3- Destilación Por Arrastre Con Vapor

March 12, 2018 | Author: Paola Olivares Sanchez | Category: Distillation, Water, Applied And Interdisciplinary Physics, Physical Chemistry, Physical Sciences
Share Embed Donate


Short Description

Download 3- Destilación Por Arrastre Con Vapor...

Description

Universidad Nacional de Colombia- Sede Bogotá Departamento de Química Laboratorio de química orgánica Destilación por arrastre con vapor Aceite esencial de cascara de mandarina GRUPO 10 Paola Olivares 245007 Hammer Zaldua 244721

OBJETIVOS:  

Separar el aceite esencial de la cascara de mandarina utilizando la destilación por arrastre con vapor. Conocer las características de ésta técnica así como los factores que intervienen en ella.

OBJETIVOS ESPECÍFICOS  

Determinar y comparar el rendimiento de la separación tanto del estado del arte como del obtenido del laboratorio. Caracterizar el aceite esencial aislado, determinando el índice de refracción y la densidad del mismo, y comparar los valores con valores reportados en la literatura.

DIAGRAMA DE PROCEDIMIENTO Costar en pequeños trozos el material vegetal

Realizar el montaje de la figura 1

Comenzar el calentamiento

Determinar la masa del aceite extraído

Determinar el volumen del aceite esencial

Detener calentamiento cuando no se destile más aceite

Determinar densidad

Determinar indice de refracción

Figura 1. Montaje 1

RESULTADOS Se pesaron 196,216 g de cascara de mandarina fresca, de los cuales se obtuvieron 0,390 g de aceite esencial, cuyo índice de refracción fue de:

Destilación por arrastre con vapor Destilado Diámetro tubo T Altura de capa de aceite Volumen destilado

1,2 cm 0,6 cm 0,7 cm3

Densidad absoluta del aceite esencial (teorico)

=0,5747 g / cm3

Masa del aceite obtenido

0,390 g

Tabla 1.Resultados experimentales

Esto equivale a un rendimiento de:

La densidad del destilado fue determinado de la siguiente manera:

DISCUSIÓN Y ANALISISDE RESULTADOS La destilación por arrastre con vapor es una técnica de extracción o separación esencialmente de sustancias muy poco solubles en agua y volátiles de otros componentes poco volátiles mezclados en ellas. Éste tipo de destilación es muy utilizado en la extracción de aceites esenciales, donde se aprovecha la propiedad que tienen las moléculas de agua de asociarse con las moléculas de aceite.

En los cítricos como la mandarina, el epicarpio (cascara o piel) es una fuente importante de aceites esenciales los cuales están constituidos por compuestos volátiles que generalmente son los que dan las características organolépticas (NAVARRETE, 2009). De acuerdo con la literatura, la eficiencia en la separación del aceite esencial para una muestra de cascara de mandarina común, está representada por la presencia de 0,52L de aceite por cada 100 5 kg de muestra 4 y el índice de refracción del aceite esencial es de . Partiendo de estos datos es posible realizar un análisis de la pureza del destilado recolectado y de la eficiencia de la separación, para ello se calculó el error del calor del índice de refracción y la eficiencia del proceso:

|

|

Este valor indica un error del 3,372% en la determinación del índice de refracción, esto podría depender de varios aspectos, en primer lugar la composición del aceite esencial pues de acuerdo con la variedad utilizada, la composición varía en gran medida. A continuación se presentaran los diferentes compuestos presentes en mandarinas de diferentes variedades (Fanciullino, 2005): CONSTITUYENTES α-Pinene αThujene β-pinene Sabinene Myrcene Α-Terpinene Limonene β-Phellandrene ϒ-Terpinene (E)-β-ocimene p-Cymene Terpinolene δ-Elemene Citronellal Decanal Linalol Thymyl methyl oxide Terpinen-4-ol (E)-β-Famenese α-Terpineol Germacrene D Neryl acetate

NICARAGUA 2,5 0,9 1,9 0,3

MONTENEGRINA 1,5 0,5 1,2 0,2

DE SOE 1 0,9 0,2 0,4 0,1

VIETNAM 0,5 TR 0,6

FAIRCHILD 0,5 TR 0,3

1,8

1,8

1,8

1,8

1,8

0,5

0,3

0,1

-

-

62,5

69,4

88,6

94,8

95,7

0,2 23,3 0,2 1,4 1 TR TR 1,4 TR TR 0,2 0,1 0,4

0,3 17,1 TR 1 0,8 TR 0,1 0,1 0,1 0,2 -

0,3 4,3 0,2 0,1 0,2 TR TR 0,1 1 0,1 TR TR 0,1 TR TR

0,3 TR 0,1 TR 0,1 0,6 TR TR TR 0,1 TR TR TR

0,3 TR 0,3 TR TR TR 0,3 TR TR TR TR

Bicyclogermacrene Geranial (E,E)-α-Farnesene Geranyl acetate Me-Nmethylanthranylate Thymol α.Sinensal

0,1 TR 0,3

0,2 0,9

TR TR TR TR

TR TR TR TR

TR TR TR -

-

0,7

TR

TR

TR

0,1 -

0,2

0,1 0,1

0,2

0,1

Total

99,1

96.6

99,3

99,2

99,3

Tabla 2.

Compuestos sus y porcentajes másicos presentes en la cascara de diferentes variedades de mandarina, Tomado y modificado de: file:///D:/SEM%209/lab%20orga/2006_FFJ_Mandarins.pdf

La tabla anterior presenta la lista de los principales componentes del aceite esencial extraído de cascaras de mandarina, de las variedades más parecidas a las variedades cultivadas en Colombia. Aquí se destacan los componentes principales, como: el limoneno de mayor porcentaje, el alfa pineno, el gama terpineno y el mirceno.

El limonelo es el compuesto principal presente en el aceite esencial extraído de la cascara de los cítricos como la mandarina, perteneciente al grupo de los terpenos cuyas impurezas principalmente son monoterpenos y que comercialmente tiene una pureza de 90-98 %. Este componente es un líquido incoloro a temperatura ambiente y presenta una densidad de 841,1 Kg/m3 y un punto de ebullición de 175 °C. 2 La variedad mas cultivada en Colombia es la mandarina arrayana, está por su parte presenta una buena adaptación desde los 800 a los 1500 m.s.n.m. El aceite esencial de esta variedad, según lo reportado en la literatura, presenta la siguiente composición, (NAVARRETE, 2009) de acuerdo con un análisis cromatográfico de gases acoplado a espectrometría de masas:

Nombre α- pineno (±) β- pineno Limoneno

Porcentaje total 7,7 10 57,4

ϒ-Terpineno Terpinoleno Linalool α terpineol Antranilato de dimetilo

17,5 2,0 1,2 1,2 1,9

Tabla 3. Composición relativa del aceite esencial de residuos de mandarina arrayana.

Como es posible evidenciar con los datos anteriores, la composición del aceite esencial depende fuertemente de la variedad de mandarina que se esté estudiando y por esta razón se presenta un error del 3% en la determinación del índice de refracción. Cabe resaltar que ligados a este error están los errores propios del método de medición del índice de refracción. El cálculo de la eficiencia de la separación, en la práctica se presenta a continuación:

Lo cual, comparado con la eficiencia teórica:

Esto representa una diferencia de 31% entre la eficiencia práctica y la eficiencia teórica, este error puede estar asociado tanto a la variedad utilizada, como al tiempo de maduración de las mandarinas en estudio. Así mismo, una de las consideraciones a tener en cuenta es el aceite perdido al momento de acondicionar la cáscara de mandarina para su extracción, puesto que al cortar la cascara, se evidenció un residuo graso sobre la superficie donde se llevó a cabo el acondicionamiento. Esto indica que parte del aceite a extraer es perdido en esta etapa previa al proceso de destilación. Es importante anotar que para realizar este procedimiento es necesario contar con una cantidad importante de material y una fuente de calor constante en ambos balones que permita agilizar el proceso de extracción. Asimismo, con el fin de aumentar la eficiencia del proceso es necesario realizar una buena preparación del material a trabajar, puesto que, según el tamaño de la muestra de material vegetal, la eficiencia de separación será mayor o menor y es posible perder parte de la sustancia de interés. Por otro lado, es parte fundamental del procedimiento revisar constantemente las conexiones del equipo y de esta forma reducir cualquier escape de vapor y por consiguiente el tiempo de duración.

CUESTIONARIO 1. ¿Cuál es la función del tubo de seguridad durante una destilación por arrastre de vapor?

El tubo de seguridad es necesario para evitar, terminada y durante la destilación, se produzca la adsorción del líquido contenido en el matraz de destilación (que se rompa por una sobrepresión en el interior)

2. ¿A qué sustancias no sería aplicable la destilación con arrastre de vapor? La destilación por arrastre con vapor no sería aplicable para aquellas sustancias que sean solubles en agua, que tengan presiones de vapor muy altas y que sus puntos de ebullición sean bajos en comparación con el del agua.

3. Calcule la composición del destilado de una mezcla de bromobenceno y agua, cuyas presiones de vapor a 95°C con 120 y 640 mmHg respectivamente.

= 1,64

Agua =84,2 % Bromo benceno= 15,8 % 4. Como la mayoría de los compuestos no son completamente insolubles en agua a la temperatura de destilación, indique un método para evitar disminución de la eficiencia del proceso. Disminuir la presión de vapor de arrastre (máximo 6 psi), ya que así el aporte del agua a la presión de la mezcla tendrá que ser menor al momento de que esta iguale la presión atmosférica, se tendrá entonces un condensado más concentrado y sin que este se llegue a hidrolizar con el agua, de esta manera no se permite disminuir su calidad y rendimiento. Se podría también utilizar material más finamente rallado (o molido), de esta manera habrá mayor contacto con el vapor y se logrará la separación con mayor rapidez. Sin embargo esto hay que trabajarlo como un factor de empaquetamiento ya que si el material queda muy suelto el proceso gastara mucha energía y terminara rápido, o si queda muy apretado el vapor se acanalara y disminuirá su rendimiento.

CONCLUSIONES 

 



La destilación por arrastre con vapor es un procedimiento muy útil para la separación de sustancias inmiscibles en agua y sustancias poco volátiles, cuya presión de vaporación es baja y por ende presenta alto punto de ebullición. Esta método es poco eficiente dada la poca cantidad extraída, comparada con el alto consumo energético y acuífero necesario para su extracción. La variedad de la fruta, el tiempo de maduración y la manipulación previa a la destilación son factores importantes a tener en cuenta en la extracción del aceite esencial de la mandarina. Para un estudio más profundo del aceite esencial de mandarina, es aconsejable determinar su composición, con técnicas rigurosas como la cromatografía.

BIBLIOGRAFÍA

1.Navarrete, C. (2009). EXTRACTION AND CHARACTERIZATION OF MANDARIN . MEDELLIN: Universidad nacional de Colombia. 2. ficha de seguridad limoneno. http://www.quimicompuestos.com.mx/pdfs/OTROS/DLIMONENO.pdf 3. Fanciullino, A.-L. (2005). chemical variability of peel and leaf oils of mandarins. francia: journal flavour and fragrance. 4. “II Segundo Congreso Internacional De Plantas Medicinales Y Aromáticas. Extracción De Aceites Esenciales, experiencia Colombiana. Francisco J. Sánchez Castellanos. Químico. Ing. Químico; M.Sc. Dr. Sc. Profesor Procesos Químicos. Departamento de Ingeniería Química. Universidad Nacional de Colombia. Bogotá D.C” 5. Cambell, B. Kline, E. Experiments in organic chemistry 6. Guerrero, C. Guia de laboratorio. Principios de Química Orgánica. 2013

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF