendado. 1. FUERTE 2. DEBIL 3. FRAGMENTADO

179

Gráfico 10.12 Adaptación del GSI para definir sistemas de refuerzo y/o soporte para labores permanentes (Modificado de Ramírez, J. 2003)

SOSTENIMIENTO DE LABORES

PERMANENTES

SEGUN INDICE GSI MODIFICADO.

SIN SOPORTE O PERNO OCACIONAL

C

PERNO SISTEMATICO (1.5 X 1.5 m.) MALLA OCACIONAL.

D

SHOT 2" S/FIBRA + PERNO SIST(2X2) O PERNO SIST. 1.2 X 1.2 m. + MALLA.

E

SHOT 2" C/FIBRA + PERNO SIST(1.5X1.5) O PERNO SIST. 1.0 X 1.0 m. + MALLA.

F

CAMARA METALICA.

ESTRUCTURA MODERADAMENTE FRACTURADO MUY BIEN TRABADA, NO DISTURBIADA, BLOQUES CUBICOS FORMADOS POR TRES SISTEMAS DE DISCONTINUIDADES ORTOGONALES, (RQ 50 - 75) (6 A 12 FRACTURAS POR METRO) FALLAS AISLADAS ESPACIADAS MAS DE 5.0 m.

A

A

B

MUY FRACTURADA MODERADAMENTE TRABADA, PARCIALMENTE DISTURBIADA, BLOQUES ANGULOSOS FORMADOS POR CUATRO O MAS SISTEMAS DE DISCONTINUIDADES. (RQ 25 - 50) (12 A 20 FRACTURAS POR METRO) FALLAS ESPACIADAS ENTRE 3.0 Y 5.0 m.

B

C

D

E

D

E

F

INTENSAMENTE FRACTURADA PLEGAMIENTO Y FALLAMIENTO, CON MUCHAS DISCONTINUIDADES INTERCEPTADAS FORMANDO BLOQUES ANGULOSOS O IRREGULARES. (RQ 0 - 25) (MAS DE 20 FRACTURAS POR METRO) FALLAS APRETADAS.

180

(SE DESGREGA EN FRAGMENTOS CON GOLPE DE PICOTA)

B

CON FRAGMENTOS DE ROCA. (Rc 5 A 25 MPa)

SIN SOPORTE O PERNO OCACIONAL

SUPERFICIE PULIDA O CON ESTRIACIONES, MUY ALTERADA, RELLENO ARCILLOSO O

A

MUY POBRE (BLANDA, MUY ALTERADA)

CAMARA METALICA.

ABERTURAS MENORES A 3 MT.

(SE INDENTA SUPERFICIALEMTES CON UN GOLPE DE PICOTA)

F

(Rc 25 A 50 MPa)

SHOT 3" C/FIBRA + PERNO SIST(1.0X1.0) O PERNO SIST. 0.8 X 0.8 m. + MALLA.

DISCONTINUIDADES LISAS, MODERADAMENTE ALTERADA, ABIERTAS,

E

POBRE (MODERADAMENTE RESISTENTE, LEVE O MODERADAMENTE ALTERADA)

SHOT 2" C/FIBRA + PERNO SIST(1.5X1.5) O PERNO SIST. 1.0 X 1.0 m. + MALLA.

(SE ROMPE CON UNO O DOS GOLPES DE PICOTA)

D

LIGERAMENTE ABIERTA. (Rc 50 A 100 MPa)

PERNO SISTEMATICO (1.5 X 1.5 m.) MAS MALLA.

DISCONTINUIDADES RUGOSAS, LEVEMENTE ALTERADA, MANCHAS DE OXIDACION,

C

(SE ROMPE CON TRES O MAS GOLPES DE PICOTA)

PERNO SISTEMATICO (1.5 X 1.5 m.) MAS MALLA OCACIONAL.

MUY CERRADAS. (Rc 100 A 250 MPa)

B

DISCONTINUIDADES MUY RUGOSAS, LIGERAS MANCHAS DE OXIDACION,

SIN SOPORTE O PERNO OCACIONAL

BUENA (MUY RESISTENTE, LEVEMENTE ALTERADA)

A

REGULAR (RESISTENTE, LEVEMENTE ALTERADA)

CONDICION SUPER. DE FRAC.

ABERTURAS DE 3 A 5 MT.

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.13 Adaptación del GSI para definir sistemas de refuerzo y/o soporte para cámaras (Modificado de Ramírez, J. 2003)

SOSTENIMIENTO DE T A J E O S SEGUN INDICE GSI MODIFICADO. ZONA MINERALIZADA

ZONA DE CAJAS

ABERTURA DE MAS DE 12 MT.

CONDICIÓN SUPER. DE FRAC.

ABERTURA DE MAS DE 12 MT.

A

PERNO OCACIONAL O SISTEMATICO.

A

SIN SOPORTE O PERNO OCACIONAL

B

PERNO SISTEMATICO (1.2X1.2 m.)

B

PERNO SISTEMATICO (2.5 X 2.5 m.) ABERTURAS DE 9 A 12 MT. SIN SOPORTE O PERNO OCACIONAL

B

PERNO SISTEMATICO (1.5X1.5 m.)

B

PERNO SISTEMATICO (2.0 X 2.0 m.)

C

PERNO SISTEMATICO (1.25X1.25 m.) MALLA OCACIONAL

C

PERNO SISTEMATICO (1.75 X 1.75 m.) MALLA OCACIONAL

POBRE (MODERADAMENTE RESISTENTE, LEVE O MODERADAMENTE ALTERADA) DISCONTINUIDADES LISAS, MODERADAMENTE ALTERADA, ABIERTAS, (Rc 25 A 50 MPa) (SE INDENTA SUPERFICIALEMTES CON UN GOLPE DE PICOTA)

A

REGULAR (RESISTENTE, LEVEMENTE ALTERADA) DISCONTINUIDADES RUGOSAS, LEVEMENTE ALTERADA, MANCHAS DE OXIDACION, LIGERAMENTE ABIERTA. (Rc 50 A 100 MPa) (SE ROMPE CON UNO O DOS GOLPES DE PICOTA)

SIN SOPORTE O PERNO OCACIONAL

BUENA (MUY RESISTENTE, LEVEMENTE ALTERADA) DISCONTINUIDADES MUY RUGOSAS, LIGERAS MANCHAS DE OXIDACION, MUY CERRADAS. (Rc 100 A 250 MPa) (SE ROMPE CON TRES O MAS GOLPES DE PICOTA)

A

MUY POBRE (BLANDA, MUY ALTERADA) SUPERFICIE PULIDA O CON ESTRIACIONES, MUY ALTERADA, RELLENO ARCILLOSO O CON FRAGMENTOS DE ROCA. (Rc 5 A 25 MPa) (SE DESGREGA EN FRAGMENTOS CON GOLPE DE PICOTA)

ABERTURAS DE 9 A 12 MT.

MODERADAMENTE FRACTURADO MUY BIEN TRABADA, NO DISTURBIADA, BLOQUES CUBICOS FORMADOS POR TRES SISTEMAS DE DISCONTINUIDADES ORTOGONALES, (RQ 50 - 75) (6 A 12 FRACTURAS POR METRO) FALLAS AISLADAS ESPACIADAS MAS DE 5.0 m.

A

A

B

MUY FRACTURADA MODERADAMENTE TRABADA, PARCIALMENTE DISTURBIADA, BLOQUES ANGULOSOS FORMADOS POR CUATRO O MAS SISTEMAS DE DISCONTINUIDADES. (RQ 25 - 50) (12 A 20 FRACTURAS POR METRO) FALLAS ESPACIADAS ENTRE 3.0 Y 5.0 m.

B

C

D

E

D

E

F

ABERTURAS DE 5 A 9 MT.

ABERTURAS DE 5 A 9 MT.

A

SIN SOPORTE O PERNO OCACIONAL

A

SIN SOPORTE O PERNO OCACIONAL

B

PERNO SISTEMATICO (2.0X2.0 m.)

B

PERNO SISTEMATICO (2.25 X 2.25 m.)

C

PERNO SISTEMATICO (1.5X1.5 m.) MALLA OCACIONAL

C

PERNO SISTEMATICO (2.0 X 2.0 m.) MALLA OCACIONAL

D

SHOT 2" C/FIBRA + PERNO SIST(1.75X1.75) O PERNO SIST. 1.0X1.0 m. + MALLA

D

PERNO SISTEMATICO (2.0 X 2.0 m.) MAS MALLA

E

SHOT 3" C/FIBRA + PERNO SIST(1.6X1.6) O PERNO SIST. 0.6X0.6 m. + MALLA

E

SHOT 2" C/FIBRA + PERNO SIST(2.0X2.0) O PERNO SIST. 1.2X1.2 m. + MALLA

ABERTURAS MENORES DE 5 MT.

ABERTURAS MENORES DE 5 MT.

A

SIN SOPORTE O PERNO OCACIONAL

A

SIN SOPORTE O PERNO OCACIONAL

B

PERNO SISTEMATICO (2.25 X 2.25 m.)

B

PERNO SISTEMATICO (2.5 X 2.5 m.)

C

PERNO SISTEMATICO (1.75 X 1.75 m.) MALLA OCACIONAL

C

PERNO SISTEMATICO (2.25 X 2.25 m.) MALLA OCACIONAL

D

SHOT 2" C/FIBRA + PERNO SIST(2X2) O PERNO SIST. 1.2X1.2 m. + MALLA

D

PERNO SISTEMATICO (1.5 X 1.5 m.) MAS MALLA

E

SHOT 3" C/FIBRA + PERNO SIST(1.6X1.6) O PERNO SIST. 0.6X0.6 m. + MALLA

E

SHOT 2" C/FIBRA + PERNO SIST(2.0X2.0) O PERNO SIST. 1.2X1.2 m. + MALLA

F

CUADROS DE MADERA O ABANDONO

F

CUADROS DE MADERA O ABANDONO

ESTRUCTURA

INTENSAMENTE FRACTURADA PLEGAMIENTO Y FALLAMIENTO, CON MUCHAS DISCONTINUIDADES INTERCEPTADAS FORMANDO BLOQUES ANGULOSOS O IRREGULARES. (RQ 0 - 25) (MAS DE 20 FRACTURAS POR METRO) FALLAS APRETADAS.

181

182

Capítulo 10: Herramientas Prácticas de Diseño

Tabla 10.12 Rating para el tamaño y continuidad de las fracturas (jL) - Palmström (1995) Largo de Estructura

Clasificación

Tipo

Fractura Continua

Fractura Discontinua

< 0,5 m

Muy Corta

Estratificación, foliación

3

6

0,5 - 1,0 m

Corta/Pequeña

diaclasa

2

4

1 - 10 m

Media

diaclasa

1

2

10 - 30 m

Larga

diaclasa

0,75

1,5

> 30 m

Muy larga

Fractura rellena, manto

0,5

1

Tabla 10.13 Rating para el factor de rugosidad de fracturas (jR) - Palmström (1995) Planetareidad de las fracturas (rugosidad a mayor escala) Planar

Levemente

Fuertemente

ondulada

ondulada

Escalonada

Fracturas entrelazadas

Muy rugosa

3

4

6

7,5

9

Textura de las

Rugosa

2

3

4

5

6

superficies de

Levemente Rugosa

1,5

2

3

4

4,5

fractura (rugosidad de

Suave

1

1,5

2

2,5

3

menor escala)

Pulida

0,75

1

1,5

2

2,5

Slickensided

0,6 - 1,5

1-2

1,5 - 3

2-4

2,5 - 5

• Para fracturas tipo fallas jR=1 • Para fracturas irregulares, se sugiere usar jR=5 • Para fracturas de tipo Slickensided el valor de jR depende de la presencia y apariencia de estriaciones; los valores altos son usados para estrías bien marcadas

183

Tabla 10.14 Caracterización y rating para el factor de alteración de fracturas (jA) - Palmström (1995) A. Contacto entre dos superficies de roca Clasificación

Descripción

jA

• Fracturas limpias - Fracturas cerradas o "soldadas" - Paredes de roca fresca. - Alteración de las paredes: 1 grado más alterada 2 grados más alterada

• Sin relleno o con relleno impermeable (cuarzo, epídota.) • La super ficie de fractura no presenta recubrimiento o relleno, excepto en manchas. • La superficie de fractura exhibe un grado de alteración más alto que la roca. • La superficie de fractura exhibe dos grados de alteración más altos que la roca.

0,75 1 2 4

• Recubrimiento o relleno fino: - Arena, sedimento, calcita, etc. - arcilla, clorita, Talco, etc.

• Recubrimiento de materiales de fricción sin arcilla. • Recubrimiento de materiales blandos y cohesivos.

3 4

B. Fracturas con contacto parcial o sin contacto entre las paredes de las fracturas. Tipo de material de relleno

• Arena, sedimento, calcita, etc. • Materiales de arcilla compactados. • Materiales de arcilla esponjados. • Materiales de arcilla esponjados.

184

Descripción • Relleno de materiales de fricción sin arcilla. • Relleno "endurecido" de materiales blandos y cohesivos. • Relleno de media a baja consolidación • Material de relleno exhibe claras propiedades de esponjamiento.

Contacto parcial.

Sin contacto

Rellenos finos.

Relleno grueso

(< 5 mm) jA

o gouge. jA

4

8

6

10

8

12

8 - 12

12 - 20

Capítulo 10: Herramientas Prácticas de Diseño

Gráfico 10.14 Parámetro jP en función de jC y diferentes formas para determinar tamaño de bloque. FORMAS DE BLOQUES

0.5 1.5 0.4

2

1.5

2

2

0.3

3 3

0.2

4

3

4

4

5

5

6

6

5 6

8

8

8

0.1

10

0.08

10 0.06

10 15

0.05

20

0.04

15 15

100 5 2

10 5 2

1 5

100

2

0.1

90 5

75

2

10

20

5

60

0.03 30

Dm3

30

20

25

0.02

2

1

30

0

50 60

50

5

60

.1

2

2

5

JC = 30

10

8

2

Cm3

10 4

2 o 3 familias de discontinuidades (b = 50 - 60)

2 familias de discontinuidades (b = 75 - 100)

100

5

1

100

0.5

80

0.1 0.2 0.3

100

=0

80

80

2

0.01

JC

60

Solo 1 familia de discontinuidades (b = 150 - 200)

50

VOLUMEN DE LOS BLOQUES (Vb)

0.6

1.5

1

M3

1

1

0.2 0.5 0.7 0.9

RQD

0.8

ESPACIAMIENTO PROMEDIO ENTRE DISCONTINUIDADES (m)

1 0.8

3 o más familias de discontinuidades (b = 27 - 33)

NUMERO VOLUMETRICO DE DISCONTINUIDADES (Disc/m3)

0.1

1 5 2

0.1 2 3

0.000001

5 7

2 3

0.00001

5 7

0.0001

2 3

5 7

0.001

2 3

5 7

2 3

0.01

5 7

2 3

0.1

5 7

1

PARÁMETRO DE LA DISCONTINUIDAD (JP)

185

Tabla 10.15 Clasificación de volúmenes de bloque relativos a tamaño (volumen) de partículas de suelo - Palmström 1995 Clasificación para

Clasificación para

Volumen de bloque

Clasificación

Volumen aprox.

densidad de fractura

tamaño de bloque

(Vb)

partículas de suelo

de la partícula

-----

-----

-----

Arena gruesa

0,1 - 5 mm3

-----

-----

-----

Grava fina

5 - 100 mm3

Extremadamente

Extremadamente

alta

pequeño

< 10 cm3...

...Grava media

0,1 - 5 cm3

Muy alta

Muy pequeño

10 - 200 cm3...

...Grava gruesa

5 - 100 cm3

Alta

Pequeño

0,2 - 10 dm3...

...Guijarros

0.1 - 5 cm3

Moderada

Moderado

10 - 200 dm3...

...Colpas

5 - 100 dm3

Baja

Grande

0,2 - 10 m3...

...Bloques

> 0,1 m3

Muy baja

Muy grande

10 - 200 m3

-----

-----

Extremadamente

Extremadamente

baja

grande

> 200 m3

---------

---------

Tabla 10.16 Categoría y valor de RMi Categoría de RMi

Categoría de la resistencia de macizo rocoso

Valor de RMi

Extremadamente bajo

Extremadamente débil

< 0,001

Muy bajo

Muy débil

0,001 - 0,01

Bajo

Débil

0,01 - 0,1

Moderado

Media

0,1 - 1

Alto

Resistente

1 - 10

Muy alto

Muy resistente

10 - 100

Extremadamente alto

Extremadamente resistente

> 100

En la aplicación de RMI en ingeniería de rocas, la división entre materiales continuos y discontinuos está basada

b) Rocas altamente fracturadas o rocas triturada (particulada) donde CF > 100

en Deere (1969), que expresa un factor de continuidad como la razón:

Un macizo rocoso discontinuo tiene un factor de

CF = Diámetro de túnel/Diámetro de bloque = Dt/Db

continuidad entre los valores anteriores.

Un macizo rocoso continuo se presenta con:

La inestabilidad en material rocoso continuo puede ser

a) Una roca levemente fracturada (masiva) con un factor

controlada tanto por los esfuerzos reinantes como por

de continuidad CF < 5; ó

186

un carácter estructural. De acuerdo a Hoek & Brown

Capítulo 10: Herramientas Prácticas de Diseño

(1980), el fallamiento por estructura en macizos rocosos

confinado por un sopor te. En él los siguientes tipos

altamente fracturados es generalmente controlado por

de inestabilidad pueden ocurrir:

los esfuerzos, donde ocurre la sobrefatiga (material rocoso

• Si la formación toma lugar instantáneamente

incompetente).

(frecuentemente acompañado de sonido), el fenómeno es llamado rock burst (estallido de

Si el sobreesfuerzo ocurre o no, será determinado por la

roca). Este ocur re como fragmentación o

razón entre el set de esfuerzos dominantes en el material

lajamiento (slabbing, en roca masiva, dura y frágil

que rodea la abertura o labor subterránea, y la resistencia

tal como andesita, granito y cuarcita).

del macizo rocoso. Dado que el RMi es válido en terrenos

• Si la deformación ocur re más lentamente, el

continuos y expresa la resistencia (relativa) a la compresión

squeezig (estrechamiento) toma lugar. Este ocurre

del macizo rocoso, éste puede ser usado en el cálculo de

como tantos movimientos internos de la super ficie

factor de competencia dado por:

de la aber tura o túnel en r oca altamente

Cg = RMi/sø

fracturada, o en roca masiva deformable, flexible o dúctil tal como esteatita, evaporizas, lutitas o

Donde:

esquistos débiles.

sø : esfuerzo tangencial alrededor de la aber tura subterránea (este esfuerzo puede ser determinado

Así, en r oca masiva, el compor tamiento de

a partir de los esfuerzos verticales y horizontales en

fallamiento esto es, si el rock burst o el squeezing

la roca y la forma de la abertura subterránea).

ocurrirán o no, está determinado por las propiedades de deformación del material rocoso.

El término "factor de competencia" fue usado por Nakano (1979) para reconocer el potencial de squeezing (expansión de roca) en roca blanda en túneles en Japón.

10.7.1 Estabilidad y Sopor te de Roca en Material Rocoso Discontinuo

En roca masiva, el factor de competencia es:

Los principios del método para evaluar soportes en este

Cg = RMi/sø = f s s c /s ø

tipo de material son mostrados en el gráfico 10.15. El fallamiento ocurre cuando cuñas o bloques, limitados

Donde:

por fracturas, deslizan o caen del techo o de las cajas.

f s : (0,05/Db)0.2 , factor de escala para la resistencia

Las propiedades de la roca intacta son relativamente de

a la compresión uniaxial. (D b es el diámetro del

menor importancia, dado que este tipo de fallamientos

bloque medido en metros). En macizo rocoso

comúnmente no involucra el desarrollo de fracturas a

altamente fracturado, el factor de competencia

través de la roca (Hoek 1981). Sin embargo, la resistencia

es:

del macizo rocoso es frecuentemente influenciada por la

Cg = RMi / s ø = JP s c / s ø

resistencia de las paredes de las fracturas o discontinuidades, y el control sobre este aspecto es el

El material rocoso fatigado tenderá a fallar si está

que contribuirá a la estabilidad.

187

Gráfico 10.15 Abacos de sostenimientos para terrenos continuos y discontinuos.

ALTA

0.7

1

MEDIA BAJA SIN INESTABILIDADES INDUCIDAS POR TENSIONES

CONVERGENCIA

PARA ROCAS MASIVAS SIN SOSTENIMIENTO

HORMIGON PROYECTADO REFORZADO 100 - 120 mm + PERNOS ESPACIADOS 0.5 - 1.5 m

PARA MACIZOS ALTAMENTE ENTRELASADOS USAR ABACO DE SOSTENIMIENTO PARA MATERIALES DISCONTINUOS

HORMIGÓN PROYECTADO 50 - 100 mm + PERNOS ESPACIADOS 0.5 - 2 m FUERTE ESTALLIDO DE LA ROCA

0.1

0.2

0.5

SANEO + APERNADO PUNTUAL

SIN SOSTENIMIENTO

ALTOS NIVELES DE TENSION

SIN INESTABILIDADES INDUCIDAS POR TENSIONES

1

2.5

ROCAS MASIVAS FRAGILES

MUY ALTA

0.5

ROCAS MASIVAS DUCTILES Y ALTAMENTE DAÑADAS

0.35

10

FACTOR DE COMPETENCIA Cg = RMi / σ0

2

)

(m

3

60

mm

m

40 mm

50 m

20

OS

15

10 8

L

UA

T UN

SP

6

N

1.

4

ER

5

0.04 0.06 0.1

0.2

3

1 0.01 0.02

AP 2

2

O AD

ROCAS DIACLASADAS Y ZONAS METEORIZADAS

Nj

m

0m

RN

Db

PE

Co

E

5

1.

DO TA EC SOR Y RO PE N P ES GO DE I m RM m HO 100

TR

EN

Wt 0 Ht

m

0m

20

40

TO IEN OS AM N CI ER PA E P ) ES NTR (m E

RELACION DE TAMAÑOS Sr =

O NT

IE

M

60

IA

100

C PA

200

DO TA EC O DE Y O N O NT EL DO IGO PR MIE D A M ON TI IAL CT OR IG ES ON EC YE H SP PROO DE RM REV MIG E O H ÁS OR O N T EÑ IGO IEN M EH DISORM STIM D H EVE R

ES

400

TERRENO DISCONTINUO

600

0.4 0.6 1

2

4

6

10

20

40 60 100

200 400 600 1000

FACTOR DE ESTADO DEL TERRENO Gc = SL RMi C PARA ZONAS METEORIZADAS: Srz = Tz • Coz / Dbz PARA ZONAS DONDE Srz , Sr Y Tz ,Wt O Tz Ht SIENDO Srz = Srz Gcz = SL • RMim • C DONDE RMim = (10Tz 2 • RMiz + RMio ) / (10Tz2 + 1)

Ejemplo 1 (Página 192)

Ejemplo 2 (Página 193)

Nota: El sostenimiento en terrenos continuos es válido para túneles cuyo diámetro Dt < 15m. Se debe tener en cuenta que el diagrama de convergencia para materiales granulares se basa en un número limitado de datos (Palström, 1995)

188

Capítulo 10: Herramientas Prácticas de Diseño

10.7.2 Factor de Condición de Material Rocoso (Gc) en Materiales Discontinuos

general de niveles de esfuerzo (SL) fue elegido para evaluar, en forma muy simplificada, la contribución de esfuerzo sobre la resistencia al

El factor de condición de material rocoso (Ground condition

corte. Como un incremento en el nivel de esfuerzo

factor, Gc) para materiales discontinuos incluye las

tiene una influencia positiva (SL) determinar un

características del macizo rocoso que tiene una

factor de multiplicación. El rating de SL que

significativa influencia en la estabilidad, así como la

aparece en la tabla 10.17 está dado

acción de esfuerzos externos. Esto es expresado como:

aproximadamente por SL=1/SRF.

Gc = Rmi



SL



C La influencia de la presión de agua en las fracturas

Donde:

es especialmente difícil de incorporar en un factor

SL: factor de nivel de esfuerzos, el cual expresa la

de nivel de esfuerzo. Usualmente, las fracturas

contribución de las fuerzas externas actuantes a

alrededor de una excavación se encontrarán secas.

través de las fracturas del macizo rocoso alrededor

Luego, la influencia de la presión de aguas sobre

de la excavación. Un nivel de esfuerzo relativamente

el esfuerzo efectivo es limitada. El esfuerzo total

alto contribuirá a una "estr uctura apretada"

debe ser seleccionado de la tabla 10.17.

incrementando la resistencia al cor te a lo largo de las fracturas y, por ello, aumentando la estabilidad.

C : factor de ajuste que cuantifica la mayor estabilidad de una pared ver tical comparada con un techo

Inversamente, un menor nivel de esfuer zos es

horizontal. Milne (1992) introdujo un factor de

desfavorable para la estabilidad. Sin embargo, un

ajuste por gravedad para compensar dicha

macizo rocoso fracturado contiene un número de

diferencia. Basado en Milne (1992) este factor

fracturas variables en diferentes orientaciones, esto

queda determinado por:

hace prácticamente imposible el cálculo y la

C=5-4



cos u

incorporación en forma simple del efecto exacto del nivel de esfuerzo. El sistema Q de Barton (1974),

Donde u es el ángulo de manteo de la super ficie

usa un "stress reduction factor (SRF)" para este

medido desde la horizontal (C=1 para un techo

efecto. En forma similar, para el RMI, un factor

horizontal y C = 5 para una pared ver tical).

189

Tabla 10.17 Rating para el factor de nivel de esfuerzos (SL) - Palmström 1995 Sobrecarga Clasificación

Esfuerzo máximo

1

Aproximada

Factor de Esfuerzos Niveles (SL)

(válido para k=1) • Muy bajo nivel de

< 0,25 MPa

< 10 m

0 - 0,25

esfuerzos • Bajo nivel de

Promedio 0,1

0,25 - 1 MPa

10 - 35 m

0,25 - 0,75

0,5

1 - 10 MPa

35 - 350 m

0,75 - 1,25

1,0

> 10 MPa

> 350 m

1,25(*) - 2,0

1,5(*)

esfuerzos • Moderado nivel de esfuerzos • Alto nivel de esfuerzos En los casos donde la presión de aguas es de importancia para la estabilidad, se sugiere: • Dividir SL por 2.5 para una influencia moderada. • Dividir SL por 5 para una mayor influencia. (*)

Un alto nivel de esfuerzos puede ser desfavorable para la estabilidad en paredes altas, un SL entre 0,5 y 0,75

es sugerido.

190

Capítulo 10: Herramientas Prácticas de Diseño

Tabla 10.18 Factor de orientación para fracturas y zonas (Palmström 1995, basado en Bieniawski 1984) En las cajas

En el Techo

Clasificación

Rating para factor

Para azimut

Para azimut

Para todo azimut

dip < 20º

dip < 20º

dip > 45º

Favorable

1

dip 20 - 45º

dip 20 - 45º

dip 20 - 45º

Regular

1,5

dip > 45º

-

dip < 20º

Desfavorable

2

-

dip > 45º

Muy desfavorable

3

10.7.4 Estabilidad y Soporte para Fallas en Zonas Débiles

de orientación (Co)

d) Posible presencia y efectos de "Swelling", "Sloughing", o de materiales permeables en la zona.

Las zonas débiles consisten en macizos rocosos que

Estos aspectos a menudo dependen de la geometría y

tienen propiedades significativamente más pobres que el

las condiciones del lugar en particular.

material rocoso que lo rodea. En estos términos, las zonas débiles incluyen fallas, zonas o bandas de rocas débiles

La composición de zonas débiles y fallas puede ser

dentro de roca relativamente resistente.

caracterizada por el RMi y por sus parámetros. El material en al zona débil debe ser considerado como continuo

Las siguientes características de estas zonas son de

luego de ser relacionado con el tamaño de túnel. Sin

principal importancia para la estabilidad:

embargo el sistema presentado para material rocoso

a) Orientación y dimensiones de la zona (ancho)

discontinuo también puede ser usado para cubrir muchos

b) Reducción de esfuerzo en la zona comparado con el

tipos de zonas donde la razón de tamaño y el factor de

esfuerzo en el macizo rocoso que la rodea. c) Efecto de arco de material rocoso que rodea la zona

condición de material rocoso pueden ser ajustados con los parámetros de la zona débil.

débil.

191

192

Capítulo 10: Herramientas Prácticas de Diseño

193

Capítulo 11: Procedimientos de Instalación SAFEROCK®

11.1

PROCEDIMIENTO DE INSTALACION

6. Proceso de fraguado de la lechada ó del grout químico.

La estabilidad de una excavación depende en gran medida

Las actividades de per foración e inyección del grout

de las técnicas de los sistemas y de la experticia de los

químico son dos actividades que tienen una incidencia

operadores encargados de la instalación de los sistemas

directa en el comportamiento y rendimiento del sistema

de refuerzo.

de refuerzo, razón por la cual es fundamental realizar una operación eficiente en estos procesos.

A pesar de los numerosos avances que ha tenido el desarrollo de la tecnología del Rock Bolting, aún queda bastante por hacer, pues estudios realizados en la minería

11.1.1 Revisión de los Elementos del Sistema

del carbón australiana, indican que el 35 % de los sistemas de refuerzo no entregan un óptimo desempeño, siendo

Previo al ensamblado del sistema se debe realizar una

tres las causas básicas; la mala calidad de la técnica

revisión de los componentes, consistente en: observar

empleada en la instalación, la falta de capacitación y la

si existe presencia de corrosión, daño mecánico, aditivos

escaza experticia del recurso humano.

químicos o grasos, salpicadura de soldadura, microfracturas visibles, deformaciones y doblados

El proceso de instalación es una de las más peligrosas

producido por manipulación o almacenaje.

operaciones, dentro de los trabajos en minería y consta de varias actividades, las cuales deben ser monitoreadas.

Al utilizar cualquier tipo de limpiador químico para limpiar

De la misma manera, para conseguir un proceso eficiente

grasas u otros elementos se debe tener la precaución

se requiere verificar el cumplimiento de las dimensiones

de que éste no sea agresivo y que, posterior a su

del elemento estructural y sus tolerancias, el cumplimiento

aplicación, no afecte a la interfase lechada, elemento

de las especificaciones del material y la evaluación de la

estructural, de manera que el sistema de refuerzo sea

presencia de daño o contaminación.

capaz de transferir carga de tracción.

Las actividades relevantes en el proceso de instalación de los pernos SAFEROCK®, son:

11.2

PERFORACION

1. Revisión y evaluación de los elementos del sistema, tanto componentes principales como auxiliares.

La operación de per foración puede ser realizada con

2. Ensamblado del sistema de anclaje a instalar y verificación

diferentes equipos diseñados para este efecto, tales como

de la presencia de daño en alguno de sus componentes.

equipos de perforación liviana, conocidos como Jack leg;

3. Ejecución de la perforación donde se instalarán los

equipos mecanizados adaptados para per foración,

®

pernos SAFEROCK . 4. Constatar que el extremo libre del pernos SAFEROCK®, pintado de color amarillo, es el que debe quedar libre y

conocidos como Jumbo de avance, y los equipos mecanizados diseñados especialmente para la instalación de anclajes, conocidos como Jumbo Rockbolting.

a la vista, ya que es el que recibe la tuerca. 5. Instalación del sistema de anclaje; colocación del

En la per foración donde se instalará un sistema de

elemento estructural e inyección de la lechada ó del

anclaje deben ser considerados varios aspectos, tales

grout químico adherente.

como: 197

Control de la desviación de la perforación:

11.2.1 Método de Per foración

Existencia de un error de emboquillado y un error por alineamiento definido por el grado de precisión en el

Elección del Método:

posicionamiento del equipo, tienen incidencia en el

El método de perforación que se utilizará se seleccionará

rendimiento del esquema de refuerzo. El mayor o menor

considerando el tipo de sistema de anclaje por instalar

grado de desviación que se tenga en la per foración es

y las condiciones del terreno, de manera tal que este

determinado por:

proceso sólo permita un mínimo daño o perturbación en

• La experiencia del operador.

las paredes de la perforación. Algunas de las razones por

• El grado de mecanización del equipo.

las cuales se deben complementar estas consideraciones

• La longitud de la perforación

están orientadas a:

• El diámetro de perforación

• Prevenir el colapso de la perforación durante el proceso

• La condición estructural de la roca • La rigidez de la plataforma de trabajo y/o montaje del equipo

de la instalación del sistema de refuerzo. • Minimizar la pérdida de grout durante el proceso de inyección. • Minimizar el ablandamiento de paredes en rocas

Es recomendable realizar un control de alineamiento y

permeables y/o degradables.

desviación de la per foración en los 0,8 m iniciales, de manera de corregir cualquier desviación que pueda incidir

Evacuación del detritus:

en forma negativa en el rendimiento del sistema de anclaje

De igual modo, el método de perforación debe considerar

y, por ende, en el esquema de estabilización.

la obtención de per foraciones limpias y libres de obstrucción; por lo tanto, toma especial relevancia lograr

La desviación de la per foración se puede minimizar

la evacuación total del detritus de la perforación, para

utilizando barras y tubos de perforación de mayor diámetro

lo cual la mayoría de los equipos de perforación utilizan

y rígidez.

un fluido, que puede ser agua o aire, o algún tipo de lodo, si se requiere alguna estabilización o reducción de

El diámetro de per foración debe ser seleccionado

fisuramiento durante el proceso de perforación.

de manera tal que garantice que el elemento estructural del sistema quedará totalmente embebido

El fluido a emplear en el barrido del detritus debe ser

en toda su longitud de anclaje y ajustado a las

elegido de acuerdo a la naturaleza de la roca a perforar

tolerancias permitidas, considerando el tipo de grout

y que éstos no generen una condición nociva sobre el

químico que se usará para la inter fase de adherencia,

elemento estructural, el grout químico y sobre la estabilidad

así como también, eventualmente, que el diámetro

de la pared de la perforación.

de per foración podría aumentarse, ya que puede darse el caso que las condiciones estructurales de

El uso de aire como sistema de barrido puede ocasionar

la masa r ocosa no per mitan las tolerancias

obstrucciones o taponeo en caso de rocas de baja

especificadas. En el caso que las condiciones del

cohesión o suelos poco cohesivos con humedad. El uso

terreno no ameriten cambios, es impor tante cumplir

de agua en perforaciones con presencia de arcilla o rocas

con las especificaciones definidas en el diseño de

margosas puede producir un fenómeno de expansión de

per foración.

éstas o ablandamiento, si el barrido con agua se mantiene

198

Capítulo 11: Procedimientos de Instalación SAFEROCK®

por un periodo prolongado.

materiales innecesarios para la operación f) Verificar también condiciones del aire ambiental y

Herramienta de Perforación: El tipo de elemento o herramienta de perforación debe

necesidades de ventilación. 2) Preparación del área de trabajo:

ser seleccionado de acuerdo con el método definido, la

a) Realizar ventilación si es necesario, hasta que las

clase de terreno a per forar y el grado de desviación

condiciones de aire ambiental sean las permitidas

permitido.

por el reglamento de seguridad minera vigente. b) Realizar la acuñadura de techos y paredes con

Dentro de las herramientas utilizadas para la perforación

barretilla de seguridad, del largo adecuado a la

se pueden encontrar:

sección de la labor.

• Tricono.

c) Eliminar tiros quedados.

• Bit de botones y de pastillas.

d) Retirar el material que no se requiera para la

• Coronas diamantadas. • Escareadores.

operación. e) Marcar la distribución de las perforaciones, según diseño.

También el tren de barras usado en la perforación puede estar constituido por: • Barrenas integrales. • Barrenas extensibles. • Barras de perforación. • Tubos de perforación.

f) Trasladar el equipo de per foración, material y accesorios. g) Instalar los andamios, si se requiere, para la perforación de techo. 3) Instalación del equipo de perforación: a) Revisar el estado de la red de aire comprimido y de agua para la perforación. Realizar reparaciones si corresponde.

11.2.1.1 Perforación Manual

b) Revisar el estado de las mangueras y sus accesorios, limpiarlas y soplarlas.

La perforación manual se realiza con máquina perforadora liviana montada sobre empujador. La operación se realiza en húmedo.

c) Rellenar con aceite el lubricador en la línea de la perforadora. d) Acoplar las mangueras a las redes de aire y agua e) Revisar el estado de los aceros de per foración.

La secuencia de esta operación es la siguiente:

Verificar que correspondan a los diámetros y

1) Inspección del área de trabajo:

longitudes requeridos.

a) Observar el estado de las paredes, techos y pisos de la labor. b) Identificar zonas de roca suelta. c) Detectar posible existencia de tiros quedados. d) Detectar irregularidades tales como sobre-

f) Verificar el buen funcionamiento del equipo de perforación. 4) Perforación en húmedo: a) Iniciar la empatadura de la perforación con la barra corta.

excavaciones, grietas, filtraciones de agua, etc.

b) Controlar la dirección e inclinación de la barrenadura.

e) Revisar el estado de la fortificación de acceso a la

c) Realizar los cambios de barra conforme a la

frente. Verificar que el área se encuentre libre de

profundización de la barrenadura. 199

d) Soplar los tiros con aire comprimido para eliminar detritus una vez terminada la barrenadura. 5) Retiro del equipo de perforación: a) Cerrar las llaves de paso de agua y aire comprimido. b) Desacoplar las mangueras y ordenarlas. c) Recuperar los aceros de perforación. d) Trasladar el equipo, materiales y accesorios fuera del área de trabajo. e) Limpiar y ordenar el lugar de trabajo.

de seguridad, del largo adecuado a la sección de la labor. c) Eliminar tiros quedados. d) Retirar el material que no se requiera para la operación. e) Marcar la distribución de las perforaciones, según diseño. 3) Traslado del equipo de per foración, materiales y accesorios: a) Antes de trasladar el equipo al frente de trabajo, se debe realizar la inspección con motor detenido

11.2.1.2 Perforación con Jumbo Electro - Hidráulico

y enseguida con motor en marcha. Esta inspección considera el chequeo de controles de comando,

La perforación con jumbo electro-hidráulico se realiza en

niveles de aceite hidráulico, aceite del compresor,

labores cuya dimensión de la sección no permite efectuar

lubricador de per foradora y petróleo. Revisar el

la perforación con equipos manuales. Esto preferentemente

estado de los neumáticos, cable de alimentación,

por razones de seguridad, ya que se elimina la necesidad

luces, cajas eléctricas, mangueras hidráulicas,

de utilizar andamios. Asimismo, estos equipos tienen

barras de perforación y otros elementos que sean

mayor rendimiento que los manuales.

necesarios. Drenar agua condensada en trampas de agua.

La secuencia de actividades para esta operación es la siguiente:

b) Trasladar el equipo respetando las normas de circulación impuestas en la faena para equipos motorizados. A medida que el equipo avanza se

1) Inspección del área de trabajo: a) Observar el estado de la roca en paredes, techos y pisos de la labor. b) Detectar posible existencia de tiros quedados. c) Detectar irregularidades tales como sobreexcavaciones, grietas, filtraciones de agua, etc. d) Revisar el estado de la fortificación de acceso a la frente. Verificar que el área se encuentre libre de materiales innecesarios para la operación. f) Verificar las condiciones del aire ambiental y necesidades de ventilación. 2) Preparación del área de trabajo: a) Realizar ventilación si es necesario, hasta que las

4) Instalación del equipo en la frente de trabajo: a) Estacionar el equipo y asegurarlo con gatas de apoyo al piso. b) Limpiar la manguera de agua y acoplarla a la red de alimentación; luego conectar a la bomba. c) Revisar los comandos; colocar la válvula de perforación en neutro. d) Inspeccionar los aceros de perforación. e) Revisar las cajas eléctricas del equipo y conectar el cable eléctrico del jumbo a la red de alimentación. 5) Perforación: a) Posicionar los brazos y barras.

condiciones de aire ambiental sean las permitidas

b) Controlar la dirección de las perforaciones.

por el reglamento de seguridad minera vigente

c) Realizar la empatadura con equipo a media potencia.

b) Realizar acuñadura de techos y paredes con barretilla 200

desplazará el cable eléctrico.

d) Controlar la rotación, percusión y avance de acuerdo

Capítulo 11: Procedimientos de Instalación SAFEROCK®

a la calidad de la roca. e) Evitar enganchar mangueras al efectuar cambios en la posición de los brazos. f) Soplar los tiros una vez terminada la operación de perforación.

• Huincha aisladora • Agua y aire • Acuñador • Cuchillo • Alicate

6) Retiro del equipo de perforación: a) Desconectar el equipo de las redes de alimentación eléctrica y de agua.

11.3.2 Instalación del Perno SAFEROCK®

b) Limpiar y lavar el equipo protegiendo los puntos en los que se pueda provocar daño.

El perno SAFEROCK® puede ser instalado en perforaciones

c) Trasladar el equipo fuera del área de trabajo,

ascendentes o descendentes como elemento de refuerzo

respetando las normas de circulación de la faena.

pasivo o activo, con su extremo libre color amarillo a la vista, el cual es el que recibirá la tuerca.

11.3

INYECCION 11.3.2.1 Perno SAFEROCK® pasivo ascendente

Una de las técnicas más utilizada para lograr la adherencia entre el elemento estructural y la roca, es empleando

Per foraciones ascendentes mayores a 10° sobre la

una interfase de grout químico que puede ser lechada

horizontal.

de cemento o resina de poliéster.

Para la instalación del perno SAFEROCK® ascendente se requiere emplear mangueras para inyección y aireación.

La inyección cumple además de ser una interfase, las

En el caso del cable, debe contar con un gancho fijador

siguientes funciones:

o de anclaje en uno de sus extremos, para permitir su

• Proteger al elemento estructural de la corrosión.

anclaje al fondo de la perforación.

• Reforzar el terreno en las zonas adyacentes a la longitud de anclaje con el fin de aumentar su calidad

Procedimiento de instalación:

mecánica y de capacidad de carga.

• Tubo de aireación (PVC de 7 mm de diámetro): Amarrar

• Transferir la carga desde el elemento estructural del sistema al terreno circundante o viceversa. • Sellar el terreno en las paredes de la perforación con el fin de evitar perdida del grout.

el tubo de aireación en el caso de cable, mediante huincha aisladora cada dos metros aproximadamente. El tubo debe sobrepasar en 5 cm el largo del perno SAFEROCK® al fondo de la perforación. Después de instalado el tubo no debe cortarse hasta que el cable haya sido instalado.

11.3.1 Equipo y Materiales • Perno SAFEROCK® • Cemento Pórtland normal o Portland Puzolánico • Aditivos • Mangueras de inyección • Manguera de aireación 201

La manguera debe cortarse aproximadamente a 70 cm

reutilizada, pues se va retirando a medida que crece

del techo.

la columna de grout en la perforación.

• Tubo de inyección (PVC de 19 mm de diámetro):

• Limpieza de la perforación: Mediante la aplicación de

Insertar una segunda manguera para la inyección del

un flujo de agua y/o aire puede limpiarse la perforación

grout o lechada, 30 cm al interior de la per foración,

para eliminar detritus de rocas que se encuentren

medido a partir del collar de la perforación.

alojadas en el interior de ésta.

La manguera debe cortarse aproximadamente a 30 cm del techo. • Tapón del collar: En la boca de la perforación se debe

11.3.3 Proceso de Inyección del Grout o Lechada

confeccionar un tapón de cemento para sellar la perforación una vez instalado el cable y previo al proceso

Aspectos de seguridad:

e inyección.

• Inspeccionar el área de trabajo antes de iniciar cualquier

El tapón debe tener como mínimo una longitud de 100 mm.

operación. • Proteger cara, manos y brazos, previos al iniciar de la

• Revisión de la perforación: La perforación previa a la instalación del cable debe ser revisada para detectar posibles obstrucciones al interior de ésta. • Limpieza de la perforación: Una vez instalado el perno ®

SAFEROCK , la perforación puede ser limpiada vía el tubo de aireación mediante inyección de agua. Esto

operación de grouting. • Utilizar ropa y equipo de seguridad adecuado para protegerse del ataque de proyecciones de grouting, durante el proceso de inyección. • Usar equipo protector de ojos y mascarilla para polvo de cemento.

permite eliminar detritus de roca adherido al cable y

• Revisar las conexiones del equipo de grout.

eliminar rocas sueltas en las paredes de la perforación,

• Detener el equipo antes de realizar reparaciones.

que pueden disminuir la capacidad de adherencia del Aspectos prácticos:

grout o lechada.

• Si el volumen inyectado es superior a lo calculado (por ej. 2 a 3 sacos de cemento para una perforación de ®

11.3.2.2 Perno SAFEROCK pasivo descendente

65 mm de diámetro x 20 m de longitud) y la perforación no muestra evidencia de ser llenado, debe detenerse

Per foraciones descendentes menores a 10° bajo la horizontal.

el proceso. • Almacenar los sacos de cemento por un período no

En las perforaciones descendentes, es de vital importancia

superior a una semana en el interior de la mina, porque

que la lechada o grout sea inyectada desde el fondo de

éste se deteriora rápidamente bajo condiciones

la per foración. Con esto se asegura que frente a la

ambientales de humedad.

presencia de agua dentro de la per foración ésta sea

• La operación de inyección puede ser monitoreada

desplazada y que la columna de grout no incorpore aire.

colocando al extremo del tubo de aireación un recipiente

Procedimiento de instalación:

con agua. Si se detectan burbujas en el agua es porque

• Tubo de inyección (PVC 20 mm de diámetro): Se

la perforación aún no se ha llenado. Si no se detectan

introduce la manguera al fondo de la perforación. Para

burbujas en el agua, debe detenerse la inyección, pues

el proceso de inyección esta manguera puede ser

el grout ha llenado completamente la perforación.

202

Capítulo 11: Procedimientos de Instalación SAFEROCK®

• El nivel de la mezcla del tambor de mezclado de la máquina es un buen indicador del proceso de inyección. Si existe variación del nivel es porque la perforación está siendo rellenada con grout; si el nivel se presenta

• Use 15 litros de agua por saco de cemento para obtener una razón agua/cemento de 0,35. • Use 17 litros de agua por saco de cemento para obtener una razón agua/cemento de 0,40.

estático, es porque existe bloqueo en la manguera o la perforación está llena • Los bloques en la manguera deben eliminarse inyectando agua y/o aire

Proceso de mezclado: • Adicionar 2/3 del agua e iniciar el proceso de mezclado. • Adicionar el aditivo acelerante o plastificante según lo

• En perforaciones que presenten agua, se debe disminuir

calculado por saco de cemento en peso, si es requerido.

la cantidad de agua que se incorpore en el estanque

• Adicionar 2/3 del cemento en forma lenta para conseguir

de mezclado

un buen mezclado. • Continuar el mezclado hasta obtener una lechada de

Aspectos sobre la instalación

aspecto cremoso consistente. Detener el equipo para

• Empujar el perno SAFEROCK® con mangueras al interior

depositar una porción sobre la mano y comprobar que

de la perforación y hasta el fondo de ésta • Proceder el aseguramiento del elemento dentro de la

no gotea o se cae de la palma de la mano, cuando ésta se coloca en forma lateral.

per foración fabricando un tapón de cemento en el collar de la perforación

Aspecto de inyección:

• Inyectar aire por el tubo de inyección y comprobar si

• El operador debe constantemente inspeccionar el flujo

existe retorno por el tubo de aireación. Si la

de inyección a través del tubo y chequear la consistencia

comprobación es negativa, instalar un segundo tubo

o viscosidad.

de inyección para realizar el proceso en dos etapas

• Conectar el tubo de inyección al equipo y asegurar la conexión. • El operador debe chequear si existe retorno de aire por

11.3.4 Preparación de Lechada

el tubo de aireación, durante el proceso de inyección. • Cuando la per foración ha sido llenada, el tubo de

Aspecto del equipo:

inyección debe doblarse en la mitad y quedar sujeto al

• Revisar las condiciones mecánicas del equipo.

elemento de refuerzo, con huincha plástica.

• Observar y revisar aspectos de limpieza del equipo, de modo que no existan restos de cemento o agua en

• Desconecte el equipo siguiendo el procedimiento establecido para ello.

el estanque revolvedor. • Revisar las condiciones de acoplamiento de mangueras de inyección y aire.

11.4 RIESGOS Y MEDIDAS DE CONTROL

Aspecto de la dosificación:

En las tablas 11.1 a 11.3 se adjunta una propuesta de

La razón agua/cemento que permite obtener los mejores

AST (Análisis de Seguridad del Trabajo) que puede ser

resultados varía en el rango de 0,3 a 0,4.

mejorado de acuerdo con las condiciones locales,

• Use 13 litros de agua por saco de cemento para obtener

especialmente en lo referido a equipos.

una razón agua/cemento de 0,30. 203

Tabla 11.1 Perforación Manual - AST (Análisis de Seguridad del Trabajo). Tarea Inspección área de trabajo.

Riesgos Asociados Ambiente contaminado con polvo y

Medidas de Control Uso de protector respiratorio

gases tóxicos Caída de roca

Uso de casco y zapatos de seguridad

Existencia de tiros quedados

Señalizar el peligro

Exposición a onda expansiva y

Eliminar tiros quedados según

proyección de partículas

procedimiento del Reglamento de

Preparación área de trabajo: a) Tiros quedados.

Seguridad Minera b) Acuñadura.

Caída de roca

Uso de casco y zapatos de seguridad

Proyección de partículas

Uso de antiparra

Sobreesfuerzo

Uso de barretilla de largo adecuado Uso de guantes de protección

c) Traslado de equipo, materiales y

Golpearse o golpear a otro con objetos Manejo correcto de los materiales y

accesorios.

mantener despejada el área de trabajo Buena visibilidad Sobreesfuerzo

Distribución adecuada de la carga Usar medios de transporte en buenas condiciones Evitar la sobreexigencia de la capacidad muscular

d) Instalar andamio.

Caída a nivel

Precaución al realizar las operaciones Buena visibilidad

Golpearse o golpear a otro con objetos Manejo correcto de de los materiales y mantener despejada el área de trabajo Buena visibilidad Caída a desnivel

Asegurar la estabilidad del andamio

Instalación del equipo de perforación: a) Revisión de la red de aire

Golpe por azote de mangueras sueltas Uso de cadenillas de seguridad para

comprimido e instalación de

sujetar mangueras

mangueras de aire comprimido y agua con sus accesorios.

Adoptar posición adecuada al

b) Verificar funcionamiento de equipo Golpearse con equipo

manipular equipo. Uso de guantes y

perforador.

zapatos de seguridad

204

Capítulo 11: Procedimientos de Instalación SAFEROCK®

Tabla 11.1 (Conclusión) Perforación Manual - AST (Análisis de Seguridad del Trabajo) Tarea

Riesgos Asociados

Medidas de Control

Perforación en húmedo: a) Empatadura y avance de la

Proyección de partículas

Uso de antiparra

perforación.

Contacto con barras de perforación

Uso de guantes de seguridad

girando b) Soplar tiros con aire comprimido. Exposición a ruido Proyección y emisión de partículas

Uso protector auditivo Uso de antiparra y protección respiratoria

Retiro de equipo de perforación,

Golpearse o golpear a otro con objetos Retirar equipo, materiales en forma

traslado de equipo, materiales y

ordenada

accesorios fuera del área de trabajo

Mantener despejado los accesos Buena visibilidad Sobreesfuerzo

Distribución adecuada y equilibrada de la carga sobre los medios de transporte Usar medios de transporte en buenas condiciones

Revisar y preparar área de trabajo

Ambiente contaminado con polvo y

Uso de protector respiratorio

gases tóxicos Caída de roca

Uso de casco y zapatos de seguridad Señalizar el peligro

Trasladar equipo al lugar de trabajo Sobreesfuerzo

Distribución adecuada del peso de la carga y estabilidad de la misma

Conectar y chequear mangueras Preparar lechada

Golpes con objetos

Buena visibilidad y precaución en la

Caída a nivel

operación de transporte

Golpes con herramientas y/o

Uso de guante de seguridad

materiales

Uso de herramientas en buen estado

Proyección de partículas y polvo

Uso protección respiratoria, guantes y antiparras

Sobreesfuerzo

Adoptar posición correcta durante la operación

Vaciar mezcla al equipo lechador

Sobreesfuerzo

Adoptar posición correcta y no sobrepasar resistencia corporal

Golpearse o golpear a otros

Mantener área despejada e iluminada

205

Tabla 11.2 Instalación Manual de pernos SAFEROCK® (Análisis de Seguridad del Trabajo) Tarea

Riesgos Asociados

Medidas de Control

Ambiente contaminado con polvo en Uso de máscara contra polvo

Inspección área de trabajo

suspensión Caída de roca

Uso de casco y zapato de seguridad

Caída de roca

Uso de casco de seguridad

Proyección de partículas

Uso de antiparra

Sobreesfuerzo

Uso de barretilla de largo adecuado

Preparación área de trabajo a) Acuñadura.

Uso de guantes y zapatos de seguridad b) Traslado de equipo y materiales

Sobreesfuerzo

Distribución adecuada de la carga y estabilidad de la misma

al área de trabajo. Golpes con objetos

Buena visibilidad y precaución en la

Caída a nivel

operación de transporte

Golpe por azote de manguera suelta Uso de cadenilla de seguridad para

c) Revisión de red de aire

unir mangueras

comprimido e instalación de mangueras y accesorios.

Golpearse (o golpear a otro) al realizar Manejo correcto de materiales y

d) Instalación de andamio.

la instalación

mantener área despejada

Caída a desnivel, desde andamio

Asegurar estabilidad del andamio Trabajar sobre andamio con cola de seguridad

®

Instalación del perno SAFEROCK : a) Limpieza de la perforación con

Proyección de partículas y emisión de Uso de antiparra y protección

aire comprimido.

polvo

b) Preparación de lechada de

Emisión de polvo de cemento y aditivos Uso de protección respiratoria y

respiratoria guantes

cemento. Sobreesfuerzo al cargar materiales

y no sobrepasar limite de carga.

c) Inyección de la lechada en la perforación.

Postura correcta para carga de materiales

Proyección de partículas y caída de

Uso de protección facial y ubicación

lechada por rebalse

del trabajador fuera de la línea de caída del material

d) Introducción del perno SAFEROCK® en la perforación con

Golpearse (o golpear a otro) al

Mantener área despejada de

lechada, con el extremo color

manipular el perno

materiales y personas, manipulación correcta del perno y tener buena

amarillo a la vista.

visibilidad durante la operación.

Retiro de equipos y materiales y

Golpearse o golpear a otro con

Retirar materiales en forma ordenada

limpieza del área de trabajo

materiales

Mantener despejada el área de trabajo

Caída a nivel Instalación de planchuela y tuerca del perno SAFEROCK

206

®

Atrición de dedos con llave

Manipulación correcta de herramienta

Capítulo 11: Procedimientos de Instalación SAFEROCK®

Tabla 11.3 Perforación con Jumbo Electro-Hidráulico (Análisis de Seguridad del Trabajo) Tarea Inspección área de trabajo.

Riesgos Asociados Ambiente contaminado con polvo y

Medidas de Control Uso de protector respiratorio

gases tóxicos Caída de roca

Uso de casco y zapatos de seguridad

Existencia de tiros quedados

Señalizar el peligro

Exposición a onda expansiva y

Eliminar tiros quedados según

proyección de partículas

procedimiento del Reglamento de

Preparación área de trabajo: a) Tiros quedados. b) Acuñadura.

Seguridad Minera Caída de roca

Uso de casco y zapatos de seguridad

Proyección de partículas

Uso de antiparra

Sobreesfuerzo

Uso de barretilla de largo adecuado Uso de guantes de protección Manejo correcto de los materiales y mantener despejada el área de trabajo Buena visibilidad Distribución adecuada de la carga

Traslado de equipo de perforación,

Golpearse o golpear a otro con objetos Mantener buena visibilidad, ubicación

materiales y accesorios:

correcta durante la operación Sobreesfuerzo

Evitar la sobreexigencia de la capacidad muscular

Caída a nivel

Precaución al realizar las operaciones Buena visibilidad

Atropellamiento

Chofer debe tener buena visibilidad durante el traslado Vehículo debe poseer focos, alarma de retroceso y bocina Las labores de tránsito deben poseer espacios destinados a refugios para peatones a distancias adecuadas. Los peatones deben transitar provistos de chalecos reflectantes

207

Tabla 11.3 (Conclusión) Perforación con Jumbo Electro-Hidráulico (Análisis de Seguridad del Trabajo) Tarea Instalación del equipo en la frente

Riesgos Asociados Riesgo Eléctrico

Medidas de Control Las instalaciones eléctricas deben ser realizadas por personal autorizado

de trabajo

Las cajas eléctricas y cables eléctricos deben estar en buenas condiciones y ser apropiados para la tensión de trabajo Golpearse o golpear a otro con

Uso de guantes de seguridad.

herramientas, barras, accesorios, etc Buena visibilidad Ubicación correcta de los operadores Precaución al realizar maniobras Perforación

Proyección de partículas, polvo en

Uso de antiparra y/o protección facial

suspensión Retiro de equipo de perforación

Exposición a ruido

Uso protector auditivo

Riesgo eléctrico

Las Instalaciones eléctricas deben ser realizadas por personal autorizado Las cajas eléctricas y cables eléctricos deben estar en buenas condiciones y ser apropiados para la tensión de trabajo

Golpearse o golpear a otro con objetos Uso de guantes de seguridad Retirar equipo, materiales en forma ordenada Mantener despejado los accesos Buena visibilidad Sobreesfuerzo

No sobrepasar la capacidad muscular Distribución equilibrada de la carga

208

Anexos A1.

Términos y Definiciones

A2.

Normas de Referencia y Alcance del Reglamento de SERNAGEOMIN

A3.

Conversión de Unidades

Anexos

A.1. TERMINOS Y DEFINICIONES

• Diámetro de per foración: Se define de acuerdo al diámetro de la broca o revestimiento, excluyendo

Los principales términos que a continuación se indican,

cualquier sobrexcavación de la pared de la perforación.

están en concordancia con las normas ASTM A 432 -

• Dispositivos de anclaje: Cualquier dispositivo capaz

95 y ASTM A 615-00. En estas normas se aplican las

de transmitir una carga de tracción a través de un

siguientes definiciones:

fenómeno de adherencia, y compromiso físico entre

• Anclaje permanente: Un anclaje con una vida útil

las super ficies de una barra y un grout químico, o

de diseño superior a dos años. • Anclajes químicos: Materiales químicos que proporcionan el anclaje entre el perno o barra y la pared de la per foración. • Anclaje temporal: Un anclaje con una vida útil de hasta dos años. • Barras con resaltes: Barra que posee indentaciones o estrías transversales y longitudinales al eje de la barra, diseñada para ser usada como refuerzo del hormigón armado. • Barra plana: Barra de acero que no posee estrías o indentaciones. • Barras roscadas: Barras que se utilizan con una tuerca en un extremo y un dispositivo del anclaje en el otro. • Cabeza del anclaje: Parte del anclaje que transmite

con cualquier

otro material adaptable en una

perforación. • Dispositivos fricciónales del anclaje (Split Set): Dispositivos diseñados para una transferencia de carga mediante fuerzas radiales, que actúen sobre la longitud completa de contacto entre la superficie del dispositivo y la pared de la perforación, generando una fuerza de fricción. • Extensiones o coplas: Son accesorios para aumentar la longitud de las barras roscadas, o estriadas, mediante una unión o acoplamientos de ellas. • Golillas biseladas: Son golillas o arandelas que tienen en sus caras un corte en ángulo que permite orientar el

perno o barra, para ser instalada en un bajo

ángulo, de manera de mantener la tuerca en forma perpendicular al eje del perno.

la carga de tracción desde el elemento estructural,

• Longitud de adherencia: Longitud del anclaje

a una placa o estructura de apoyo en super ficie.

directamente adherida a la lechada de cemento o

• Cabezas de expansión: Dispositivos de anclaje que

grout químico, capaz de transmitir la carga de tracción

se expanden mecánicamente, para adherirse en las

aplicada.

paredes de la per foración y así transferir la carga.

• Longitud fija: Normalmente coincide con la longitud

• Carga de fluencia: Carga del anclaje correspondiente

de adherencia y es la longitud de diseño considerada

al punto final de la primera parte recta de un grafico

para transmitir la carga a la roca, a través de una

de carga del anclaje, versus el coeficiente de fluencia.

interfase química.

• Carga de prueba: Máxima carga de prueba a la cual se somete un anclaje. • Carga de ser vicio o de trabajo: Con el uso de

• Pernos estriados y barras roscadas: Barras estriadas o lisas usadas en la fortificación, las cuales deben tener deformaciones especiales u otras características

coeficiente de seguridad, es necesario definir el termino

de diseño, para proporcionar una super ficie de

"Carga de Servicio o Trabajo" como la solicitación del

adherencia o anclaje entre el acero y la lechada.

anclaje estimada para un estado de cargas.

• Pernos de fortificación: Barras laminadas en caliente

• Deformación: Tipo de estría o indentaciones que posee

o en frío, con rosca maquinada en un extremo, para

la barra sobre su superficie.

ser utilizados con los dispositivos de anclaje, de 211

manera de reforzar mecánicamente el autosopor te

respecto al compor tamiento requerido.

de los techos de la mina, paredes, o para anclaje de

• Pull-out: Método utilizado en la determinación de las

equipos sobre fundaciones. • Planchuelas: Son placas de apoyo que sir ven para

propuestas de los elementos de refuerzo que son granteados a columna completa.

distribuir la carga en la super ficie de la roca.

• Resalte: Estría que posee una barra deformada.

Generalmente son placas cuadradas, fabricadas en

• Resistencia externa del anclaje: Resistencia del

aceros estructurales con una dimensión mínima de

anclaje en la inter fase entre el terreno y la longitud

6" (152 milímetros) por lado.

adherida a la pared de la per foración.

• Prueba de aceptación: Es una prueba de carga que

• Tuercas de la tensión: Tuercas que son diseñadas

mide que cada anclaje cumpla con los criterios de

para inducir y para mantener una tensión en un perno.

aceptación establecidos.

• Tuercas esféricas: Tuerca que son planas en un

• Prueba de arranque: Prueba de carga para establecer

lado y tienen una cara esférica en el otro lado. La

la carga máxima de un anclaje en la inter fase

combinación de una arandela esférica junto con una

lechada/roca y para determinar las características de

planchuela con domo, permite la instalación del perno

un anclaje en el rango de la carga de trabajo.

en un bajo

• Prueba de sistema: Prueba que se realizara en un sistema de anclaje para verificar su desempeño con

212

ángulo,

de manera de mantener

perpendicular la cabeza del perno con respecto al eje del perno.

Anexos

A.2

NORMAS DE REFERENCIA Y ALCANCE DEL

y dimensionales que deben cumplir todos aquellos

REGLAMENTO DE SERNAGEOMIN

elementos estructurales que serán utilizados para la estabilización del macizo rocoso, conocidos comúnmente

A.2.1

Introducción

como "pernos de anclaje de roca y sus accesorios".

Dentro del ámbito nacional no se conocen normas

Esta norma involucra a todos aquellos pernos de anclaje

específicas que estén relacionadas con la fabricación,

que en la actualidad son empleados para el refuerzo de

pruebas y monitoreos para aquellos elementos

roca, tanto en obras civiles como las realizadas por la

estructurales que son empleados para la estabilización

industria minera, a saber:

de macizos rocosos, con el objetivo de mejorar la

• Barras de acero sólido con hilo en ambos extremos.

condición mecánica de este medio.

• Pernos de barra sólida lisa ranurada en un extremo. • Pernos de barras roscadas.

Como es conocido, el macizo rocoso es un medio en el cual

• Pernos de barras con resalte continuo.

se desarrollan numerosas construcciones de infraestructura

• Dispositivos de extensión, como coplas roscadas,

subterráneas para uso civil, vial y minero, las cuales requieren

dispositivos usados para el anclaje mecánico puntual,

permanecer estables por varios años. Por esta razón y por

sistema roof truss, y otros conformados que son

las características mecánicas que presenta el macizo durante

utilizados como anclajes y que actúan como anclaje

la construcción de las obras subterráneas, es necesario

fraccional.

incorporar elementos de refuerzo y soporte, de manera de permitir que estas construcciones permanezcan estables

De igual forma también involucra a toda aquella

durante toda su vida útil.

maquinaria mecánica usada para la instalación de sistemas de anclaje.

Por lo anterior, las normas que se explicitan a continuación están relacionadas con aquellas normas consideradas que

Todos estos productos representan a los más variados

son aplicables a la fabricación de elementos estructurales,

diseños usados como sistemas de estabilización de

tipos de materiales empleados en su fabricación, propiedades

rocas.

mecánicas, composición química, pruebas de terrenos, de laboratorio, etc. También se han incluido algunas normas

Las especificaciones indicadas en esta norma están

chilenas que tienen aplicación en la fabricación de elementos

sujetas a cambio y pueden ser revisadas para tratar la

empleados para estructuras de hormigón armado, medio

incorporación de nuevas tecnologías relacionadas con

empleado en la construcción de obras civiles, y normas

pernos de anclajes de roca.

aplicadas a ensayos a morteros y cementos. Esta norma especifica que los valores unitarios se expresarán en unidades de libra-pulgada, los cuales A.2.2

Norma ASTM F 432 - 95 Especificaciones

deben ser tomados como la dimensión estándar. Los

Estándar para Pernos de Anclaje y Accesorios

valores dados en paréntesis en esta norma tienen carácter de informativos solamente.

Alcance de la norma: Esta norma especifica los requisitos químicos, mecánicos

También se establece que los aspectos de seguridad

213

indicada en este documento, sólo tienen que ver con las

refuerzo de hormigón.

precauciones que se deben adoptar en la sección 10 de

• A 751: Especificaciones de los métodos, prácticas

esta norma y que dicen relación con los métodos de las

operativas, y la terminología para el análisis químico

pruebas a los que deben ser sometidos. Este documento

de los productos de acero.

no pretende fijar estándar sobre los temas de seguridad

• D 1248: Especificación de los productos para los

relacionados con la aplicación y fabricación de los pernos

plásticos de polietileno moldeados y de los materiales

de anclaje, si las hubiese. Es de responsabilidad del

de plásticos extruidos.

usuario y de los fabricantes establecer prácticas apropiadas de seguridad y de protección de la salud, así como también determinar los limites de aplicabilidad y reguladoras, antes de la utilización de los pernos de anclaje y accesorios.

• F 436: Especificación para la dureza de los aceros usados en la fabricación de planchuelas. • F 606: Especificaciones para los métodos de prueba para determinar las características mecánicas de los roscados maquinados externamente e internamente de arandelas y remaches.

A.2.2.1 Documentos referidos La norma ASTM F432 - 95 toma como referencia las

A.2.3

Normas Chilenas Referenciales Vigentes

siguientes normas ASTM: • A29/A 29M: Especificación para las barras de acero, carbón y aleación, forjadas y maquinadas en frío, y requerimientos generales. • A 47: Especificación para los fundiciones ferríticas de hierro maleable. • A 194/A 194M: Especificación para las tuercas del acero al carbón y de aleación para los pernos sometidos a alta presión y temperatura. • A 220: Especificación para el hierro maleable perlíticos. • A 370: Especificación de los métodos y de las definiciones para las pruebas de los productos en acero. • A 536: Especificación para las fundiciones dúctiles del

• Norma Chilena NCh204: Acero - Barras laminadas en caliente para hormigón. • Norma Chilena NCh201: Acero: Ensayo de doblado de planchas de espesor superior o igual a 3 mm, barras y perfiles. • Norma Chilena NCh200: Productos metálicos - Ensayo de tracción. • Norma Chilena NCh211: Barras con resalte en obras de hormigón armado. • Norma Chilena NCh203: Aceros para uso Estructural - Requisitos. • Norma Chilena NCh434: Barras de acero de alta resistencia en obras de hormigón armado.

hierro. • A 563: Especificación para las tuercas de acero al carbono y de aleación. • A 568/A 568M: Especificación de los requerimientos

A.2.4

Aspectos sobre los Materiales y Fabricación de un Sistema de Refuerzo

generales para el acero laminado en bobina al carbono de alta resistencia y baja aleación, laminados en caliente

El refuerzo de la roca juega un papel fundamental

y laminados en frío.

en la manutención y aseguramiento de la estabilidad

• A 615: Especificaciones de los requerimientos generales

de las excavaciones mineras y de la ingeniería civil.

para las barras lisas y estriadas empleadas para el

En los últimos años esta técnica ha tenido un

214

Anexos

desarrollo impor tante en su aplicación, destacando

barra con per foración interior, tubo de expansión,

la flexibilidad que presenta como método de

cables y anclaje mecánico.

estabilización de roca. A.2.4.2 Características y Propiedades del Acero Se denomina Sistema de Refuerzo a todos aquellos elementos estructurales fabricados preferentemente en

Las cualidades del acero como material de anclaje, lo

acero, que van embebidos con lechada o resina al interior

han llevado a desplazar la aplicación de la madera

de una per foración realizada en la roca o suelo, tales

como elemento de estabilización en la industria minera

como pernos de anclaje y cables, y que permiten modificar

contemporánea, especialmente en aquellas minas

la resistencia mecánica de las discontinuidades y

donde las labores mineras deben mantenerse abierta

estructuras geológicas presentes en el macizo rocoso,

por períodos mayores a 10 años. Las características

mediante un trabajo de transferencia de carga.

básicas del acero que lo han llevado a ser el material de mayor uso en la fabricación de elementos de

El concepto de Transferencia de Carga, es un aspecto

sostenimientos en minería, que se pueden resumir

fundamental para entender el compor tamiento del

como sigue:

refuerzo de roca y la acción de los diferentes elementos sobre la estabilidad de una excavación al interior del macizo rocoso. Este mecanismo permite en forma

A.2.4.3 Ventajas del material

inmediata identificar dos criterios en el diseño y fabricación de los actuales elementos de refuerzo

1. El acer o es un material muy homogéneo,

existente en el mercado. Se precisa la suficiente longitud

manufacturado bajo condiciones metalúrgicamente

del elemento de refuerzo para conseguir el anclaje en

estables, con pr opiedades mecánicas muy

una región estable; además, la transferencia de carga

determinadas, por lo que se puede usar en el

entre el elemento y la roca debe rápidamente alcanzar

diseño con factores de seguridad más bajos.

la capacidad del elemento de anclaje.

2. El acero tiene un módulo de elasticidad de Young (E= 2.000.000 kg/cm 2), mucho más elevado que

Los elementos de refuerzo están disponibles en un gran

otros materiales estructurales, lo que le da una

número y en un amplio rango de materiales y capacidades,

ventaja contra las deformaciones, el pandeo, etc.

y admiten variados métodos de instalación.

3. El acero se puede manufacturar en forma de aleaciones que tienen un conjunto de altos requerimientos para el diseño.

A.2.4.1 Materiales y Productos

4. El acero es el material que resulta menos afectado por las condiciones atmosféricas, como la

Los sistemas de anclaje pueden ser fabricados en

temperatura y la humedad.

distintos tipos de materiales que incluyen aceros

5. Los elementos de estabilización que se encuentren

estructurales, acero de alta resistencia, aceros

totalmente defor mados se pueden retirar y

inoxidables, fibra de vidrio y fibra de carbón; también

separarse como chatarra y volver a reciclarse,

se ha utilizado madera y caña de bambú. Los distintos

reduciendo los aspectos ambientales en las

sistemas de anclaje admiten estos tipos: barra rígida,

faenas.

215

A.2.4.4 Estructura química

identificado por la tensión de fluencia del acero y el tipo de falla.

Químicamente el acero es una aleación de hierro y de carbono. Existen algunos elementos como el fósforo

El acero se fractura tanto por tendencia a la ductibilidad

(0,01%-0,08%) y el azufre (0,01% -0,06%), que se presentan

como a la fragilidad. Los aceros con bajo contenido

como elementos residuales en el acero. Otros elementos,

de carbono se caracterizan por tener un punto de

como manganeso, silicio, níquel, cromo y molibdeno se

fluencia claramente definido, alcanzan una gran

incorporan en porcentajes variados para formar aleaciones

deformación plástica y tienen una falla dúctil.

especiales que permiten alcanzar diversas propiedades mecánicas en el acero.

Los aceros de alto contenido de carbono se caracterizan por no tener claramente definido el punto de fluencia, presentan una cur va de deformación

A.2.4.5 Características mecánicas

plástica pequeña y tienen una falla más bien frágil.

Cualquier estudio sobre las características del acero tiene

De acuerdo con la norma Chilena NCh.204 vigente, se

que considerar la relación esfuerzo-deformación, la

definen tres grados de aceros para uso en la fabricación

resistencia, los tipos de ruptura, la dureza y el diseño.

de elementos de refuerzo, pero en la práctica se utilizan los grados A440 - 280H y A630 - 420H.

Todo elemento estructural fabricado en acero tiene estas características mecánicas:

El acero se puede proporcionar en diferentes longitudes

• Un límite de elasticidad.

y diámetros, y se debe tener siempre presente en la

• Una capacidad de alargamiento desde el limite de

recomendación de un diseño que hay que utilizar

elasticidad.

sistemas de anclaje para los cuales exista una

• Una carga de ruptura.

experiencia comprobada y documentada de su funcionamiento y de su durabilidad. Así como también

La curva típica de tensión - deformación define un punto

que en algunas circunstancias es deseable la aplicación

como límite elástico bajo una carga determinada de

de un acero de alta resistencia para una aplicación

acuerdo con las características del acero, donde el modulo

puntual y en otras es preferible utilizar un acero de

106

bajo carbono para una distribución de carga sobre un

de elasticidad de Young se toma como E= 2,1 x

kg/cm2. La proporción lineal continúa hasta el punto 0,2%

área determinada.

de deformación. Después de este punto tiene lugar un espacio de "fluencia" con deformaciones constantes; la

Todo sistema de anclaje debe someterse, como mínimo,

falla sucede después de que se han alcanzado estos

a una prueba de sistema para verificar su validez y se

límites.

debe elaborar un informe detallado de los resultados de la prueba.

El porcentaje de carbono es el factor más importante en la resistencia a la tensión dentro de los límites elásticos

Todos los materiales utilizados deben ser compatibles

del acero y en la elongación en el punto de ruptura. Este

entre sí. Esto se aplica en par ticular a los materiales

factor permite definir el grado del acero, el cual queda

adyacentes con una super ficie común.

216

Anexos

Durante todo el tiempo de utilización previsto para el

aceros microaleados o aceros de alta resistencia

anclaje, los materiales deben conser var propiedades

y baja aleación, destinados al uso de estructuras

adecuadas para que el anclaje no pierda su función

de usos generales y estructuras de construcciones

de diseño.

sometidas a cargas de origen dinámico, de acuerdo con las normas, reglamentos y ordenanzas de construcción vigentes y de uso general.

A.2.5 Componentes de un Sistema de Anclaje

Establece los criterios de inspección, muestreo y de aceptación y rechazo. Se aplica a los aceros

a) Barras de Acero

para barras, productos planos y per files, ya sean

Los pernos de anclajes utilizados por la industria minera

laminados, plegados, conformados en frío o

y de la construcción en Chile se fabrican generalmente

soldados.

en acero, y para ello normalmente se utilizan dos grados de aceros definidos por la norma Chilena NCh204.

• NCh434: Barras de acero de alta resistencia en obras de hormigón armado. Esta norma establece las condiciones que deben

Las barras de aceros utilizadas en la fabricación de

cumplirse para el empleo de barras de acero de

pernos de anclajes deben cumplir con las normas

alta resistencia, con resaltes, en obras de hormigón

Chilenas y, eventualmente con las normas ASTM.

armado. Se aplica a las estructuras de hormigón armado en que se empleen barras de acero cuyo

Normas Chilenas:

límite de fluencia sea igual o superior a 42 kg/mm2

• NCh204: Acero - Barras laminadas en caliente para

y hormigones controlados de las clases D y E.

hormigón armado:

• Normas ASTM:

Esta norma establece los requisitos que deben

- ASTM F 432 -95:

cumplir las barras de acero de sección circular

- ASTM A 615 -00

laminadas en caliente a par tir de lingotes y

- ASTM A 36

palanquillas. Esta norma se aplica a las barras lisas y con

b) Conectores

resaltes, especificadas anteriormente, destinadas

Los conectores o coplas son elementos accesorios

a emplearse en hormigón armado.

fabricados con el objetivo de permitir la unión,

• NCh211: Barras con resaltes en obras de hormigón

empalme o acoplamiento de elementos de refuerzo.

armado Esta norma establece las condiciones que deben

Su construcción y diseño deben cautelar la posibilidad

cumplirse para el empleo de las barras con resaltes

de que no disminuya la resistencia a la tracción

en obras de hormigón armado. Se aplica a las

requerida por el sistema de refuerzo.

estructuras de hormigón armado en que se empleen barras con resaltes de diámetro nominal inferior o

La presencia del acoplamiento no debe impedir el

igual a 26 mm.

libre alargamiento del elemento estructural de acero.

• NCh203: Acero para uso estructural - Requisitos Esta norma establece los requisitos que deben

Los conectores de acero deben cumplir con la norma

cumplir los aceros, sean estos aceros al carbono,

ASTM F 432-00. 217

c) Centralizadores

El proceso de corrosión de un metal se puede definir

Para el anclaje de los sistemas de refuerzo al interior

como el proceso "lento o acelerado de la naturaleza

de la per foración, se utiliza frecuentemente lechada de

o el medio ambiente que degrada y destruye los

cemento o resina de poliéster, la cual permite generar

materiales" a través de agentes o factor es

la interfase de adherencia entre el elemento estructural

relacionados con la acción química, electromecánica

y la roca.

o biológica.

El espesor del recubrimiento varía de acuerdo al tipo

No hay modo efectivo de identificar las condiciones

de grout químico que se utilice. Para el caso de la

corrosivas con la suficiente precisión como para predecir

lechada de cemento, se debe utilizar un recubrimiento

la velocidad de corrosión del acero en suelos. Proteger

mínimo de 10 mm, y para el caso de usar resina de

efectivamente los productos de acero contra la corrosión

poliéster, el espesor mínimo del recubrimiento debe

se ve hoy día acentuado de manera imperiosa por los

ser 3 mm. No es fácil lograr que este recubrimiento

elevados costos asociados a faenas de mantención y

sea uniforme a través de toda la longitud de anclaje

reemplazo de los elementos corroídos. El tipo y calidad

o adherencia del elemento estructural, más aún si la

de la protección anticorrosiva se determina en función

per foración presenta una dirección angular inclinada

de la agresividad de los suelos o del entorno en donde

con respecto a la ver tical. Para conseguir un

se instalará el sistema de refuerzo.

recubrimiento uniforme se utilizan centralizadores. El grado de protección anticorrosivo está definido por Los centralizadores deben ser construidos en acero o

la vida útil del sistema de refuerzo.

en material plástico de manera que presenten condiciones mecánicas compatibles con el sistema de

Las técnicas más conocidas para una protección

refuerzo y, además, que sean resistentes a la corrosión.

anticorrosiva son:

Los centralizadores deben ser diseñados e instalados

i)

Lechada de cemento: Las lechadas de cemento

considerando el tipo y la calidad de la per foración, el

utilizadas para el anclaje del elemento estructural

peso del elemento estructural y la posibilidad de colapso

pueden ser utilizadas como protección temporal; para

de la per foración durante la instalación del sistema.

ello se requiere que el recubrimiento no sea menor a 10 mm en toda la longitud.

La separación entre los centralizadores dependerá

Los cementos con altos contenidos de sulfato no

fundamentalmente de la rigidez y peso por unidad de

deben ser utilizados en contacto con los elementos

longitud del elemento estructural.

estructurales. ii) Resina: La resina de poliéster es otro producto

d) Protección anticorrosiva

utilizado como protección anticorrosiva. La resina

La corrosión es causada por múltiples factores y

debe ser aplicada de manera que se tenga un

cualquiera de ellos puede ejercer una mayor o menor

recubrimiento mínimo del elemento estructural de 5

incidencia en el proceso de corrosión de los metales,

mm, de manera de obtener una barrera protectora

como también pueden ser utilizados para predecir el

permanente.

grado de corrosión esperado mediante una evaluación

Las resinas deben ser estables en el tiempo. No

cuantitativa.

deben contener aditivos o impurezas susceptibles

218

Anexos

de provocar corrosión del elemento estructural.

ser inspeccionada periódicamente con el objeto de evaluar

iii) Galvanizado en caliente: Para la protección de aceros

sus condiciones de estabilidad y requerimientos de

se utilizan variados sistemas de recubrimientos y

"acuñadura", adoptando de inmediato las medidas

tratamientos de diferentes grados de complejidad y

correctivas ante cualquier anormalidad que se detecte.

duración. Dentro de este espectro de soluciones la

En aquellas galerías fortificadas deberá inspeccionarse

galvanización por inmersión en caliente ha sido un

el estado de la for tificación con el fin de tomar las

proceso que ha demostrado ser técnica y

medidas adecuadas cuando se detecten anomalías.

económicamente muy eficiente en la protección contra la corrosión.

Artículo 159: En los piques cuya fortificación sea total

La galvanización por inmersión en caliente es un

o parcial, la revisión deberá efectuarse en períodos no

proceso que persigue el fin de depositar sobre la

superiores a seis meses, pudiendo el Servicio exigir, de

superficie del acero una cantidad de zinc capaz de

acuerdo con el estado de éstos, revisiones antes de la

protegerlo adecuadamente contra la corrosión. Las

fecha límite.

características físicas, químicas y metalúrgicas de este depósito lo transforman en una de las

Artículo 160: En los piques para tránsito de personal y

herramientas más eficientes de protección

materiales que no estén protegidos o fortificados, se

anticorrosiva que existe.

deberá disponer la acuñadura permanente a través de

iv) Pintura - Galvanizado en Caliente: El sistema Duplex

personal instruido y preparado para tales fines.

es la combinación de dos sistemas distintos de protección frente a la corrosión, que se complementan

Artículo 161: Se prohíbe trabajar o acceder a cualquier

entre si, como es el caso de la protección mediante

lugar de la mina que no esté debidamente fortificada,

la colocación de zinc sobre la superficie del acero,

sin previamente acuñar.

seguido de la aplicación de revestimiento sellante (consistente en pinturas del tipo vinílicas, acrílicas,

Artículo 162: La operación de acuñadura tendrá carácter

epóxica, uretanos, siliconas, etc.).

permanente en toda mina y cada vez que se ingrese a una galería o cámara de producción. Después de una

A.2.6

Alcance del Reglamento SERNAGEOMIN

tronada, además de la ventilación, se deberá chequear

(Capítulo Sexto For tificación)

minuciosamente el estado de la fortificación y acuñadura. La Administración deberá elaborar el procedimiento

Ar tículo 157: Los trabajos subterráneos deben ser

respectivo, el que consigne a lo menos:

provistos, sin retardo, del sostenimiento más adecuado

a) Obligatoriedad que tiene toda persona al ingresar al

a la naturaleza del terreno y solamente podrán quedar

lugar de trabajo de controlar "techo y cajas de galerías

sin fortificación los sectores en los cuales las mediciones,

y frentes de trabajo", al inicio y durante cada jornada

los ensayos, su análisis y la experiencia en sectores de

laboral, y proceder, siempre y cuando esté capacitado

comportamiento conocido, hayan demostrado su condición

para ello, a la inmediata acuñadura cuando se precise,

de autosoporte consecuente con la presencia de presiones

o en su defecto, informar a la super visión ante

que se mantienen por debajo de los límites críticos que

problemas mayores.

la roca natural es capaz de soportar. Artículo 158: Toda galería que no esté fortificada debe

b) Obligatoriedad de la Administración de proporcionar los medios y recursos para ejecutar la tarea. Ello 219

incluye "acuñadores" apropiados, andamios,

claramente reglamentado, aplicado y controlado por la

plataformas o equipos mecanizados si las condiciones

Administración de la faena minera, informando de ello

y requerimientos lo hacen necesario.

al Servicio.

c) Capacitación sobre técnicas y uso de implementos para llevar a efecto esta tarea.

Ar tículo 166: Para el caso de apernado y malla, se deberán cumplir, a lo menos, los siguientes requisitos

Ar tículo 163: Si se requiere acuñar un sector donde

mínimos:

existan conductores eléctricos protegidos o desnudos, la

a) Uso de materiales (malla y perno) de calidad probada

acuñadura deberá hacerse hasta una distancia prudente

y certificada.

en que se garantice que no ocurrirá contacto eléctrico,

b) Colocación de pernos de manera uniforme, cuyas

tanto con la barretilla acuñadora como con otros elementos

longitudes y espaciamientos hayan sido calculados

que se usen. Si es necesario, se deberán desenergizar

con criterio técnico.

los conductores.

c) Uso de golillas "planchuelas" o similar, con una dimensión mínima de 20 cm de diámetro ó 20 cm de

Artículo 164: El Administrador elaborará un reglamento

lado si es un cuadrado.

interno de fortificación, de acuerdo con las condiciones

d) En la colocación de pernos con cabeza de expansión,

de operación, el cual comprenderá todos los sistemas de

el apriete de la tuerca debe ser tan firme como para

fortificación usados en la empresa, y deberá obtener la

verificar que el anclaje trabaje, absorba la primera

aprobación del Ser vicio, respecto de esta materia, la

deformación y genere en la roca una fatiga de

técnica en uso y sus innovaciones. El Servicio tendrá un

compresión vertical que impida su ruptura.

plazo de treinta (30) días para responder la solicitud,

e) El elemento ligante aplicado en la colocación de pernos

desde la fecha de presentación de ella en la Oficina de

de anclaje repartido, debe emplearse encapsulado o

Partes.

inyectado, cuidando que este elemento ligante se encuentre en buenas condiciones de uso.

Artículo 165: Los sistemas de fortificación que se empleen

f) Cuando se usen pernos en que la sujeción dependa

deben fundarse en decisiones de carácter técnico que

de la fricción generada por la deformación radial del

consideren, a lo menos, los siguientes aspectos de

perno (split-set o swellex) el diámetro de la perforación

relevancia:

debe ser el adecuado.

a) Análisis de parámetros geológicos y geotécnicos de la

g) En los pernos que se coloquen usando como elemento

roca y solicitaciones a la que estará expuesta a raíz de

ligante cartuchos de resina, todo el largo del perno

los trabajos mineros.

debe quedar ligado a la perforación.

b) Influencia de factores externos y comportamiento de la roca en el avance de la explotación. c) Sistema de explotación a implementar y diseño de la red de galerías y excavaciones proyectadas.

Artículo 167: Cuando se emplee fortificación de madera deben observarse a lo menos las siguientes reglas: a) El apriete del poste al sombrero o viga debe asegurarse

d) Uso y duración de las labores mineras.

mediante la aplicación de un taco en forma de cuña

e) Otros, según se observe.

u otro medio igualmente eficaz. b) En las labores de convergencia pronunciada, la

Cualquiera sea el sistema que se aplique, éste debe estar 220

fortificación debe completarse colocando tendidos de

Anexos

madera entre el techo y el sombrero o viga, los cuales

deberá contar con la autorización del Ser vicio.

se afianzarán a presión. c) El ensamble del poste a la viga debe ser practicado

Artículo 169: Los soportes para el control de techos,

consiguiendo el mejor contacto directo entre las piezas

paredes y/o pisos, se deben ubicar de manera uniforme,

ensambladas, sin intercalar en lo posible cuñas entre

sistemática y en los intervalos apropiados. El personal

las super ficies de contacto.

destinado a la inspección, así como a la instrucción y

d) En las labores inclinadas, como chiflones, rampas u

ejecución de los trabajos de fortificación minera, será el

otras similares, la instalación de los postes se hará

necesario y con amplia competencia en la función que

de modo tal que su base quede instalada en la bisectriz

desempeña.

del ángulo que forman la normal al piso de la galería y la vertical al mismo punto. e) Tanto los postes soportantes como las vigas principales de sostenimiento deben ser de madera de la mejor calidad, sin deterioros que afecten sus características de resistencia. De igual forma, la instalación y reparación de los sistemas de fortificación con maderas deberán hacerse con personal entrenado y preparado para esos objetivos. f) Todos los espacios que queden entre el sombrero y el techo deben ser rellenados con encastillados de madera bien apoyada y adecuadamente repar tida, para conseguir que la presión del cerro sea trasmitida uniformemente a la viga y no como una carga puntual que concentre dicha presión. El mismo criterio debe emplearse en los costados de galerías con presión lateral. Ar tículo 168: Los derrumbes se permiten como par te programada y controlada de un método de explotación aprobado por el Servicio. Se prohíbe aceptar, en forma sistemática u ocasional, el uso de der r umbes accidentales, siendo obligatoria la prevención de estos últimos. Se prohíbe la remoción o adelgazamiento de los estribos o pilares de sostenimiento sin que sean reemplazados por elementos que ofrezcan una resistencia similar o mayor. Ello solo se permitirá si se implementa un sistema de explotación técnicamente factible, el que 221

• Anthony D. Barley and Chris R. Windsor "Recent Advances in Ground Anchor and Ground Reinforcement Technology With Reference to the Development of the Art". • Barton N & Eysten Grinrstad (2000) "El sistema Q para la selección del sostenimiento de excavaciones de túneles íngeo túneles" pp 27-58. • Brunner F., Carvajal A., Santander E, Hernández E (1999) Texto. "Manual de Aplicaciones Geomecánicas a la Explotación de Yacimientos Metalíferos Controlados por Sistemas de Fallas ". I Edición, Universidad de La Serena - Chile. • Brunner F., Carvajal A., Díaz R., Gómez M. (1997). "Evaluación de los Métodos de Explotación Minera Aplicados en Cía. Minera Tamaya". FONDEF report inédito. • Carvajal A., (2004) "Riesgos Geotécnico: Aplicación de la Teoría Fuzzy en el Análisis de los parámetros geomecánicos involucrados". 55º Convención del Instituto Ingenieros de Minas de Chile. • Carvajal A., Ramírez J. Brunner F. (2004) "Proyecto de explotación del cuerpo Ore-body 17, mina Atacocha, Perú. Congreso de Minería - Sao Paulo v1, p591-596 Brasil. • Carvajal A. Fernández C. y Carmona J. (2004) "Principales problemas geotécnicos en la explotación simultánea cielo abierto y subterránea en Michilla S.A., Antofagasta Chile. Congreso de Minería - Sao Paulo v1, p557-564 Brasil. • Carvajal A. Blanco R & Watson R. (2004) Zonificación del Área del Casco Urbano de Zaruma - Ecuador, según el grado de peligrosidad geodinámico. Congreso de Minería - Sao Paulo v1, p465-476 Brasil • Carvajal A., Fernández C. and Carmona J. (2004) "Geomechanical problems in simultaneous exploitation both Open pit and Underground at Minera Michilla, II Region Antofagasta-Chile". International Mining Forum v1, p105118 Polonia. • Carvajal A. (2003) "Una revisión a los procedimientos de Diseño de túneles en rocas". Congreso de Estudiantes de Ingeniería Civil. Universidad de La Serena Chile. • Car vajal A. (2002) "Principios y Fundamentos Geomecánicos en el Diseño de Sistemas de Cables para la Estabilización de Macizos Rocosos y su Aplicación Práctica ". Curso Iberoamericano de aplicaciones Geomecánicas y Geoambientales al Desarrollo Sostenible de la Minería". Universidad Internacional de Andalucía. Huelva v1, p115130 España. • Carvajal A., Smolka J. And Krzyszton D. (2002) "Investigación sobre la Deformación en la Fase Pos-Crítica para Brechas de Falla del Distrito Minero de Punitaqui- Región de Coquimbo-Chile." Seminario Geomecánica. Caracas articulo inédito. Venezuela. • Carvajal A., Leyton G. (2000) Application of Fuzzy Theory on Rock Mass Classifications Underground Construction 2000 v1, p66-75 Polonia.

223

• Carvajal A., Flores S., Brunner F., Sánchez J., Gómez M. (1998). "Análisis, Diseño y Aplicación de sistemas de Fortificación Considerando Aspectos Geotécnicos de Yacimientos Vetiformes Asociados a Zonas de Falla Tectónica". Report Fondef proyect interno. • Carvajal A., Brunner F., Díaz R., (1998). "El Precableado como reforzamiento en explotación de vetas estructuralmente controladas y su aplicación en Cía. Minera Tamaya, IV Región, Chile". CINAREM '98 MOA. Minería y Geología, Vol. XVI, nº1, p27-33. Holguin. Cuba. • Carvajal A., Krzyston D., (1998) "Parameters Used in Geomechanical Classifications of Jointed Rock Masses". Underground Construction Cracow. V1, p293-303 Poland. • Carvajal A., (1996) "Technology of Mining in Chile and Perspectives". Underground School 1996. Poland. • Car vajal A., (1996) "Compendio de Sistemas de Explotación ". Serie Textos Universitarios. I Edición 1996. Universidad de La Serena - Chile. • Carvajal A., (1995) "Efectos de la Sismicidad en la Minería". Congreso de Minería, Iquique, II Región, Chile. Relator. Publicado actas del congreso con Comité Editorial. • Carvajal R. A. (2005) Informe técnico "Mecanismos de falla en el sistema de pernos helicoidales como reforzamiento de masas rocosas". GERDAU AZA S.A. • Carvajal R. A. (2005) Informe técnico "Sobre ensayos de pull out realizados a pernos helicoidales". • Carvajal R. A. (2006) Informe técnico "Estudio y Análisis de Modificación de Dimensiones de Tuerca para Pernos Helicoidales". • Castillo M. J. (2006) Informe técnico "Estudio y análisis de modificación de dimensiones de tuerca usada en la minería". • Cortés A. (2006) Nota técnica "Una visión a la calidad total". • Chebair J. & Teneb M. (2006) Infome ténico "Procedimiento de instalación de pernos helicoidales con lechada de cemento y AST". • Charette F. (2005). Rock Mechanics and Rock Reinforcement in Mining. Rock & Reinforcement. Atlas Copco, pp. 47- 50. • Geoexploraciones S.A. (1998) "Caracterización Geosismica de Roca en Mina Milagro de la Compañía Minera Tamaya". • Hernández Edgardo V. (1999) "Proposición de una clasificación geológica geomecánica para rocas encajadoras de yacimientos Au -Cu en la zona de cizalla de Punitaqui - Región de Coquimbo ". • Hoek E. (1996) "Practical Rock engineering". Unversity of Chile. • Hoek E., P. Kaiser & W. Bawden (1995) "Support of Underground Excavations in Hard Rock". • Hutchison D. J. & Mark S. Diederichs (1996) "Cablebolting in underground mines". • I.G.M.E. (1988) "Sostenimiento de excavaciones subterránea". • JunLu L. (1996) Bolting Theories. A New Rock Bolt Design Criterion and Knowledge-Based expert System Stratified Roof. Doctoral Thesis. Blacksburg, Virginia. pp.18 - 30. • López J. L. (2006) Informe técnico " Normas y Procedimientos" SOPROFINT S.A. • Nord G. (2005) Controllable Rock Reinforcement. Rock & Reinforcement. Atlas Copco, pp.5-6. • Palmström A. "Caracterización de macizos rocosos mediante el RMi y su aplicación en mecánica de rocas" ingeo

224

Bibliografía

túneles pp 59-95. • Santander E. Informe técnico (2005) "Simulación Numérica Mediante programa FLAC 2D de ensayo Pull Out Test a pernos helicoidales de 22mm de diámetro. (Acero A44-28 H). • Thompson A.G. (2002) "Stability Assessment and Reinforcement of Block Assembiles Near Underground Excavations". Paper Presented to NARMS-TAC 2002, Toronto Canada. • Windsor C.R. and Thompson A.G. (1998) "Reinforcement Systems, Classification, Mechanics, Design, Installation, Testing, Monitoring, Modeling". Presented to NARMS'98 Conference, Cancun Mexico. • Windsor C.R., Thompson A.G. and Chitombo G.P (1995) "Excavation Engineering - The Integration of Excavation Design, Blast Design and Reinforcement Design". Presented to Explo95 Conference, Brisbane Australia. • Windsor C.R. and Thompson A.G. (1992) "Reinforcement Design For Jointed Rock Masses". Presented to 33rd US Symposium on Rock Mechanics, Santa Fe USA. • Windsor C.R. and Thompson A.G. (1998) "Cement, Grout, Rock Reinforcement, Density, Viscosity, Cohesion, Strength, Stiffness, Mixing, Pumping". Presented to NARMS'98 Conference, Cancun Mexico. • Windsor C.R. (1996) "Rock Reinforcement Systems". Presented to Eurock96 Conference, Torino Italy. • Windsor C.R. (1997) "Block Stability in Jointed Rock Masses". Presented to Conference on Fractured and Jointed Rock Masses, Lake Tahoe. • Windsor C.R. and Thompson A.G. (1996) "Terminology in Rock Reinforcement Practice". Presented to NARMS96, Montreal Canada. • Windsor C.R. and Thompson A.G. (1996) "Block Theory and Excavation Ingineering". NARMS96, Montreal Canada. • Windsor C.R. and Thompson A.G. (1997) "Reinforced Rock System Characteristics". International Symposium on Rock Mechanics, Norway. • Windsor C.R. (1999) "Systematic design of reinforcement and support schemes for excavations in jointed rock". International Symposium, Kalgoorlie.

225

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF