3-calcul-de-la-charge-de-ruine-plastique-des-structures-hyperstatiques.pdf

Share Embed Donate


Short Description

Download 3-calcul-de-la-charge-de-ruine-plastique-des-structures-hyperstatiques.pdf...

Description

www.almohandiss.com

Chapitre III : Calcul de la charge de ruine plastique des structures hyperstatiques

III.1 Conventions de signes  On commence par choisir une fibre de référence

Fibre inférieure Fibres intérieures 

M >O s’il tend la fibre de référence



Une

direction

transversale

est >0 si elle va de la fibre de référence vers l’axe de la barre 

Une direction longitudinale x est >0 si elle est déduite de la direction transversale >0 par rotation de π/2 dans le

sens des aiguilles d’une montre . 

Cas de T : T>0 dans une

section d’abscisse x 0 , s’il est dirigé de bas en haut quand il est calculé à partir de la partie gauche (x< x 0), ou inversement. 

la courbure est positive si elle tend la fibre de référence.

III.2 Etude d’un exemple simple q A

C

B

1

www.almohandiss.com

www.almohandiss.com

La plastification des sections d’extrémités produit une nouvelle évolution du diagramme des moments fléchissants dans la poutre, les parties les moins sollicitées venant au secours des

plus chargés. Ce phénomène s’appelle redistribution plastique entre sections et est caractéristique des structures hyperstatiques.

2

www.almohandiss.com

www.almohandiss.com

III.3 le cas générale d’une structure hyperstatique de degré h III.3.1 Ruine d’une structure hyperstatique 

On considère une structure de degré d’hyperstaticité h, soumise à des charges

qui augmentent proportionnellement l’une à l’autre 

Si P↗ des rotules plastiques se forment



Chaque fois qu’il y a rotule plastique M=M pl=Z.σe et le degré d’hyperstaticité est réduit d’une unité eme



Quand la h

rotule plastique apparait la structure devient isostatique



Lorsque la (h+1)

eme

 rot plast apparait la structure devient un mécanisme

Remarques :

3

www.almohandiss.com

www.almohandiss.com

λP1

1) Ruine partielle

λP2 λP3

2) Ruine plus que complète

III.3.2 Théorème des travaux virtuels Enoncé : Si une ossature déformable en équilibre sous l’effet d’un système de forces extérieures est soumise à une déformation virtu elle, le travail δW e  fournit par les forces

extérieures pendant cette déformation est égale au travail δW i  absorbé par les forces intérieures :

δWi= δWe 

Cas d’une ossature plane chargée dans son plan par k forces (1)

Dans le cas de la ruine par plasticité, on a vu au chapitre II que les sections plastifient principalement sous l’effet de la flexion, le travail de N et T reste élastique et ne varie pas au cours de la déformation virtuelle. Si on choisit les déplacements, comme champ cinématique

virtuel, mais compatible avec les conditions d’appuis, dans le mouvement d’un mécanisme sous charge constante, on peut admettre que les poutres se comportent comme des bielles rigides, articulées les unes aux autres à l’endroit des rotules plastiques.

Il s’en suit que dans le travail virtuel interne δW i dans (1) seul travaille le moment de flexion plastique Mpl sur la rotation plastique arbitraire θ à l’endroit où se forment les rotules plastiques. la formule (1) se réduit donc à : (2) n le nombre de rotules formées dans un mécanisme donné. Exemple

Si on reprend l’exemple de la poutre bi-encastrée uniformément chargée, on a h=2 et il faut donc 3 rotules plastiques pour créer un mécanisme de ruine

4

www.almohandiss.com

www.almohandiss.com

5

www.almohandiss.com

www.almohandiss.com

III.3.3 Sections potentiellement critiques (SPC) Se sont des points sujets à la plastification tels que : -Point d’application d’une charge conc entrée -point où l’effort tranchant est nul ou  Mmax Rq : lorsque les charges sont réparties → approximation SPC au milieu -Les points de brisures -Les variations de section

I

2I (Mp)

(2Mp)

III.3.4 Fondements et applications générales de l’analyse limite  (AL) Considérons le portique de la figure ci-dessous. Trois fois hyperstatique, quatre rotules

plastiques le transformeront en mécanisme. Mais des rotules sont susceptibles d’apparaitre dans 8 sections potentiellement critiques (numérotées sur la figure). Parmi les 70 combinaisons possibles, quelle est la bonne ?

La solution exacte d’un problème d’analyse limite doit satisfaire  : 

La statique (l’équilibre)



La cinématique (compatibilité)



La loi constitutive (élasto-plastique)



Loi constitutive

Suite à l’introduction du concept de rotule plastique, la rotation plastique θ dans une rotule obéit aux relations suivantes :

θ=0 si -Mpl0

si

M= Mpl

θ
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF