2,3,4.docx
Short Description
Download 2,3,4.docx...
Description
Ejercicio 2: Resolución de problemas básicos sobre vectores en R2 y R3 Para el desarrollo de los ejercicios 2 y 3, debe revisar los siguientes contenidos ubicados en el entorno de Conocimiento de la Unidad 1. 1.
Descripción del ejercicio 2 a) Dados los vectores representados en el siguiente gráfico, realizar los siguientes pasos:
Nombrar cada uno de los vectores y encontrar la magnitud y dirección de estos. VECTORES:
⃗ = 4,1 = 3,5 ;
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
|| = = 44 + 1 ≈ 4,1231 || = = 3 + 5 ≈ 5,8309
Luego de obtener la magnitud, se determina el Angulo con la tangente inversa de componente en y sobre su componente en x
= tan− 41 = 14.036 + 180 = 165.9637 = tan− 53 = 59.0362
Encontrar el ángulo entre los vectores.
⃗ ∙ − = cos | | |
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
= cos− 177√ 2 = 106.925
Sumar los vectores y encontrar la magnitud y dirección del vector resultante.
Magnitud:
Dirección:
⃗ = + 4,4,1 + 3,3, 5 = 1,6 = 1,6 || = 11 + 6 || ≈ 6.0828 = tan− 61 = 80.5377 + 180 = 99.4623
Encontrar el área del paralelogramo formado por los vectores representados, con teoría vectorial. Para determinar el área del paralelogramo se multiplica la magnitud de los dos vectores de siguiente manera:
= || ∗ || || || == 5,4,81231309 = 4,1231 1231 5,8309 ≈ 24,042
Comprobar y/o graficar los ítems anteriores, según corresponda, en Geogebra, Matlab, Octave, Scilab, u otro programa similar.
⃗= 3 4 + 2 = 2 + 5 + 4
b) Dados los vectores calcular: para realizar la operación de los vectores es necesario
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3⃗+2 3 = 333 4 + 2 = 9 + 12 6 2 = 222 +5+ 5 +4+ 4 = 4 +10+ 10 +8+ 8 3⃗ +2 +312⃗ +2 6 +4=+ 45++2210 ++28 = 5 + 22 + 2 + 2 = 9 +12 6⃗. 6⃗. = 6(3 4 4 +2+ 2 ∙ 22 + 5 +4+ 4) = 66620+8 6 20+8 = 36
⃗ = 3 4 +2 || = 3 + 44 + 2 → || = = √ 2929 ≈ 5.3852 = 3; = 4;4; = 2 3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
cos = || = 5.32852 ≈ 0.3714 = 2 +5+ 5 +4+ 4 = || = = 2 + 5 + 4 = 3√5 ≈ 6.7082 = 2;2; = 5;5; = 4 cos = || = 6.72082 ≈ 0.2981 cos = || = 6.75082 ≈ 0.7454 cos = || = 6.74082 ≈ 0.5963
Para el vector W de igual forma que con el anterior se calcula
Calcular el producto cruz y el producto punto. PRODUCTO CRUZ
= = 32 45 24 = 〈1610〉 1610〉 〈 〈124〉 1 24〉 +〈+ 〈15+8〉 1 5+8〉 ⃗ = 26 8 +23 . = = 〈33 4 +2+ 2〉 ∙ 〈2 +5+ 5 +4+ 4〉 . = = 32 + 445 + 24 = 6
PRODUCTO PUNTO
Comprobar y/o graficar los ítems anteriores, según corresponda, en Geogebra, Matlab, Octave, Scilab, u otro programa similar.
Ejercicio 3: Resolución de problemas básicos sobre vectores en R2 y R3 Descripción del ejercicio 3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
1 = 5,3 2 ==25 4,8 = 29 Vector 1: Vector 2:
∆ ∆ = 21 ∆ = 9,11 ∆∆ = 9,411 ∆∆ = 94 , 11141
¿Cuánto vale el cambio de velocidad
¿Cuál es la variación de la velocidad por unidad de tiempo?
. ?
Hallar módulo, dirección, y sentido del siguiente vector. Dados:
⃗
⃗
= (5, 12) y = (1, k), donde k es un escalar, encuentre (k) tal que la medida en radianes del ángulo y sea .
Para hallar el módulo es necesario encontrar la magnitud de los vectores a y b:
|| = 5 + 12 → || = 13 || = 1 + → || = 1 + cos− 13√ 13 5 √ +112+ = 3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2691 + = 100 + 480 480 +576 + 576 407 + 480 69 = 0 = 0.1295
El valor de k queda entonces.
Ejercicio 4: Resolución de problemas básicos sobre matrices y determinantes. Desarrolla los siguientes ejercicios luego de leer le er detenidamente los conceptos de la unidad 1, referentes a matrices, operaciones con matrices y determinantes. Presentar la solución con editor de ecuaciones.
Descripción del ejercicio 4 Sean las siguientes matrices:
6 1 0 2 3 9 5 2 0 3 0 2 3 5 2 6 3 5 6 1 3 = = 15 02 33 80 = 05 17 53 = 14 30 95 48 = 31 0 +3 ∙∙ ∙∙ 6 1 0 2 3 9 5 0 2 3 5 2 6 3 5 6 1 3 = ∙ ∙ = = 1 0 3 8 ∙ 0 1 3 ∙ 14 30 95 48 Realizar las siguientes operaciones, si es posible:
a)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
b)
c)
d)
4 ∙ 2
6 1 0 2 3 9 5 2 6 5 1 3 6 4 ∙ 05 17 53 ∙ 2 15 02 33 380 → . 3 ∙7 6 9 5 0 2 3 5 3 ∙∙ 7 7 = 3 14 30 95 48.7 7 105 137 563 0 2 0 6 3 5 9 15 3 = 3 14 30 95 48 = 312 90 2715 1224 6 42 9 5 63 35 6 7 1 3 21 7 = 77 05 17 53 = 350 497 422135 42 35 312 69 159 1512 ∙ 63 7 21 42 7 0 21 3 0 27 24 35 49 35 4 8 3 5 4 6 5 8 8 3 ∙∙ 7 7 = 1239 252 777 651 1470 1533 2 0 3 = = 3 3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
f)
g)
12 43+ 2 39 6 155 + 18118 8 142 + 3916 ++ 2 9 9 + 3 8 + 8 + 5 ∙ =0 4∙ 1 = 235 543 908 0 4 1 ∙ = 23 53 90 ∙ 03 3 2+ 3 + 548 10 191 34 6 13 + 12 620 159 + +54 998+8+89++29 6 9 5 105 137 563
No es posible hallar el determinante de la matriz porque no es cuadrada.
h)
2 0 3 3 3 = 9 + 9 1 1 2
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
9 9 7 = 330 603 13126
Compruebe sus respuestas en Geogebra, Matlab, Octave, Scilab, u otro programa similar.
View more...
Comments