215078145-Algoritmos-y-Aplicaciones.pdf

July 12, 2017 | Author: jesse240 | Category: Chemical Equilibrium, Reynolds Number, Viscosity, Numerical Analysis, Friction
Share Embed Donate


Short Description

Download 215078145-Algoritmos-y-Aplicaciones.pdf...

Description

MÉTODOS DE SOLUCIÓN DE ECUACIONES NO LINEALES. ALGORÍTMOS GENERICOS

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 1

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 2

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 3

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 4

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 5

BIBLIOGRAFIA R. Burden, J.D. Faires. Analisis Numérico. 7° Edición. Thomson Learning. Mexico. 2002. S. C. Chapra, R. P. Canale. Métodos Numéricos para Ingenieros. 5° Edición. McGraw-Hill. Mexico. 2006.

JORGE MARIO PEÑA CONSUEGRA INGENIERO MECÁNICO

Página 6

PROBLEMAS

217

eficiencia de la conversión algunas veces se mejora recirculando una porción de la corriente del producto, de tal forma que regrese a la entrada para un paso adicional a través del reactor (figura P8.2). La razón de recirculando se define como R=

volumen de fluido que regresa a la entrada volumen que sale del sistema

c = cent(1 – e–0.04t) + c0e–0.04t

Suponga que se está procesando una sustancia química A para generar un producto B. Para el caso en que A forma a B de acuerdo con una reacción autocatalítica (es decir, en la cual uno de los productos actúa como catalizador o estimulante en la reacción), es posible demostrar que una razón óptima de recirculación debe satisfacer ln

1 + R(1 – X A ƒ ) R(1 – X A ƒ )

=

Reactor de flujo tipo tapón

Producto

O2

Si se asume que ésta es la única reacción que se lleva a cabo, la fracción molar x de H2O que se disocia se representa por x 1– x

2 pt 2+x

donde la nomenclatura cn representa la concentración del componente N. Suponga que se define una variable x que representa el número de moles de C producido. La conservación de la masa se utiliza para reformular la relación de equilibrio como K=

(cc , 0 + x ) (ca, 0 – 2 x )2 (cb , 0 – x )

donde el subíndice 0 indica la concentración inicial de cada componente. Si K = 0.016, ca, 0 = 42, cb, 0 = 28 y cc, 0 = 4, calcule x. 8.6 Las siguientes reacciones químicas se llevan a cabo en un sistema cerrado

En equilibrio, éstas pueden caracterizarse por

8.3 En un proceso de ingeniería química el vapor de agua (H2O) se calienta a temperaturas lo suficientemente altas para que una porción significativa del agua se disocie, o se rompa, para formar oxígeno (O2) e hidrógeno (H2):

K=

cc ca2 cb

 C 2A + B   C A+D 

Figura P8.2 Representación esquemática de un reactor de flujo tipo tapón con recirculación.

1 2

C 2A + B 

K=

Reciclaje

 H2 + H 2O 

Si la concentración inicial es c0 = 5 y la concentración de entrada es cent = 12, calcule el tiempo requerido para que c sea el 85% de cent. 8.5 Una reacción química reversible

se caracteriza por la relación de equilibrio

R +1 R[1 + R(1 – X A ƒ )]

donde XAƒ es la fracción del reactante A que se convierte en el producto B. La razón óptima de recirculación corresponde a un reactor de tamaño mínimo necesario para alcanzar el nivel deseado de conversión. Utilice un método numérico para determinar la razón de recirculación necesaria, de manera que se minimice el tamaño del reactor para una conversión fraccional de XAƒ = 0.95.

Alimentación

donde K = la constante de equilibrio de la reacción y pt = la presión total de la mezcla. Si pt = 3.5 atm y k = 0.04, determine el valor de x que satisfaga la ecuación (P8.3). 8.4 La siguiente ecuación permite calcular la concentración de un químico en un reactor donde se tiene una mezcla completa:

(P8.3)

K1 =

cc ca2 cb

K2 =

cc ca cd

donde la nomenclatura cn representa la concentración del componente N. Si x1 y x2 son el número de moles de C que se producen debido a la primera y segunda reacciones, respectivamente, emplee un método similar al del problema 8.5 para reformular las relaciones de equilibrio en términos de las concentraciones iniciales de los componentes. Después, use el método de NewtonRaphson para resolver el par de ecuaciones simultáneas no lineales para x1 y x2 si K1 = 4 × 10–4, K2 = 3.7 × 10–2, ca,0 = 50,

ESTUDIO DE CASOS: RAÍCES DE ECUACIONES

218

cb,0 = 20, cc,0 = 5 y cd,0 = 10. Utilice un método gráfico para proponer los valores iniciales. 8.7 La ecuación de estado de Redlich-Kwong está dada por p=

RT a – v – b v(v + b) T

donde R = la constante universal de los gases [= 0.518 kJ/(kg K)], T = temperatura absoluta (K), p = presión absoluta (kPa) y v = volumen de un kg de gas (m3/kg). Los parámetros a y b se calculan mediante a = 0.427

R2 Tc2.5 pc

b = 0.0866 R

Tc pc

donde pc = 4 580 kPa y Tc = 191 K. Como ingeniero químico, se le pide determinar la cantidad de combustible metano que se puede almacenar en un tanque de 3 m3 a una temperatura de –50°C con una presión de 65 000 kPa. Emplee el método de localización de raíces de su elección para calcular v y luego determine la masa de metano contenida en el tanque. 8.8 El volumen V de un líquido contenido en un tanque horizontal cilíndrico de radio r y longitud L está relacionado con la profundidad del líquido h por r – h⎞ ⎡ ⎤ V = ⎢r 2 cos –1 ⎛ – (r – h 2 rh – h 2 ⎥ L ⎝ r ⎠ ⎣ ⎦ Determine h para r = 2 m, L = 5 m y V = 8.5 m3. Observe que si usted utiliza un lenguaje de programación o herramienta de software, el arco coseno se puede calcular como cos –1 x =

⎛ x ⎞ π – tan –1 ⎜ ⎟ 2 ⎝ 1 – x2 ⎠

8.9 El volumen V del líquido contenido en un tanque esférico de radio r está relacionado con la profundidad h del líquido por

πk 2 (3r – h) 3 Determine h para r = 1 m y V = 0.75 m3. 8.10 Para el tanque esférico del problema 8.9, es posible desarrollar las siguientes fórmulas para el método de punto fijo: V=

h=

h 3 + (3V /π ) 3r

y V h = 3 3⎛ rh 2 – ⎞ ⎝ π⎠ Si r = 1 m y V = 0.75 m3, determine si cualquiera de las dos alturas es estable, y el rango de valores iniciales para los que sí son estables. 8.11 La ecuación de Ergun, que se da abajo, sirve para describir el flujo de un líquido a través de un lecho empacado. ∆P es la

caída de presión, r es la densidad del fluido, GO es la velocidad másica (el cociente del flujo de masa dividido entre el área de la sección transversal), Dp es el diámetro de las partículas dentro del lecho, µ es la viscocidad del fluido, L es la longitud del lecho y e es la fracción vacía del lecho. (1 – ε ) ∆pρ Dp ε 3 = 150 + 1.75 Go2 L (1 – ε ) ⎛ Dp Go ⎞ ⎜ ⎟ ⎝ µ ⎠ Dados los siguientes valores para los parámetros encuentre la fracción vacía e del lecho. Dp Go = 1 000 µ ∆PρDp = 10 Go2 L 8.12 En una sección de tubo, la caída de presión se calcula así: L ρV 2 2D donde ∆p = caída de presión (Pa), f = factor de fricción, L = longitud del tubo [m], r = densidad (kg/m3), V = velocidad (m/s), y D = diámetro (m). Para el flujo turbulento, la ecuación de Colebrook proporciona un medio para calcular el factor de fricción, ⎛ ε 1 2.51 ⎞ = −2.0 log ⎜ + f 3 . 7 D Re f ⎟⎠ ⎝ ∆p = f

donde e = rugosidad (m), y Re = número de Reynolds,

ρVD µ donde m = viscosidad dinámica (N · s/m2). Re =

a) Determine ∆p para un tramo horizontal de tubo liso de 0.2 m de longitud, dadas r = 1.23 kg/m3, m = 1.79 × 10–5 N · s/m2, D = 0.005 m, V = 40 m/s, y e = 0.0015 mm. Utilice un método numérico para determinar el factor de fricción. Obsérvese que los tubos lisos tienen Re < 105, un valor inicial apropiado se obtiene con el uso de la fórmula de Blasius, f = 0.316/Re0.25. b) Repita el cálculo pero para un tubo de acero comercial más rugoso (e = 0.045 mm). 8.13 El pH del agua tiene gran importancia para los ingenieros ambientales y químicos. Se relaciona con procesos que van de la corrosión de tubos de lluvia ácida. El pH se relaciona con la concentración del ion de hidrógeno por medio de la ecuación siguiente: pH = – log10 [H+]

PROBLEMAS

219

Ingeniería civil y ambiental 8.15 El desplazamiento de una estructura está definido por la ecuación siguiente para una oscilación amortiguada:

Las cinco ecuaciones que siguen gobiernan las concentraciones de una mezcla de dióxido de carbono y agua para un sistema cerrado. K1 =

[H + ][HCO3− ] [CO 2 ]

K2 =

[H + ][CO32− ] [HCO3– ]

y = 9e–kt cos wt donde k = 0.7 y w = 4. a) Utilice el método gráfico para realizar una estimación inicial del tiempo que se requiere para que el desplazamiento disminuya a 3.5. b) Emplee el método de Newton-Raphson para determinar la raíz con es = 0.01%. c) Use el método de la secante para determinar la raíz con es = 0.01%.

Kw = [H + ][OH − ] cT = [CO 2 ] + [HCO3– ] + [CO32− ] Alk = [HCO3– ] + 2[CO32− ] + [OH – ] − [H + ] donde Alk = alcalinidad, cT = total de carbón inorgánico, y las K son coeficientes de equilibrio. Las cinco incógnitas son [CO2] = dióxido de carbono, [HCO–3 ] = bicarbonato, [CO2– 3 ] = carbonato, [H+] = ion hidrógeno, y [OH–] = ion hidroxilo. Resuelva para las cinco incógnitas dado que Alk = 2 × 10–3, cT = 3 × 10–3, K1 = 10–6.3, y K2 = 10–10.3, y Kw = 10–14. Asimismo, calcule el pH de las soluciones. 8.14 La ecuación que se presenta a continuación, describe la operación de un reactor de flujo por inyección de densidad constante para la producción de una sustancia por medio de una reacción enzimática, donde V es el volumen del reactor, F es la tasa de flujo del reactivo C, Cent y Csal son las concentraciones del reactivo que entra y sale del reactor, respectivamente, y K y kmáx son constantes. Para un reactor de 500 L, con una concentración en la toma de Cent = 0.5 M, tasa de entrada de flujo de 40 L/s, kmáx = 5 × 10–3s–1, y K = 0.1 M, encuentre la concentración de C a la salida del reactor. V =– F

Csal

K

Cent

kmáx C



+

1 kmáx

8.16 En ingeniería estructural, la fórmula de la secante define la fuerza por unidad de área, P/A, que ocasiona la tensión máxima sm en una columna que tiene una razón de esbeltez L/k dada es: P σm = A 1 + (ec/k 2 ) sec [0.5 P/( EA) (L/k )] donde ec/k2 = razón de excentricidad, y E = módulo de elasticidad. Si para una viga de acero, E = 200 000 MPa, ec/k2 = 0.4 y sm = 250 MPa, calcule P/A para L/k = 50. Recuerde que sec x = 1/cos x. 8.17 Un cable en forma catenaria es aquel que cuelga entre dos puntos que no se encuentran sobre la misma línea vertical. Como se ilustra en la figura P8.17a, no está sujeta a más carga que su propio peso. Así, su peso (N/m) actúa como una carga uniforme por unidad de longitud a lo largo del cable. En la figura P8.17b, se ilustra un diagrama de cuerpo libre de una sección AB, donde

dC

Figura P8.17 a) Fuerzas que actúan sobre una sección AB de un cable flexible que cuelga. La carga es uniforme a lo largo del cable (pero no uniforme por la distancia horizontal x). b) Diagrama de cuerpo libre de la sección AB.

y

TB

B



A w

W = ws TA

y0 x

a)

b)

ESTUDIO DE CASOS: RAÍCES DE ECUACIONES

220

TA y TB son las fuerzas de tensión en el extremo. Con base en los balances de fuerzas horizontal y vertical, se obtiene para el cable el siguiente modelo de ecuación diferencial: d2y w dy = 1+ ⎛ ⎞ ⎝ dx ⎠ dx 2 TA

2

Puede emplearse el cálculo para resolver esta ecuación para la altura y del cable como función de la distancia x. y=

⎛w TA cosh ⎜ w ⎝ TA

⎞ T x ⎟ + y0 − A w ⎠

c = 10 – 20(e–0.15x – e–0.5x)

donde el coseno hiperbólico se calcula por medio de la ecuación: 1 cosh x = (e x + e – x ) 2 Utilice un método para calcular un valor para el parámetro TA dados los valores de los parámetros w = 12 y y0 = 6, de modo que el cable tenga una altura de y = 15 en x = 50. 8.18 En la figura P8.18a se muestra una viga uniforme sujeta a una carga distribuida uniformemente que crece en forma lineal. La ecuación para la curva elástica resultante es la siguiente (véase la figura P8.18b) y=

Utilice el método de la bisección para determinar el punto de máxima deflexión (es decir, el valor de x donde dy/dx = 0). Después, sustituya este valor en la ecuación (P8.18) a fin de determinar el valor de la deflexión máxima. En sus cálculos, utilice los valores siguientes para los parámetros: L = 600 cm, E = 50 000 kN/cm2, I = 30 000 cm4 y w0 = 2.5 kN/cm. 8.19 En la ingeniería ambiental (una especialidad de la ingeniería civil), la ecuación siguiente se emplea para calcular el nivel de oxígeno c (mg/L) en un río aguas abajo de la descarga de un drenaje:

w0 ( − x 5 + 2 L2 x 3 − L4 x ) 120 EIL

(P8.18)

donde x es la distancia aguas abajo en kilómetros. a) Determine la distancia aguas abajo de la corriente, a la cual el nivel de oxígeno cae hasta una lectura de 5 mg/L. (Recomendación: está dentro de 2 km de la descarga.) Encuentre la respuesta con un error de 1%. Obsérvese que los niveles de oxígeno por debajo de 5 mg/L por lo general son dañinos para ciertas especies de pesca deportiva, como la trucha y el salmón. b) Calcule la distancia aguas abajo a la cual el oxígeno se encuentra al mínimo. ¿Cuál es la concentración en dicha ubicación? 8.20 La concentración de bacterias contaminantes c en un lago disminuye de acuerdo con la ecuación c = 75e–1.5t + 20e–0.075t Determine el tiempo que se requiere para que la concentración de bacterias se reduzca a 15 con el uso de a) el método gráfico, y b) el método de Newton-Raphson, con un valor inicial de t = 6 y criterio de detención de 0.5%. Compruebe los resultados que obtenga. 8.21 En ingeniería oceanográfica, la ecuación de una ola estacionaria reflejada en un puerto está dada por l = 16, t = 12, v = 48:

Figura P8.18

w0

2πx ⎞ 2πtv ⎞ − x ⎤ ⎡ h = h0 ⎢sen ⎛ cos ⎛ +e ⎥ ⎝ λ ⎠ ⎝ λ ⎠ ⎣ ⎦

L

a)

(x = L, y = 0) (x = 0, y = 0) x

b)

Resuelva para el valor positivo más bajo de x, si h = 0.5 h0. 8.22 Suponga el lector que compra una pieza de equipo en $25 000 como pago inicial y $5 500 por año durante 6 años. ¿Qué tasa de interés estaría pagando? La fórmula que relaciona el valor presente P, los pagos anuales A, el número de años n y la tasa de interés i, es la que sigue: A=P

i(1 + i )n (1 + i )n − 1

PROBLEMAS

221

20 kips/ft

150 kips-ft

5’

2’

1’

15 kips

2’

Figura P8.24

8.23 Muchos campos de la ingeniería requieren estimaciones exactas de la población. Por ejemplo, los ingenieros de transporte quizás encuentren necesario determinar por separado la tendencia del crecimiento de una ciudad y la de los suburbios. La población del área urbana declina con el tiempo de acuerdo con la ecuación: Pu(t) = Pu,máxe–kut + Pu,mín en tanto que la población suburbana crece según: ps (t ) =

M(x) = –10[〈x – 0〉2 – 〈x – 5〉2] + 15〈x – 8〉1 + 150〈x – 7〉0 + 57x Emplee un método numérico para encontrar el (los) punto(s) en los que el momento es igual a cero. 8.26 Con el uso de la viga con apoyo simple del problema 8.24, la pendiente a lo largo de ella está dada por: duy dx

( x) =

Ps , máx 1 + [ Ps , máx / P0 − 1]e − kst

donde Pu,máx, ku, Ps,máx, P0 y ks son parámetros que se obtienen en forma empírica. Determine el tiempo y los valores correspondientes de Pu(t) y Ps(t) cuando los suburbios son 20% más grandes que la ciudad. Los valores de los parámetros son: Pu,máx = 75 000, Ku = 0.045/año, Pu,mín = 100 000 personas, Ps,máx = 300 000 personas, P0 = 10 000 personas, ks = 0.08/año. Para obtener las soluciones utilice los métodos a) gráfico, b) de la falsa posición, y c) de la secante modificada. 8.24 En la figura P8.24 se muestra una viga apoyada en forma sencilla que está cargada como se ilustra. Con el empleo de funciones de singularidad, el esfuerzo cortante a lo largo de la viga se expresa con la ecuación: V(x) = 20[〈x – 0〉1 – 〈x – 5〉1] – 15〈x – 8〉0 – 57 Por definición, la función de singularidad se expresa del modo que sigue: ⎧( x − a) n 〈 x – a〉 n = ⎨ ⎩ 0

cuando x > a ⎫ ⎬ cuando x ≤ a ⎭

Utilice un método numérico para encontrar el(los) punto(s) en los que el esfuerzo cortante sea igual a cero. 8.25 Con el uso de la viga apoyada en forma simple del problema 8.24, el momento a lo largo de ella, M (x) está dada por:

−10 15 [〈 x − 0 〉 3 − 〈 x − 5〉 3 ] + 〈 x − 8〉 2 3 2 57 x 2 − 238.25 + 150 〈 x − 7〉1 + 2

Utilice un método numérico para encontrar el(los) punto(s) donde la pendiente es igual a cero. 8.27 Para la viga con apoyo simple del problema 8.24, el desplazamiento a lo largo de ella está dado por la ecuación: uy ( x ) =

−5 15 [〈 x − 0 〉 4 − 〈 x − 5〉 4 ] + 〈 x − 8〉 3 6 6 57 3 2 + 75〈 x − 7〉 + x − 238.25 x 6

a) Calcule el (los) punto(s) donde el desplazamiento es igual a cero. b) ¿Cómo se usaría una técnica de localización de raíces para determinar la ubicación del desplazamiento mínimo? Ingeniería eléctrica 8.28 Ejecute el mismo cálculo que en la sección 8.3, pero determine el valor de C que se requiere para que el circuito disipe 1% de su valor original en t = 0.05 s, dado R = 280 Ω, y L = 7.5 H. Emplee a) un enfoque gráfico, b) la bisección, y c) software para encontrar raíces, tales como Solver de Excel o la función fzero de MATLAB. 8.29 La ecuación i = 9e–t cos (2pt), describe una corriente oscilatoria en un circuito eléctrico, donde t se expresa en segundos. Determine todos los valores de t de modo que i = 3.

ESTUDIO DE CASOS: RAÍCES DE ECUACIONES

222

8.32 En la figura P8.32 se muestra un circuito con una resistencia, un inductor y un capacitor en paralelo. Para expresar la impedancia del sistema se emplean las leyes de Kirchhoff, así:

a x q

1 = Z

Q

Figura P8.31

8.30 La resistividad r de un lubricante de sílice se basa en la carga q en un electrón, la densidad del electrón n, y la movilidad del electrón m. La densidad del electrón está dada en términos de la densidad del lubricante N, y la densidad intrínseca de acarreo ni. La movilidad del electrón está descrita por la temperatura T, la temperatura de referencia T0, y la movilidad de referencia µ0. Las ecuaciones que se requieren para calcular la resistividad son las siguientes:

ρ=

1 qnµ

donde n=

(

1 N + N 2 + 4 ni2 2

)

y

⎛T⎞ µ = µ0 ⎜ ⎟ ⎝ T0 ⎠

−2.42

Determine N, dado que T0 = 300 K, T = 1 000 K, µ0 = 1 350 cm2 (V s)–1, q = 1.7 × 10–19 C, ni = 6.21 × 109 cm–3, y un valor deseable de r = 6.5 × 106 V s cm/C. Use los métodos a) bisección, y b) la secante modificada. 8.31 Una carga total Q se encuentra distribuida en forma uniforme alrededor de un conductor en forma de anillo con radio a. Una carga q se localiza a una distancia x del centro del anillo (véase la figura P8.31). La fuerza que el anillo ejerce sobre la carga está dada por la ecuación F=

1 qQx 4πe0 ( x 2 + a 2 )3/ 2

donde e0 = 8.85 × 10–12 C2/(N m2). Encuentre la distancia x donde la fuerza es de 1.25 N, si q y Q son 2 × 10–5 C para un anillo con un radio de 0.9 m.

1 ⎛ 1 ⎞ + ωC – R2 ⎝ ωL ⎠

2

donde Z = impedancia (Ω) y w = frecuencia angular. Encuentre la w que da como resultado una impedancia de 75 Ω, con el uso tanto del método de la bisección como el de la falsa posición, con valores iniciales de 1 y 1000 y los parámetros siguientes: R = 225 Ω, C = 0.6 × 10–6 F, y L = 0.5 H. Determine cuántas iteraciones son necesarias con cada técnica a fin de encontrar la respuesta con es = 0.1%. Utilice el enfoque gráfico para explicar cualesquiera dificultades que surjan. Ingeniería mecánica y aeroespacial 8.33 Para la circulación de fluidos en tubos, se describe a la fricción por medio de un número adimensional, que es el factor de fricción de Fanning f. El factor de fricción de Fanning depende de cierto número de parámetros relacionados con el tamaño del tubo y el fluido, que pueden representarse con otra cantidad adimensional, el número de Reynolds Re. Una fórmula que pronostica el valor de f dado Re es la ecuación de von Karman.

(

)

1 = 4 log10 Re ƒ − 0.4 ƒ Valores comunes del número de Reynolds para flujo turbulento son 10 000 a 500 000, y del factor de fricción de Fanning son 0.001 a 0.01. Desarrolle una función que utilice el método de bisección con objeto de resolver cuál sería el factor de fricción de Fanning f, dado un valor de Re proporcionado por el usuario que esté entre 2 500 y 1 000 000. Diseñe la función de modo que se garantice que el error absoluto en el resultado sea de Ea,d < 0.000005. 8.34 Los sistemas mecánicos reales involucran la deflexión de resortes no lineales. En la figura P8.34 se ilustra una masa m que se libera por una distancia h sobre un resorte no lineal. La fuerza de resistencia F del resorte está dada por la ecuación

Figura P8.34

Figura P8.32 h h+d d



R

L

C

a)

b)

PROBLEMAS

223

F = –(k1d + k2d3/2) Es posible usar la conservación de la energía para demostrar que 0=

2 k2 d 5/ 2 1 + k1d 2 − mgd – mgh 5 2

v = u ln

Resuelva cuál sería el valor de d, dados los valores siguientes de los parámetros: k1 = 50 000 g/s2, k2 = 40 g/(s2 m0.5), m = 90 g, g = 9.81 m/s2, y h = 0.45 m. 8.35 Los ingenieros mecánicos, así como los de otras especialidades, utilizan mucho la termodinámica para realizar su trabajo. El siguiente polinomio se emplea para relacionar el calor específico a presión cero del aire seco, cp kJ/(kg K), a temperatura (K): cp = 0.99403 + 1.671 × 10–4 T + 9.7215 × 10–8T 2 –9.5838 × 10–11T 3 + 1.9520 × 10–14T4 Determine la temperatura que corresponda a un calor específico de 1.1 kJ/(kg K). 8.36 En ciertas ocasiones, los ingenieros aerospaciales deben calcular las trayectorias de proyectiles, como cohetes. Un problema parecido tiene que ver con la trayectoria de una pelota que se lanza. Dicha trayectoria está definida por las coordenadas (x, y), como se ilustra en la figura P8.36. La trayectoria se modela con la ecuación y = ( tan θ 0 ) x −

Para g, utilice un valor de 9.81 m/s2, y emplee el método gráfico para elegir valores iniciales. 8.37 La velocidad vertical de un cohete se calcula con la fórmula que sigue:

g x 2 + 1.8 2v cos2 θ 0 2 0

Calcule el ángulo inicial q0, apropiado si la velocidad inicial v0 = 20 m/s y la distancia x al catcher es de 35 m. Obsérvese que la pelota sale de la mano del lanzador con una elevación y0 = 2 m, y el catcher la recibe a 1 m. Exprese el resultado final en grados.

m0 − gt m0 − qt

donde v = velocidad vertical, u = velocidad con la que se expele el combustible, en relación con el cohete, m0 = masa inicial del cohete en el momento t = 0, q = tasa de consumo de combustible, y g = aceleración de la gravedad hacia abajo (se supone constante e igual a 9.81 m/s2). Si u = 2000 m/s, m0 = 150 000 kg, y q = 2 700 kg/s, calcule el momento en que v = a 750 m/s. (Sugerencia: El valor de t se encuentra entre 10 y 50 s.) Calcule el resultado de modo que esté dentro de 1% del valor verdadero. Compruebe su respuesta. 8.38 En la sección 8.4, el ángulo de fase f entre la vibración forzada que ocasiona el camino rugoso y el movimiento del carro, está dada por la ecuación: tan φ =

2(c/cc )(ω / p) 1 – (ω / p)2

Como ingeniero mecánico, le gustaría saber si existen casos en que f = w/3 – 1. Utilice los otros parámetros de la sección con objeto de plantear la ecuación como un problema de cálculo de raíces, y resuélvala para w. 8.39 Se mezclan dos fluidos con temperatura diferente de modo que alcanzan la misma temperatura. La capacidad calorífica del fluido A está dada por: cp = 3.381 + 1.804 × 10–2T – 4.300 × 10–6 T 2 y la capacidad calorífica del fluido B se obtiene con: cp = 8.592 + 1.290 × 10–1T – 4.078 × 10–5 T 2 donde cp se expresa en unidades de cal/mol K, y T está en unidades de K. Obsérvese que

Figura P8.36

∆H = ∫

T2

T1

y

v0 ␪0 x

c p dT

El fluido A entra al mezclador a 400ºC, y el B a 700ºC. Al entrar al mezclador hay lo doble de fluido A que B. ¿A qué temperatura salen los dos fluidos del mezclador? 8.40 Un compresor opera a una razón de compresión Rc de 3.0 (esto significa que la presión del gas en la salida es tres veces mayor que en la entrada). Los requerimientos de energía del compresor Hp se determinan por medio de la ecuación que se da a continuación. Suponga que los requerimientos de energía del compresor son exactamente iguales a zRT1/MW, y encuentre la eficiencia politrópica n del compresor. El parámetro z es la compresibilidad del gas en las condiciones de operación del compre-

ESTUDIO DE CASOS: RAÍCES DE ECUACIONES

224

⎡σ xx ⎢σ ⎢ xy ⎢⎣σ xz

σ xy σ xz ⎤ σ yy σ yz ⎥ ⎥ σ yz σ zz ⎥⎦

en la que los términos en la diagonal principal representan esfuerzos a la tensión o a la compresión, y los términos fuera de la diagonal representan los esfuerzos cortantes. Un campo tensorial (en MPa) está dado por la matriz que sigue:

T3

T0 T1

T2

Figura P8.41

⎡10 14 25⎤ ⎢14 7 15⎥ ⎥ ⎢ ⎣⎢25 15 16⎥⎦ Para resolver cuáles son los esfuerzos principales, es necesario construir la matriz siguiente (de nuevo en MPa): ⎡10 − σ ⎢ 14 ⎢ ⎢⎣ 25

14 25 ⎤ 7−σ 15 ⎥⎥ 15 16 − σ ⎥⎦

s1, s2 y s3 se obtienen con la ecuación sor, R es la constante de los gases, T1 es la temperatura del gas en la entrada del compresor, y MW es el peso molecular del gas. zRT1 n HP = ( Rc(n−1)/ n − 1) MW n − 1 8.41 En los envases térmicos que se ilustran en la figura P8.41, el compartimiento interior está separado del medio por medio de vacío. Hay una cubierta exterior alrededor de los envases. Esta cubierta está separada de la capa media por una capa delgada de aire. La superficie de afuera de la cubierta exterior está en contacto con el aire del ambiente. La transferencia de calor del compartimiento interior a la capa siguiente q1 sólo ocurre por radiación (ya que el espacio se encuentra vacío). La transferencia de calor entre la capa media y la cubierta exterior q2 es por convección en un espacio pequeño. La transferencia de calor de la cubierta exterior hacia el aire q3 sucede por convección natural. El flujo de calor desde cada región de los envases debe ser igual, es decir, q1 = q2 = q3. Encuentre las temperaturas T1 y T2 en estado estable. T0 es de 450ºC y T3 = 25ºC. q1 = 10 −9 [(T0 + 273)4 − (T1 + 273)4 ] q2 = 4(T1 − T2 )

σ 3 − Iσ 2 + IIσ − III = 0 donde I = σ xx + σ yy + σ zz II = σ xxσ yy + σ xxσ zz + σ yyσ zz − σ xy2 − σ xz2 − σ yz2 III = σ xxσ yyσ zz − σ xxσ yz2 − σ yyσ xz2 − σ zzσ xy2 + 2σ xyσ xzσ yz I, II y III se conocen como las invariantes de esfuerzos. Encuentre s1, s2 y s3 por medio de una técnica de localización de raíces. 8.43 La figura P8.43 ilustra tres almacenamientos conectados por medio de tubos circulares. Los tubos están hechos de hierro

Figura P8.43 h1 A

h2 1 Q1

B

2

h3

Q2

q3 = 1.3(T2 − T3 )4 / 3

3 Q3

8.42 La forma general para un campo tensorial de tres dimensiones es la siguiente:

C

PROBLEMAS

225

fundido recubierto con asfalto (e = 0.0012 m), y tienen las características siguientes: Tubo Longitud, m Diámetro, m Flujo, m3/s

1 1800 0.4 ?

2 500 0.25 0.1

3 1400 0.2 ?

Q1 = 1 m3/s y r = 1.23 kg/m3. Todos los tubos tienen D = 500 mm y f = 0.005. Las longitudes de los tubos son: L3 = L5 = L8 = L9 = 2 m; L2 = L4 = L6 = 4 m; y L7 = 8 m. 8.45 Repita el problema 8.44, pero incorpore el hecho de que el factor de fricción se calcula con la ecuación de von Karman, que es: 1 = 4 log10 (Re f ) − 0.4 f

Si las elevaciones de la superficie del agua en los almacenamientos A y C son de 200 m y 172.5 m, respectivamente, determine la elevación que alcanza en el almacenamiento B y los flujos en los tubos 1 y 3. Obsérvese que la viscosidad cinemática del agua es de 1 × 10–6 m2/s, y utilice la ecuación de Colebrook para obtener el factor de fricción (consulte el problema 8.12). 8.44 Un fluido se bombea en la red de tubos que se muestra en la figura P8.44. En estado estacionario, se cumplen los balances de flujo siguientes: Q1 = Q2 + Q3 Q3 = Q4 + Q5 Q5 = Q6 + Q7 donde Qi = flujo en el tubo i [m3/s]. Además, la caída de presión alrededor de los tres lazos en los que el flujo es hacia la derecha debe ser igual a cero. La caída de presión en cada tramo de tubo circular se calcula por medio de la ecuación: 16 fL ρ 2 Q π 2 2 D5 donde ∆P= caída de presión [Pa], f = factor de fricción [adimensional], L = longitud del tubo [m], r = densidad del fluido [kg/m3], y D = diámetro del tubo [m]. Escriba un programa (o desarrolle un algoritmo en algún paquete de software de matemáticas) que permita calcular el flujo en cada tramo de tubo, dado que ∆P =

Figura P8.44 Q1

Q3

Q2

Q10

Q5

Q4

Q9

Q6

Q8

Q7

donde Re = número de Reynolds Re =

ρVD µ

donde V = velocidad del fluido en el tubo [m/s], y µ = viscosidad dinámica (N ⋅ s/m2). Obsérvese que para un tubo circular, V = 4Q/ pD2. Asimismo, suponga que el fluido tiene una viscosidad de 1.79 × 10–5 N ⋅ s/m2. 8.46 Sobre el trasbordador espacial, al despegar de la plataforma, actúan cuatro fuerzas, las que se muestran en el diagrama de cuerpo libre (véase la figura P8.46). El peso combinado de los dos cohetes de combustible sólido y del tanque exterior de este, es de WB = 1.663 × 106 lb. El peso del orbitador con carga completa es de WS = 0.23 × 106 lb. El empuje combinado de los dos cohetes de combustible sólido es TB = 5.30 × 106 lb. El empuje combinado de los tres motores de combustible líquido del orbitador es de TS = 1.125 × 106 lb. Al despegar, el empuje del motor del orbitador se dirige con un ángulo q para hacer que el momento resultante que actúa sobre el conjunto de la nave (tanque exterior, cohetes de combustible sólido y orbitador) sea igual a cero. Con el momento resultante igual a cero, la nave no giraría sobre su centro de gravedad G al despegar. Con estas fuerzas, la nave experimentará una fuerza resultante con componentes en dirección vertical y horizontal. La componente vertical de la fuerza resultante, es la que permite que la nave despegue de la plataforma y vuele verticalmente. La componente horizontal de la fuerza resultante hace que la nave vuele en forma horizontal. El momento resultante que actúa sobre la nave será igual a cero cuando q se ajusta al valor apropiado. Si este ángulo no se ajusta en forma adecuada y hubiera algún momento que actuara sobre la nave, ésta tendería a girar alrededor de su centro de gravedad. a) Resuelva el empuje del orbitador TS en las componentes horizontal y vertical, y después sume los momentos respecto del punto G, centro de gravedad de la nave. Iguale a cero la ecuación del momento resultante. Ahora, ésta puede resolverse para el valor de q que se requiere durante el despegue. b) Obtenga una ecuación para el momento resultante que actúa sobre la nave en términos del ángulo q. Grafique el

ESTUDIO DE CASOS: RAÍCES DE ECUACIONES

226

28’ 4’

Tanque externo

Cohete de combustible sólido

Orbitador

G

38’ WB

WS

TS TB



Figura P8.46

momento resultante como función del ángulo q en el rango de –5 radianes a +5 radianes. c) Escriba un programa de computadora para resolver para el ángulo q por medio del método de Newton para encontrar la raíz de la ecuación del momento resultante. Con el empleo de la gráfica, elija un valor inicial para la raíz de interés. Interrumpa las iteraciones cuando el valor de q ya no mejore con cinco cifras significativas. d) Repita el programa para el peso de la carga mínima del orbitador, que es WS = 195 000 lb.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF